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AN OPTIMAL SIMULATION OF
COUNTER MACHINES*
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Abstract. Each multicounter machine can be simulated by an oblivious one-head tape unit in real-time,
using logarithmic space. The solution uses redundant symmetric number representation and implicit recursion.
It represents a new positional representation for (vectors of) the integers.
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1. Introduction. The idea of counting, that is, adding or subtracting a unit from
any given number, to obtain another one, is the substrate of arithmetic if not of all of
mathematics. Thus, it is frequently necessary in computing to maintain many counts
simultaneously, while the only information we want to extract at any time is the set
of currently zero counts. The process of storing several integer counts, each count
independently being incremented or decremented by a unit in each step, governed by
the current input and the set of zero counts, is abstracted and formalized in the notion
of a multicounter machine. Such machines have numerous connections with both
theoretical issues and more or less practical applications. It is of considerable interest,
for many questions, to implement multicounter machines as efficiently as possible. We
shall show that counting is basically simple, in the computational complexity sense of
the word, by demonstrating that each multicounter machine can be simulated in
real-time by an oblivious one-head tape unit using minimal storage space. Since the
presented implementation is optimal in all commonly considered resources at once,
the two decade old quest for better simulations of multicounter machines by Turing
machines is finalized in one stroke.

Doing arithmetic presupposes number representations. Different representations
are better suited to different arithmetical operations. All of arithmetic can be performed
by multicounter machines. Because we shall simulate a multicounter machine by a
one-head tape unit, we need to straightforwardly represent a vector of integers as a
linear string. No known representation for single integers allows the counter steps to
be performed by an oblivious one-head tape unit without unbounded time loss in
between simulated steps. Neither does any known representation, for pairs of integers,
allow the counter steps to be performed by a one-head tape unit, oblivious or not,
without unbounded time loss in between simulated steps. To achieve our objective,
we in effect have to develop a new representation, with the required properties, for
vectors of integers.

Multicounter machines and Turing machines. For the present purpose, machines
are viewed as transducers, that is, as abstract storage devices connected to input and
output terminals. Thus we consider a machine as hidden in a black box with input and
output terminals. Consequently, the presented simulation results concern the input-
output behavior of black boxes and are independent of input-output conventions, or
whether we want to recognize or to compute. The abstract storage structure embodied
by a k-counter machine (k-CM) consists of a finite control connected to an input and
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an output terminal, and k counters each capable of containing any integer. The states
of the finite control are partitioned into polling and autonomous states. (Here we can
assume without loss of generality that all states are polling states.) At the start of a
computation the finite control of the k-CM is in a designated initial state and all
counters are set to zero. A step in a k-CM computation is uniquely determined by
the state of the finite control, by the symbol scanned at the input terminal if the state
is a polling state and the set of counters which contain zero. The action at that step
consists of independently altering the contents of each counter by 1, 0, or + 1, changing
the state of the finite control and producing an, possibly empty, output string. Thus
the machine effects a transduction from input strings to output-strings. If you will, the
input and output may be thought of as written on input and output tapes, on which
the resident access pointers (heads) are steered by the finite control. The steering
commands issued can be viewed as part of the output. Above we closely followed the
formulation in [2] where also a more precise definition can be found. For the more
standard concept of multitape Turing machines consult [2], [6]. Note that, for us, a
one-tape Turing machine consists of a finite control connected to an input and output
terminal, and a single head storage tape. A one-head tape unit is a one-tape Turing
machine.

Simulation. A machine A simulates a machine B in time T(n) if, for all n > 0,
the input/output behavior of B during the first n steps, the atomic inputs and outputs
ordered according to their occurrences in time, is exactly mimicked by A within the
first T(n) steps. That is, if for every input sequence il, i2," read from the input
terminal: (i) the output sequences written to the output terminals by A and B are the
same, and (ii)if tl----< t2 <-’’" --<--’tk <= tk+l"’" are the steps at which B reads or writes a
symbol, then there are corresponding steps t <- t& _-<. _-< t _<- t+ at which A reads
or writes the same symbols, and t _-< T(t) for all i-> 1. For a linear time simulation it
is required that T(n) O(n); for a simulation with constant delay that t’+l-t’ <-

c(t+l- t) for some fixed constant c and all n; for a real-time simulation that T(n) n.
It is well known that a constant delay simulation can always be sped up to a real-time
one, but. not a linear time simulation in general. We use simulation in the above strong
sense of on-line simulation [6] throughout.

Obliviousness. A Turing machine is oblivious if the movements of the storage tape
heads are fixed functions of time independent of the particular inputs to the machine.
Many problems seem inherently oblivious: the usual algorithms for computing the
four main arithmetic operations, a table look-up by sequential search, can easily be
programmed obliviously without sacrificing worst case time efficiency. Other tasks like
binary search or sorting are, it appears, nonoblivious in nature. For many purposes,
there are excellent reasons to restrict attention to oblivious computations [6], [7]. Here
we show yet another, more heuristic, motive for doing so. Viz., restriction of the
considered model of computation to its oblivious version may shift the emphasis in
the problem to be solved, from one difficulty to a completely different one, thus
directing us to a solution. Whereas the difficulty in real-time simulating k-counter
machines by k’-tape Turing machines, k’ < k, stems from the fact that k’ < k, the same
problem with the simulating machine restricted to its oblivious version knows as
difficulty but the obliviousness of the simulating device alone.

For suppose we can simulate some abstract storage device S in time T(n) by an
oblivious Turing machine M. Then we can also simulate a collection of k copies of S,
say S1, $2," , Sk, interacting through a common finite control, by dividing all storage
tapes of M into k tracks, each of which is a duplicate of the corresponding former
tape, and by an appropriate modification of M’s finite control. The same head move-
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ments of the resulting machine M’ can now do the same job, on each of the k collections
of tracks, as they formerly did on the collection of tapes of the original machine M.
So the resources used by M’ are, apart from sizes of finite control and alphabets, the
same as those used by M. In particular this holds for time and storage complexity.
Therefore the following two statements are equivalent:

(i) We can simulate an abstract storage device S by an oblivious Turing machine
M in time T(n) and storage S(n).

(ii) For each k > 0 we can simulate a collection of k copies of $, interacting
through a common finite control, by an oblivious Turing machine M’ in time
T(n) and storage S(n), where M’ has the same tape/head constellation as M.

We are in particular interested in the following specialization of the above maxim.
Define the quintessential counter S as a 1-CM with input commands "add ",

{-1, 0, 1 }. At each step S reads an input command from the input terminal, modifies
the stored count in the obvious way, and outputs either "count equal zero" or "count
unequal zero" in concordance with the current state of affairs.

PROPOSITION 1. If we can real-time simulate the quintessential counter S by an
oblivious one-head tape unit then we can real-time simulate each multicounter machine
by an oblivious one-head tape unit (which for each multicounter machine makes the
same head movements as a function of time alone).

Background. Counter .machines are relatively old devices in computer science.
Unrestricted 2-counter machines were shown to be as powerful as Turing machines
in [5]. Subsequently the efficiency of implementations on Turing machines was investi-
gated. On linear arrays, as formalized by Turing machines, the use of a tally representa-
tion for each count either requires a separate access pointer (storage tape head) per
count or unbounded update time in between simulated steps. Curiously, even with the
use of a separate pointer for each count, binary representations also require unbounded
update time, although minimal storage space. This sorry state of affairs was improved
in [1], [2] which both presented linear array simulations using minimal space, while
[1] eliminated the unbounded update time at the cost of retaining all access pointers
and [2] eliminated all access pointers but one at the cost of retaining unbounded update
time. Thus, [2] exhibited the classic linear time/logarithmic space simulation of multi-
counter machines by one-tape Turing machines. Efforts to reduce this simulation to
a real-time one using a fixed number of storage heads failed, but did produce some
weaker problems. For the Origin Crossing Problem, where the task is to recognize
the set of sequences of unit basis vectors in k-space, k _-> 1, which leave from and end
in the origin, an ingenious solution by a real-time one-tape Turing machine was
constructed in [1]. The result implies that each k-counter machine can be real-time
simulated by a k-tape Turing machine in logarithmic space, k _>-1. Next in difficulty
comes the Axis Crossing Problem, where the task is to recognize the set of sequences
of unit basis vectors in k-space, which leave from the origin and end in one of the
(k-1)-dimensional hyperplanes with one zero coordinate, k > 1. For no k > 1, a
real-time solution on but a (k-1)-tape Turing machine was found, for the k-
dimensional Axis Crossing Problem, after its proposal in [2].

In [8] we made the linear time/logarithmic space one-tape solution of [2] oblivious,
retaining the same resource bounds. This is a matter of some significance, since by its
nature an oblivious Turing machine is usually far slower than a nonoblivious one. For
example, each oblivious multitape Turing machine needs n log n steps to simulate n
steps of a single pushdown store, although an oblivious 2-tape Turing machine can
achieve this bound [6]. For oblivious one-tape Turing machines the lower bound on
this simulation time increases, perhaps, up to n2. Due to the compact way the counts
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can be stored, the situation for counter machines was somewhat better. In [7, Cor. 2]
it was shown how to simulate each multitape Turing machine, using at most S(n)
storage in n steps, by an oblivious 2-tape Turing machine in n log S(n) steps and S(n)
storage. So the previously best simulation of multicounter machines, by combining [2]
and [7], yielded a n log log n time and log n storage simulation by an oblivious 2-tape
Turing machine. Since the thrust of [8] was to achieve fast low-cost combinational
logic networks implementing multicounter machines, as an expedient intermediate
next result a real-time simulation by, basically, a linear iterative array with a restricted
amount of oblivious local rewriting was proposed. Although not very elegant, this
intermediate model served its purpose in yielding an optimal implementation of
multicounter machines on combinational logic networks and, perhaps more important,
the ideas embodied in the method suggest the approach to the final simulator presented
here.

Outline of the paper. The objective is to construct an oblivious one-head tape unit
capable of simulating any multicounter machine in real-time. In 2 a stylized version
of such a simulator is exhibited and shown to work. This version, one of many which
are possible on the basic underlying principles, is chosen because it is at once amenable
to short rigorous proofs of validity and achieves, it seems, the utmost frugality of
machinery. To a large extent this gain is obtained at a cost of loss of intuition as to
how and why it does what it is supposed to do. To counterbalance this expository
defect, we insert some informal comments. The reader may also follow the genesis of
the result by consulting [8] and the earlier version in the STOC Proceedings. In 3
we enlarge on the optimality of the result, its connection with number representations,
and on additional fruit borne.

:. The simulation. After some vain attempts to real-time simulate multicounter
machines by Turing machines with a fixed number of tapes, one gets the feeling that,
anyway, a real-time simulation by an oblivious one-head tape unit is out of the question.
In the event, intuition is wrong; but let us informally consider the matter in some
more detail. It quickly becomes apparent that updating a count, in real-time on an
oblivious machine, requires a redundancy in notation which seems to make a simul-
taneous real-time check for zero impossible. To achieve the latter, we allow only
encodings of integers such that an integer is zero iff the scanned position of the encoding
(the "first" position, so to speak) shows this uniquely. Since the head motion is supposed
to be oblivious we must, roughly speaking, update each "initial" f(log i) length segment
(situated around the head) of the encoded integer within each interval of steps, for
all => 1. While moving the head to update longer segments of code in an oblivious
manner, we may have actually stored small counts which may reach zero during this
motion. So the machine has to simultaneously shift and update smaller segments of
code, while updating larger segments of code, and so on recursively down to the
smallest segments. Such considerations force compact encodings, and, apart from giving
us some feel for what behavior is necessarily involved in a simulation as desired, they
show that the integer representation used must be positional in nature.

Outline of the simulation. The simulation splits naturally into two parts. First we
introduce a redundant binary representation for the integers, and formulate certain
minimal requirements for real-time maintaining the representation of the stored integer
under the counter operations. These requirements consist in a fixed strategy, of
accessing constant length segments of this representation, for all input streams. Second,
we construct an oblivious one-head tape unit capable of implementing these require-
ments in real-time.
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The current count of the quintessential counter, as figuring in Proposition 1, is
stored on the single tape in a (garbled form of) redundant binary representation, with
marked most significant nonzero digit and leading distinguished blank symbols. As a
consequence of preserving some invariants, the stored count equals zero iff the "first"
position of the representation is a blank. Since this first position shall reside in the
finite control of the simulator, that situation is instantly recognized.

Hence the problem is solved, if we can real-time update the representation of the
current count while preserving the invariants. In the chosen representation it suffices
to update each segment of the 2ith through (2i + 3)th position of the representation
at least once within each interval of 3 consecutive steps, for all i>=0, while also
processing the current input commands, by an update of the first two positions, in
each step. Intuitively speaking, the timing allows us to propagate carries and borrows
(negative carries) fast enough. Although there is a considerable freedom about how
to implement the required datamovement on an oblivious one-head tape unit, we
choose for frugality in attendant machinery and minimal bit compression (that is, a
small storage tape alphabet). Therefore, we divide the representation into blocks of
two digits each, and store the first three blocks in the finite control. Each digit of the
representation residing on the tape is tagged with an opening or a closing bracket, viz.
the first digit of a block with an opening bracket and the second one with a closing
bracket. To access each segment of the 2ith through (2i + 3)th digits of the representa-
tion at least once in every interval of 3 steps, we develop a method of recursively
transporting the digits of block , from one side of the combination of the first blocks
to the other side, back and forth, for all i, j, 1-< < . This transport, which entails
moving the total combination of the first blocks, in its turn supplies the necessary
motion for the combination of the first i+ 1 blocks, while it also allows the single head
to access blocks + 2 and + 3 within the timing constraints. The single head, without
being able to determine the positional index of the scanned digits (since there will be
all in all but four tags, viz. two types of opening brackets and two types of closing
brackets), preserves a topology which allows it to single out and update due segments.
The net effect will be that, for all simultaneously, the combination of the first blocks
acts like a very fat head, moving slower the greater is, but fast enough to do the
same job to blocks i+] as the head itself does to blocks , for all i, j => 1.

On notation. To be able to express and prove the subsequent constructions, it is
convenient to introduce some notation first. The objects operated upon are linear
arrays or strings of symbols from a finite alphabet. Arrays can be finite or one-way
infinite. In a one-way infinite array-A[0:], A[0] is the first element and A[i] is the
(i+ 1)th element, >- O. A[i’j] denotes the (-i+ 1)-length subarray consisting of the
(i + 1)th through (]+ 1)th elements, 0 <_- <- j. The concatenation A[i j]A[j + 1 k]
equals A[i k], 0 <- <- ] < k, and we identify A[i: i] with A[i], -> 0. Finite arrays are
treated similarly. Arrays are operated upon by functions from arrays to arrays. Since
these functions shall be partial we introduce the undefined array . By definition, for
any array A, A A . The undefined array should be distinguished from the
empty array e for which by definition, for any array A, eA Ae A. Mappings from
arrays to arrays are defined in terms of length preserving functions from finite arrays
to finite arrays. If a function P maps an array S to an array S’, with S, S’ finite and
of equal length, then we write P: S S’. By definition P: for all functions P.
Functions induce relations amongst one-way infinite arrays in essentially two ways. In

o
the first type of relation => the argument of Q determines integers i, j, <- j, and for all
arrays A[0: oo], A’[0: oo] if P:A[i: ]]A’[i ]], for a function P associated with Q,
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O
A’[0 1 A[0 1 and A’[j+ 1 o] A[j+ 1 ], then A => A’. In this case,

clearly => is a function from one-way infinite arrays to one-way infinite arrays. In the
P P

second type of relation =>, P is a function, and Am> A’ if A S1SS2, A’ $1S’$2 and
P: $ S’. It will be shown that all such relations of the second type we consider are
also functions when restricted to a set of well formed arrays. In both cases, if for

Q Q Q

some:Vand some array A, there is no A’;3 such that A>A’, then A:>.
Considering the relation :> amongst arrays as rewriting, the rewriting shall thus be

O O
proved to be always monogenic, that is, if Am> A’ and A, A" then A"= A’. We
compose functions P1, P2,""", Pn to a function P, or decompose or expand a function
P into a sequence of constituent functions P,P2,..., Pn as follows. If for some

P
P, P,""", Pn and all arrays A there exist arrays A1, A2,""", An such that A, An

P1 P2 Pn
and A>A>A2 => A, then P P1; P2; Pn. The function composition
operator ";" denotes sequential rewriting from left to right. Whenever necessary, we
denote the value of an array A at time t, t-> 0, by A and A is the initial array. We
dispense with the superscript if is understood or when we view A as a variable.

Main objective. We concentrate on real-time simulating the quintessential counter
of Proposition I by an oblivious one-head tape unit.

2.1. An integer representation. Consider a positional base 2 notation for rep-
resenting the integers, which may be called redundant symmetric binary, using the
digits -2, -1, 0, 1, 2. So the integer c represented by coclc2" c,, ci {-2, -1,0, 1, 2},
equals Yi=0 ci 2i Such a representation is binary because of the weight of digits in
distinct positions, symmetric because of the used digits, and redundant since each
integer has infinitely many representations, even without leading nonsignificant zeros.
To represent the stored integer count on a, potentially infinite, linear tape we essentially
use a restricted version of this representation, with a marked most significant nonzero
digit and distinguished leading nonsignificant zeros. Let A {-2,-1, 0, 1, 2} and h

{--2, --1, 0, 1, 2}. The barred digits have the same value as their nonbarred counterparts,
-{} is reserved for the most significant nonzero digit, and "", called blank, is
reserved for the nonsignificant zeros. Let E h U and let code"/: - 2x be a function
of the integers into the power set of E, where 2: is the set of one-way infinite strings
over E. The function code satisfies restrictions (A)-(D) below, for all CoC’" ci""
code (c), c /:.

Separation of a finite significant initial segment and nonsignificant zeros:

3 >-- 0[c, 0] & Vi>O[(c,=O =:> (c,_1 & Ci+I-"))

& (c, eE-{ot c,_,a)].
Correct representation:

(B) E Ci2i= C.
i=O

To identify representations of 0 by just a small initial segment:

(c) Vi>:O[(ci+>O=== Ci>:O) & (Ci+l<O =:=
Under (A)-(C), (--2)i0i represents the integer 2 for all > 0. To prevent racing

of the most significant nonzero digit to the first position, in just a few steps of the
desired single head real-time simulator"

(D) Vi >= 0 [i is odd :=> [c < 2].
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Now if CoC Cm_lc E code (c), with ci E A for 0 < <: m 1, and ci A for m < i,
then for m 0 we have 0 =< Icl =< 2, for m 1 we have 2 _-< Icl <-- 4 and in general for m ->_ 2:

2_r<=lcl<2,+l+r
with

which yields

m--2 m--2 m--1 m--1

r=2 Y 2i+ E 2i, r’=2 E 2i+ 2
i=0, i=1, odd i=0, i=1, odd

m 3 < log2[c[ < m + 2.

Thus the length of the initial significant segment of the representation of c Z
follows by and large the length of the usual binary representation of [c[. We are
particularly interested in representations for zero. Note that the following proposition
holds for code functions satisfying only (A)-(C).

PROPOSITION 2. Let CoC1 CmCm+ code (c) with c 7. Then c=0 iff ci’-O
for all >- 0 iff Co O.

Proof. By (A) Co -0 iff ci- 0 for all i>_-0. So we only have to prove c -0 iff Co 0.
Assume ci for all _>- 0. By (B) c 0. Assume ci for some >_- 0. Then by (A) there
exists a least m =>i such that cj = for all j> m, and [c,,I # 0. For m =0, [c[_>-1, and
for m 1 we have Ic[ >_- 2. For m -> 2"

Ic[ Ci 2i
i=0

ml
i=0

ci2i

(by (B))

(triangle inequality)

m-2

’ 2 2 E 2i (by (C))
i=0

=2. V]

2.2. Maintenance of the count. Let S be the simulated quintessential counter and
let 81, 82," , St," , 8i E {--1, 0, 1}, be,any fixed sequence of unit additions/subtrac-
tions. So at time > 0 S contains the integer i=1 8i. We maintain the count in an
array C[0"] such that the value of the array at time _-> 0 is Ct[0" ] code (i= 8i),
for any such input stream. The initial array C[0 ] at time 0 is defined by C[i]
for all i->_0, and therefore C[0:] code (0). In the tth simulated step, => 1, the
current value Ct-1 of the array is mapped to the next value C by a function
COUNT (t, St). The mapping COUNT is defined in terms of a composition of mappings,
with the aid of an auxiliary function I: N 2, called the parameter selection function,
which has as values sets of bounded cardinality (cardinality four suffices).

DEFINITION. For -> 1, let I(t)={it, il-1," il} with it> il-1 > il, and let
8 {-1, 0, 1 }. COUNT (t, 8) is defined as a composition of mappings:

def
COUNT (t, 8) UPDATE (i/); UPDATE (il-1); ;UPDATE (il); INPUT (8).

Hence
COUNT(t,a)

C "., C’ with C’ ,
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if there exist C, C-1," , C1 such that

CI UPDATE(it)%. Cll
UPDATE(it-I)

) Cl_ UPDATE(i),,. Cl
INPUT(6) ,. ft.

COUNT(t,)
In all other cases C >.

DEFINITION. Let i N and let C[0"] be a one-way infinite array, C .
UPDATE(i)

c[o.oo].. ,; c’[o.oo],

C’[0:], if UPDATE: C[2i:2i+3] C’[2i:2i+3] and C’[0:2i-1]=
C[0 2i- 1] and C’[2i + 4 ] C[2i + 4 ], with the function UPDATE: __4 .. 4
defined below. For convenience we first define UPDATE: An -- An and then extend the
mapping to E4.

UPDATE: 2 0 x y 0 xy for xye{00, 01, 0-1,10,11, 20, 21}
2 0 x y 0-1x+ly for xye{-10,-20,-1-1, -2-1}
2 1 x y 0 0x+l y for xye{00, 01,10,11}
2 0-1 0 0 -10
2 2 y O fory{0,1}

-2 0 x y 0-1 xy for xy{00, 0-1, 01, -10, -1-1, -20, -2-1}
-2 0 x y 0 lx-l y forxy{10,20,11,21}
-2-1 x y 0 0x-ly for xy{00, 0-1, -10, -1-1}
-2-1 0 1 0 0 10
-2-1-2 y O fory{0,-1}
v w x y v w x y for v’{-2,2}
v w x y for vwxy not in the above list.

Extension of UPDATE to mappings from E4 into X4" if vwxy {:ga4 then

UPDATE: vwxy - v’ w’x’ y’

for all vwxy, v’ w’x’ y’ e A*(-{}){}* {0000} such that the unbarred version of the
mapping is in the previous list, and UPDATE: vwxy--> in all other cases. (Recall
that if V is a finite alphabet, then V* is the set of all finite strings over V including
the empty string e.)

DErINXTION. Let 6 e {-1, 0, 1} and let C[0: oo] be a one-way infinite array, C # .
INPUT 6

C[0:]! ;- C’[0: ],

C’[0:] , if INPUTs: C[0: 1]->C’[0: 1] ;3 and C’[2:c]= C[2:cc] with
INPUTs: 2_.> 2 defined below. For convenience we first define INPUT6:A2 "-> A2 and
then extend the mapping to 2.

INPUT_l: x y-->x-ly for xy e {00, 0-1, -10, -1-1,10,11}
0 1 10
x y for xy e {-20, -2-1, 20, 21}

INPUTo: x y-- x y forxy{00,0-1,-10,-1-1,10,01,11}
x y for xy {-20, -2-1, 20, 21}

INPUTa: x y--x+ly for xy {00, 01,10,11, -10, -1-1}
0-1 -1 0
x y for xy e {-20, -2-1, 20, 21}.

Extension of INPUTa to mappings from Ee into E2: if xy /A2 then

INPUTa: xy x’y’

for all xy, x’y’e A*(S,-{}){}* [.J {} such that the unbarred version of the mapping
is in the previous list and INPUTa" xy-> in all other cases.
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If for some array C[0"o] and P=UPDATE(i), i=>0, we have
P

UPDATE: C[2i’2i+3] then C==>, by definition. If for some array pC[0"]
and P INPUT (6), 6 (-1, 0, 1}, we have INPUTs" C[0" 1]-- then C =, by
definition. For all P(INPUT(6), UPDATE(i)[6{-1,0,1}, i>=0} we have by

P P
definition :> Z, and thus => is a mapping from EU {} into ; LI {} and not just
a relation. Basically, INPUT (6) adds the current input to the currently represented
integer and UPDATE (i) propagates carries and borrows in a segment of the rep-
resentation, both preserving representations from the code function.

For each input sequence D 61, 62, 6t,. with 6t {-1, 0, 1} for => 1, the
sequence of mappings

clef
COUNT (I, D) COUNT (1, 61); COUNT (2, 62);’" COUNT (t,

defines a sequence of (a priori possibly undefined) arrays C, C1, Ct, such
that CO is the all-blank initial array C[0" oo] 0-, and for all >= 1"

COUNT(t.$
ct-l C t.

Decomposing COUNT (t, 6t) into its constituent functions for all -> 1, with I(t)=
{it.l(t), it.l(t)-l, it, l} and it.l(t)> it.l(t)_ >" > it.l, we obtain for each input sequence
D 61, 62,’’’, 6t," the sequence of basic mappings

COUNT (/, D)= UPDATE (il,t(1)); UPDATE (il,t(1)-1); UPDATE (i1,1);

INPUT (61); UPDATE (i2,t2);
In this sequence, the subsequence of mappings

COUNT (t, 6t)= UPDATE (it,tt); UPDATE (it,t(t)-l); UPDATE (it,l);

INPUT

is said to constitute the tth step of the maintenance of array C. Starting from Ct-1 the
sequence of intermediate arrays defined by the tth step is

ct-l( Ct_l,O) C,,l(t), Ct,l(t)-l, Ct,1, Ct,o( Ct)
defined by

UPDATE (i t(t)) INPUT
C,_,o C,,,,) > C,,0 C’.

Note that in the decomposition of COUNT (/, D) in the basic mappings UPDATE (.)
and INPUT (.) the parameter does not occur explicitly; the sequence of basic
mappings is defined totally by the sequence of successive values of I and the sequence
of inputs. This is important in the next sections. In this section we show in Lemma 1
that, for any input sequence D 61, 62,,

C, Cl,tl), ", CI,1 code (0) U {}

and for all t-> 1

Ct_l,0( C’-I), Ct,l(,) Ct, code 6 U {}.
i=l

In Proposition 3 it is demonstrated that for certain choices of the parameter selection
function I we have that Ct,j# for all t->_1 and all j, l(t)>=j>-O, whence Ct
code (yt 6i) for all > O.i=!
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LEMMA 1. Let array Ccode(c) ]’or some integer c. If, for some i_->0,
UPDATE(i)

C .;,C’, C’, then C’code(c). If, for some 3{-1,0, 1},
INPUT(8)

C > C’, C’ # , then C’ code c + 3 ).
UPDATE (i)

Proof. Let C code (c) for some integer c and C I .> C’, C’ , for some
i_-> 0. If Ic[2i]l 2 then C’- C and there is nothing to prove. So let [C[2i]1 2. Then,
for j< 2i and j> 2i+ 3, C’[j] C[j]. Since also Y=o C’[2i+]]22i+/

=o C[2i +j]22i+j, we have Yi=o C’[i]2i =i=o C[i]2i c. It is easy to check from the
UPDATE(i)

definition of UPDATE (i), that if (A), (C) and (D) hold for C, C , C’ and
C’ , then (A), (C) and (D) also hold for C’. Hence C’ code (c). Let C code (c)

INPUT(8)
for some integer c and C ,, , for some {-1, 0, 1}. Since C’
we have IC[0]1<2. For all j>l, C’[j]=C[j]. Because also C’[0]+2C’[1]=
C[0]+ 2C[1]+ we have =0 C’[i]2 c+ & It is easy to check from the definition

INPUT()
of INPUT (3) that if (A), (C) and (D) hold for C, C ) C’, and C’ , then
(A), (C) and (D) also hold for C’. Hence C’e code (c+ ).

PROPOSITION 3. Let T: N N be any function such that T(i) <-_ 3 for all >- O. Let
the parameter selection function I" - 2, associated with the mapping COUNT, be
such that for all indices >- 0 and steps >- 1 there exists a t’, <= t’ < + T( i) and I( t’).
Then for each input sequence 31, 32,’", 3,,..., 3, {-1, 0, 1}, t_-> 1, there exists a
sequence of one-way infinite arrays C, C1, C*,- , with Co the all blank initial
array and C*-1 is mapped to C* by COUNT (t, 3t) for all > 1, such that
code (. ) for all > 0i=1

Proof. Roughly speaking the proposition states that if, starting from the all blank
initial array C, UPDATE (i) is executed at least once in every interval of 3 steps,
for all i>-0, and INPUT () is executed each step, with {-1, 0, 1) the currently
polled input, then the array at time represents the stored integer at time according
to the code function. By Lemma i and the definition of COUNT this is the case if,
under the timing assumption on the parameter selection function I, each time
UPDATE (i) and INPUT () map an array satisfying (A), (C) and (D), the result is
not the undefined array . The only way UPDATE (i) can map an array C[0"oe],
satisfying (A), (C) and (D) to is for C[2i" 2i+2]e {212,212,-2-1-2,-2-1-2}.
Similarly, the only way INPUT (3) can map an array C[0"oo] satisfying (A), (C) and
(D) to is for C[0] e {2, 2,-2,-2}. Hence we have to prove that, under the assump-
tions on/, and starting from the all blank initial array C, these undesirable subarrays
do not occur at the crucial moments. Induction is on the number of steps t.

Base case: the first step. Since Co is all-blank, for all >_- 0 we have C[2i 2i + 3]
COUNT(I,61)

0000. Hence C ;, C with C1[0] gl and C1[i]= for all i-> 1. That is,
C e code (31).

Induction" = 1. Assume, by way of contradiction, that for the input sequence
31, 32," , 3, (3j e {- 1, 0, 1 }, 1 _-< ]_-< t) we have for all ], 1 _-< ] <- t"

COUNT(j,8)CJ-I "; C, C (induction assumption),

and
COUNT(t+I,)

C* -> (contradictory assumption),

for some 3 {-1,0, 1}. For all j, 1<=<-t, by Lemma 1, C code (Y=I 3i). Let I(t+
1) {i, it-l," il} and it > i-1 >" > il. Decomposing COUNT (t + 1, 3) into its
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constituent mappings we have

UPDATE(i UPDATE (i1). INPUT(8)UPDATE(it-I)’> Cl_ ,, CllC’= Cl+l ., Cll > Co--.,

for some intermediate, possibly undefined, arrays Ct, Cl-1,’", Co. By the contradic-
tory assumption there must be a first undefined array in this sequence, say C-1
and Cj for some j, 0 < j < + 1. Note that, by Lemma 1, Cj code (ti__l 8i).

Case 1. j > 1. Setting to i-1, to avoid subscripts,

UPDATE(i)c >.
Since C code (i=1 8i) and therefore satisfies (A), (C) and (D), this can happen only
if C[2i" 2i + 2] {-2-1-2, -2-1-2,212,212}. Assume C[2i" 2i + 2] 212, the other
cases being symmetrical. Since the initial array CO contained only blanks, there must
be a t’, 0 < ’-< t, with t-t’ minimal, such that

COUNT(t’,St,)Ct’-ll ,..C t’

cr[2i + 2] 2 and C"-112i + 2] 2. (A previous mapping UPDATE (k), with k > i, in
the (t + 1)th step could not have set C[2i + 2] to 2 from another value, so if C[2i + 2] 2
then Ck[2i+2]=2 for all k, l+ 1=> k>=j. Since Ct+I=C’ indeed t’-<_t.) FrOm the
definitions it follows that C[2i + 2] can be set to 2, from another value, only by the
mapping UPDATE (i). So i I(t’), and we denote by C’ the array mapped upon by
the occurrence of UPDATE (i) in COUNT (t’, 8,,) UPDATE (i,);
UPDATE (i’-1); UPDATE (i); INPUT (8t,). By the definition of UPDATE (i)
we must have C’[2i:2i + 2] 002. Since during the mappings, following UPDATE (i)

+In COUNT (t, St,), subarray C[2t 2:] is not accessed, and we have by Lemma 1
t’ t’

that C code (i= i) and C code i=a i), it therefore follows that

(1)
2i+1 2i+1 2i-1

E Ct’[k]2k= _, C’[k]2k+st’= _, C’[k]2k+st’<=(4i+x--1)/3
k=0 k=0 k=0

(by (C) and (D)).

Any first occurrence of an UPDATE (i + 1) in a COUNT (t", 8:), t’ < t" < + 1, so in
between the mappings by the two occurrences of UPDATE (i) in steps t’ and + 1,
would have set C[2i + 2] to 0, resulting in IC’"[2i + 211 <-- 1, contradicting the minimality
of t’. Therefore, for all t", t’ < t" < + 1, + 1 ’I(t"). By the assumption on I in the
proposition it follows that

(2) t- t’ < 3 i+x.

We are now ready to derive a contradiction. For the only mappings which can alter
something in C[2i + 2: 2i + 3] are UPDATE (i) and UPDATE (i + 1). However, in
between the mappings according to the occurrence of UPDATE (i) in step t’ and that
of UPDATE (i) in step + 1, no occurrence of UPDATE (i) has changed C[2i + 2 2i +
3] (since this would contradict the minimality of t-t’), and UPDATE (i + 1) has not
occurred at all (since Cj[2i+2] 0 by assumption, i+ 1 is not in l(t+ 1) too). So, by
the definitions of COUNT and UPDATE we obtain:

(3) C"[k]2k= C[k]2k.
k=2i+2 k=2i+2
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Furthermore, by Lemma 1,

(4) 2 C’[k]2= 6k C[k]2k.
k=0 k=l k=0

Thus"

2i+1

Y’. C[k]2k= Z C[k]2k- 2 C[k]2k

k-O k=O k=2i+2

Y 3k-- Y G[k]2 (by (4))
k=l k=2i+2

(5)
E 6k-- E C"[k]2k (by (3))
k=l k=2i+2

t’ 2i+1

E 6k-- E 6k / E C"[k]2k (byLemma 1)
k=l k=l k=O

_-< t- t’ +(4i+1-1)/3 (by (1))

< 3’+1 +(4’+1-1)/3. (by (2)).

But, by way of contradiction, it was assumed that Cj[2i:2i + 1]= 21. Therefore,

2i+1 2i-1

(6) Y Cj[k]2k =4+1/ Ci[k]2k >-4i+1-(4-4)/3-4/2,
k=O k=O

for i>_-2 (and >-14 for i=1, >-4 for i=0), by (C) and (D). Since for all i>-0 the
contradictory assumption leads to the contradictory inequalities (5) and (6) we conclude
that ] 1 and case 2 holds.

Case 2. ] 1 and

INPUT(a)
Cli

However, under the assumptions in the Proposition, 0 I(t) for all >- 1, so COUNT +
1,6) UPDATE(0); INPUT(6). But if C[0"] is the value of
UPDATE (0) then C1[0] e’{-2,-ft., 2, .}. Therefore, the contradictory assumption also
fails in this case and

INPUT a
Ci :- C0 (R).

Since the contradictory assumption has now been proven false, by Lemma 1
C+1, C," , C code (i=1 6i) and Co code (t__ 6 + 6). Setting C’+1 Co com-
pletes the induction. [3

Proposition 3 shows us a way of real-time simulating the quintessential counter
S figuring in Proposition 1. Let CO be the all-blank initial array, and let the parameter
selection function 1 meet the timing conditions in Proposition 3. If we map in the tth
step, for each >- 1, the current array value to the next one by COUNT (t, 6), where
"add 6", 6e{-1, 0, 1}, is the input command polled from the input terminal in the
tth step, then the array at each time >- 0 is a representation from code (stored integer
at time t). Since the mapping COUNT (t, 6) INPUT (6), and INPUT (6) maps
C[0" 1] to a next value, we can simultaneously output "count equals zero" if the next
value of C[0] 0, or "count unequal zero" if the next value of C[0] 0, according to
Proposition 2.
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Note that the requirement of an initial zero count is not essential. We can as well
prove Proposition 3 starting from CO equals a representation of an arbitrary integer
c. For instance, a representation from code (c), containing only equal signed digits of
absolute value less than 2, for C, lets Proposition 3 go through as well. Thus, the
arrangement can real-time simulate initially nonzero counters.

2.3. An oblivious one-head tape unit. Proposition 3 puts a heavy burden on a
one-head tape unit: C[0: 3] must always be under scan, C[2: 5] within each third step,
and in general C[2i:2i / 3] at least once within each interval of 3 steps, .for all >= 0
simultaneously. This requires that, basically, at all times all C[i] must be on the move,
drifting inward or outward from the location occupied by the single head, so to speak.
This data motion must be due to the swapping of array elements amongst the momen-
tarily simultaneously scanned tape squares. To be able to scan C[2i" 2i+ 3] within
certain time intervals, for all i-> 0, it is necessary that at certain times arbitrarily many
of such quadruples are split and the pieces geometrically far apart. The piece C[2i:2i +
1] must be joined to piece C[2i-2" 2i- 1] at certain times and to C[2i / 2" 2i + 3] at
other times, for all i>= 1. Apart from performing the splitting, moving and glueing,
the head must also recognize quadruples C[2i:2i + 3] to perform UPDATE, and also
know the relative order amongst pairs of such foursomes. Hence we need to maintain
some order and identification of the array elements. Yet we cannot identify the
individual elements of C with respect to their position, since such an identification tag
for C[i] needs log/space and log/time to evaluate. All this points in the direction
of a recursive process, but again we cannot maintain depth of recursion parameters.

The process exhibited below rests on the following intuition. The goal is roughly
to access quadruples of consecutive elements of C, of index 19(i), at least once in each
interval of 2t) steps, for all >- 0. We call the individual array elements cells and
consider them as packets of information to be swapped amongst simultaneously scanned
squares. Assume we are able to move a block of cells, called A1, by, according to
some regime, moving the head, centered on the cells constituting A1, from the left
end of A1, where it scans some squares left adjacent to A1, to the right end of A1,
where it scans some squares right adjacent to A1, and back again to the left end of
A1. Let A1 be contained in a block of cells called A2. Then A1 moves by transporting
cells of A2- A1 through A1 to the other side of A1, while simultaneously shifting the
cells of A1. Thus, we will shift the total block A1 from the left end of A2 to the right
end, and back again to the left end. During such a full sweep of A1 over AE, we will
shift block A2 within a larger block A3 by a single square. So the relation between
A and A3 is analogous to that between A1 and A2. See Fig. 1.

FIG. 1. The blocks are individually "moving" in the indicated directions.

In general, we envision an infinite series of nested blocks,
A1, A2, ",At, Ai/l," ", with Ai properly embedded in At+l, _-> 1, such that a full
sweep of block At over block At+l shifts block At+l one square in the currently desired
direction. In the above arrangement, the head is always centered on block A1, and
therefore, since it is allowed to scan but a fixed number of squares, when it is centered
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at the end of block A1 it scans but a fixed amount of squares outside. Since the ends
of the individual blocks govern the action the single head ought to take, and also cells
of Ai+l-Ai have .to be transported through Ai for arbitrary i, we cannot have the
physically present ends of all of blocks A2, A3,"’’, A in between the head centered
on A1 and a cell, to be transported, in Ai+l-A. So we want the blocks to move, in
a sense, completely out of each other. That is, an arrangement as below in Fig. 2,
where we denote the cells in A+I-A as Bi+l, for all iN 1, and A1 by B1. (x > y
denotes that y occurs after x.)

FIG. 2

FIG. 3. The action of block Ai+l Ai U Bi+ with respect to blocks Bj, j > + is not depicted.

In this manner we telescope the blocks, as it were, inwards and then outwards in
the other direction, subsequently reversing the process. To achieve this behavior, we
transport, for all >= 1, elements of block Bi/l through A U ij_-I Bj while simul-
taneously shifting the cells of A to accommodate the transport. The motion of the
head through A is governed by recursively moving B/I through A, for all j, j <-i.
Schematically, level of the process is depicted in Fig. 3. When the head was at the
ends of block A/ Ai U B/I, it now could have picked up or deposited a cell outside,
that is, of a block Bj, j > i+ 1. Assume that all blocks Bi, => 1, have thesame number
of cells, say x, By a full sweep of the head over block Ai we shall mean the action the
head has toperform, starting from one end of Ai, to pick up a cell of B, j> i, deposit
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it on the other side of Ai, and finish at the same end of Ai from which it started. So
basically a full sweep of the head is a traversal of block Ai from one end to the other
end and back again. Let a full sweep of the head over Ai take at most S(i) steps, => 1.
Then to transport all of Bi/l from one end of A to the other end, and back again,
takes at most cxS(i) steps for some constant c. Since this constitutes a full sweep of
the head over block Ai+I, we have S( + l) <- cxS( i), for all i>-1, and obviously
S(1) <- cx. So S(i) 2().

In the formal construction below we set the block size to 2, and represent the
loosely described block B by "[ ]", in the understanding that the two cells concerned
are tagged with "[" and "]". The subscripts on the tags are just there to aid the reader,
but do not occur in the actual simulation. An element of block Bj in transport through
block A, ]> i, is identified by a curly bracket of the appropriate type. Thus each
individual cell has permanently assigned to it a tag, consisting of either an opening or
closing bracket, which may at different times be square or curly. Fig. 4 sketches a
descriptive situation:

FIG. 4

After these preliminaries we formally define a one’head tape unit M. It is con-
venient to view the instantaneous descriptions (i.d.’s) (momentary snapshots o,f M’s
tape contents and the head position) as one-way infinite linear arrays T, with "<" or
">" denoting the center of the head position. We tag the cells, containing elements
of the array C of the previous section, with "[", "]", "{" or "}". Below we display
only these tags, since for the moment we are not interested in the cell contents. The
identity of the underlying squares is not important, but the identity of the tagged cells
is fixed, wherever they end up. For convenience of the reader we index the tagged
cells (or rather the tags). The eventually defined machine; however, has no indexes
associated with the cells, only one out of the four mentioned tags. The initial i.d. is,
now focussing on the tags only,

TO > [1 ]1 [2 ]2" [i ]i [i+ ]i+1"

We describe transformations of the array T in the form of six parametrized recursive
functions, and four nonparametrized functions, each of two types. Each such function
X will, for a unique subarray of T, rewrite this subarray by reordering its elements,
specified by X(.)’a fl - a’ ’ B’ with a, a’, fl, fl’ being strings of (for clarity
indexed) tags and , ’ {>,<}. A definite requirement for the process is that, at
some time, it has to scan "[i+2]i+2[i+3]i+3" for the first time. So we define, for all i-> 0:

A(>, i)" >[1111212"’" [i]i[i+l]i+l [i+l[i]i[i-1]i-l"" [1]1>]i+1

For symmetry we also define:

A(<, i)" [i+l]i+l[i]i[i-1]i-l’’" [I]1< v---> [i+1 <[111212"""

TO abbreviate notation we shall henceforth denote shortly, for all i->_ 0,

def

Oltl 0[]1[212""" [],

def

[i]tO [i]i[i-1]i-1""" [1]1,
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with

So for all >- O:
{ <, > }, and [I ]i e for 0.

A(>, i): > Ix ]I [i+1 ]i+1 i---> [i+1 [I ]I > ]i+1,

A(<, i): [i+ ]i+1 [I iI < > [i+ < [I ]I ]i+ 1.

By execution of A(>, i) on the appropriate unique substring of TO we have therefore,
using the same rewriting denotation as in the previous section:

with

and

TO
a(>,i)

Tt

TO= >[1]1 [212" [i]i[i+l]i+l [i+2]i+2[i+3]i+3"’"

T’, [i+1 [i]i[i--1]i--l’’" [111 >li+l [i+2]i+2[i+3]i+3"’"

where t is the number of steps it takes to execute the mapping A(>, i), to be specified
later, >= 0.

With the head scanning at least five squares right of the center position, indicated
by ">", the subarray "[i+2]i+2[i+3]i+3" is scanned at time t, for all i_>- 0, while at time

0 the subarray "[1 ] [212" is scanned.
DEFINITION. TO achieve the required interchange of tagged cells, define the

functions below. Recall that "}" denotes the same cell as "]", only the attached tags
have changed. Similarly for "{" and "[". For all > 0 and j > i+ 1"

A(>, i): > [I ]x [i+1x i---> [i+1 [I ]I > X

A(<, i): X]i+l [I ]I < X<[I ]I ]i+1

B(>, i): li+a [I 1 >lY } <[ 1 l,+x

B(<, i): x[ <[I l, [i+1 -> X[i+l [’ l, >{
C(>, i): ]i+1 [I ]I >]j [j+l I---> }j{j+X <[I ]I ]i+1

C(<, i): ]j+l[]<[I]i[i+l .> [i+l[I]i

D(>, i): > [I llx [x 1> x

D(<, i): xbl < x<bli
E(>,/): [i+ [I ]I > ]i+ x [i+ ]i+ [I ]I > x

E(<, i): X[i+l <[I]I]i+l I---> X<[l]I[i+l]i+l

F(>, i): [i+ Ix ]I >li+ [i+2x [i+z[i+ll,+ [I lx >x

F(<,/): x]i+2[i+l <[i]i]i+l x<.[i]I[i+l]i+x]i+2

G(>): >{j ]i [i+1 i--.> > li [i+1 {j

G(<): 1i+1 [i}i< }j]i+l [i <

n(>): >}+1{1,[,+ >1,[i+1}+{
n(<): li+ll, bb+l< - b{+11i+1[i<
J(>): >{i+1 ]i ]i+1 i---> "]i [i+11i+1

J(<): [i+l[i}i+l < [i+l]i+l[i>

(x[)

(x#l)

(x[)

(x#l)

(x[)

(xl)

(x#[)

(xl)

(x#[)

(xl)
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K(>)’ >}/1,/,1,1,/

The parametrized functions A through F set the basic pattern to transport tagged cells
from one side of [z 1i to the other side. (The index j is always greater than i+ 1.) The
nonparametrized functions G and H serve to move (linked pairs of) curly brackets
through "] [" interfaces. If curly brackets are adjacent to a (linked) pair like "1 [" then
they have not yet reached their destination. If curly brackets are adjacent to a pair of
square brackets of equal type, then they have reached their destination, and are fitted
in place and changed back to square brackets, by the functions J and K. In the G and
H functions, the index j is again greater than + 1. However, to make the point once
more, the indexes are only put there to aid the reader. The intention of the described
rewritings is that the arrays concerned consist of nonsubscripted brackets, each bracket
viewed as tagging a particular cell. The rewriting reorders these tagged cells in the
array, and possibly changes brackets from square ones to curly ones of the same type,
or vice versa, as indicated in the indexed version above. Note that A(>, i)" Y Y’
and A(<, i)" ZZ’ are related by the fact that Z is the mirror image of Y and Z’
is the mirror image of Y’. With mirror image we do not mean only the reverse, but
the reverse with every constituent symbol changed to its mirror image, so ">" to
"<", "|" to "]", "|" to "1", ’{" to "}" and "}" to "{". Similarly for the other functions.

LEMMA 2. For all > O, the functions are related as follows"
a) A(>, i)=A(>, i- 1); F(>, i- 1)

A(<, i) A(<, i- 1); F(<, i- 1)

b) B(>, i)= B(>, i- 1); G(<); F(<, i- 1)

B(<, i) B(<, i- 1); G(>); F(>, i- 1)

c) C(>, i) C(>, i-l); H(<);F(<, i-l)

C(<, i) C(<, i- 1); n(>); F(>, i- 1)

d) D(>, i) =A(>, i-l); E(>, i-l)

D(<, i) A(<, i- 1); E(<, i- 1)

e) E(>, i) B(>, i- 1); J(<); D(>, i- 1); E(>, i- 1)

E(<, i) B(<, i- 1); J(>); D(<, i- 1); E(<, i- 1)

f) F(>, i)=C(>, i-l); K(<); D(>, i-l); E(>, i-l)

F(<, i) C(<, i-l); K(>); D(<, i-l); E(<, i-l)

that is, six parametrized functions recursively calling each other. (Since D(>, 0) and
D(<, t}) are "no operation" s which do not change anything we leave them out, cf. below.)

Proof. For a) through f) we prove one equality each; the other one is symmetric.
For all i> 0, with [i- ]i-1 e for i= 1 by definition:

a) For x |:

>II ]I [i+1 x >II--1 ]I-1 [ili [i+1 x

A(>,i-1)

F(>,i-1)
i,’:, >[i+l[i]i[i_l]i_l>X=[i+l[i]l>X
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b) For x # ]"

xb<b l, [+ xb<[,- 1,- [ 1 [+
B(<,i--1)

> X[i[l_l]i_l>{j]i[i+l

G(>)
x[ b-l->l [+{

F(>,i=I),

" X[i+l [i ]i [I--111-->{
x[+ [ 1>{,;

c)

1+1 [<[i ], [i+, l+ [,i< [,-11I-1 Ii ]i [i+1

C(<,i-1)
I’ ::." [i [I_l ]I_a>}j+l {j ]i [i+l

H(>)
[i [I--1 ]1--1> ]i [i+l }j+l {j

F(>,i--1)
!., ::.[i+l[i]i[l_l]i_l>}j+llj

[i+l [I ]I>}j+l

d) For x ["

> It ]iX > [- ]I- [ ]iX

A(> ,i--1)
;,[iIi_lli_l>]iX

E(>,i--1)
I-’-" ::’ :" [i ]i [I--111--1> X

[I ]I > X;

e) For x 1"
X[i+l <[I ]I ]i+1 X[i+I <[1--1 lf-- [ l l+

B(<,i-1)........" X[i [I--1 ]1--1>{i+1 li ]i+1

.jr(>)

XIi [I--1 ]1--1 <]i [i+1 ]i+l

D(<,i-1)......" X[i<[I--1 ]1--1 ]i [i+l ]i+l

E(<,i-1)
I- ::::> X <[I-1 ]I--1 [i ]i [i+l ]i+1

X<[I ]I [i+1 l+;

f) For x ]:

x]i+2 [+<[ ] ]i+ x]i+2 [i+<[-]- [i ] ]+

C(<,i-1)
> X[i[i-1]-l>}i+2{i+]i]i+l
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x[ [1-111-<l [/l/l/

|,

D(<,i-1)
"; X[i<I_r-11I-1 ]i [i+11i+11i+2

E(<,i-1)
;" x<[-l]-l[i]i[i+lli+l]i+2

x<b 1 [+ 1+ 1+2.
The mappings D(>, 0)" > x > x(x # |) and D(<, 0)" x< x< (x # ]) are "no

operation" or "skip" instructions. Deleting them henceforth in the expansion rules of
Lemma 2e) and 2f), for i= 1, those become:

ad Lemma 2a) E(>, 1) B(>, 0); J(<); E(>, 0)

E(<, 1) B(<, 0); J(>); E(<, 0)

ad Lemma 2f) F(>, 1) C(>, 0); K(<); E(>, 0)

F(<, 1)-- C(<, 0); K(>); E(<, 0).

A level expansion of a function X(>, j) or X(<, ]), j >- i>= 0, results from expanding
that parametrized function with parameter j into a sequence of parameter functions
and nonparametrized functions, according to Lemma 2 (with the "no operation"’s
D(>,0) and D(<,0) left out in case i=0). So if yi); y(2i);... y(,i)is a level
expansion of X(.) then X(.) Y’); Y(2’); Y(2 with Y’)e {A(>, i), A(<, i),
B(>, i), B(<, i),... ,F(<, i), G(>), G(<),..., g(<)}-{D(>, 0), D(<, 0)}, 1 -< -<

n. We extend the concept in the obvious way to sequences of functions X1(1, ]1);
X2(2, j2);’’’; Xm(m, jm), jl, j2,’’’,jm>=i and l,2,’’’,m{<,>}. For
example, the level 0 expansion of A(>, 3) is found by way of the level 2 and level 1
expansions"

A(>, 3) A(>, 2); F(>, 2)

=A(>, 1); F(>, 1); C(>, 1); K(<); D(>, 1); E(>, 1)

A(>, 0); F(>, 0); C(>, 0); K(<); E(>, 0); C(>, 0); H(<);

F(<, 0); K(<); A(>, 0); E(>, 0); B(>, 0); J(<); E(>, 0).

The atomic mappings of the level 0 expansions of the parametrized functions are called
the local rewriting rules, and govern the switching of the tagged cells, in the squares
scanned, by the basic steps .of the oblivious one-head tape unit M. Note that a fat head
covering four squares left and four squares right of the displayed center ">" or "<"
suffices to execute these atomic mappings. Below we use superscripts to distinguish
the identity of the various tagged cells before and after rewriting.

Local rewriting rules"

G(>)" >{11213
_

G(<). 111}< }11
H(>)" >}1 {2]3[4 ,_ >]314}1{2
H(<)" 1112}3{4< }3{41112<
j(>). >{11213 <12[x13
j(<). ili2}3< []312>
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K(>): >},{21314 <13[141
K(<): [,[2}3{4<

_
[4111312>

A(>, 0): >[ -* [>

A(<,0): ]< <]

B(>, 0): l>12x. }2<lx
B(<,0): x[l<[2 -- x[2>{
c(>, 0): 11>1I3 }2{3<11

E(>, 0): [>lx [12>x
E(<,0): x[<12 x<[l2

F(>, 0): [1>]213 [3 [1 ]2>

F(<, 0): 1112<13 <[21311

(x#D

(x#l)

(x#D

(x#l)

The only use of the context symbols x in the definitions of A(>, i), A(<, i), F(>, i)
and F(<, i) was to force a unique expansion into functions with parameter , ] < i,
according to Lemma 2. Since A(<, 0), A(>, 0), F(<, 0) and F(>, 0) are atomic
indivisible actions, because the local rewriting rules shall not be decomposed any
further, we do not need these context symbols at the lowest level.

In the sequel it is useful to talk about well formed arrays, that is, the set of arrays
from which the consecutive i.d.’s of M are taken.

(i) TO is a well formed array.
(ii) If T is a well formed array and X(. is any local rewriting rule, with the dot

X(.)
standing for any appropriate argument, such that T.---> T’, T’, then
T’ is a well formed array.

(iii) No array is well formed except by (i) and (ii).
Since no mapping either deletes or multiplies a headmarker, i.e., "<" or ">", all well
formed arrays contain a single headmarker. By the mutual exclusion of the subarrays
they rewrite, if a well formed array T is rewritten to T’ .@ by a local rewriting rule,
then T is rewritten to by all other local rewriting rules. We now show that a well
formed array T is always rewritten by some local rewriting rule to a another well
formed array, which rewriting rule and array are therefore unique.

Earlier, we observed that, for all _>-0,

TO
A(>,i)

If Y(I); Y(2); Y(3);. Y(.)=A(>, i) is the level 0 expansion of A(>, i) then, by
Lemma 2, there exist well formed arrays ro, r), r2), r, r(o)= r and
T)= Tt,, such that

T}{ T})

for all j, 1 <= j <= n. By the uniqueness of application of local rewriting rules it follows that

X
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for all j, 1 _<-j =< n, X # yO and X is a local rewriting rule. Hence each well formed
array in the sequence T(o, T, T(,_)I has exactly one local rewriting rule which
is applicable to it, and the application of this local rewriting rule yields exactly one
next well formed array.

By Lemma 2a) we have A(>, i) A(>, i- 1); F(>, i- 1) for all > 0, which leads
to

A(>, i)--A(>,0); F(>,0); F(>, 1);... F(>, i-1)

with

TO
A(>.0)

and

F(>,j)
Tt ;.____4, Tti+

for all j, 0-<_ j < i. Define A(>, oo) by

A(>,oe)=limA(i)=A(>,O); F(>, 0); F(>, 1);... F(>, i);

and the level 0 expansion of A(>, c) as the infinite, or unbounded, sequence of local
rewriting rules resulting from the level 0 expansions of the constituent functions F(>, i),
> 0, above. So

A(>, 00) yO., y(O, yO,

=A(>,0); F(>,0); C(>,0); K(<); E(>,0);...

and there exists an infinite sequence of well formed arrays T(o),
T(l), T), T(o)= T, such that for all j->_ 1

and for no local rewriting rule X # yO and T

T O,1 T,

i.e., y.o) is the only local rewriting rule applicable to T_)l. Consequently, a machine
which wants to execute the sequence of local rewritings of the level 0 expansion of
A(>, oo), starting with i.d. T, needs onty to select the single local rewriting rule yO),
applicable to the current T._)I, by considering the length 9 subarray of T_) with the
current headmarker in the center, to obtain the next T), j-> 1. From the expansions
in Lemma 2 we see that a nonparametrized function of G, H, J, K is always followed
by a parametrized function from A, B, C, E, F in the level 0 expansion of A(>, oc).
In a single step of M we shall first execute a local rewriting according to G, H, J, or
K, if possible, and then execute a local rewriting according to A, B, C, E or F, which
by the above is always possible, starting with initial i.d. To So the oblivious one-head
tape unit M at each step shall examine the squares around the headmarker, and
switches tagged cells and head position amongst the scanned squares according to the
only local rewriting rules applicable. Fig. 5 shows an initial segment of the sequence
of well formed arrays To), T), T), produced by the successive execution
of the local rewriting rules in the level 0 expansion of A(>, ) using the simple
procedure SWITCH below.
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Start i.d.
=A(>, 0)-->
=F(>, 0)-->
=C(>, 0)-->
:K(<)------->
=E(>, 0)-->
=C(>, 0)-->
=H(<)------->
=F(<, 0)-->
K(<) ----------->

=A(>, 0)--->
=E(>, 0)-->
B(>,O)=>

(<)--------->
=E(>, 0)=>
=C(>, 0)-->
=H(<)------>
F(<, 0).-->

=H(<)-------->
=C(<, 0)-->
=K(>)-------->
=E(<, 0)-->
=K(<)>
--A(>, 0)=>
=F(>, 0)=>
=B(>, 0)=>

(<)-------------------
E(>, 0 )=>

=B(>,0)=>
=G(<) ------------>
=F(<, 0)-->

(<)--------->
=A(>, 0 )----->
=E(>, 0)=>
=B(>, 0)=>

(<)------->
E(>. 0 )-->

=C(>. 0 )=>
=H(<)------>
F(<, 0 )--->

=H(<)--------------->
,c(<, o)-->
K(>) ------------E(<,O)-->

H(<)----->
c(<, o )=>
H(>):>
pF(>, 0)-->
l= K(>)----------->
=A(<, 0 ):>
E(<, 0)=>
B(<, 0)--->

(>)--------->
E{<,O)-->
K(<)--------->
FA(>, 0)=
F(>, 0)=>
c(>, o )=>

>[][][][1[][][][][][]
[>][][][1[][][][][1[]
[[]>][1[][1[][][][111
[[}{<]][][][][l[l[l[l
[[][>]][][][][][][][]
[[][]>]II[][][][][][]

[[}{][<1][][][][][][]
[[}(<[1]][][1[][][][]
[[][>[]]][][][][1[][]
[[l[’[>lll[l[][l[l[][l
[[][[1>]][][][][][][]
[[][[}<l][][][l[l[][]
[[][][>1][][][][][][]
[[1[111>][111[1[1[1[1
[[][][}{<1][][1[111[]

[[][}{<[l]][l[l[l[][]
[[}(][<[]]][][][][1[]
[[}{[>}{]]][][1[][][]
[[}{[<1[]]1[][][][][1
[[}(<[][]]][][][][][l
[[][>[][]]][][][][][]
[[][[>][]]][][][][][]
[[1[[[1>]1][][][][1[]
[[][[[}<]]][][l[l[l[]
[[][[][>]]l[][][][][]
[[l[[l[l>ll[l[l[l[l[l

[[][[}1[<1][][][][][1
[[][[}<[]l][l[l[][][]
[[][1[>[]]][][][][][]
[[1[1[[>1]1[][1[111[1
[[][][[l>l][l[l[l[l[]
[[l[l[[}<ll[l[][l[l[l
[[l[]II[>ll[lIl[l[l[l
[[l[l[l[l>l[l[l[l[l[l
[[l[l[l[}{<ll[l[l[l[l
[[l[l[}{l[<ll[l[l[l[l
[[l[l[}{<[lll[l[l[l[l
[[1[}{1[<[111[1[1[1[1
[[1[}{[>}{111[1[1[1[1
[II[}{[<l[lllIl[lIl[]
[[1[}{<[1[111[1[1[1[1
[[}{1[<[][111[1[1[1[1
[[}{[>}{1[111[1[1[1[1
[[}{[>l[}{lll[l[l[l[l
[[}{[[1>}{111[1[1[1[1
[[}{[[1<1[111[1[1[1[1
[[}{[[<11[111[1[1[1[1
[[}{[<[ll[lll[l[][l[l
[[}{[>(111111[1[1[1[1
[[}{[<][][]]][][][][]
[[){<[][][]1][][][][]
[[][>[][][]ll[][][][]
[[1[[>1[][]]][][1[][1
[[][[[]>][]]][l[l[l[]
[[][[[){<]]]][][][1[]

=K(<)>
=E(>, 0)=>
:B(>, 0)=>
=G(<)-------------->
F(<, 0)---->

(<)------------->
=A(>, 0)=>.
:E(>, 0)=>
B(>, 0 )=>

(<)--------->
=E(>, 0)=>
=B(>, 0)=>
=G(<)----------->
=F(<, 0)=>
=G(<)------->
=C(<,0)=>
K(>)-------->

=E(<, 0 )=>
(<)--------->

=A(>, 0 )=>
=F(>, 0)=>
=B(>, 0 )=>
(<)=>

E(>, 0 )=>
=B(>, 0)=>
=G(<)------------->
=F(<, 0)=>

(<)----------->
=A(>, 0)=>
E(>, 0 )--->

=B(>, 0)=>
(<)---->

E(>, 0 )=>
=C(>, 0)=>
:H(<)>
=F(<, 0)=>
=H(<)>
=C(<, 0)=>
=K(>)>
=E(<, 0)=>
H(<)---------->

=C(<, 0 )=>
=H(>)-------->
F(>, 0 )=>
=K(>)>
=A(<, 0 )=>
=E(<, 0)=>
=B(<, 0)-->
(>)=>

=E(<, 0)=>
=H(<)=>
:C(<, 0)-->
=H(>)----------->
=F(>, 0)=>
=H(>)>
:C(>, 0)=>
:K(<)------>
:E(>, 0)=>

[[][[[][>]]]][][111[]
[[][[[][]>]1][1[][][1
II][[[][}<]]][][][][]
[[lII[}l[<lllIl[lIl[l
[[][[[}<[]]ll[lIlIl[]
[[][[][>[]]]][][][][]
[[][[]II>llllIl[][][]
[[l[[l[[l>lll[l[l[l[l
[[l[[l[[}<lll[l[l[l[l
[[][[][l[>]ll[][l[l[]
[II[[lIl[l>llIlIlIl[l
[[l[[l[][}<ll[l[][][l
[[][[][}l[<l][l[l[][l
[[l[[l[}<Illl[l[lIl[l
[[1[[}1[<[111[1[1[1[1
[[1[[}[>}{111[1[1[1[]
[[l[[}[<][lll[l[l[l[l
[[1[[}<[1[111[1[1[1[1
[[l[l[>[l[lll[l[l[l[l
[[1[1[[>1[]11[1[1[1[]
[[l[l[[[l>lll[l[l[l[l
[[][][[[}<]]][l[][][l
[[][][[][>]]][][][][]
[[][][[][]>]][][][][]
[[][][[][}<]][][][][]
[[lIl[[}][<ll[l[l[l[l
[[][][[}<[lll[][][l[l
[[][][][>[]]][][1[][]
[[][][][[>]]][l[][][]
[[l[l[l[[l>l][][][][]
[[][1[][[}<]][][111[]
[[][][][][>]][][][][]
[[][][l[l[l>][][][l[l
[[l[][][l[}{<ll[l[l[l
[[l[l[l[}{l[<ll[l[l[l
I[l[lIll}{<[lll[l[l[l
[[1[1[}{1[<[111[1[1[1
I[l[l[}{[>}{lll[][l[l
[[1[1[}{[<1[111[1[1[1
[[lIl[}{<[lIl]lIl[lll
[[1[}{1[<[1[111[1[1[1
[[l[}{[>}{l[lll[l[l[l
[[1[}{[>1[}{111[1[1[1
[[l[}{[[]>}{]]][]IlI]
[[][}{[[]<l[]ll[l[l[l
[[][}([[<1][]]1[][][]
[[][}{[<[]][]]][][][l
[[][}{[>{]][]]][][l[]
[[][}{[<][][]]][][][l
[[][}(<[][][]]][][][]
I[){][<[][][]l][][][l
[[}([>}{1[11111111111
[[)([>][}{][]]][][][]
[[}{[[]>}{][]]][][][]
[[}{[[]>][}{]l][][][l
[[}([[}(<l}{lll[l[l[l
[[}{[[][>l}{lll[][][l
[[}{[[][]>}{]l][][][]

FIG. 5. The first 116 well formed arrays T}), 0 -< j < 116.

Procedure SWITCH:
Step 1o Examine the length 9 subarray, centered on the headmarker, of the current

i.d. and switch tagged cells and headmarker position according to the
single, if any, local rewriting rule from the G, H, J, K rules which is
applicable. The result is a well formed array T.
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Step 2. Examine the length 9 subarray, centered on the headmarker, of array T
from step 1, and switch tagged cells and headmarker position according
to the single local rewriting rule from the A, B, C, E, F rules which is
applicable. The resultant well formed array is the next i.d.

LEMMA 3. Starting from the initial i.d. T, a one-head tape unit M, executing
SWITCH at each single step, executes exactly the local rewriting rule sequence of the
level 0 expansion ofA(>, ). For each > 0, in the first steps M executes this sequence
up to and including the tth occurrence of a local rewriting rule of the A, B, C, E orF type.

The goal of introducing the present bracket manipulator was to scan the subarray
"[ ] [+1 ]+1" at least once in each interval of 2 steps, _>- 0. We can express precisely
what the tth i.d. T is. TO is the initial array at time t=0, and T results from an
execution of SWITCH on T-1, for all t> 0. According to Lemma 3, equals the
number of occurrences of A, B, C, E, F-type local rewriting rules executed. We need
to recognize "[i ]i [i+1 ]i+l" as being the correct sequence of cells, which, since the cells
are tagged with nonindexed brackets in the manipulator proper, cannot go by way of
identifying the individual cells. For this purpose, the next lemma establishes a topology
for the well formed arrays. Before proceeding, we review a few facts about well formed
arrays which are pertinent to the proof of that lemma. By definition, and the discussion
preceding Lemma 3, the set of well formed arrays equals the set { T)Iy>_-0} defined
by the level 0 expansion of A(>, ).

A(>,) yO); yCaO);...; yO;...

and for all i-> 1

withT
y.o,

T To T.
By the definition of the initial array To and those of the various procedures, each
well formed array contains exactly one symbol from {<, >} and, for each > 1, exactly
one symbol from {[i, {i} and exactly one symbol from {]i, }i}. Recall that the indices
are not really there but serve to identify the individual cells for the reader by
distinguishing between the individual attached tags.

If a well formed array T contains a pair of adjacent brackets "[]k" then j k;
if it contains "]j [k" then k ]+ 1 in case the headmarker is to the left and ] k + 1
in case the headmarker is to the right. More precisely:

LEMMA 4. Let T be a wellformed array, and let { <, > } and a, fl, , {[, ], {, }}*.

T a fl [ ]kY ::=> k j;

T a[k ]fl / =:> k j;

(ii) T= a fll[k, k=j+ l;

T= a]k [fl y :==> k =]+ l.

Proof. We basically prove the lemma by induction on the sequence of well formed
arrays T), as defined by the level 0 expansion of A(>, c), ] >_ 0. To do so, we consider
the initial segments T)[0 2(i + 1)], ] >- 0 and => 0, in isolation and show by the claim
below that they internally satisfy the lemma. Viz., in executing the level 0 expansion
of A(>, i) to obtain Tt, from TO the elements of the sequence of subarrays TOo)[0 2(i +
1)], T]O)[0.2(i+ 1)],... aa(i)L’T(0)rr. 2(i + 1)], with T(oO)= TO and T(0)aa(i) Tt,, will be shown
to internally satisfy the lemma. Since during the execution of A(>, i) the final segment

Then:

(i)
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T[2(i+ 1):] is not changed at all, and TO satisfies the lemma, the elements of the
sequence of subarrays T0)[2(i + 1)" ], T)[2(i + 1)" ],. , T)[2(i + 1)"] do
internally satisfy the lemma. Because we have an overlap of one symbol between
T)[0 2(i + 1) and T)[2(i + 1)" ] for all j, 0 < j < a (i) with To) TO and -a(i)T(O) Tt,,
we can conclude that each well formed array T), O<=j<= a(i), satisfies the lemma.
Taking the limit for i-> , that is, considering A(>, ), it follows that the lemma
holds for all well formed arrays.

CLAIM. Let, for all >= O, X {A, B, C, D, E, F}, < {<, > } and T, T’ be well
X(,i)

formedarrayssuchthatX(,i): T[p:q]->T’[p:q],forsomep, q>-OandTI > T’,
and let v.<o), x,.<o). v.o) be the level 0 expansion of X(<> i) with/+1, x/+2, -tl+x(i)

y (o)
o) ,+. o) for all j, 1 < x(i) with T) T and o) T’.al+j--1 "l+j j < ll+x(i) Then, for all j,
<- j <= + x(i), T})[p q] internally satisfies the lemma.

Proof of claim. Base case i= O. Since for i= 0 the procedures are essentially but
the local rewriting rules, we only have to verify that in the definitions of the various
functions the subarrays left and right of the arrow internally satisfy the lemma. Note

def
that [] e for i--0.

Induction. Assume, by way of contradiction, that for some X(, i), with X
{A, B, C, D, E, F} and {<, >} and i>0, the claim does not hold. But in the
execution of the level i-1 expansions of six of these functions with parameter in
the proof of Lemma 2, the other six cases being symmetrical, the displayed subarrays
all satisfy the claim. Hence it must follow that a nondepicted subarray arising in the
execution of the level 0 expansion of some X’(’, i-1), X’ {A, B, C, D, E, F} and

’ {<, > }, violates the claim. Regressing in this fashion all the way down to i= 0
we contradict the established base case, and the claim is proven.

By the discussion preceding the claim we have established the lemma. [3

LEMMA 5. Let T be a well formed array and let {<, >} and a, {[, ],{,}}*.
Then

(T= c[ ]/3 or T= a[ ]/3)::(k =j= 1).

Proof That k j follows already from Lemma 4. Considering the level 1 expansion
of A(>,

A(>, o)= yl); y(21); yl);

and

y(.1)

T}I) T}) with T(o1) T,
we observe that it follows from the definitions of the various procedures that, for all
well formed arrays T1), j=>0, the lemma holds. Expanding each A, B, C, D, E, F
function with parameter 1 to level 0, and examining the intermediate well formed
arrays T}9)# T}1), j, j’>_-0, yields the lemma, lq

Lemma 4 and Lemma 5 show that a certain topological connectedness between
the indexed brackets is preserved throughout the array at all times, and that, in
particular, in each well formed array a fl [ ]k It ],y holds k j and m j+ 1. So
whenever there occurs a length four subarray "[1 []" right of the headmarker the
tagged cells concerned are in the correct consecutive left to right order. Without further
proof we give a more exhaustive characterization of the topology. Let T be a well
formed array. Then, for each _-> 1, T satisfies precisely one of the following forms.
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For 1:

a[[-1]-1[-2]i-2"’" [21211}]<]1fl
a[j []-1 ]]-1 [y-2]j-2 [212 [1}j {j+l

with the obvious modification for j 2.
For each i> 1:

a [i ]i [i--1

a]i--l[i]i

a[i}i{i--1]j[j+l]j+l [j+2]j+2 [i--2]i--2]i--1

a{1[+ 1+1 [+1+ [- 1-11,

a[i-1 [i-2]i-2[i-3]i-3"’" [j+l ]j+l [j}i-l{i]i

[i[i-1]i-1 [i-2]i-2 [j+l]j+l

(some j _>- 2)

(some j >_- 2)

(some j_-> 2)

(some j_>- 2),

(some j < i- 1)

(some j <= i- 1)

(some j < i- 1)

(some j <= i- 1),

Y"
T}i) Toi) T.’---’(i) withlj_

The level 0 expansion of yi) X(, i), with X {A, B, C, D, E, F} and
{<, >}, is fixed and, but for the headmarker arguments, is the same whether <
or =>. Thus, by Lemma 3, the number of steps of M to execute X(, i) equals the
number of occurrences of A, B, C, E, F local rewriting rules in its level 0 expansion,
and does not depend on the orientation of the headmarker , or the position j in the

,’(i)level expansion of A(> ) where _j occurs. We denote the number of steps, used
by M, to execute X((C), i), by T(i).

and define for all j >-1

with the obvious modification for i-3 _-< j <_-i-1. Here can be either "<" or ">"
and a,/3, y, {[,],{,}}*. Considering the fact that

TO >[1 ]11]" I, ]i [/+1 ]i+1"

and that, by definition, for i=> 0 and <= ti,

Tt= af]]i+l [i+2]i+2 [i+j]i+j[i+j+l]i+j+l" "’,

j_>-3, the formats express, but for the choice of as "<" or ">", the format each
well formed array T can have, by applying in sequence the requirements for +
1, i,. ., 1. According to Lemma 4, whenever we scan a subarray "[] []" right of the
headmarker, we know for sure that this is the subarray "[i ]i [i+l ]+1" for some i-_> 1.
In the next lemma we give an upper bound on the number of steps, that is, executions
of SWITCH, in between scanning "[i ]i [i+l ]i+1" right of the headmarker, for all i_-> 1.
To express the timing we consider expansions of A(>, ) of level i, i-> 1"

A(>, o) yi); y2i) "*r(i).;...,r ;...
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LEMMA 6. There exists a function S: NI such that for each >-_ 0 there is a t’ >
such that for some a, a’, fl, fl’ {[, ], {, }}* and , ’ {<, }

(i) T O[111 ::=> Tt’ att[1]lfl’ and t’- t_-< S(1).
(ii) Tt= a[1 ]1 [2]2/3 Tt’= a’’[1 ]1 [2]2/3’ and t’- <- S(2).
(iii) For all i>2 and x{e,{,}{} there is a x’{e,{,}{} such that: Tt=

ax]i-2[i-1]i-l[i]ifl =:> Tc= a’’x’]i-2[i-1]i-l[i]ifl’ and t’-t<-S(i).
Moreover, S(i)=2TA(i)+ TF(i), for all > 1, is such a function.

Proof. Consider the level expansion of A(>, o), i>= 1,

and

A(>, o) yi., y(i, y,,

Y.’
T(oi TO"T}/__) T}i) with

T() is of the form a [, ]i or a[, ],fl, for all j->O. All such T)’s, with Y)Then _i

not G, H, J or K local rewriting rules, are i.d.’s of M. We restrict attention to the
particular subsequence T(. .. . T is of the form a<[i ]io, 1, "’, ,’’" for which i

T(i) To. ..(i).for all k>O and -o For each k->O there exists a sequence .1,
v(.) such thatJk+2 lk+l

(1) T(.i)
Yjik*l" E*2;" Yjik*l’

By the use of the recursive expressions in Lemma 2 we can determine all such sequences.
Subsequently, we have to determine which such sequences take the most steps to
execute. So we first determine Tx(i) for all X {A, B, C, D, E, F}. It follows from
Lemma 3 that Tx (i) equals the number of occurrences of A, B, C, E, F procedures in
its level 0 expansion. We see from Lemma 2 that:

TA(i)= TA(i--1)+ TF(i--1),

Tn( i) TB( i-1) + TF( -1),

Tc( i) Tc( i-1) + TF( i-1),

TD(i)= TA(i--1)+ TF_,(i--1),

TE(i) TB(i--1)+ TD(i--1)+ TE(i-- 1),

Tv(i) Tc(i-1)+ TD(i--1)+ Tz(i- 1),

and TA(O)= TB(O)= Tc(O)= T(0) Tv(0) 1 and TD(0) =0. For this system of
recurrence equations with initial values we find TA(i)= TB(i)= Tc(i), for all i_->0,
and consequently TE(i) Tv(i), for all i->_0, which in its turn yields TD(i)= TA(i),
for all i-> 1. Hence for all >- 1:

(2) T(i) TF(i)>= TA(i)= TB(i)= Tc(i)= To(i).

Now let v() v() y(.i) be a sequence of functions as in (1) Erasing thejk+l Jk+2 Ik+l

G, H, J and K procedures (because they do not contribute to the number of steps it
takes to execute this sequence, by Lemma 3) and replacing all E’s by F’s and all B’s,
C’s and D’s by A’s (because they take the same number of steps for >_- 1) the resulting
sequences are F(<, i), A(<, i); A(>, i) and A(<, i); F(>, i); A(<, i). So for 1, 2,
S(i) 2TA(i)+ Tv(i) satisfies the lemma. For i> 2 we note that, for all k >_-0 (with
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the obvious modification for k =0),

lk O <[I--311-3 [i-2 ]i--2 [i--1 ]i--1 [i lift.. CI ’[i--2 [I--3 ]1--3> X]i--2 [i--1 ]i--1 [i ]i

with Z and x one of the following:

Zie{J(<);A(>,i-3),K(<);A(>,i-3)} and x=e;

Zi=B(<,i-3) and x={;

Z{C(<,i-3),G(<);C(<,i-3),H(<);C(<,i-3)} and x=}{.

In all cases, the execution time of Zi is Ta(i-- 3), which shows that S(i) 2 T(i) + Tz(i)
satisfies the lemma for all > 2 too.

Corollary. Let S: be defined by S(i) 2T(i) + T(i), for all i 1. Then:
(i) For each tO there exists a t’, < t’ t+ S(1), such that the t’th i.d. ofM has

the form Tc a < [11 for some a, { [, l, {, }}*.
(ii) For each tO there exists a t’, < t’ t+S(2), such that the t’th i.d. ofM has

the form Tc= <[1[1 for some a, fl ([,1,{,}}*.
(iii) For each i> 2 and 0 there exists a t’, < t’ + S( i), such that the t’th i.d.

of M has the form TC=a>x]i_:[i_l]i_l[i]i for some a, # {[,1{,}}* "and

It remains to determine S analytically.
LEMMA 7. S(i)=(1 +)i+1 +(1_)i+1.
Proof. From the system of recurrence equations, and the values for i= 0, in the

proof of Lemma 6, follows:

TA(i)=2T(i-1)+TA(i-2) for i> 2.

The solution for this homogeneous equation is of the form T(i)= ax + bx, where
x, are the roots of x-2x 1 =0 and a and b follow from TA(1)= 2 and TA(2)=4.
So Xl, 1 and

a(1+4) + b(1-() 2, a(1+4)2+b(1-)2=4
yielding a 1/ and b 1/. Hence

1 1T(i)=(1+)’-(1-4)’, iel.

From the system of recurrence equations, and the identities amongst the functions, it
appears that Tz(i)= T(i)+ Ta(i-1) whence the expression for S(i) follows.

COROLLARY. S(i)<3i+ for all il. Viz., S(1)=6 and limiS(i+l)/S(i)=

Of course we can obtain that S(i)<3i+1 by a cruder argument. The present
analysis, however, is quite straightforward and precise. Running the bracket manipu-
lator on a computer, by way of empirical verification, confirmed the first nine values
of S.

2.4. The real-time simulator. Having set the stage in the preceding sections, we
now tie everything together to obtain the desired real-time simulator.

Let M be a one-head tape unit with a one-way infinite tape divided into two
tracks: the tag track and the count track. The finite control of M has a special register
containing the initial segment C[0:5] of the array C[0:] representing the current
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count as in 2.1-2.2. The single head of M covers 14 squares and its position is the
intersquare boundary in the center. Initially, the head covers the leftmost squares, all
squares on the tape contain special blank symbols and the finite control is in a
distinguished initial state, in particular C[0"5] contains O’s only. Since M can always
initialize previously unscanned squares, still containing blanks, by keeping a parity bit
in the finite control, we assume that the tape is initially divided in the two tracks as
follows. Number the tape squares from left to right by -7, -6,. , 0, 1, 2,. . Square
i, i=>0, contains initially on the count track C[i +6]= and on the tag track a tag
"[", if is even, and a tag "]", if is odd. So the initial situation can be visualized as
in Fig. 6, with the initial headmarker ">" kept in the finite control. At each step the
head rewrites the contents in the squares under scan, and shifts left, right or not at
all. Since the head shi[ts will be governed by the local rewriting rules of the last section,
the marker ">" or "<", positioned on the center intersquare border of the scanned
squares, can shift at most two squares left or right in a single step. Whether this marker
is ">" or "<" can be maintained in the finite control; the initial marker is ">".

FI tl’l’E CONTROL
,,r

C[o:5]

OUr,.UT

CE6] CEz]

STORAGE HEAD

TAGS

COUNT

FIG. 6

Each step of M consists of essentially two parts: first execute COUNT on the
representation of the currently stored integer, check whether this integer is zero, and
secondly execute SWITCH to switch cells containing digits of the integer representation.
The information in the two tracks of a square may be thought of as a cell containing
the current digit C[i], which is tagged by the tag on the tag track.

To execute COUNT, M inspects the scanned cells right of the headmarker, so as
to determine I(t) in the tth step, and also identify the squares containing C[2i],
C[2i+1], C[2i+2] and C[2i+3] for all iEl(t). To this purpose first procedure
COLLECT is executed. Let P be the current local tape contents, i.e.

p= 7-1 7"2 7"3 7"4 7"5 7"6 7"7

3’1 3’2 3’3 3’4 3’5 3’6 3’7

is the tape contents on the seven squares right of the headmarker.

Procedure COLLECT (P)"
Let the seven squares right of the headmarker contain the string 7"17"2" 7-7 on
the tag track and the string 3’13"2"" 3’7 on the count track. Then we distinguish
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essentially four cases, implicitly specified by t:
(a) ’1-2=[] & ’3’4 [] I(t)={0, 1,2} & C[6"7]= 3q2;

(b) rrr34= [l[l (t)={0, 1,2,3} & C[6"9]= WYEV3V4;

(c) ---34-5 =][] [] I(t)={0, 1, i}, i> 3, & C[2i’2i+3] y2yay4ys;

rr:r34r6={][][] l(t)= 0, 1, i, i> 3, & C[2i’2i+3]

rr2r3r4rsr6rT=}{][][] =:> I(t)={0, 1, i}, i> 3, & C[2i’2i+3]

(d) none of (a)-(c) =:> I(t) {0, 1}.

Modulo the correctness of the implications in the definition of COLLECT, which
remain to be proven, the execution of COLLECT (P) in the tth step of M both
determines I(t) {is, is-i," , il}, is > i1-1 " il, and identifies the locations where
C[2ij], C[2ij + 1], C[2i + 2] and C[2i / 3] currently reside, 1 <= ] <_- I. Since these loca-
tions are either under scan on the tape, or in the finite control, viz. C[0" 5], the machine
can in the tth step execute COUNT (t, 3) UPDATE (il); UPDATE (/Z_l);
UPDATE ia); INPUT (3) by executing the consecutive mappings in the decomposition
on the relevant subarrays of C[0 o], without explicitly knowing the value of t. Thus,
in each single step, starting from the all-blank tape with the initial headmarker ">"
positioned at the left end, the one-head tape unit M will do all of the following.

Procedure STEP:
Step 1. Initialize both tracks of right adjacent previously unscanned squares, still

containing primeval blanks, by writing the correct square bracket on the
tag track (check and update parity count in the finite control) and a blank
"0" in the count track of such a square.

Step 2. Execute COLLECT (P).
Step 3. Let the current value of I determined by step 2 be {is, i_a,. , i} with

il > i-1 >’" > il. READ the current value of 6 from the input terminal
and execute COUNT (current step, 6), that is,

UPDATE (i); UPDATE (i/_1); UPDATE (il); INPUT ().

Step4. WRITE "count equal zero" or "count unequal zero" to the output
terminal, depending on whether or not C[0] 0, for the C[0] resulting
from step 3.

Step 5. Execute SWITCH. That is, switch the contents of the scanned squares,
considering the combined contents of the tag track and the count track
on a square as a single package. Interchange these packages amongst
squares, shift the head position and change the brackets and headmarker,
governed by the current headmarker, head position on the scanned
squares, and the scanned brackets alone.

PROPOSITION 4. The constructed one-head tape unit M is oblivious and real-time
simulates the quintessential counter.

Proof. The one-head tape unit M is oblivious since the head movement is governed
by the tag track and the headmarker, independent of the input. Attaching imaginary
indexes i= 3, 4,... to the initial tag track contents, a shift of 2 from the ones in the
initial i.d. in the previous section, the executions of SWITCH preserve that pairing of
C[2i] with opening bracket indexed and of C[2i + 1] with closing bracket indexed
i, i=> 3. Since C[0"5] resides immobile in the finite control, Lemmas 2-5 ensure that
the identification of array elements by COLLECT (P) in each step remains correct
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under the interchange of the mobile array elements of C on the count track by
SWITCH. In the tth step, for all >- 1, COLLECT (P) determines the value I(t) of
the parameter selection function L as well as the high to low order of elements in I(t).
By Lemma 6 and Corollary, for each t-> 0 and each index => 2, there exists a step t’,
< t’ <= t+ S(i- 1), such that I(t’). By the definition of COLLECT (P), {0, 1} I(t)

for all => 1. Since it follows from Lemma 7 that S(i- 1) < 3 for all >- 2, the oblivious
one-head tape unit M real-time simulates the quintessential counter by Propositions 2
and 3. [’1

Let C be any k-counter machine, k >= 1. Clearly, C can be thought of as a finite
control connected with k quintessential counters $1, S:,. , S. At each step the finite
control of C reads an input command from the input terminal if it is in a polling state,
checks each S, 1-< <= k, for zero contents, and governed by this information issues
input commands "add ", {-1, 0, 1}, to each S, 1 -< <= k, and writes an output
string to the output terminal. In the spirit of Proposition 1, we can real-time simulate
C by an oblivious one-head tape unit Mc, which is just like M, but with k count tracks
(one for each quintessential counter) and one tag track. Storing the first six digits of
the representation of each count in the finite control, which is connected to the input
and output terminals through C’s original finite control, we finally obtain.

THEOREM. Each multicounter machine can be real-time simulated by an oblivious
one-head tape unit using logarithmic space.

Proof. By Propositions I and 4. That the space used is logarithmic in the simulated
number of steps follows since the head is centered immediately left of the square
containing tag "]+" for the first time after executing A(>, i), which takes TA (i) steps.
To clean up some final details: we can get rid of the fat head, covering 14 squares and
sometimes shifting its center two squares in a single step, by cutting out a piece of
tape of 14 squares and buffering it in the finite control. The remains of the tape are
glued together and the contents of the buffered piece are swapped from the buffer to
the scanned tape square and vice versa, according to the desired head motion, cf. the
speed-up technique in [3]. [3

On the required bits. Although the preceding simulation and its proof may not
seem easy, the algorithm which does the work is pretty simple. As it happens, we are
also frugal in the number of bits. On information-theoretical grounds we require about
k log2 2n bits to represent any k-tuple of integers of absolute values up to n. In the
exhibited simulation, we can use four bits for each digit of a count, need not more
than log2 n digits for each count, and since there are but four tags, each tag can be
encoded in two bits. Therefore, we use at most about (4k / 2) log2 n bits to represent
k counts of absolute values at most n. By restricting the most significant nonzero digit
to absolute value 1, and appropriately modifying the mappings UPDATE and INPUT,
everything goes through as before but code (c)

_
{-2, -1, 0, 1, 2, -1, 0, 1}, c 7/. Thus

we only have to use (3k / 2)log: n bits to represent k counts o absolute values at
most n. Using only digits from {-2,-1, 0, 1, 2, 0} also suffices, but complicates the
proof. How good a real-time algorithm is can be measured in the size of the storage
alphabet used. Realizing that actual machines use a constant size storage alphabet, we
observe that a large, although finite, storage alphabet in an algorithm implies a.greater
constant delay. That is, the reverse of a speed-up by decreasing the alphabet size. At
the cost of a deterioration of the constant delay, implicit in the real-time solution
presented, we can do better than using (3k + 2) log2 n bits. Using in 2.1 and 2.2 an
analogous redundant symmetric r-ary representation, based on the digits -r,-r+
1,...,-1 0,1,2,. ,r-l,r, we can get the bit count down to about (1+
4/log r)/ logz n bits for maintaining k counts of absolute value at most n. The implicit



OPTIMAL SIMULATION OF COUNTER MACHINES 31

constant delay, however, rises proportional to log r. In the limit, for r , we achieve
about the information-theoretical minimum in bits, but the constant delay goes to
infinity, that is, it takes infinite time to execute a single step.

Note, however, that for no fixed finite storage alphabet a real-time simulation of
but a single counter on an oblivious multitape Turing machine can reach the informa-
tion-theoretical bit minimum. Such a simulation must use f(log n) size representations
for counts of size n, and we can argue that for each n there must be at least log n
representations. Hence we use at least log2 2n + log2 log n bits per count.

On the size of the ]’at head. In the simulation a head covering 10 squares suffices,
which can be shown by a slight complication of the proof. Also, the head shift in a
single step of M need not exceed one square.

On the initially zero counts. As argued subsequent to the proof of Proposition 3,
the assumption of initially zero counts is not essential. The theorem holds also for
multicounter machines with each count initialized to an arbitrary integer.

3. Conclusion. For various theoretical and practical reasons, multitape Turing
machines, restricted in one or more resources, serve as a standard against which to
calibrate the power of other devices, or to compare the power among themselves under
different resource restrictions. The commonly considered resources are time, space,
number of tapes/storage heads and oblivious versus nonoblivious. The present simula-
tion is, perhaps, the first-one which is optimal in all of these resources at once" the
use of no resource can be improved by relaxing the other resource restrictions. Apart
from the fact that the simulating device is real-time, oblivious and uses but a single
storage head, it is worthwhile to recall that there do not exist on-line Turing machines
using S(n) o(log n) space, S(n) unbounded [4]. Thus, the simulation is performed
by the simplest (with respect to the considered resources) Turing machine which is
not an outright finite automaton. Another resource, which is sometimes considered,
is the number of head reversals. Again, it is easy to see that each multitape Turing
machine needs, in the worst case, a linear number of head reversals to on-line simulate
a counter machine, as does the presented simulation. (Although a multihead Turing
machine can simulate a multicounter machine without head reversals [8], the simulation
of such a device by a multitape Turing machine needs a linear number of head reversals.)

Some immediate applications. In a computation using k stacks we may want to
keep track of which pairs out of the k stacks are of equal height at any time. Without
slowing down the computation, we formerly needed k-1 stacks for doing so. Using
the present method we need but one extra oblivious one-head tape unit, or two extra
oblivious pushdown stores. A single pushdown store does not suffice. Similarly, we
can keep track of the headpositions in multihead Turing machine computations.

Number representations. The reader may appreciate the following comment of
John Locke on the intimate relation between counting and number representation.

For he that will count 20, or have any idea of that number, must know that 19 went before, with
the distinct name or sign of every one of them, as they stand marked in their order; for wherever
this fails, a gap is made, the chain breaks, and the progress in numbering can go no further. So
that to reckon right, it is required: (1)that the mind distinguish carefully two ideas, which are
different one from another only by the addition or subtraction of one unit; (2)that it retain in
memory [a systematic method for deriving] the names or marks of the several combinations, from
a unit to that number, and that not confusedly and at random, but in that exact order that the
numbers follow one another; in either of which, if it trips, the whole business of numbering will
be disturbed, and there will remain only the confused idea of multitude, but the ideas necessary
to distinct numeration will not be attained to.
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The one and only basic reason to denote numbers at all is for the purpose of
comparing them, of whether the one is greater than the other, for without this capability
no arithmetic is possible and with it all arithmetic is possible. Thus we must be able
to distinctly represent all numbers, and if we have representations for all numbers up
to a given one, then we must be able to derive the next one, or previous one, from
the given one, while having a designated point of reference or benchmark number.
This is the task expressed in the notion of a counter machine, and multicounter machines
enable us to do arithmetic. The exhibited optimal implementation embodies a new
representation for multituples of integers suitable for exercising that basic activity
using minimal resources. Thus, for each n (n, n2," nk) 7/k, k >- 1, each such
representation for n consists of a linear string of symbols, and is about as compact as
possible. Such a representation has a distinguished access position p, and by considering
only the three symbols centered on the access position we can

(i) add any vector -(tl, t2,""" tk) {-1, 0, 1} k to n to obtain such a rep-
resentation for n / 8;

(ii) for all i, 1 <_- -< k, determine whether n + 8 0;
(iii) determine the new access position p’ {p- 1, p, p+ 1}, which is also indepen-

dent of n and & In m successive additions the distance between the leftmost
and rightmost intermediate access pointer positions is O(log m), for all m > 1.

Note that Gray codes, as representations of integers, have vaguely similar proper-
ties for the case k 1. There, the representation of n +/- 1, n 7/, can be obtained from
the representation of n by changing a single symbol. However, the symbol in the
representation which must be changed to obtain n / 1 from n can lie arbitrary far from
the symbol which must be changed to obtain n- 1 from n. Moreover, these positions
depend on n and whether we add or subtract, and do not allow us to test n for 0. The
representation derivable from the simulation in [1] is t.loser to the one above, for the
case k 1, but the new access position p’ in (iii)depends on n and . None of these
representations have any of the properties (i)-(iii) in case k > 1.

Augmented counter machines. Apart from the basic one-step multicounter
operations, several other one-step operations can be synthesized using concealed
auxiliary counters, such as tests for equality amongst counters (by maintaining all
differences on auxiliary counters). It is known [2] that the operations "set counter
to zero" or "set counter to the value of counter ]" (i ]) cannot be synthesized as
one-step operations on a multicounter machine. At the end of 2.2 we noted that the
requirement of initially zero counters was not essential for the present simulation. It
can be proved [9] (this issue, pp. 34-40) that with a suitable embellishment the
present simulation can also support the one-step operation "set counter to the value
of counter ]" (i j). Define an augmented counter machine (ACM) just like a multi-
counter machine but with the one-step input operations "set counter to the value of
counter j" (for any pair of counters i, ]) added and any initial counter contents in 7/

allowed. Such a machine can execute quite powerful instructions in one step. For
example:

L: if (x < y & y >- c) then (x - z; z d) else (x y; goto L’) fi

with x, y, z integer variables, c, d integers and L, L’ labels, is a one-step instruction
for an ACM.

THEOREM. Each augmented counter machine can be real-time simulated by an
oblivious one-head tape unit in logarithmic space.

Uniform space complexity. Viewed in space-time, the bracket manipulator head
describes an interesting curve. This is perhaps best expressed by stating that the
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two-dimensional space-time trajectory described by the center of the greatest tape
segment, delimited by brackets with indices j, j’<= i, is the same as that described by
the center of the greatest tape segment, delimited by brackets with indices j, f =< i- 1,
i> 1, subsequent to multiplying the time scale of the latter by S( i)/ S( i-1) and the
space scale of the latter by i! (i-1). This shows that the number of distinct squares
visited in each time interval of n steps, for all n->_ 1, is O(log n). Generalizing this
observation, we say that a multitape Turing machine M uses uniform logarithmic space
if, for any unbounded input sequence, the total number of distinct squares, visited on
M’s storage tapes, for each interval of n steps, for all n >-1, is O(log n). It can be
shown [10] that each multitape Turing machine using uniform logarithmic space can
be real-time simulated by an oblivious one-head tape unit using uniform logarithmic
space.

Oblivious simulations. It" seems to us that also the converse of the maxim leading
to Proposition 1 holds generally. Viz., if we can simulate arbitrarily many storage
devices by a fixed number of, possibly different, devices then we can do so obliviously
retaining the same resource bounds. The point here is that if the multitude of head
movements of an arbitrary number of heads can be accommodated by the motion of
a fixed number of heads, then there is no reason to suppose that any trajectory of the
latter can make significant use of particular input streams.
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Abstract. An Augmented Counter Machine (ACM) is a multicounter machine, with initially nonzero
counters allowed, and the additional one-step instruction "set counter to the value of counter j", for any
pair of counters and j. Each ACM can be real-time simulated by an oblivious one-head tape unit using
the information-theoretical storage optimum.
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1. Introduction. In the companion paper [3] (this issue, pp. 1-33), a real-time
implementation of multicounter machines on oblivious one-head tape units of optimal
storage efficiency was exhibited. An augmented counter machine (ACM) is a multi-
counter machine, with each of its counters initialized to any integer, and with the
additional one-step operation "set counter to the value of counter j", for any pair of
counters and ]. Several one-step operations, other than the basic ones, can be
synthesized on a multicounter machine by the use of concealed auxiliary counters (such
as "test equality of a pair of counters", for any such pair, by maintaining the differences
on auxiliary counters). It is known that the above assignment among counters cannot
be so synthesized. A witness for this fact is the language L*, with L {0p 1 P >= m > 0}.
Thus, in real-time, ACM’s are more powerful than multicounter machines [1]. The
particular technique used in [3], to obtain an optimal simulation of counter machines,
is well suited to extend that result to the more powerful ACM’s. Consequently, we
shall demonstrate the next theorem.

THEOREM. Each augmented counter machine can be real-time simulated by an
oblivious one-head tape unit using the information-theoretical minimum in storage space.
Viz., for each >- 0 and n >- 1, during the processing of the (t + 1) th through (t + n) th

input command, of the simulated ACM, the storage head of the simulating oblivious
one-head tape unit accesses but O(log n) distinct tape squares.)

In [3] the analogue of the theorem was derived for the weaker multicounter
machines. The next section, containing the demonstration of the above theorem,
continues and presupposes that paper.

Outline of the simulation. The simulation consists of the oblivious one-head tape
unit constructed in [3], equipped with some additional features. The (k + 1)-track
one-head tape unit M of [3], capable of real-time simulation of a k-counter machine,
has one tag track, which does not concern us here, and k count tracks containing the
momentary representations of the k stored integers, one per track. M would trivially
be capable of real-time simulating an ACM, if it could replace the contents of any
count track by that of any other in each single step. This is clearly impossible for a
one-head tape unit, since the significant count track contents may be arbitrarily large.
Yet we were able to update the individual tracks, with respect to unit addition/subtrac-
tion, by amortizing the propagation of the carries and borrows. The idea below is to
do the same with respect to the replacement of one count track contents by that of

* Received by the editors March 15, 1983. This work is registered at the Mathematical Centre as IW
225/83.
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another. Thus, if at some step the counter is set to the value of counter ], we start
to transfer the contents of count track ] to count track i, from the low order digits to
the high order digits, a few digits each step t’, t’_-> t. We do so by introducing a switch
which, in each position it passes, overwrites the digit on count track by the correspond-
ing digit on count track j: Each such switch is introduced in the 0th position of the
representation, and is shifted through simultaneously scanned adjacent positions to
higher ones, preliminary to the propagation of carries and borrows, in each step. The
effect is that the carry or borrow, resulting from an input at a later time than the input
which was to replace the contents of counter by that of counter j, will always be
preceded by the replacing of the individual digits constituting the contents of count
track by their counterparts on count track j. Since in each interval of n steps, for all
n >_-1, the head visits but O (log n) distinct tape squares, each switch eventually
overtakes all earlier created switches, but never passes them. We are thus confronted
with arbitrarily long queues of switches clogging at some positions on the tape. It will
be shown, however, that whenever one switch overtakes another one, we can replace
the combination by a single switch. It thus suffices to equip the multicounter simulator
of [3] with an extra track on its tape, and modify the algorithm it executes in each
step, to derive the desired ACM implementation.

2. An optimal simulation of ACM’s. Recall that, in the proof of the optimal
simulation of multicounter machines in [3], the usual assumption of initially zero
counters was not essential. The simulation presented there also works with each counter
initially set to any integer. To turn such a machine into an ACM, we therefore only
have to add operations which can instantly replace the contents of any counter by that
of any other counter. This amounts to an operation which is more general than a
permutation of the momentary contents amongst the various counters.

Define a semipermutation tr, among k objects ol, 02, Ok, for tr= ili2"" ik
(i/{1,2,...,k}forl<-j<=k) by

0"(01, 02, Ok)= (Oil 0i2,’" Oik ).

A semipermutation is also called a permutation with repetitions. The semigroup (not
group), of which the elements are semipermutations of k objects, the product of two
semipermutations being the semipermutation resulting from applying each in suc-
cession, and the identity e being the semipermutation which does not change anything,
has kk elements and is denoted by Rk.

Define an augmented counter machine (ACM) A as a k-counter machine with
each counter i, 1 =< <= k, initialized to a value in the set of integers. Input commands
to A are of the format (tr, 8) with o’Rk and i {-1, 0,1}k. At any time, if
(c, c2," , Ck) is the integer valued k-vector contained in A’s k counters and (tr, 8)
is the currently polled input command then in one step A does all of the following:

(i) (c1, c2,""" Ck)<--o’(C1, C2, Ck)"
(ii) (Cl, c2,""", Ck)-(Cl, C).,’’’, Ck)+8;
(iii) OUTPUT, for all i, 1 <_-i<= k, "counter i=O" or "counter iS 0" according

to the new state of affairs.
Let M be the k-counter machine simulator as constructed in [3]. The ith count

track contains the array C[i, 6:oo], and the ith register in the finite control contains
C[i, 0:5]. The array C[i, 0:oo] represents the integer ci, that is, the value of the ith
counter, 1 -< =< k, just as the array C[0" oel represented the value c of the quintessential
counter in [3]. The initial arrays C[i, 0:oo], 1-< iN k, are representations of the
prescribed initial integers, each representation containing no digits of opposite sign,
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cf. the conclusion of 2.2 in [3]. The following adaptation, of procedure STEP in
[3, 2.4], trivially turns M into an ACM simulator. Replace step 3 of procedure STEP
by step 31 below, turning it into a new procedure STEP1. The resulting machine is
M1, and the contents of the k count tracks are contained in a k c matrix C1[1 k,
0:], such that Cl[i, 0:o] denotes the contents of the ith register in Ml’S finite control,
followed by the ith count track on Ml’S tape, in the obvious way, 1 =< i-_< k.

Step 31: Let the current value of/, determined by step 2, be {it, it-l," il} with
it> it-l>"" > il. READ the current command (tr, 8) from the input
terminal. Let 8=(61, 62,’’’, 6k). Execute:

for
do

C,[l:k, j] - o-Ca[l:k, j]
od;

or j step-1 until 1
do for i= 1 step 1 until k
do

C[i, 2ij" 2ij + 3]<-- UPDATE (CI[i, 2i" 2i + 3])
od

od;
for 1 step 1 until k
do

Cl[ i, 0 1] INPUTs, Eli i, 0 1 ])
od

Step 31, however, contains an infinite for statement. (That statement is the only
addition to the original step 3.) Since the cardinality of I(t) happens to be at most 4,
for all t, cf. [3], only a few positions of the arrays, representing the counters, can be
updated by the actual machine in each step. Consequently, M1 does not constitute a
real machine, since it executes the procedure STEP1, containing an infinite for state-
ment, that accesses all of the infinite tape (c.q., C1[1 k, 0:]), each single step. We
shall amortize the execution of the infinite for statements, implementing the semipermu-
tations, by executing them in each position only when they are due.

We observe the notational conventions from [3], concerning superscripts on arrays.
Thus, an array B, connected with a machine Mi, i= 1, 2, can be viewed as a variable
or as an actual value. In the first case we do not use a superscript. In the latter case
a superscript is used to indicate the value of B, subsequent to the execution by Mi
of the tth step (i.e., procedure STEP/), for a given input command sequence (tr, 81),
(r2,82), (tr*, 8’), That is, B’s value just before M processes the (t+ 1)th
input command

We associate, with each position j->0, a queue Q[j] of semipermutations. If
Q[j] tr,tr,_l trl then the constituent semipermutations try, tr2, , 0-,, have been
executed, in that order, on all positions j, 0- jl --< j, but none of them has as yet been
executed on any position j2, j2 > j. Queues of semipermutations can be concatenated
to a single queue. That is, if O[jl] rptrp_l’"trl and O[j2] UqUq_l’" Ul then by
definition:

Q[j,]O[j2]- rprp_, O" lYqlYq_l ii.

For each j_-> O, the initial contents of O[j] is e, that is, the empty queue. For each
particular input command sequence, for each time >_-O, we denote, for all j-> O, the
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queue in position ] at time by 0’[]]. Thus, 0[]] e for all ]-> 0. For any input
sequence (0-1, gl), (0.2, g2),..., (0.t, gt),..., with 0.t e Rk and gt e {-1, 0, 1} k, for all
t->_ 1, we preserve the following invariant’

(E) V t[Q’EO]Q’[I]... Q’[j]Q’[]+ I] o.’o-’-1. 0-1 & V i[Q’[2i] el].
t=>o i__>0

(Recall that, in [3], invariants (A)-(D) pertain to the representation C[i, 0:oo] of the
contents of the ith simulated counter, for each i, 1-<_iN k.)

If O[]]=0.m0.m_1"’’0.1 then by application of O[]] to a k-vector u=
(q, ,e,’’’, uk), denoted as

(,, ,""", )’- 0[}](,, ," , ),
we mean the assignment embodied in the execution of"

for j 1 step 1 until m
do

(/]i, /]2,""", /2k) <-" 0.j(/]l, /22,""",

od

Now replace the third step of procedure STEP by step 3, so as to obtain a new
procedure STEP2. The corresponding machine is M2 and, for any input sequence
(0.1, 1), (0.2, 62),..., (0., ),..., with 0. Rk and 6 {-1,0, 1} k, the matrix
C2[l:k, 0:oo] contains the contents of the k count tracks and k count registers of M2
in the obvious way.

Step 32: Let the current value of I, determined in step 2, be {il, il-1," , il} with

il> il-l>"" > il. READ the current command (0., 6) from the input
terminal. Let 6 (, 2,""", ). Execute"

for j step-1 until 1
do

C2[1 k, 2i + 2:2i + 33<-- Q[2i + 13C2[1 k, 2i + 2:2i + 33;
Q[2i + 3]<- Q[2i + 1]Q[2i + 3];
O[2i+ 1] <- e;
for i= 1 step 1 until k
do

C2[i, 2i" 2i + 33 <-- UPDATE (C2[/, 2i" 2i + 3])
od

od;
C2[1 k, 0: 1]<- 0.C2[1 :k, 0: 1];
Q[1] - 0.Q[1];
tor i= 1 step 1 until k
do

C2[ i, 0 1] - INPUTs, C2[ i, 0 1 ])
od

Obviously, (E) is preserved by step 3z for each input Sequence.
LEMMA 1. For each input sequence it holds that for all >= 0 and all i, 1 <-_iN k,

we have:
C[i, O] O iff Ct2[i, O] O.

Proof. Define a third k x oo matrix C3, which normalizes C2, at any instant of time
t, by executing the backlog of semipermutations which by that time have accumulated
(in the queues for) the consecutive positions j, with respect to the k-vectors C[[I" k, j].
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By definition then, for all _-> 0 and all ]-> 0"

C[1" k, j]= (Qt[0]Q’[1] Ot[j- 1])C[1 k, j].

The following claim exoresses the essence of the amortization-of-execution-of-semi-
permutations argument. Viz., for each input sequence, for every and i, C3[i, 0"oo]
and C[i, 0.oo] represent the same integer.

CLAIM. For any particular input sequence (tr, gl), (0.2, g2),. (O.t, 8t),.

V V :1 c[C3[i,O’oo]ecode(c) iff C[i,O’oo]ecode(c)],
t=O l=iNk

where Z is the set of integers.
Proof df claim. By induction on the number of steps t, for any particular input

sequence (tr, gl), (tr2, 82), (tr, 8),
Base case. t=0. Since Q0[]]= e, for all positions ]0, and Cl and C both

represent the same k-vector of prescribed integers according to the code function, cf.
[3], the claim holds initially.

Induction. >- O. Assume the claim holds for all s -<_ t. Let I(t + 1) { i, i-l, , i},
with it> i_ >... > il. Recall from [3] that, for each t>_-0, the least element il in
I(t + 1) equals 0. This will be needed later in the proof. By the inductive assumption,
for each i, 1 -<_ -<_ k, and for all s, 0 <- s <- t, there is an integer c such that C[i, 0" oo],
C[i, 0"oo]ecode (c), since M obviously simulates an ACM A just as M in [3]
simulates multicounter machines. During step / 1, the running variable j assumes the
successive values l, l-1,..., 1 in step 32 of procedure STEP2. For each such j, the
piece of code

C211" k, 2i + 2"2i + 3]- O[2i / 1]C2[1 k, 2i + 2"2i + 3];

(1) Q[2i +3] O[2i + 1]Q[2i + 3];

Q[2i+l]-e

in sep 3 does not change the normalized matrix C3[1 k, 0:oo] at all. The execution
of (1) also preserves (E), viz., in particular Q[i] e, for all even i. Now consider the
next piece ol sep 3:

for 1 step 1 until k
do(2)

C2[i, 2ij’2ij+3]-UPDATE(C2[i, 2ij’2ij+3])
od

Just before the execution of this for statement, the matrix C3[1 k, 0:oo] consisted of
three submatrices:

C3[l k, O 2 ij -1],

C3[1" k, 2i 2 ij + 3],

C3[1" k, 2i + 4 0o].

Since Q[2ij] Q[2i+ 2] e, by invariant (E), and Q[2ij + 1] has just been set to e by
the preceding subprogram (1), it follows from the definition of C3 that, just before
execution of (2), it holds that:

(3) C3[1" k, 2i’2i+3]=(Q[O]Q[1]. O[2i-l])C2[l" k, 2i’2i+3].

Only C2 [1" k, 2ij" 2ii + 3] is accessed and changed (row-by-row) according to UPDATE
in (2). Therefore, by equality (3), the effect on the normalized matrix C3[1 k, 0: c],
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of executing the subprogram (2) on C2[1" k, 0 oo], is the same as the effect of executing:

for i= 1 step 1 until k
do

Ca[i, 2ij’2ij / 3]- UPDATE (Ca[i, 2ij" 2i + 3])
od

By [3, Propositions 1-4], therefore, if C3[i, 0"o0] E code (ci), for some integer ci, before
the execution of (2), then C3[i 0" c)] E code (c) after the execution of (2) too, for each
i, 1 <- _-< k. As noted above, for all >_- 0, the least element of I(t / 1) is il 0, by [3].
So subsequent to the last execution of the subprogram (1); (2) in the (t+ 1)th step,
that is, the execution with j I and therefore i il 0, we have Q[1] e while Q[0] e

by (E). Hence, by definition, C3[1" k, 0" 1] now equals Cs[l’ k, 0" 1], while, by the
inductive assumption and the above reasoning, still C3[i, 0"o]code (c), for all i,
1 _<- _<- k. In this situation

(4) C2[1" k, 0" 1]- trC2[l" k, 0" 1];
Q[1] - crQ[1]

is executed. Thus, the array C311" k, 0"o], derivable from the new values of
C211" k, 0"] and Q[0"], yields, for tr=]ljs... ]k, that Ca[i, 0"c]ecode (c,), for
1 <_- _<- k, while Q[0] e. Consequently, under the inductive assumption, after the
execution of (4) in the (t + 1)th step, we have Ca[i, 0"]e code (ci), just as we trivially
have Cl[i, 0" o] e code (c,), subsequent to the execution of

for j 0 step 1 until
do(5) CI[I" k, j] - rCl[l" k, j]
od

in the (t + 1)th step of M1 (using STEP1 containing step 31). Meanwhile, we still have
Call" k, 0" 1] Cs[l" k, 0" 1], since Q[0] e. Therefore, subsequent to the final piece

for i= 1 step 1 until k
do(6)

Cs[i, 0" 1 - INPUTs, (C2[i, 0" 1 ])
od

of step 32, yielding the new values of C2 and Ca, viz., C+ and C/1, we still have
C/I[i, 0" 1] C+I[i, 0" 1], for all i, 1 <_- <_- k. Moreover, by the properties of INPUT
in [3] we also have C3/l[i,O’o]Ecode(c,+iS), for all i, l<-_i<-k. Trivially, in view
of [3], for all (l<_- i_-< k), it holds that c/l[i,O’oo]code(cj,+8). This concludes
the induction and the proof of the claim.

Since invariant (E) is preserved by step 3z, and therefore Q[0]--e, we have by
definition that C311" k, 0" 1] -= C211" k, 0" 1]. In [3, Proposition 2] it was shown that
the lowest order digit of a representation in code (c) equals 0 iff c equals 0. Together
with the Claim, these two observations imply the Lemma.

Since it is trivial that M1 real-time simulates the required ACM, by Lemma 1 it
follows from [3] that, if the machine Ms can be realized, the Theorem holds.

LEMMA 2. Ms can be constructed as a machine satisfying the specifications in the
Theorem.

Proof. The only difficulty with ME concerns the storage, execution, transport and
concatenation of arbitrary large queues of semipermutations. Since the semipermuta-
tions form the semigroup Rk under concatenation, no queue Q[j], j>_-0, ever needs
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to contain more than a single element from Rk. Since every O[j], j >- O, initially contains
the unity element e, each subsequent execution of step 32 can compute the single
semipermutation which represents the current contents of O[j] in Rk, for any such
O[j] involved. Storing O[j] in the cell containing C[l:k, j], for all j>_-0, so in the
finite control of M2 for 0-< j <_-5 and on its tape for j_-> 6, shows that M2 has the same
specifications as the multicounter simulator M in [3]. Hence the lemma.

The Theorem follows from [3, Propositions 1-4] and Lemmas 1 and 2 above,
combined with the observation that M1 trivially real-time simulates any ACM.

3. Final remarks.
Optimality. Since the ACM implementation, constructed above, has the same

complexity, with respect to the measures concerned, as does the multicounter machine
implementation in [3], it is a fortiori also optimal in all commonly considered complexity
measures at once.

On the required number of bits. There are k semipermutations in R. To denote
each of them, it suffices to use k log2 k bits. Similar to [3],we note that, under the
scheme outlined in 2, it suffices to use (4k + k log2 k + 2) log2 n bits to represent k
counts, of absolute value not greater than n, in the ACM simulator. Using a redundant
symmetric r-ary representation [3], based on the digits -r, -r+ 1,. , 0, 1,. , r- 1,
r, we can bring the bit count down to below (1 +(4+1og2 k)/log2 r)k log2 n bits, and
therefore arbitrary close to the information-theoretical minimum, to the detriment of
the implicit constant delay, as in [3].

Simulations of ACM’s on other devices. In [2] we gave optimal simulations of
multicounter machines on RAM’s, combinational logic networks, cyclic logic networks
and VLSI. The method used above, of amortizing execution of semipermutations to
extend the simulation of multicounter machines by tape units to a simulation of ACM’s
by the same, can also be used to extend the optimal simulations of multicounter
machines, by the above devices as in [2], to optimal simulations of ACM’s by these
devices. As here, the complexity of the simulations of the ACM’s, by these devices,
is none other than the complexity of the corresponding simulations of multicounter
machines.
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ON CIRCUIT-SIZE COMPLEXITY AND THE LOW
HIERARCHY IN NP*

KER-I KO? AND UWE SCHONING:I:

Abstract. Let A be a set having polynomial size circuits. If A is also known to be in NP, then we may
conclude that the graph of the polynomial size circuits for A is actually in FI2p. Using this observation, we
show that sets in NP which have polynomial size ciruits are in L, the third level of the low hierarchy in
NP. By a similar technique, we are able to show that some other intuitively low sets in NP are in Lap, and
even in a certain refinement of L. As a consequence, sparse sets are not strong nondeterministic polynomial
time Turing complete in NP unless the polynomial time hierarchy collapses to A’.

Key words. NP, low hierarchy, polynomial size circuits, sparseness

1. Introduction. Recent studies on the structure of intractable sets revealed the
incompatibility between NP-completeness and some structural properties such as
sparseness. Berman [5] showed that tally sets cannot be polynomial time many-one
complete (abbr. -< P-complete) for NP unless P NP. Fortune [7] showed that co-sparse
sets cannot be -<Pm-complete for NP unless P=NP. Mahaney [14] solved the original
Hartmanis-Berman conjecture [4]: sparse sets cannot be -<_ P,,-complete in NP unless
P NP. Karp, Lipton and Sipser [9] showed that sets having polynomial size circuits
cannot be polynomial time Turing complete (abbr. =<Pc-complete) in NP unless the
polynomial time hierarchy collapses to :. Note that by a result of Meyer (stated in
[4]) NP has polynomial size circuits if and only if there is a sparse =<-hard set for
NP. Similar results can be found in [10], [15], [18].

In recursion theory, certain properties which are incompatible with completeness
have been classified as "lowness" properties. More precisely, let A be a recursively
enumerable (abbr. r.e.) set and A() its nth jump. Then A is a high,, set if A() is
Turing equivalent to (n+), and A is a low,, set if A() is Turing equivalent to
[19]. Intuitively, the highness or lowness of an r.e. set indicates the relative information
content of the set. An interesting application of this information content classification
of r.e. sets is the characterizations of many complexity-theoretic and structural proper-
ties found by Bennison [2], [3] and Soare [19]. For instance, subcreativity and effective
speedability are shown to be "weak high" properties, and nonspeedability a "weak
low" property. (Weak highness and weak lowness are defined to be similar to highness
and lowness except that a "weak jump" is used. For the exact definitions, see [19].)
Since complete sets are known to be high0 (and weak higho), it is an immediate
consequence that nonspeedable sets cannot be complete.

It seems natural then, based on the results of Mahaney and Karp, Lipton and
Sipser, to draw the analogy in the NP theory, and ask whether there is a natural
definition of highness and lowness of sets in NP and whether sparseness is indeed a
lowness property. An affirmative answer to the first question has been given by Sch6ning
[16]. He defined a high and a low hierarchy in NP, based on a K-operator which is
an analogue of the jump operator in recursion theory. The naturalness of these
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hierarchies can be seen from the simple characterizations of some classes of high and
low sets. Let Lg

_
L’ _.

_
LH and Hg

_
H’ _. HH be the low and high hierar-

chies in NP, respectively. (See the next section and [16] for the definitions.) Sch6ning
showed that L=P, LP=NPfqco-NP, H0P={-<-complete sets in NP}, Hp=
{-< "P-complete sets in NP}, where =<P represents the strong nondeterministic poly-
nomial time Turing reducibility [13].

One of the open questions about these hierarchies is that they are not known to
be proper hierarchies. That is, we do not know that HP HP/ or LP LP/leven
under the strong assumption that EP EP/I. All we know is that HP fqLP= if and
only if EP EP/I. Still it appears to be an interesting classification of sets in NP. In
this paper we use Sch6ning’s low hierarchy to attack the question of whether sparseness
is a lowness property. We provide an information content classification of some intuitive
lowness properties and derive, from this classification, results similar to those of Karp,
Lipton and Sipser.

To be more precise, we prove that sets in NP having polynomial size circuits are
in L. Since NP-complete sets with respect to many natural reducibilities appear to
be in the high hierarchy (cf. [16]), the above result not only separates sets having
polynomial size circuits from =<-complete sets in NP (under the assumption that

E), but also separates them from NP-complete sets of weaker types, e.g.,
_<-P-complete sets in NP. In addition to the above result, we also show the lowness
of some other sets including (i) sparse sets in NP, (ii) sets in APT f’I NP (APT.is the
class of sets having deterministic algorithms which run in polynomial time for all inputs
except those in a sparse set [15]), (iii) sets in R (the class of sets having polynomial
time probabilistic algorithms with small one-sided errors [1]), and (iv) weakly p-
selective sets in NP that include both p-selective sets [18] and left cuts of NP real
numbers as subclasses [10]. Figure 1 shows the inclusion structure of low sets in NP.

In summary, the contribution of this paper is to give a unified method of proving
incompatibility results. The main application of this method is to obtain results of the
form "if a complete set for NP has property 7r, then the polynomial time hierarchy

P (or Pcollapses to Z, ,) (cf. [5], [7], [9], [10], [12], [14], [18]). In the next section
we review the high and low hierarchies defined by Sch6ning, and give the necessary
notation. Then we show our main results in the following sections.

2. Notation. All our sets are subsets of {0, 1}*. Let s be a string in {0, 1}*. Then
sl denotes the length of s. We use (.,.) to denote a pairing function and generalize
it to encode a finite number of strings. If s =(s,..., Sk), then we define set (s)=
{s,. , Sk} and say the string s encodes the set {Sl," , Sk}. We assume that for two
given strings s and t, the predicate set (s) is polynomial time computable. For a set
A, let IAI denote its cardinality.

Let A be a set and C a class of sets. We let P (A) and NP (A) denote the
classes of sets accepted by polynomial time deterministic and nondeterministic oracle
machines with oracle A, respectively. Let P (C) U {P (A)IA C} and NP (C)
(.J {NP (A)]A C}. The relativized polynomial time hierarchy may be defined as follows

E’A II’a A0p’A P (A),
and for n => 1,

EP’A NP( p,A:_),

I-IPn’A co-NP (EP,;_A) co-p’A

pAZiP’A P (E 7;_).
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FIG. 1. Inclusion structure of low sets in NP.

When A , we write

XP, IIP and AP for XP’*, IIP’* and A
respectively. Furthermore, define

PH U {EPI n >= 0}.

It is not known whether the polynomial hierarchy is a proper infinite hierarchy or
whether it "collapses." It is known that for n=> 1, the hierarchy collapses to
(PH EP) if and only if EP liP,, if and only if EP EP,+I, if and only if IIP IIP+I,
and PH AP if and only if EP AP, if and only if IIP AP, if and only if AP, AP+I.

Sch6ning used the K-operator to define the high and low hierarchies [16]. Here
the following characterization is more useful.

DEFINITION 1. For n->_0, let HP={ANP[EP+_XPn’A}, and let LP=
{A NPIZ’A X}.
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Observe that this characterization has been shown to be equivalent to that given
in [16] with the exception of the trivial cases A= and A {0, 1}*, and the case of
n =0 for HP. In [16], H is the class of <=Pro-complete sets in NP.

The relationship between these hierarchies is as follows:
LEMMA 1 [16]. For all n >= 0:
(a) HP HP,+, LP, LPn+I
(b) If PH ZP, then LP, f-I HP, .
(c) If PH ZP, then LP, HP NP.
The classes Lop, L’ and Hop, Hp have natural characterizations.
LZMMA 2 [16].
(a) L P, and Lp NP f) co-NP.
(b) H= {<er-complete sets in NP} and H= {<=P-complete sets in NP}7"

A set A is said to have polynomial size circuits if there exists a function h" N
{0, 1}* and a set B e P such that:

(a) for all s e {0, 1}*, s e A if and only if (h(Is[), s)e B; and
(b) for some polynomial function p and all n>=O, [h(n)l<=p(n).

Let A, { s e A II sl -< n}. A set A is sparse if there exists a polynomial function q such
that IA.I <--q(n) for all n >= 0. By a result of Meyer in [4], a set A has polynomial size
circuits if and only if A e P (S) for some sparse set S. A machine M is said to be almost
polynomial time if there are a polynomial p and a sparse set B such that for all s e! B,
M(s) runs in p(ls[) steps. The class APT is the class of sets which are accepted by
almost polynomial time machines. The class R is the class of sets A satisfying the
following conditions: there exist a polynomial function p and a polynomial time
computable predicate O such that, for each n, if Is[ <-n then"

(a) if sA then [{tllt[<-_p(n) and O(s,t)}l>-1/2.1{tl[tl<-_p(n)}l;
(b) if s A then (Vt, Itl <-- p(n)) [not Q(s, t)].
DEFINITION 2. A set A is weakly p-selective [10] if there is a function f of two

arguments that can be computed in polynomial time, such that, for every n >_-0, the
set {x e{0, 1}*[Ixl-< n} can be decomposed into at most p(n) many pairwise disjoint
subsets B1,’’’, Bin, m <= p(n), for some polynomial p and

(a) if x and y are in two different sets, x Bi and y e B, with 1 <-i< j-<_ m, then
f(x, y)=f(y, x)= # where # is a new symbol;

(b) if x and y are in the same B, 1-<_ iN m, then f(x, y)=f(y, x)e {x, y}, and
furthermore, if x e A or y e A, then f(x, y) f(y, x) e A.

Ko shows in [10] that weakly p-selective sets include both p-selective sets and
left cuts of real numbers.

It has been shown that sparse sets, sets in APT, sets in R, and weakly p-selective
sets all have polynomial size circuits [4], [15], [1], [10].

Polynomial time many-one (<-Pro) and polynomial time Turing (<-er) reducibilities
are defined in [11]. Strong nondeterministic polynomial time Turing reducibility (<-rp)
is defined in [13] and can be characterized as follows: A < snp

--T B if and only if A e
NP (B)f’l co-NP (B).

We say that a predicate T(x) has a 2,P-form (or, IIP-form) if it is of the form

(QlX)(Qzx2)... Q,,x,,)S(x, Xl, xe, x),

where S is polynomial time computable, 01, ID2,""", On are alternating quantifiers
starting with 01 ! (or, 01 V, respectively) and the variables xi range over strings
of lengths bounded by a polynomial in Ixl. It is known [20] that a set S is in EP.(IIP.)
if and only if the predicate expressing "x e S" has EP.-form (IIPn-form).
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3. Polynomial size circuits and the low hierarchy. First we give some more
notation. For any set B and any string w, let B(w) denote the set { s {0, 1 }*[(w, s) B}.
That is, B(w) is the set of strings which can be recognized with "circuits" w and
"circuit interpreter" B. For any multi-valued function h: N-> {0, 1}*, we let graph (h)
be the set {(0 n, w) w is a value of h(n)}. We say h is total if for each n =>0, there is
a w such that (0n, w graph (h), and h is polynomial length-bounded if there is a
polynomial p such that for each n >_-0, wl =<p(n) for all values w of h(n). For set
A_ {0, 1*, we define the class of sets

CIR (A)= {graph (h) lh is total and polynomial length-bounded, and
there is a set B e P such that for each n >= 0, An B(w)n
for all values w of h (n)}.

In other words, CIR (A) is the collection of all "polynomial size circuits" with which
the membership questions of A can be answered in polynomial time. Note that A has
polynomial size circuits if and only if CIR (A) . Furthermore, if A has polynomial
size circuits, then it has circuits of complexity IIf relative to A.

PROPOSITION 1. For each set A having polynomial size circuits, CIR (A)

Proof. Let D=graph (h) be in CIR (A) via some BP. Define a set C as
C={(0n, w)llwl<-_p(n) and An=B(w)n}. Observe that De__ C and C CIR (A). Fur-
ther, by the definition of C,

(O n, w)C iff (Vx, lxl<-_n)[xA(x, w)B],

hence C
Conversely the complexity of sets in CIR (A) determines that of sets in the

polynomial time hierarchy relative to A.
THEOREM 1. Let A have polynomial size circuits. Assume that CIR (A)

for some k >= 1. Then, El,A
_

1.
Proof. Let D z,A. Then there exist a polynomial function a and a predicate S

in P(A). such that for each x in {0, 1}*,

x D iff (=lyl, ly, I--< (Ixl)) (QkYk, lyl <-- (Ixl))S(x, Yl,’’’, Yk),

where Qk =l if k is odd and Qk /if k is even. Since S P(A), there exists an oracle
machine Ms such that, for inputs (x, Yl," ", Yk) of sizes Ixl- n and lyll, ",lyl-<- (n)
and with oracle A, Ms accepts (x, Yl,’", Yk) in /3(n) steps for some polynomial
function/3 if and only if S(x, Yl,’’’, Yk).

Let C CIR (A) fq Z. Assume that C graph (h) CIR (A) via some set B P
and some polynomial bound y. Define a polynomial time computable predicate T as
follows. T(x, Yl,’", Yk, W)=I if and only if the oracle machine Ms accepts
(X, Yl,’’’, Yk) with the oracle B(w). Note that if (0t(n), w) C then At(n B(w)t3(n
and hence for all X, yl,’’’,yk, with [xl=n and lYlI,’’’,IYk[ <-a(n),
T(x, Yl," Yk, W)= S(x, Yl," Yk) because the machine Ms on (x, Yl," Yk) can
query strings of lengths at most/3(n).

Now we can reduce the predicate "x D" as follows. Let [xl n.

x6D
iff (:lyl, lYl[ <= a(n)) (QkYk, [Yk[ <---- a(n))S(x, Yl, Yk)
iff (3W, Iwl <- y(fl(n)))[(Ot(n), w) C and

(:lyl, [Yl<=a(n)) (Oy, lyl<=a(n))S(x, yl, yk)].
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This is valid because A has polynomial size circuits and h is total. From our
discussion above about the relationship between .the predicates $ and T, we can further
reduce the predicate "x e D" to the following:

(w, Iwl -< (/(n)))E<0<"), w> c and

(lyl, lyll<=a(n)) (Qy,lyl<-’(n))T(x, y,..., y, w)].

It is clear now from the above reduced predicate that C e implies D e E, and
the proof is completed, tO

We now study the complexity of CIR (A) for several subclasses of sets with
polynomial size circuits.

LEMMA 3. Let A have polynomial size circuits and let k >= 1.
(a) If A e ,Pk then CIR (A) f’) I-I+1 y .
(b) IfAeR then CIR (A)f)II’.
(c) If A eE and A is weakly p-selective then CIR (A) f’) A+I # .
Proof. (a) Immediate from Proposition 1.
(b) Let A e R. Then there are a polynomial function/3 and a polynomial time

computable predicate T such that (Vn)(Vs, ls[<=n) [[seA implies I{tl[tl<-fl(n) and
T(s, t)}l>-_1/2.l{tlltl<-(n)}l] and [sA implies (/t, Itl <_-/3(n)) not T(s, t)]]. Moreover,
Adleman [1] observed that for each n, we can find a set W,

_
(tlltl <= (n) and

(:is, ls] <= n) T(s, t)} of size <_-n such that (Vs, Isl-<_n) [sA itt (lt Wn) T( s, t)].
Define B {(w, s)l(::lt e set (w)) T(s, t)} and h a multi-valued function having

graph (h) ={(0n, w)llwl<-n.13(n) and An=B(w),}. Then heCIR (A) because BeP
and for each n the string x, which encodes the set Wn satisfies (0n, xn)e graph (h).
We claim that graph (h) e II P.

We reduce the predicate An B(w), as follows.

A,=B(w),
itI (Vs, lsl<=n)[seAo(w,s)eB]
iff (Vs, sl-< n)[(:it, Itl<=(n))T(s, t)o(lu eset (w))T(s, u)]
iff (s, sl<_- n)[(:lt, Itl<=(n))T(s, t)(:lu set (w))T(s, u)]
itt (Vs, sl<=n(Vt, ltl<=(n))[T(s,t)(w,s)eB].

It is thus a H’-form predicate, and hence graph (h)e II ’.
(c) Let A be weakly p-selective. Then there is a function f of two arguments that

can be computed in polynomial time and satisfies the conditions in the definition of
weak p-selectivity. Following [10, Thm. 3], for some polynomials /3 and 3’ and for
each n, there exists a set W

_
A(n) of cardinality at most 3"(n), such that (Vs, Is[ =< n)

[s e A iff (iy e Wn)f(y, s) s].
Let B {(u, s)l (::It e set (u))f(t, s) s} and p(n) fl(n). 3’(n). Then B e P. Define

C-((0, w)llwl<-_p(n), set (w)A and A,=B(w)n}. Then the function h such that
graph (h)= C is total because for each n, the string xn which encodes the set Wn
satisfies An B(x,),. That is, C e CIR (A). We claim that C e A+ if A e E.

First observe that set (w)___ A implies (Vs)[(w, s)eB s e A] because, by the
definition of weak p-selectivity, [u e A and f(u, s)= s] implies s e A.

Now we reduce the predicate (0n, w)e C as follows.

(0", w) e C
iff set (w) c_c_ A and (Vs, Isl n)[s e A-(w, s)e B]
iff set (w)c_ A and (’qs, [sin n)[(w, s)e B- seA]

and (ls, [sl <- n)[s e A w, s) e B]
if set (w) c_ A and (ls, [sl <- n)[s e A - w, s) e B].
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Since AE, set (w)c_A is a E-predicate, and (Vs, lsl<=n)[sA-->(w,s)B] is
a II-predicate. Hence C is the intersection of a set in and a set in II. It follows
that C A+. [-1

Combining Theorem 1, Lemma 3 and the observation that for each k _>-0, II and
A/I are included in E/I, we have the following:

TI-IEOREM 2. (a) {A NPIA has polynomial size circuits} c_. L.
(b) R

_
L.

(c) {A NPIA is weakly p-selective}
_
L.

COROLLARY 1. (a) {A NPIA is p-selective}
_
L.

(b) {A NPIA is a left cut of a real number}
_
L.

Proof. Corollary 1 follows immediately from Theorem 2(c) and the results in [10]
that p-selective sets and left cuts are weakly p-selective.

Observe that, by the same proof methods, it is possible to obtain results analogous
to Theorems 2(b) and 2(c) for the classes {ANPIA is sparse} and APTf-INP.
However, for these classes we are able to obtain even stronger results in the next section.

COROLLARY 2. (a) A set having polynomial size ciruits cannot be < snp
7- -complete

in NP unless PH
(b) A set which is in R (or weakly p-selective) cannot be <-rnP-complete in NP

unless PH E.
Proof. Follows immediately from Lemma 2 and Theorem 2.
Comparing Corollary 2 with Karp, Lipton and Sipser,s [9] result that if A has

polynomial size circuits and A is =<-complete in NP then PH E’, our result has a
weaker conclusion as well as a weaker hypothesis. The reason we cannot show, in
Corollary 2(a), that PH E is that a -<P-complete set in NP does not necessarily
have the self-reducible property [15] which is a critical condition in the proof of Karp,
Lipton and Sipser’s result. In fact, with the help of self-reducibility, we can derive the
stronger conclusion that PH E. We call a set A self-reducible if there is an oracle
machine M such that it, with the oracle A, accepts A in polynomial time, and on input
x, M queries its oracle only about the strings of lengths less than Ixl. This simple
definition of self-reducibility captures the essential idea of the seemingly more general
one given in [10], [15].

COROLLARY 3. Assume A NP has polynomial size circuits and is self-reducible.
Then A L. As a consequence, A cannot be <--P-complete for NP unless PH E2p.

Proof. Let M be the polynomial time oracle machine that witnesses A’s self-
reducibility. It suffices to follow the proof of Lemma 3(a) and show that the predicate
An B(w)n is equivalent to a IIP-form predicate. Indeed we claim that

A,=B(w)n
iff (Vs, Isl <= n)[s A --(w, s)6 B]
iff (’qs, Isl-_< n)[M accepts s with oracle B( w)--( w, s) B].

First we observe that

(*) [Ak B(W)k and Is[ k + 1] implies [s e A--M accepts s with oracle B(w)],

because M on s queries only strings of length =< k.
The forward direction of the claim then follows from the observation immediately.

Conversely, the backward direction can be proved by induction. That is, assume that
(Vs, Isl-<- n) [M accepts s with oracle B(w)-(w, s) e B], then we show that Ak B( W)k
for k 0, 1,. , n. The basic step follows from the fact that M on s, Isl--0, does not
query any string. The inductive step follows directly from the above observation (.).
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Thus An B( w)n is equivalent to a IIP-form predicate and it follows from Theorem
1 that A e L.

Observe that Karp, Lipton and Sipser’s result follows immediately from.Corollary
3. Whether or not the hypothesis that A is self-reducible can be dropped is an interesting
open question.

4. Refinement of the high and low hierarchies. The material in this section is
essentially from an earlier paper [17]. First, we give a definition of a new kind of low
and high hierarchy within NP.

DEFINITION 3. For each n->_ 1,

LP {A NPI APn’A -- zPn}, I2IPn {A NPI APn+l APn’A}

Note that L’ Lop P and I211p H= {_-<-complete sets in NP}. The analogue of
this definition in recursive function theory coincides exactly with the analogue of
Definition 1. Again, in the context of NP complexity and the polynomial time hierarchy,
it is not clear whether these hierarchies coincide; that is, whether Definitions 1 and 3
are equivalent. The relationship between these hierarchies is as follows"

LEMMA 4. For all n >-1"
(a) LP_l

__
P c_ LP.

(b) HPn_I I-IPn
__

HP,.
^p(c) if PH# AP, then LnfqHP,=.

(d) if PH AP, then LP, IIP, NP.
Proof. (a) and (b) follow immediately from the definition.
Suppose A LP, fq ItIP,. Then it follows that APn+ AP,;A

_
AP, and hence PH AP.

This proves (c).
Now suppose PH AP, hence AP AP+I. Let A be an arbitrary set in NP. Then

^pAP/A
_
AP+I AP and hence A LP. Further, APn+ APn

__
APn’A and hence A Hn. This

proves(d).
Recall that A has polynomial size circuits if and only if CIR (A)# , where

CIR (A) is a collection of graphs of multi-valued functions. In Theorem 1, we showed
that if the graph of a multi-valued function is in CIR (A) and can be checked in time
X, and A is in NP, then A is in L. In the next theorem, we show a similar result
that if there is a single-valued function h such that graph (h) CIR (A) and h is in

A+I (i.e., h can be evaluated (cf. [21]) in polynomial time relative to an oracle in
p,Awith the inputs in unary notation), then Ak+

_
A+1. Thus, if we assume that A NP

^pthen it follows that A Lk+m.
THEOREM 3. Let A have polynomial size circuits. Assume that there is a (single-

valued) function h such that graph (h) CIR (A) and h A+ for some k >- 1. Then,
p,AAk+l A+I.

Proof. It suffices to show that E,A_ A+I, since P(A+I)= A+I.
Let D x’A. Then proceed as in the proof of Theorem 1, and obtain a polynomial

time computable predicate T. Then the set

E {(w, x)l(ly, lyll -< (Ixl))... (Oy, lYI -< (Ixl))T(x, Yl,’", Y, w)])

is in X.
Note that D={xl(h(Ot(Ixl)),x) E}. Therefore D is in A+I, because EX and

h A+1.

For several classes of sets related to the notion of sparseness, we can show the
existence of functions which satisfy the conditions in Theorem 3. First we establish a
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lemma on the complexity of circuits of sparse sets. The proof technique is similar to
that in [12] and [14].

LEMMA 5. Let D be a sparse set in 1 for some k >-1. Then there is. a function
h’{0}*- {0, 1}* in A+I such that (Vn) [set (h(0n)) Dn].

Proof. First, for a given set D define PREFIX (D)={(x, 0n)l(::ly, [yl n) [yD
and x is a prefix of y)}. Observe that if D E for some k _-> 1, then PREFIX (D) E.

The following deterministic oracle machine computes a function t: {0}* {0, 1}*,
using as oracle PREFIX (D), such that for each n, set (t(0n)) {x DIIx n}.

On input 0n"

begin
put the empty string into an initially empty list;
T: =;
while list not empty do
begin
z’= first word on the list;
cancel z from the list;
i zl n and (z, 0n) PREFIX (D) then T: T t.J { z};
if (z0, 0n) PREFIX (D) then put z0 into the list;
it (z l, 0) PREFIX (D) then put z l into the list;

end {while};
output the encoding of T;
end.

Observe that the machine runs in polynomial time relative to PREFIX (D) if D
is sparse. By applying the above machine on inputs 0, 02, , 0n, we get a function h
with set (h(0n)) Dn, and h

LEMMA 6. Let A have polynomial size circuits and A E, k >-_ 1. Then, there exists
a function h such that graph (h) CIR (A) and

(a) h A+I if A is sparse;
(b) h A+I if A APT;
(c) h 6 A+2 if A is co-sparse.
Proof. (a)Let h be a function such that set(h(0n))=An, and B=

{(w, s)ls set (w)}. Then B 6 P, and for some polynomial p, Ih(0n)[ <-_ p(n). Therefore,
graph (h) CIR (A). Since A is sparse and A E, it follows from Lemma 5 that
hA+.

(b) Since A APT, there exists a deterministic Turing machine M that accepts
A, and a polynomial p such that the set D={slM(s) does not halt in P(ISl) moves}
is sparse. Note that D P. Define B {(w, s)l s set (w) or M accepts s in P(ISl) moves},
and h’{0}*-{0, 1}* such that set(h(On))=(Af’lD)n for all n. Then BP and, for
each n, [h(On)[<-_q(n) for some polynomial q. Therefore, graph (h)CIR (A). Since
A E and D P, we have A f3 D and hence, by Lemma 5, h A+I.

(c) Similar to (a) except that we use h to encode A instead of A. Since A
E+I, we have h e A+2. []

Theorem 3 and Lemma 6 yield the following"
THEOREM 4. (a) {ANPIA is sparse}eLp

2

(b) APT f’) NP
_ ,.

(c) {A NPIA is co-sparse}c ,P3"
COROLLARY 4. (a) A <-nP-complete set in NP cannot be sparse (or in APT),

unless PH
(b) A <-nP-complete set in NP cannot be co-sparse unless PH A.
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Corollary 4(a) is stronger than Mahaney’s result in [14] that a _<--complete set
in NP cannot be sparse unless PH A.

As for the case of co-sparse sets, we do not know whether co-sparse sets in NP
are in f.P (or at least in L). Long [12] has proved that a -<-complete set cannot be
co-sparse unless PH= A. However, Long’s proof used, again, the self-reducibility
structure which is apparently not available here. It has recently been noticed that there
is an oracle set A such that there are co-sparse sets in NPA-pA but there are no
sparse sets in NpA--PA [8]. This result suggests that sparse sets and co-sparse sets in
NP are not symmetric, and it gives a partial explanation of our inability to show that
co-sparse sets in NP are in f.

Theorem 4(a) can be used to yield some separation results for the low hierarchy.
Let EXPTIME (NEXPTIME) be the class of sets that can be accepted in time 2on,
c->_0, by a deterministic (nondeterministic) Turing machine. By an easy padding
argument (see [6]), it can be seen that if EXPTIME NEXPTIME, then there exist
tally (hence sparse) sets NP-P, and similarly, if NEXPTIME # co-NEXPTIME, then
there exist tally sets in NP-co-NP.

COROLLARY 5. (a) If EXPTIME # NEXPTIME, then P LI ff f.
(b) If NEXPTIME co-NEXPTIME, then NP f’l co-NP L’ [,.
Hartmanis, Sewelson and Immerman [8] have recently shown that there exist

sparse sets in NP-P if and only if EXPTIME # NEXPTIME. This suggests the following
open question: Does the converse of Corollary 5 hold?
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THE COMPLEXITY OF DISTRIBUTED CONCURRENCY CONTROL*

PARIS C. KANELLAKIS" AND CHRISTOS H. PAPADIMITRIOU$

Abstract. We present a formal framework for distributed databases, and we study the complexity of
the concurrency control problem in this framework. Our transactions are partially ordered sets of actions,
as opposed to the straight-line programs of the centralized case. The concurrency control algorithm, or
scheduler, is itself a distributed program. Three notions of performance of the scheduler are studied and
interrelated: (1) its parallelism, (2) the computational complexity of the problems it needs to solve and (3)
the cost of communication between the various parts of the scheduler. We show that the number of messages
necessary and sufficient to support a given level of parallelism is equal to the minimax value of a combinatorial
game. We show that this game is PSPACE-complete. It follows that, unless NP PSPACE, a scheduler
cannot simultaneously minimize communication and be computationally efficient. This result, we argue,
captures the quantum jump in comp!exity of the transition from centralized to distributed concurrency
control problems.

Key words, distributed database, concurrency control, games, complexity, PSPACE-complete

1. Introduction. There is now considerable literature, both theoretical and
applied, concerning the database concurrency control problemthat is, maintaining the
integrity of a database in the face of concurrent updates. Most of the theoretical work
so far has been concerned with the centralized problem, in which the database resides
at one site, and the update requests are submitted to a single process, called the
scheduler, which implements the concurrency control policy of the database [4], [8],
[11], [15], [17], [18]. There is also some interesting applied work on distributed
databases [1], [2], [13], [16]. It is often said that the concurrency control problem is
much trickier and harder in the distributed case than in the centralized case. This is
evidenced by the existing solutions, which are extremely complex and sometimes
incorrect.

In this paper we present a model of distributed databases, which captures the
intricacies of distributed computation that are most pertinent to the database domain.
Some novelties of our model are:

(a) Transactions are partial orders of atomic steps, thus generalizing the straight-
line programs of the centralized case [8]. The partial order corresponds to both
time-precedence and information flow, and it captures the notion of distributed time
[10].

(b) The scheduler, the concurrency control agent of the system, is itself a distributed
program, consisting of communicating sequential processes [6], one for each site.

(c) Redundancy (the requirement that two entities stored at different sites be
copies of the same "virtual entity") is not treated at the syntactic level, but is considered
as part of the integrity constraints of the database. Redundancy was at the root of the
complexities of most previous attempts to formalize distributed databases.
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As a consequence, there are three measures ofperformance in a distributed database
(centralized theory deals with the first two):

(1) parallelism, measured by the set of allowable interleavings of atomic steps,
(2) complexity of the computational problems that the scheduler must solve,
(3) communication, measured as number of messages exchanged by scheduler

processes.
There are some interesting tradeotts here. For example, let us fix (1) (think of it

as the parallelism specifications of the system). By expending many messages, we can
reduce the problem of distributed concurrency control to the centralized one (by
broadcasting each request) and thus solve it in polynomial time for most reasonable
parallelism specifications [11]. It turns out that, based on a priori information about
transactions, we can minimize the number of messages sent in exponential time (and
polynomial space; this is the upper bound of our main result). Finally we cannot have
a scheduler simultaneously using the minimum number of messages and running in
polynomial time at each site, unless NP PSPACE (this follows from the lower bound).

Specifically our main result states that: for a certain parallelism specification, which
in fact can be fixed to be the popular serializability principle, minimizing communication
costs is a computational problem complete for PSPACE [3], [5], [14]. Thus, our result
appears to be concrete mathematical evidence suggesting that distributed concurrency
control is indeed an inherently more complex problem than centralized concurrency
control (under quite general conditions, centralized schedulers can be implemented in
polynomial time and always in nondeterministic polynomial time [11], [15], [17], [18]).

Our result also adds to the literature on distributed computation, independently
of its database context. It states, loosely speaking, that one cannot tell efficiently
whether distributed processes can cooperate successfully for performing an (otherwise
easy) on-line computational task, at fixed communication cost. It can therefore be
considered as complementing the result of Ladner for lockout properties of "antagonis-
tic" processes [9]. On the other hand, A. Yao has asked [19] whether minimizing
communication costs for some distributed combinatorial computation is computa-
tionally intractable; NP-complete for the off-line problem. We answer this question
for on-line computation. Yao’s original conjecture was recently answered in the
affirmative [12].

We provide both upper and lower bounds. For the upper bound, we need a
characterization (Theorem 3) of the incomplete executions of transactions that can be
completed within a fixed number of messages. This upper bound holds for most
parallelism specifications that can be achieved efficiently in a centralized manner. For
the lower bound we relate distributed scheduling to a game played on graphs (the
conflict graph of the transactions). Intuitively one player (Player I) is an adversary
who submits update requests so as to force the scheduler to use as many messages as
possible, whereas the other player (Player II) is the distributed scheduler. Player I
wants to prolong the game as much as possible, whereas Player II tries to bring it to
an end as soon as possible; other than that there is no winner or loser. The rules are
related in a simple way to the cycles of the graph. The minimax length of the game
corresponds to the optimal communication cost. We prove that this game is complete
for PSPACE, and then show that our constructs can faithfully reflect a special kind
of distributed concurrency control situation. This new kind of game may be of indepen-
dent interest.

Section 2 describes the model used, 3 the upper bound and the game on graphs,
and finally 4 has the PSPACE-completeness reduction (Theorem 4) and its
implications.
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2. A model oi distributed database concurrency control.
2.1. Distributed database. A distributed database is a collection of sites. Each

site has its own processor and data. The sites are interconnected by a network and
are controlled by a distributed database management system (DDBMS). In Fig. 1 we
show the architecture of a two-site system; distributed programs on this system consist
of communicating sequential processes [6], one for each site, (horizontal arrows join
parts of the same distributed program). Formally, a distributed database is defined as
follows:

DEFINITION 1. A distributed database (DD) is a triple (G, D, stored-at) where:
(a) G (U, L) is an undirected graph, where every node corresponds to a site

and every link to a two-way communication link between sites.
(b) D is a set of entities, denoted {x, y, z,...}.
(c) stored-at: D--> U is a function determining the site, where each entity is stored.
The entities are the physical data items. Multiple copies of the same logical data

item are considered as different physical data items stored at different sites. The fact
that they are copies and must remain identical for reasons of consistency is part of the
integrity constraints [1], and is not treated separately. We assume that the DD is fixed
and given.

FIG. 1. Architecture of a two-site system.

2.2. Transactions and schedules. The users interact with the database using trans-
actions. In our model a transaction is a distributed program, not identified with a
particular site.

DEFINITION 2. A transaction T, in a DD, is a directed acyclic graph (dag) T
(N, A) such that:

(a) Every node p is associated with one of the sites of the system, site(p) U
and with an entity Xp for which stored-at(Xp)= site(p).

(b) Nodes associated with the same site are totally ordered in A, (we denote the
partial order imposed by T on its nodes as ->r). A transaction system T is a set of
transactions { T/, 1 <_- <- m}.
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An example is shown in Fig. 2. Nodes are.also called actions, since they are
intended to represent update actions on the corresponding entity. An action p rep-
resents an indivisible read and write operation on Xp [8] (we do not distinguish between
read and write operations as in [11]). Action p, as in [8], depends only on actions
preceding it in its transaction. Each transaction T represents a distributed program,
consisting of communicating sequential processes [6], one per site. Let the ti’s be
variables local to this program, and the f’s be uninterpreted function symbols, then
the semantics of action p of transaction T is the indivisible execution of the two
instructions: tp := Xp.; Xp := fp(tp, tpl tp," , tpk), where Pl, P2," Pk are all the actions
preceding p in _-> 7-.

)

(z)

(b) (c)

FIG. 2. (a) Transaction system T ={T1, T2} (e.g., action updates x). (b) Schedule s=(T, r). (c) The
semantics of the actions in schedule s.

Precedence between actions in a transaction T denotes both temporal precedence
and a transfer of information (i.e., in Fig. 2a action 3 needs data from action 1 and is
executed after action 1). Arcs in a transaction T between actions at different sites are
called cross-arcs defined in T. A cross-arc defined in T indicates information transfer
between processes of T at different sites.

A schedule is a description of a set of transactions and the process of their execution
on the system. In a distributed system it is in general impossible to tell which one of
two events occurred first (because communication is not always instantaneous). Because
of this uncertainty, we describe the execution order of the actions by a partial order.
If two events are incomparable in this partial order, any one could have preceded the
other. There are two restrictions on the partial orders. First, what happens at every
site is totally ordered; this is consistent with the centralized problem and guarantees
that the result of the execution is uniquely determined, as in the case of individual
transactions. Second, precedences specified by the transactions are always respected.
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Formally:
DEFINITION 3. A schedule is a pair T, 7r), where T { T, 1 =< =< m} is a transaction

system and r is a directed acyclic graph (dag) on the nodes of the transactions T such
that:

(a) Nodes p with the same site(p) are totally ordered.
(b) For any transaction T and actions p, q e T with p=> 7-, q we have that p >== q

(where ->_= denotes the partial order of 7r).
A prefix of a schedule s (T, 7r} is a pair (T, a), where a is the subgraph of 7r

induced by a subset of its nodes and such that if action q e a all p >== q belong to a.
Let S denote the set of all schedules. Recall that a partial order can be considered

as a set of total orders (those compatible with it). Let S/ denote the set of all schedules
(T, 7r), where r is a total order. Therefore a schedule s represents a particular subset
of this basic set S/. Arcs in a schedule, between actions at different sites are called
cross-arcs. The schedules with only transaction defined cross-arcs are maximal when
considered as sets of total orders. Yet schedules can have other cross-arcs also (e.g.,
arc (4, 6) in Fig. 2b), whose presence restricts the represented total orders of actions.
The goal of concurrency control is to recognize on-line large sets of correct total orders.

As in the centralized case, synchronization is necessary only between actions of
a transaction system, which operate on the same entities (i.e., conflict). These conflicts
are represented by the conflict graph G(T). We denote undirected edges by i] and
arcs by (ij).

DEFINITION 4. For the transaction system T { T, 1 <- <- m}, the conflict graph
G(T) is an undirected multigraph V, E), with a partial order >- on the edges incident
upon each node i, such that:

(a) V {i[1 <_-i_-< m}, where node corresponds to transaction T.
(b) E is a multiset of edges.

E {copies of edge ijlfor every copy of ij there is a
distinct pair of actions p, q with p T, q T, i j and xp Xq}.

(c) For two edges incident at node we have ij >- ik if[ the action in T correspond-
ing to i] precedes the action in T corresponding to ik.

Note that an edge in E denotes a conflict between two transactions. Every edge
i] in E corresponds to a pair of actions {p, q} which update the same entity. Based on
where this entity is stored we can partition E into as many multisets as there are sites"
red and green edges for two sites. An example is presented in Figs. 3a and 3b.

An ordered mixed multigraph G (V, E, A, {->i}) is a mixed multigraph, with E
a multiset of edges, A a multiset of arcs and {=>i} partial orders at each node of the
edges and arcs incident at the node. An ordered undirected multigraph has A (e.g.,
conflict graphs are such combinatorial objects). An ordered directed multigraph has
E-o

Since a conflict (an edge in G(T)) corresponds to two actions at the same site
and a schedule s (T, r) has a total order of the actions at each site, we say that a
schedule resolves all conflicts. That is, if edge i] corresponds to the pair of actions
{ p, q}, p T, q T, ], we direct i] as (i]) if[ p _-> q. Thus the schedule s determines
a unique ordered directed multigraph G=(T).

DEFINITION 5. A prefix (T, a) assigns a direction (ij) to an edge ij of the conflict
graph G(T) iff all schedules, which have (T, a) as prefix, assign ij the direction (ij).
Therefore a prefix (T, a) determines an assignment of directions to some edges of
G(T). Conversely an assignment of directions to edges of the conflict graph is realizable
by a prefix, if there is a prefix of a schedule assigning these directions and no others.
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Thus a prefix (T, a) determines a unique ordered mixed multigraph G(T), which
is G(T) with some of its edges directed. In Fig. 3c we have a nonrealizable assignment
of directions. Moreover we have the following complete characterization of realizable
assignments of directions, which are, after all, the assignments of interest.

,lte site

2O)

T1

T2

)

ro.. 
;’(x)

T3

(.)

(b)

FIG. 3. (a) Transactions. (b) Conflict graph. (c) A nonrealizable assignment; red O---Q= conflicts at
site 1, green ,, conflicts at site 2.

LEMMA 1. Given a conflict graph G(T) V, E, (, {=>i}), an assignment of direc-
tions to a multiset X of its edges, producing the ordered mixed multigraph
V, E\X, A, { >-_ }) is realizable iff:

(a) i] X, is directed as i]) A, and ik >- i] ik X.
(b) A has no directed cycles (ili2i3... i,ia) such that

ili2 ->i i2i3, i2i3 i i3i4, inil i ili2.

Proof. "only if". Given a prefix (T, a) of a schedule let us first assign the direction
(ij) to any edge ij in G(T), corresponding to a pair of conflicting actions {p, q}, with
p T, q T, under the following conditions"

pa and ifqea thenp_->,q.

It is easily seen that both conditions (a) and (b) hold for the directions constructed
above. Obviously all schedules, which have (T, a) as prefix, resolve these conflicts in
the same way. Moreover if an edge has not been given a direction then both its actions
p*, q* are not in a. We can complete (T, a) using two different schedules, one having
p* before q* and the other q* before p*. One schedule results from completely
executing the transaction of p* first and the other is symmetric. This proves that the
directions we have constructed are exactly those assigned by (T, a).
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Sufficiency. Given an assignment A we construct the following digraph (V*, A*)
from A and T

V*= {p] ::l(i]) A, where the conflicting action of

i.i in T/is p or one of p’s predecessors in T},

A*={(pq)lif (pq) is part of some ->7, or if (pq) corresponds to an (ij)A}.

Since (b) is true (V*, A*) is acyclic, and since (a) is true transaction precedences
are respected. Thus (V*, A*) has the same nodes as some prefix and respects all its
conflict resolving orderings. V1

2.3. Serializability. Only a subset of the possible schedules are considered correct
for the operation of the database. The object of concurrency control is to develop
algorithms, which monitor the execution of transactions, and disallow incorrect
schedules. Actually, our results can be stated in a manner independent of the notion
of correctness used in the system. We can show, however, that our negative results
hold even when this correctness criterion is a practically important one, that of
serializability, which we introduce next.

Serializability can be defined semantically [8], [11]. Since we are interested in
simplifying our model, in order to bring out the complications inherent to distributed
databases, we shall adopt instead a simple syntactic definition of serializability. This
definition will not require our formally dealing with the semantics of actions and was,
interestingly, the first to be proposed [4]. It turns out to be equivalent to the semantic
one, if we think of the nodes of the transactions as indivisible read and write operations
(see [8]), as opposed to operations that entail either reading or writing an entity [11].
The example of Fig. 2c illustrates the semantics of updates, in terms of program
schemes [8], [11]. In fact, the following syntactic definitions suffice for the results
presented in this paper.

DEFINITION 6. TWO schedules (T, r), (T, p) are equivalent if they determine the
same ordered directed multigraph, (i.e., G(T)= G(T)).

DEFINITION 7. A schedule (T, or) is serial iff
(a) The execution of actions at every site introduces a total order of transactions

at that site (i.e., there are no T, T, i ] with actions p, q T, r T at the same site
withp > randr > q)

(b) If T precedes T at one site it does so at all sites, where both transactions
have actions.

A schedule is serializable itt it is equivalent to a serial schedule.
We denote the set of serializable schedules by SR (SR

_
S). What is remarkablo,

is that deciding whether a schedule is serializable in a centralized or distributed model
are practically identical tasks [11]. We state this as follows:

THEOREM 1. A schedule T, r) is serializable iff it resolves conflicts without creating
directed cycles in G(T) (i.e., G(T) is acyclic). Similarly, a prefix (T,a) has a
serializable completion iff the already resolved conflicts do not create a directed cycle in
G(T) (i. e., G"(T) has no directed cycles).

Proof. Easily follows from the analysis of [11]. Vq

2.4. Schedulers. Up until now the distributed problem appears to be a straight-
forward generalization of the centralized case. What is considerably more complex in
the distributed case is the subject of schedulers and their design to meet performance
specifications. For an exposition of the relatively simple theory for the centralized case
see [11].
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Our schedulers will be distributed programs characterized by the parallelism they
provide and by their efficiency. We will measure parallelism using the subset C of
schedules, which the scheduler allows to be executed as requested. The efficiency of
the scheduler will be measured by the worst-case number of steps it executes and the
worst-case number of messages it sends. We will be interested in the following kinds
of C’s:

DEriria’or 8. Consider a set of schedules C
___

S, such that for each s C the
only cross-arcs are defined by the transactions. Such a C we shall call a concurrency
control principle.

Each schedule s corresponds to a set of total orders {r r is a total order compatible
with s}. This set is also denoted by s. If C is a set of schedules, we let C/= .sc s.
Recall that S is the set of all schedules and S/ the set of all total orders. For a particular
transaction system T, with n actions, r S/ is a string of length n over N, where N
is the set of T’s actions. The jth symbol of r is denoted crj.

The cardinality of C/ g S/ will be the measure of parallelism. The larger C/ is,
the higher the level of parallelism supported by this concurrency control principle.
For example, if SR are the serializable schedules then SR/= t-Jssn s. Note that, SR /

is also the set of total orders of a concurrency control principle, the serializable
schedules with only transaction defined cross-arcs; this easily follows from Theorem
1 and Lemma 1. We will hence use the notation SR for this concurrency control
principle, without any loss of generality. Similarly serial execution provides another
example of a concurrency control principle, which obviously supports less parallelism.
Thus concurrency control principles are very natural classes of schedules measuring
parallelism, although not all subsets of S can be expressed as such.

A scheduler A is a distributed program. We do not explicitly specify the model of
computation; we use a model equivalent to [6], although we employ a simple concurrent
language notation as needed (e.g., a send-message instruction). Our distributed pro-
grams consist of a set of communicating sequential processes [6], one for each site.
Their instructions may denote"

(a) local computation;
(b) receiving an execution request for an action q;
(c) granting an execution request of an action q;
(d) sending a message to another site;
(e) receiving a message from another site.
We shall now formalize the input-output behavior of the scheduler. Intuitively,

a scheduler receives a schedule as its input and outputs another schedule. There is a
difficulty though in defining this mapping precisely, because it is essentially a nondeter-
ministic mapping. Although the scheduler has perfectly deterministic algorithms as its
processes, the interaction of these algorithms is conducted via messages, whose delivery
time is unpredictable. M. Fischer uses the term indeterminism [20] for this kind of
unpredictable behavior (nondeterminism would not be an appropriate term, since we
wish to produce correct computations in all cases). To model indeterminism of a
scheduler, we must somehow introduce some notion of time.

(1) The input of a scheduler is a string in S/. Thus we assume that the arrivals of
the requests for executions of the nodes of the schedule-input are totally ordered in
time. This is only a simplifying tool (a formalism of the familiar notion of a timestamp
[10]), and is not used by the scheduler, whose processes still perceive the world in
terms of partial orders. We therefore have introduced a global clock, whose ticks are
the arrivals of the action requests.

(2) What is the output of a scheduler? It is a schedule, of course. However, it
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must also add some more information. Namely, it must tell us whether an action was
granted before or after the arrival of another request. The output of the scheduler is
an n-tuple of strings (rl, rE,’’’, ’n) (N*) n. Here rj denotes the sequence of granted
requests between the ]th and (]+ 1)st (after the jth if ]= n) arrivals of requests. N*
is the set of all strings constructed from the set of actions N and includes the empty
string. The concatenation of the n strings, conc (rl, r2,’", r), should be in S+.

(3) We shall now formalize the indeterministic part of the scheduler, namely the
communication delays. A delay vector d is a sequence of nonnegative real numbers.
Intuitively, the ]th component is the delay of the jth message sent by the scheduler.
With a given delay vector the operation of a scheduler A on some input r is completely
specified (exactly as the operation of a nondeterministic algorithm becomes specified
if we supply a sequence of choices for the nondeterministic steps). To find the resulting
output, we do the following. For each site, we keep a calendar of events (i.e., arrivals
of actions or messages, operations of the scheduler), with the precise times at which
they occur. An event may trigger a finite sequence of operations of the scheduler,
which we execute. If an operation involves sending a message to another site, we add
the next component of d to the time of the present event and we insert the arrival of
this message in the calendar of the other site at the time of the sum. We thus assume
that, all local operations of the scheduler take 0 time. We break ties on the times of
events in a systematic fashion (e.g., arrivals of actions first, then messages from site
1, etc). We can now produce the output of the scheduler for this input cr and this
delay vector d in the obvious way from the calendars of events. This output
(’1, rE,"" ", r), we denote by Aa(tr). Not all delay vectors can lead to meaningful
executions, however. What can go wrong is that a long delay can postpone the granting
of an action p until after the successor q of p in its transaction has been received.
Delay vectors for which no such anomaly occurs for an input tr are called feasible for
tr. The zero sequence d 0 is always feasible.

Therefore the operation of a scheduler is formulated by the function Aa: S+-
(S*).

Consider a concurrency control principle C. We say that scheduler A implements
C if, intuitively, all outputs of A are in C and, furthermore, if A is fed with a schedule
in C and all delays are 0, then A grants all requests immediately upon receipt. It is
argued in [11] that these are traits, in the centralized case, of all schedulers that are
on-line and optimistic (i.e., the scheduler does not intervene to unnecessarily delay an
action if the input schedule is so far correct). The same arguments are applicable to
justify Definition 9.

DEFINITION 9. We say that A is an implementation of concurrency control principle
C iff

(a) conc (Ad(tr)) C/ for all cr S/ and feasible delay vectors d, and
(b) Ao(cr) (o’1,. cr) for all cr C/.
There is a fundamental asymmetry in Definition 9. If the input is in C/, then

condition (b) is in effect, and the scheduler must leave it intact, unless forced to do
otherwise because of the delays. If, however, the input is not in C/, then the output
can be any schedule in C/. In practice, we would expect of a scheduler to change a
schedule not in C/ as little as possible in order to transform it into one in C/.
Unfortunately, there does not seem to be a clean way to express this mathematically
in the distributed or centralized case. We have adopted the above convention in the
interest of keeping our model and subsequent proofs as simple as possible.

DEFINITION 10. The computational complexity of A is the sum of the step-counts
of all local computations by A over all processes of A, maximized over all and
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feasible d. The communication complexity of A is the number of all send-message
instructions executed by all processes of A, maximized over all r and feasible d.

Note that apart from the messages generated by the scheduler processes of the
system, there is also user defined communication, implied by transaction defined
cross-arcs (e.g., some action at site 2 needs data from site 1). This communication is
assumed free, since it is unavoidable. Such messages, between the processes of a
transaction, can be used to pass information between scheduler processes at no cost.

A scheduler A is polynomial-time bounded (or computationally efficient) if its
computational complexity is bounded by a polynomial in n (where n INI and N is
the set of actions of T). Similarly, with [11] we can prove:

THEOREM 2. C has a computationally efficient implementation iff the set ofprefixes
of C is in P.

Proof. By broadcasting each arrival of a request we can reduce the distributed to
the centralized problem, and use [11, Thm. 10]. Note that this solution is wasteful in
terms of messages.

Finally in order to characterize communication complexity we define the following
classes of prefixes Mc(b):

DEFINITION 11. For concurrency control principle C, its set of prefixes PR(C)
and integer b _-> 0,

Mc(b) {prefixes not in PR (C)}

U {(T, t)l (T, a) PR (C) and there is an implementation A of C,
which, given that (T, a) has been granted,

proceeds using at most b send-message’s}.

Let b*(T) be the least b for which (T,) Mc(b). A scheduler which achieves
b*(T), for every T, is called communication-optimal with respect to C.

Note that for b < 0 we can define M(b)=
Mc(b + 1). If (T, a) is a prefix of (T,/3) and (T, a)e Mc(b), then also (T,/3) Me(b).
By our convention if (T, a) is not a prefix of a schedule in C then (T, a)M(O).
Intuitively, if all sites know of an incorrect input they can output a predetermined
correct completion without communication.

In essence, what Definition 11 says is that" the scheduler might use a priori
information, available to all scheduler processes, in order to enhance the communication
performance (worst-case.number of messages used at run time) of the concurrency
control mechanism. For example, a scheduler that implements serializability (for all
transaction systems T), might also examine the available syntax of transaction system
T, in order to develop a more economical communication strategy between its processes.
This is analogous to the conflict graph analysis used to improve parallelism in SDD-1
[1], [2]. A communication-optimal scheduler is the limit in message performance
attainable, subject to a parallelism requirement C. In the following section we will
show, in a constructive fashion, that such schedulers exist for concurrency control
principles.

3. Communication-optimal schedulers and games. The performance measure of
a concurrency control algorithm is a set of schedules C. We require C to be a

concurrency control principle (see Definition 8). Let PR(C) be the set of prefixes of
schedules in C. We assume that we have an efficient (polynomial time in n) test of
membership of a prefix in PR(C). For example, if C SR Theorem 1 provides us
with such a test. If no such test is possible, concurrency control is quite hopeless, even
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in the centralized case [11]. We also assume that we have a two-site system. This is
no loss for the negative results of the next section. As for the positive results, they
can be restated without much difficulty, although less succinctly, for the general case.

Let us briefly review the notation used. A prefix is denoted as a pair (T, a), or
simply a when there is no ambiguity. In order to make our notation simple we will
omit T, the obvious transaction system, whenever possible. We use Me(b), for the set
of all prefixes (T, a) of C such that there is an implementation of C, which, when
started with (T, a), sends b or fewer messages. Now let a be a prefix of/3, then (/3/a)i
denotes the prefix of/3, that contains a and all actions of fl at site i. We call this the
projection of/3 at site given a (see Fig. 4 for an example of this important notion).

0,)
z(.) ra (b)

FIG. 4. (a) Transactions (u, v, w at site 1, x, y, z at site 2). (b) Conflict graph (red e---e= conflicts
at site 1, green ,,,, conflicts at site 2). (c) Illustrating a bad . Left" prefixes. Right: assignments of
directions.
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DEFINITION 12. Let (T, a)ePR(C), and let a. be a prefix of/3. We call/3 bad, with
respect to a, if

(a) (/3/a)1, (/a):ePR(C); and
(b) /3 .PR C).
It is only bad prefixes that force the scheduler to communicate, in rounds of two

messages. Tffis, as well as a description of the possible strategies for guarding against
bad prefixes, is captured by the following theorem.

THEOREM 3. Let C be a concurrency control principle, (T, a) PR (C) and b >-O.
Let denote the site number, {1, 2}. Then statements (I) and (II) are equivalent:

(I) a M(b).
(II) For all bad , with respect to, a: (1) (fl/a)iM(b) for i-1,2 and (2) at

least one of the (/a)iM(b-2).
The intuitive interpretation of the theorem is the following: Suppose that there

is a possible scenario (see Fig. 4 for an example) in which both sites see projections
(fl/a), that are perfectly legal locally (i.e., both are in PR(C)) and still, they are not
legal when put together (i.e.,/3 is not in PR (C)). This clearly calls for communication.
The theorem says that, in the worst case, two messages are both necessary and sufficient
to overcome this problem.

Proof. "only if". To show that (I) implies (II), suppose that a scheduler A can
start from ce and implement C with only b messages. Let/3 be bad with respect to a.
It is easy to see that (II.1) is satisfied. We must now show that (11.2) is also true.

What should site do if it is presented with requests for the actions in (/3/a)?
Clearly, it should have a way of granting them, perhaps after certain communication,
since A is supposed to implement C (i.e., see Definition 9 for the on-line property).
If site grants the requests without waiting for any messages, then site j 3-i must
guard against this eventuality, when presented with (fl/a), by asking site i’s state.
This takes two messages, which synchronize the two processes, and thus A must
implement C starting from (/a) within b-2 messages; thus property (II.2) holds.
This leaves us with the case in which site waits for amessage before granting (ill a).
It cannot wait for a message triggered by any event at site j other than an arrival of
a message from i; this follows from the fact that A must implement C. We are therefore
reduced to the previously examined case.

"if". To show that condition (II) is sufficient, we shall construct an explicit
algorithm that implements C, starting from a and using no more than b messages,
assuming (II) holds. The algorithm is recursive, and is shown in Fig. 5.

The algorithm, localscheduler, is the process run by each site. Its arguments are
the prefix (T, a) of granted actions at the instant it takes over and the number b of
messages that it can use. For example ifno actions have been granted, both sites start
by running localscheduler(( T, }, b).

The variable localstate represents the actions that the site knows are granted
(through its own granting actions and other messages), whereas commonstate is the
information this site knows the other site already has. The values of these variables
are prefixes in PR (C). They are both initialized to (T, a) and updated appropriately
wtenever:

(a) An action is granted at this site, through the function grant(p).
(b) A message is exchanged by scheduler processes, through the functions askstate

and reportstate.
(c) A message is exchanged by transaction processes, because of a transaction

defined cross-arc.
In the last case the localstate at one site, may be passed to the other at no communication
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cost. The detailed code for performing these updates or the functions grant, askstate
and reportstate is straightforward and is not shown in Fig. 5. The low level details of
all these functions can be found in [7].

When a request p arrives, the scheduler first decides whether it is necessary to
communicate. This is the first test in Fig. 5. Communication is forced just in the case
that a prefix/3 exists, such that:

(a) it violates the concurrency control principle C (i.e., [3 PR(C));
(b) its projection at the other site given commonstate is in PR (C);
(c) its local projection is localstate//p (where // denotes concatenation), and

moreover it is amenable to scheduling with b- 2 messages. In other words, condition
(II.2) of the theorem is satisfied with equal to the present site.

procedure localscheduler(( T, a), b)
localstate := commonstate := (T, a);
on request-arrival p do
if there is a prefix/3 PR(C), whose projection at the other site

given commonstate is in PR (C), and whose local projection is
localstate//p Mc(b- 2)
then begin

localstate := askstate( );
if localstate//p PR C)

then grant( p); loealscheduler(localstate,b 2)
else tablelookup(

end
else if localstate//p PR C)

then grant(p)
else tablelookup(

end iocalscheduler

FtG. 5. The process localscheduler.

By convention, any prefix not in PR (C) needs 0 messages and therefore the prefix
localstate//pjPR (C) would pass the test only if b > 0. Except for this case a/3, such
that the above conditions are true, is one satisfying (II) of the theorem.

If the above conditions are met, the sch6duler decides to communicate. The
function askstate learns the state of the other site at the cost of two messages.
Presumably the return message is sent by a function reportstate at the other site, which
also does the appropriate updating. If p is found to be safe, it is granted, and
localscheduler is called recursively with the new arguments (note that localstate would
be appropriately updated by grant). Since the test succeeded, we know that it can
carry out its task within b- 2 messages. If now localstate//pPR(C), then the arriving
stream of requests is not in C, and therefore we have no contract to fill (recall the
paragraph right after Definition 9); both sites continue scheduling by some tablelookup,
agreed upon in advance between the sites.

If the first test fails, then we must proceed with locally available information. If
p looks safe, we grant it. We know we are not risking anything since, by (iI), the other
site will pass the test, and will communicate before it grants its part of any bad ft. If
p is not safe, we again resort to tablelookup, but now since b- 0 and (II) is true both
sites can proceed independently with no risk.
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The formal proof that the algorithm, as specified above, correctly schedules a
given prefix within the given number of messages is now straightforward, by induction
on the number of actions in any suffix of (T, a). It should also be noted that we use
the fact that C is a concurrency control principle when we test if a localstate//p is in
PR (C). Since schedules in C have only transaction defined cross-arcs this test can be
done locally.

COROLLARY 3.1. If C, a concurrency control principle, has a computationally
efficient implementation, then it has a communication-optimal implementation, which
uses space polynomial in n n number of actions of T).

Proof. The hardest computation performed by localscheduler in the proof of
Theorem 3 is testing whether a prefix is in Mc(b). This, however, can be expressed as
a predicate with polynomial matrix and b alternations of quantifiers. It is therefore in
PSPACE [3].

Distributed scheduling is related to a game on prefixes called PREFIX. The rules
of this game are displayed in Fig. 6. In this game Player I corresponds to a malicious
adversary who wishes to force communication. His move is a continuation fl of the
current position a, which satisfies the conditions of Theorem 3. Player II corresponds
to the two cooperating scheduler processes. Each one of his choices i* indicates, which
of the two processes has the responsibility of guarding against the continuation/3 (by
questioning the other process before proceeding). Player I wants to prolong the game
as much as possible, whereas Player II tries to bring it to an. end as soon as possible
(other than that there is no winner or loser). Players I and II take turns moving.

COROLLARY 3.2. The minimum number of messages used by a communication-
optimal implementation of C equals the length of PREFIX((T, )) if both players play
optimally, (we call this the minimax length).

Proof. It follows from Theorem 3 and the theory of alternation [3]. Note that
although in general we define PREFIX from an arbitrary initial position (T, a), we
are in fact interested in a =, (T represents the static a priori information on
transactions, that is used to optimize communication). As a result the question:
"(T, a)Mc(b)?" is equivalent to "can Player I make PREFIX((T, a)) last more than
b moves?" E3

PREFIX(< T,
Position before player l’s move:
Player I: Select a prefix fl, which has a as a prefix such that:

(1) (/a)l, (fl/a).ePR(C)
(2) /3 PR(C)

Player If: Select i*

FIG. 6. The game PREFIX.

4. The complexity of PREFIX. In this section we prove the following theorem:
THEOREM 4. Let C SR. Given T and b >= O, determining whether the minimax

length of the game PREFIX((T, )) equals b is PSPACE-complete.
This theorem, as is pointed out explicitly in a series of corollaries, is a fundamental

negative complexity result for distributed concurrency control.
It turns out that PREFIX, with C SR, is closely related to a game played on

the conflict graph of T. Recall that the conflict graph is an ordered undirected multigraph
with edges colored red or green. The game, called CONFLICT, is displayed in Fig. 7.
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CONFLICT(G)
Position before player I’s move: An ordered mixed multigraph G=

(V,/5, A, {->i}), with/5 partitioned into red and green, and A closed.
Player I: Select a set X of edges and assign directions to them. Let X,.(X) be a

subset of X containing all its red (green) edges and let Ar(A)be the corre-
sponding arcs. The sets Ar, A must be such that:
(1) A Ar, A L.J A are acyclic and closed;
(2) A L.J A L.J A has a cycle and is closed;

Player II: Select c {r, g} and set

FIG. 7. The game CONFLICT.

A round (i.e., of moves by the two players) starts with a position, which is an
ordered mixed multigraph G-(V, E,A, {>_-i}). Player I gives directions to certain
undirected edges X, with subsets Xr, Xg, such that already existing arcs (i.e., A) and
each new directed subset Ar or Ag do not create a cycle, whereas all arcs together
do. Player II picks a color (i.e., red or green) and fixes the directions proposed by I
(i.e., creates a new A). In the absence of the partial orders >--i, the moves of Player I
are very simple: He picks a two-color cycle that contains some red edges (Xr), some
green edges (Xg) and possibly some arcs, and the arcs are all directed with the same
sense around the cycle. These rules are complicated a little by the existence of the
partial orders on edges and arcs. Again Player I chooses a set of undirected edges X
and assigns directions to them, but now the sets of arcs A U Ar, A U Ag and A U Ar U Ag
must be closed (e.g., each one of Xr, Xg contains all edges of one color in X and might
contain some edges of the other color) where formally:

"arc.(ij) is in a closed set of arcs and ik >=i (ij) =:> ik is in this set as arc (ik) or (ki)"
Again, as in PREFIX, Player I’s goal is to prolong and Player II’s is to shorten

the game. The intuition behind CONFLICT and its relation to concurrency control is
the following:

Concurrency control means to direct somehow all edges of the conflict graph,
without forming directed cycles. (The color, red or green, of an edge is the site that
is responsible for directing it.) To carry out this task in a distributed fashion, we may
have to communicate, in order to prevent two-color cycles. Single-color cycles are
benign, since they can be detected locally and prevented without communication.
Player I’s move is an orchestrated stream of requests for conflict resolutions, that
forces such a communication. Player II, the distributed scheduler, chooses the site

(color) that will send a message, trying to block long sequences of legal moves for I
(i.e., trying to save messages). The connection between the concurrency control problem
and PREFIX was established in Corollary 3.2. The connection between PREFIX and
CONFLICT discussed above, can be formalized in the following, straightforward
lemma:

LEMMA 2. The minimax length of the game PREFIX((T, )), with C SR, equals
the minimax length of the game CONFLICT(G(T)), (i.e., G(T) is the conflict graph
of T).

Proof. The correspondence between PREFIX((T, a)), and CONFLICT(G(T))
is easily seen to be as follows:

a corresponds to A (i.e., the conflicts of G(T) resolved by a);
/3 corresponds to A U A U Ag (i.e., a nonserializable input);
(fl/a) corresponds to A U Ar (i.e., a serializable projection at site 1 given a);
(,8/a)2 corresponds to A Ag (i.e., a serializable projection at site 2 given a).
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A, A t.3 Ar U Ag, A U Ar, A U Ag have to be closed, because the moves in CONFLICT
must be realizable by prefixes (see Lemma 1, 2.2). E]

It is easy to see that CONFLICT is in PSPACE (that is, computing the minimax
length is in PSPACE). To show Theorem 4, we shall first prove that CONFLICT is
PSPACE-complete. We start by proving a weaker result, whose proof is indicative of
the method used [3], [5], [14].

LEMMA 3. Computing the minimax length of CONFLICT is II -hard, (even when
the initial mixed graph has no orders on the edges).

Proof. Let F be an AE-quantified Boolean formula

F* x,)F Vx2Vx4 VXnzlXlX3 =lXn_ (X1,

where F* is a 3CNF formula with n variables (n is even) and m clauses. We shall
construct a mixed graph G such that the minimax number of rounds of CONFLICT
(rounds of moves by the two players), started on G, is equal to (n/2)+ 1 iff F is true.
G is constructed as follows:

For each existentially quantified variable xi, i-1, 3,..., n-1, we add to G a
copy of the =l-graph shown in Fig. 8c. For each universally quantified variable xi, i-
2, 4,. , n, we add to G a copy of the V-graph in Fig. 8a. Finally, for each clause Ck,
we add to G the C-graph in Fig. 9. All these subgraphs are connected as indicated
from vertex names (i.e., "in tandem"), with =l-graphs alternating with V-graphs,
followed by the C-graphs (that is, S,+1 C1). The "cycle" is closed by a green edge
SIC,,+ (see Fig. 10 for an example).

t11rectetl

red

green
T D

FIG. 8

So far we have only taken into account the numbers n and m. To encode the
structure of F* into G, we must look at the C-graphs of Fig. 9 in some detail. The
C-graph consists of 7 paths, numbered from 001 to 111. These are the 7 truth
assignments to the literals u, v, w of the clause, that satisfy the clause. Thus each of
the 21 red edges of a C-graph, say e, is associated with a literal l(e) and a truth value
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T. T, T.
FIG. 9

t(e). We now connect e’s right endpoint with appropriate =i- and V-graphs. We draw
an arc from the right endpoint of the edge e

to F if (l(e)=xj and t(e)= 1), or (l(e)=xj and t(e)=0); and
to T if (l(e)=x and t(e)=0), or (l(e)=-xj and t(e)= 1).

These arcs are called backarcs.
This completes the construction of G (i.e., all orders =>i are empty). In Fig. 10

we have an example of the construction if we ignore the nodes Ai, B, M, N i= 1, 3
and A13 A12, A34.

We now claim that, from the mixed graph G the minimax number of rounds
(rounds of two moves each) is (n/2) + 1 iff F is true. Clearly, since there are (n/2) + 1
green edges, this number is at most (n/2)+ 1. We shall show that Player I can force
(n/2) + 1 rounds iff F is true.

Since the orders are empty, Player I’s moves consist of choosing two-color directed
cycles. These contain just one green edge (if I is to play n/2 + 1 times), and, if we
disregard this green edge, there is no directed cycle in the graph with the proposed
directions of red edges. It is easy to see that each green edge can be used only in one
move, even if Player II does not explicitly direct it after this move (i.e., if his choice
is red, in the new A, he has created a directed path between the endpoints of the
green edge, and thus implicitly fixed its direction). Without loss of generality, the first
n/2 moves will involve the green edges FiE of the ’-graphs. The two-color cycle
(FiETDiF) is such a possibility. The choices of Player II can be thought of as fixing
the direction of FEi to: (FiEi) (x 0) or (EF) (x 1).

The claim is that Player I has an [n/2 / 1]st move, no matter what Player II plays,
if[ F is true. Player I has a [n/2 + 1]st move if[ at the end there is a two-color cycle,
which contains the only green edge left, (C,+IS1), some red edges, some directed
edges and no directed cycle without the green edge. Picking red edges is no problem
one has to do this to "pass through" the C-graphs and the :l-graphs. In the /-graphs,
the path must follow either (SiTiDiSi+l) or (SiFiEiSi+l). It follows the latter if[ (FiEi)
was picked by Player II in the corresponding moveotherwise a cycle (FiEiTiDiF)
would be created. In the =l-graphs, this choice can be thought of as an assignment of
the truth value to xi by Player I (i.e., 1 if (SiTiDiSi+l) was picked, 0 if (SiFiEiSi+l) was
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$1

F1 T1

0 / Ii1A12
N1

E2

0

$2

$3

A3

A13

DI

T2

T3

$4
T4

I1

E4 S5 C1
to T1 to F1

to T2 0
to F2

to T3 to F3
0

C2

to T2 to F2

to T4 0 to F4

to T3to F3
0

C3

FIG. 10. 7x1Vx271x3Vx4 (x1Vx Vx3) ^ (x Vx4 W’3).

picked). Finally, in each of the C-graphs, Player I must pick one of the 7 paths, which
would not create cycles because of the backarcs. Therefore this path corresponds to
a truth assignment, which agrees with the one chosen at the V- and l-graphs. It follows
that such a path (indeed, such an In/2 + list move by Player I) exists if[ F* is satisfiable
no matter what the values of x2, x4,... x are, or, equivalently iff F is true. 7-1
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LEMMA 4. Computing the minimax length of CONFLICT is PSPACE-complete,
(even when the initial ordered graph is undirected).

Proof. There are two directions in which we must extend the previous proof. First,
we must encode in G the n alternations of quantifiers. We do this by designing a more
elaborate q-graph (containing a green edge too) and using the partial orders {>--i}.
Second, we must get rid of the directed arcs of G. We do this .last, by replacing each
directed arc by a triangle, and using the partial orders.

Starting from the QBF instance F= XIX2]X3’’" EIXn_lVXnF*(x1, Xn) we
construct an ordered mixed graph G by putting together the El-graphs of Fig. 8b (not
8c), the V-graphs of Fig. 8a and the C-graphs of Fig. 9, as in Lemma 3. We also have
the following edges connecting neighboring V- and El-graphs:

arcs (AiAi,i+2), (Ai,i+2Bi+2), 1, 3,. n- 3,

red edges AiBi+2, 1, 3,. , n- 3,

AiFi+l, 1, 3," n- 1.

(These connections will guarantee that the order of moves by Player I will respect the
order of quantification.) A full example is shown in Fig. 10.

Notice that, so far, we have not specified the orders {=>}. The orders for the arcs
can be empty and for the undirected edges arbitrary total orders exist at all nodes
except for the Aj, Bj, F nodes. There they are designed in such a way that Player I
must play the green edges in their quantificational order (if the closure properties are
to hold):

at Ai,

at Fi+l,

at Bi+2,

ABi >= AFi/ >= AiB/2, 1, 3," , n- 1 (the last for n- 1),

Fi+lAi >= Fi+lEi+l, 1, 3, n- 1,

Bi+2Ai >= Bi+2Ai+2, 1, 3," n- 3.

We can indicate these total orders by assigning the integers 1, 2, 3 to the undirected
edges at each node and using the ordering of these numbers (see Fig. l la).

We claim that the minimax number of rounds equals n + 1 (again, the number of
green edges in G) iff F is true. This would prove the lemma, modulo the presence of
directed edges. The proof parallels that of Lemma 3, but is slightly harder.

It is easy to see that if Player I wishes to play n + 1 rounds each one of his moves
has to contain exactly one green edge, whose direction has not been fixed by previous
moves. Therefore, as in Lemma 3, a game in which Player I can force n + 1 rounds is
essentially a permutation of the n + 1 green edges. We will thus name his moves after
their green edge. We will demonstrate that AB-moves i= 1, 3,..., n-1 will corre-
spond to Player I assigning values for the El-variables of F and FE-moves 2, 4, , n
to Player II assigning values to the V-variables of F. Moreover in a game where both
players play optimally these choices alternate. The matter will consequently be reduced
to the existence of an In + list round, which will be equivalent to the validity of F.

Necessity. Assume the QBF instance F is false. We will describe a strategy for
Player II, that will make the In + list round impossible.
If Player I wishes to play n+ 1 rounds his game will be constrained in a variety of ways:

(a) Every Ai_2Bi_2-move must precede the AiB- and F_lE_l-moves i=
3, 5,. , n + 1. Since the arcs of G have to be respected, we can only have (BiAs) Ag
and (F-IE-I) Ag for legal assignments in these moves. This is because Ag Ar A
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1,1/2

(b)

P

FIG. 11. (a) Forcing alternation. (b) Forcing directions" red O---O; green O,,,,,,,,O; directed e-->O.

must contain a cycle whose orientation is determined by the existing arcs. Now we
can justify the construction in Fig. lla. If (BiAi)A from the ->-B, order and the
closure property of moves we have that (Ai_2B) As t3 A (e.g., the direction of Ai-2Bi
is fixed because of the existing directed path (Ai-2Ai-2,iBi) in G). From the
order we have now that Ai-2B-2 must already be assigned a direction. Thus the
Ai_2B_2-move must have already taken place. A similar argument holds for F-IEi-1.
It is easy to see also that the Cm+iSl-move has to follow the FnEn-move.

(b) The FEi-move corresponds to Player II assigning a value to xi, 2, 4, , n;
as in Lemma 3.

(c) The AB-move corresponds to Player I assigning a value to xi, i=
1, 3,. , n- 1. The only possible choices of cycles are (BiATDMBi) corresponding
to x= 1 and (BAFEiNB) corresponding to x=0. For x= 1 (x=0 is symmetric)
the choice is forced by the existing arcs and because:

(BiAiBi+2Ai+2" ") would use up Bi+2Ai+2;

(BiATiDFE...) would introduce a cycle in Ar U A;

(BiAiTiDiSi+I" ") would fix the direction of Fi+IE+I.
The strategy of Player II in response to these moves will be always to play red, fixing
the directions of TD, and FiE and making vertex A inaccessible from S.

Obviously the best Player I can do is assign a value to x (by the AiB-move),
force Player II to show his hand by assigning a value to xz (by the F2E2-move), assign
a value to x3 etc. As a result the choices for the C,/aSa-move are constrained as in
Lemma 3. Consequently the existence of a legal [n+l]st round depends on whether
the assignment of values to the x/s has made F*(xl,..., xn) true. Since the QBF
instance F is not valid Player II can always pick values for x, 2, 4,. , n that make
F*(x,..., xn) false and the In + 1]st round impossible.
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Sufficiency. Assume Fis true. Player I’s game follows the same structure as above.
Only now, because of the validity of F, he can choose an assignment for xi, i=
1, 3,. , n- 1 which will make F*(Xl, , xn) true and the In + list round possible.

Finally, we must eliminate the arcs of the graph in the construction above. We
accomplish this by replacing each arc (RQ) by an undirected triangle RQP, where P
is a new node, PQ is green and RQ and RP are red (Fig. 1 l b). At the nodes R, P, Q
the three edges are ordered as indicated in Fig. llb. The triangles themselves
in number) can be ordered. We can add kKn,, to the numbers 1, 2 at the edges of the
kth rectangle, that indicate the orderings. Thus all {=>i} become total orders. We have
therefore constructed an ordered undirected graph G* from an arbitrary QBF instance
F. We claim that the minimax number of rounds equals the number of green edges in
G* iff F is true.

Let us look at legal PQ-moves, that is moves whose green unfixed edge belongs
to a triangle. If this move (At t3 Ag A) produces a cycle (RQPR), we can infer the
following: The arc (RQ) must belong to Ar A and Ag A. This is because Ar t_J A
must contain a directed path (P... Q) and QR >=o QP. (Recall that QP is the only
green edge without a previously fixed direction.) Thus no matter what the response
of Player II is to such a PQ-move the arc (RQ) becomes part of A. On the other hand
a PQ-move producing a cycle (QRPQ) is never legal. This is because A U A must
contain {(PQ), (QR), (RP)} a cycle. The existence of a path (Q... P) in A t_J A and
the fact that RQ >= R PR >=p QP force this situation. Thus PQ-moves fix the direction
of QR to (RQ). Finally if Player I were ever to use a QR in the direction (QR), in
some other e-move (e a green unfixed edge), then a response of red by Player II would
consume two green edges (i.e., e and PQ).

Now in order for Player I to play as many times as there are green edges in G*,
he must move using the green edges in the triangles and forcing the desired directions.
This completes the proof of Lemma 4.

Proof of Theorem 4. The theorem now follows by observing that the ordered
graph G =(V, E, , {->}) in Lemma 4 is indeed the conflict graph of a transaction
system T. For each vertex in V there is a transaction T in T. For each edge e
in E, there is an entity Xe updated by both T and T. If e is red, Xe is stored at site 1,
if green at site 2. For the (total) orders ->i, we simply order the actions of transaction
T accordingly.

As more-or-less immediate consequences of Theorem 4 and its proof we can
obtain complexity characterizations for several special cases. Let us slightly abuse our
notation, and use PREFIX((T, a), b) to denote the decision problem:

Is the minimax length of game PREFIX((T, a)) larger than b?

We have the following cases depending on the structure of (T, a) and b.
COROLLARY 4.1. (a) PREFIX((T, ), b) is PSPACE-complete.
(b) PREFIX((T, a), b) is PSPACE-complete and PREFIX((T, a), 0) is NP-

complete, even if T contains no cross-arcs.
(c) PREFIX((T, ), 0), if T contains no cross-arcs, is in P.

Furthermore, (a) and (b) hold even when there are no more than six actions per
transaction.

Proof. Note that (a) follows directly from Theorem 4 and (b) can be easily shown
by extending the proofs of Lemmas 3 and 4. By minor modifications [7] to the subgraphs
of Figs. 8 and 9 we can make the nodes (after substituting triangles for directed edges)
have at most degree 6. For case (c) all we have to test for is if G(T) contains a
two-color cycle. U]
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We finally obtain the following result on the complexity of distributed concurrency
control.

COROLLARY 4.2. Unless NP PSPACE, there is no scheduler for SR, which is
both computationally efficient and communication-optimal; even if we restrict T to sets

of transactions which are total orders and have six actions each.
Proof. If such a general scheduler existed, we would have a nondeterministic

polynomial-time algorithm for solving the PSPACE-complete problem PREFIX
((T, ), b), as follows:

On input (T, ), b:
1. Guess a schedule in SR, check it in polynomial time.
2. Simulate (in a centralized manner) the operation of the scheduler on this

schedule. Whenever a send-message instruction occurs, guess a delay d, and increase
a message count. (The delay d can be chosen to be a number bounded by a polynomial
in size of the input).

3. In the end, if more than b messages were used, then report "yes", else report
"no". E]

5. Conclusions. Our main result shows that concurrency control, an on-line
problem clearly in NP (P for serializability) in the centralized case, is PSPACE-complete
in the distributed case. This result is quite strong, in that it holds for transaction systems
of rather ordinary appearance (e.g., transactions which are total orders with at most
six actions each). Also, the negative implications of our result (Corollary 4.2) are quite
robust. For example, even if the scheduler is equipped with a powerful oracle belonging
anywhere in the polynomial hierarchy, it still cannot minimize communication
efficiently, unless the polynomial hierarchy collapses.

In the process of proving this negative result, we have related distributed concur-
rency control to certain combinatorial games played on graphs. It could be that this
connection is of some practical value. There is a more-or-less immediate heuristic for
approximating an optimal strategy in the game CONFLICT. This heuristic is based
on the following purely combinatorial problem"

Given an undirected graph with its edges colored red and green, find a "small"
set of edges that have to be deleted in order for the resulting graph to have no two-color
cycle.
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UNBOUNDED SPEED VARIABILITY IN DISTRIBUTED
COMMUNICATIONS SYSTEMS*

JOHN H. REIF" AND PAUL G. SPIRAKIS

Abstract. This paper concerns the fundamental problem of synchronizing communication between
distributed processes whose speeds (steps per time unit) vary dynamically. Communication must be estab-
lished in matching pairs, which are mutually willing to communicate. We show how to implement a distributed
local scheduler to find these pairs. The only means of synchronization are boolean "flag" variables, each
of which can be written by only one process and read by at most one other process.

No global bounds in the speeds of processes are assumed. Processes with speed zero are considered
dead. However, when their speed is nonzero then they execute their programs correctly. Dead processes do
not harm our algorithms’ performance with respect to pairs of other running processes. When the rate of
change of the ratio of speeds of neighbour processes (i.e., relative acceleration) is bounded, then any two
of these processes will establish communication within a constant number of steps of the slowest process
with high likelihood. So, our implementation has the property of achieving relative real time response. We
can use our techniques to solve other problems such as resource allocation and implementation of parallel
languages such as CSP and Ada. Note that we do not have any probability assumptions about the system
behaviour, although our algorithms use the technique of probabilistic choice.

Key words, distributed networks, communicating sequential processes, handshake communication,
synchronization, real-time response, probabilistic choice, randomized algorithms

1. Introduction. Recently, Reif and Spirakis [1984] showed how to achieve inter-
process communication with real time response using prgbabilistic synchronization
techniques, assuming that the speeds of all processes were bounded between fixed
nonzero bounds. This leads to real time resource allocation algorithms and real time
implementation of message passing in CSP (see Reif and Spirakis [1984, Appendix I,
II] and also Reif and Spirakis [1982a ], 1984a ]).

In this paper (a preliminary version of the paper appeared in Reif and Spirakis
[1982]) we assume no global bounds on the processors’ speeds. Their speeds can vary
dynamically from zero to an upper bound which may be different for each processor,
and not known by the other processors. We allow a possibly infinite number of
processes, so that there may not be a global upper bound on the speeds. Processes
may die (have zero speed) but when they have nonzero speed then we assume they
execute their programs correctly. We are interested in direct interprocess communica-
tion (rather than packet switching) which is of the form of handshake (rather than
buffered), as in Hoare’s CSP (Hoare [1978]). The essential technique that we utilize
is that of probabilistic choice. This technique, introduced to synchronization problems
by Rabin [1980], Lehman and Rabin [1981] and Francez and Rodeh [1980], was also
utilized in our previous work.

The use of probabilistic choice in the algorithms leads to considerable improve-
ments in the space and time efficiency (Rabin [1980], Reif and Spirakis [1984]); we
feel that this may be because of the locality of the decisions and because complex
sequences of the processes’ steps prohibiting communication have very low probability
of occurrence. We assume that each process makes probabilistic choices independent
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of other processes. We also introduce new adaptive techniques, where the processes
es[imate the speeds of neighbour processes and select processes to communicate with
probabilities depending on the speeds, penalizing the slowest processes. These adaptive
techniques do not seem to have ever been utilized in the previous synchronization
literature.

This paper proposes a new high level synchronization construct associated with
interprocess communication. The construct is implemented very efficiently by the use
of boolean flag variables, each of which can be written by only one process and read
by at most one other process. (We do not use any standard high level synchronization
construct such as shared variables with a mutual exclusion mechanism since these
have no known efficient implementation. There is not even any known bounded time
implementation of a mutual exclusion mechanism when processes run on diiierent
processors.)

If processes are bounded in speed then it is natural to define real time response
to be a response to a communication request that uses no more than constant number
of units of real time. This measure is inapplicable in our case in which there is no
global upper bound and no nonzero lower bound on speeds. Thus we introduce the
notion of relative real time response which is establishment of communication between
any pair of neighbouring processes within constant number of local rounds. (A local
round of neighbour processes, i, j is the minimum time interval which contains at least
one step of each process and exactly one step of at least one of i,j.) Local rounds are
calculated relative to given time intervals. Let ts >_-0 be a particular time instant. The
local round of processes i,j beginning at t (and ending at te->-t), is the smallest time
interval Its, te) such that

(1) Its, te) contains at least one (full) step of both i,j.
(2) Its, te) contains exactly one full step of at least one of i,j.

(Note: The next local round with respect to a time interval A, starting at t, is the local
round of i,j beginning at te.)

We achieve communication between any pair of neighbouring processes within
constant number of local rounds by our probabilistic algorithms with some probability
of error which can be made arbitrarily low. The best deterministic symmetry algorithms
which attempt to form matchings in distributed systems have a relative response
depending linearly on the network’s diameter.

The paper is organized as follows" In the next section we define our model for
communication. In 3 we discuss applications of this model. In 4 we give a relative
real time implementation of communication in this model. In 5 we give correctness
properties of our proposed implementation and time analysis.

2. The model VS-DCS (Variable Speed Distributed Communication System).
2.1. The model. We develop here a theoretical model related to, but more general

than, the Distributed Communication System (DCS) of Reif and Spirakis [1984 ]. A
detailed description of the fundamental issues can be found in Reif and Spirakis [1984 ],
[1984a].

We assume a possibly infinite collection of processes r {1, 2,... }. Events of
the system are totally ordered on the real-time line [0, ). The processes of r are

Also Arjomandi, Fischer and Lynch [1981] have shown that some synchronization problems which
are global (in contrast to our problem) cannot be done in real time and require time proportional to the
logarithm of the total number of processors in the network. A typical situation where this could occur is
the problem of detecting connected components of processes whose speeds are within given positive bounds.
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asynchronous; their speeds may dynamically vary arbitrarily over time and may even
be 0. The processes have no access to any global clock giving the time.

We assume that the effect of a read or write is instantaneous and that these events
occur at distinct time instants, so there are never any read/write conflicts. In general,
a step of a process is a finite time interval A in which a single instruction is instan-
taneously executed at the last moment of A. A process is the slowest of two processes
i,j during a step s Its, t2] of i, if at least one step of j is a proper subset of s. We
can extend this notion to bigger time intervals, by counting steps of and j contained
in those time intervals. Each process consists of a fixed set of synchronous parallel
subprocesses. (The subprocesses of any given process have the same speeds.) The
asynchronous processes wish at various times to communicate with other processes
but have no means of communication except via the communication system. This is
implemented by many poller subprocesses (seven for each target process) which are
synchronous with themselves. We assume a fixed connections graph H which is
undirected and has the set 7r as its vertex set. An edge {i,j} indicates that process is
physically able to communicate with process j (but not necessarily willing to). H is
assumed to have finite valence. We also assume for each time the willingness digraph
Gt which indicates the willingness of a given process at a given time t. (We indicate
this by the edge i---> j and say is a willing neighbour of j.) Note that i----> j only if
{i,j} H. Let i-->tj if i--->,j and j--->t i. The edges of the graph Gt are stored dis-
tributedly so that the edges departing from a given process are only known to that
process. We assume that the out-degree of each vertex of Gt is upper bounded by a
fixed constant v.

For each time interval A on [0, ) let ---> aj if --->t j for all A and let ,-->aj
if both ---> a j and j --->a i.

For each => 0 the (possibly infinite) digraph Mt with vertex set 7r and directed
edges ,,tj denotes which processes open communication to which other processes at
time t. We denote i*,,’-,’tj if both i,,tj and j,,,ti. Thus i,-,,’tj denotes i, j achieve
mutual communication at time t. Mt is the digraph that implementations of distributed
synchronization achieve. Also, we extend the notation to intervals A on (0, c) as for
Gt. We assume that

(A1) Two way communication between any two processes i,j "n" requires only
one step of and j. (Thus, processes communicate in short "bursts".)

(A2) If i---->t, j and not i-->t2J, t2> tl, then i"Aj for some A[t, t2] where A
contains at least one step of each and j (i.e. processes can withdraw willingness to
communicate only after communication between and j has been established and
completed).

In practice, assumption A2 can be easily circumvented. Suppose a process is
initially willing to communicate with process j, but later decides that it is no longer
interested in communicating with j, before mutual communication has been achieved.
By assumption A2, process must not withdraw willingness to communicate until the
implementation has achieved mutual communication between and j. However, at this
time a null value can simply be sent.

We wish implementations to be proper in the sense that
(a) -t j only if <->t j (neighbours try to speak only if they are mutually willing

to).
(b) ’t must be a partial matching: If i,,,,,tj then not j’,,t for anyj’ in 7t-{j}.

(No process is allowed to achieve communication with more than one neighbour at
the same time.)
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A process with speed 0 is dead, and otherwise is awake. We assume that processes
can suddenly die but when they are awake they execute their programs correctly. We
furthermore assume that each process has a fixed upper bound on its speed which
may be different from the other processes and not known to them.

For any two processes i,j take two consecutive steps of i, on time intervals
and A2. Let S and $2 be the number of steps ofj overlapping with A, A_ respectively.
Then, the relative acceleration ofj with respect to is (IS-S1)/2. Let us denote it by
cji. Let c, the relative acceleration bound for processes and j, be the worst case value
of the maximum of a0, aji over all times. The correctness of our synchronization
algorithms does not depend on whether processes are acceleration bounded; however,
we assume fixed acceleration bound c in our time complexity analysis. Thus the relative
acceleration of one neighbour with respect to another is bounded by a constant a or
can be - if the process dies.

We assume an "adverse" oracle M which at time 0 chooses the speeds of all the
processes for all times. M is also able to dynamically change the willingness relation
-t (subject to assumption A2) so as to achieve the worst case performance of the
implementation of VSoDCS. Note that, in practice, we can assume each process has
a director subprocess which dynamically changes the willingness relation -->t and at
time 0 determines the speed of that process for all times. Thus, in this case, the oracle
M is defined distributedly by the director subprocesses. It should be noted that the
oracle M is useful to us because it may be explicitly used to define the worst case
performance ofthe system, when communication requests happen at times most difficult
for our implementation and speeds vary in the most difficult way. Thus, if we prove
that the system has a certain performance for a worst case oracle, then we have upper
bounds on the performance of any set of director subprocesses. More general adverse
oracles (which may alter later speeds of processes according to past success or failure
of communication) are defined in Hart, Sharir and Pnueli [1982]. Our implementations
may fail to meet some of their requirements if these more general oracles are allowed.
We feel, however, that our notion of adversary is adequate for practical applications.

The following communication primitives can be implemented by the poller subsys-
tem of each process: (In practice, the director may not get an immediate answer but
may proceed to some other instruction and later a time slot for communication will
be arranged by the poller subsystem. Of course, if successful two-way communication
is achieved, we assume both processes are aware of the success of communication.)

ATTEMPT-COMi (j)" indicates that the director of wishes to communicate with
the director of process j.

CANCEL-COMi (j): indicates that the director of wishes no longer to communi-
cate with j.
The precise semantics of ATTEMPT-COM and CANCEL-COM are given by the
willingness relation -->,_

Note that assumption A2 implies that the oracle can withdraw willingness to
communicate only after communication has been established. Thus, if ATTEMPT-
COM (j) is called at time tl and CANCEL-COM (j) is called at time t2 (t2 > tl) then
communication was established for some on [tl, t2). (In fact, our implementations
do not really require this assumption but only require that the willingness to communi-
cate will not be cancelled before some constant number of steps. However, the
assumption A2 given here, considerably simplifies our analysis.)

2.2. Complexity of VS-DCS. We assume here a global constant a. We say is
tamefor i, j on time interval A if the pairs {(i, j)} LI {(i, k)l k is a neighbour of i} [_J {(j, k)lk
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is a neighbour of j} are each relative acceleration bounded by a on the time interval
A.

For every e on (0, 1) let the e-response S(e) be the minimum integer >0 such that
for every pair of neighbours i, j and each time interval A and for every oracle .’ which
is tame for i,j on A, if aj and the number of steps of the slowest of i,j within A

is >-S(e) then there exists a subinterval A’___ A containing at least one step of the
slowest of i,j such that

i,,a, j with probability >- e.

Intuitively 1-e gives a lower bound on the probability of establishing communication
in the case process issues an ATTEMPT-COM (j) at the beginning of A, and after
S(e) steps it calls CANCEL-COM (j). (Note that we presume here that and j and
their neighbours have relative acceleration bound a, only during the interval 4; at
other times this acceleration bound may be violated, and furthermore the acceleration
bound a need not hold for other processes even during the interval A.)

We consider an implementation to be relative real time if for all constants e on
(0, 1), the relative e-response S(e) is upper bounded by a constant, independent of
any global measure of the willingness digraph G, (such as [zr[ or any function of it)
and dependent only on the constant maximum valence v of the vertices of G,, and on
the bound a on the relative acceleration. Note that relative real time response does
not imply that communication is guaranteed within any time interval but instead it is
guaranteed within a bounded number of steps of the processes with high likelihood
(this is because processes can slow down arbitrarily). In 4 we show how to implement
the VS-DCS so that relative real time response is achieved.

3. Applications. The primitives ATTEMPT-COM, CANCEL-COM are powerful
enough to supply real time implementations of synchronization constructs of high level
parallel languages such as CSP and ADA.

The following proposition will be useful in the applications.
PROPOSITION 3.1. If the oracle M is tame for processes i,j on an interval A which

includes at least toX + aXe steps ofeither orj, (where to is the speed ratio ofprocesses
i, j in the beginning of A), then A includes at least X local rounds.

Proof. Consider the number of local rounds to be the "time" during which a
fictitious moving object with initial speed o and acceleration a moves a distance equal
to the maximum number of steps done by either or j or 4. 71

3.1. Real time resource granting systems with process failure. Previously, in Reif
and Spirakis [1982a ], [1984], [1984 a] we utilized the more restricted DCS system which
does not allow process failures to implement a real time resource granting system. In
this paper, we can cope with sudden process failures (zero speeds). In this case, the
process governing a resource will first get an estimate o on the speed of a process
granted the resource and then it will attempt to communicate for 8oS(e)+ aSh(e)
of its steps with the process granted the resource. (Note that o will be if the process
governing the resource is the fastest.) By Proposition 3.1 the above interval should be
enough for the process which has been granted the resource to respond. If that process
does not respond, the resource governing process may reclaim the resource. If a resource
allocator dies, then other processes can play its role.

3.2. Relative real time implementation of CSP and ADA’s synchronization con-
structs. In a typical stage during execution, the processes comprising a CSP program
may be divided into two classes: those busy with local computations and those waiting
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for a partner to communicate with. A distributed guard scheduler can be implemented
by using the poller subprocesses of the relative real time VS-DCS system.

The Communicating Sequential Processes (CSP) language was defined by Hoare
[1978] for concurrent programming. The language has elegant synchronization Con-
structs:

(1) An output command of the form i! u where is a process and u is a value
which receives.

(2) An input command of the form i?x where is a process which sends a value
which is assigned to variable x.

CSP also allows alternative statements which consist of a sequence of guarded
commands of the form G- C where the guard G is a list of booleans followed by at
most one input command and C is a command list. We assume here the extension of
CSP given in Bernstein [1981], which allows G to be a list of booleans followed by at
most one input or output command. An alternative statement is executed by indetermin-
ately choosing a guard which is satisfied (by executing its elements from left to right)
and then executing the corresponding command list. If no guard is satisfied, the
alternative statement fails. CSP also allows a repetitive statement allowing repeated
execution of an alternative statement until it fails.

Thus, the essential problem in implementing CSP is to synchronize execution of
input and output commands. Let v be the maximum number of guards appearing in
any alternative or repetitive statement; we assume that v is constant relative to the
total number n of processes. Let J be the event: For a given alternative statement, the
execution either determines a satisfied guard and executes the corresponding command
list, or determines that no guard is satisfied and makes a failure exit from the statement.
A CSP implementation is relative real time if there exists a positive integer (which
is independent of the number of processes n) such that J takes at most steps of all
processes associated with the guards of the alternative statement.

For a process to execute an output command j!u, process must execute the
communication command ATTEMPT-COMi (j). Also, to execute an input command
i?x, process j must execute the communication command ATTEMPT-COMj (i). If
successful communication is established between and j, then during that time process
j transmits value u to variable x in process i. Processes i,j then execute CANCEL-
COMi (j) and CANCEL-COMj (i), respectively. (Note that if processes or j happen
to die at this point, before cancelling communication, then successful communication
cannot be made with them during the time speed is 0, so it is not essential for the
communication request j to be cancelled.) We assume here an underlying relative
real time VS-DCS implementation, with relative e-response $(e), where e is a system-
wide constant which may be fixed to any arbitrarily small constant on the interval
(o, 1).

Let S be an alternative statement with guarded input and output commands, say
G,. , Gs with s =< v. To execute the statement S, process first executes the booleans
appearing in each guard. If no guard is satisfied, process must then exit the statement
S with failure. Otherwise, let R be the set of processes appearing in those guards of
S all of whose booleans evaluate to true. Process must then execute ATTEMPT-
COMi (j) for each process j R. At the first time a communication is established
between and some willing process j R, process must immediately execute
CANCEL-COM (j’) for each j’ R and then execute the command list associated
with the now satisfied guard in the statement S. Note that the above will take at most
l=aS2(e)/2 steps of i, with probability at least l-e, by Proposition 3.1 arid the
definition of S(e).
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Also, in ADA, two-way communication between pairs of tasks is allowed to
synchronized time instances called rendezvous. An accept statement of the form accept
f(-) appearing in task T1 indicates that Tl is willing to rendezvous at f with any task
of similar argument type. The task T2 may execute a call statement of the form f(-)
indicating that T2 is willing to rendezvous with T1 at the accept statement containing
f. ADA also allows for selective accept statements containing multiple accept statements,
one of which must be nondeterministically chosen to execute. (This is similar to the
select statement of CSP.)

ADA’s tasks may be implemented by processes whose speeds vary dynamically.
(Processes may even fail for various time intervals.) The key implementation problem
is to synchronize task rendezvous within relative real time, in spite of the dynamic
speed variations. These processes may be connected within a distributed network whose
transmission channels may also have variable speeds or fail. Unreliable transmission
channels can be viewed as processes which are connected with the processes of the
network via reliable communication channels.

We assume that it is possible to analyze (perhaps by data flow analysis) an ADA
program to determine an undirected (possibly infinite) connections graph whose nodes
are all the tasks possibly created by the ADA program and edges are the possible task
communication pairs. Since an actual implementation will have in its hands at any
time only a finite set of processes we assume that only the currently active tasks have
an associated implementing process and a scheduler devotes a currently free process
to a given newly created task. A garbage collector removes the implementing process
from the deleted task and places it back to the free list of processes. These implementa-
tion techniques were developed by Dennis and Misunas 1974] for real time implementa-
tion of data flow machines. They correspond to the initiate and abort statements, which
appeared in old ADA versions.

The synchronization facilities of our VS-DCS system provide (by the use of the
ATTEMPT-COM and CANCEL-COM primitives) a real time implementation of the
accept and call statements. A version of the active statement can be implemented so
that deleted tasks and tasks implemented by nontame processes can be detected by
their neighbours in real time with some (arbitrarily small) error probability. This can
be done in our VS-DCS system by repeatedly attempting communication with neigh-
bouring processes. Finally, the symmetry and locality of the VS-DCS implementation
(due to its probabilistic nature) may help in eliminating the tradeott between generality
of expression and ease of implementation in ADA.

The probabilistic fairness guaranteed by the algorithms of the pollers eliminates
the danger of bottlenecks which could be created if conventional techniques were used
(a new task which centralizes requests and keeps track of busy server tasks is one of
the conventional proposed solutions). Most of the problems which VS-DCS could cure
are discussed in Mahjoub [1981], and Francez and Rodeh [1980]. A probabilistic
solution to some of the discussed problems was given also in Francez and Rodeh
[1980], but no discussion about real-time properties was done and neither the problem
of speed variations nor that of dying processes was addressed.

4. Relative real time implementation of VS-DCS.
4.1. Intuitive description of the algorithm. We utilize 7v + synchronized parallel

processes to implement the poller subprocess of each process i. These are the com-
municators cp cp2, Cp2v, the speed estimators ep 1,"’, ep and the judge subpro-
cesses jp io, jp 1, JPav of process i. Each pair of the communicators Cpk,, Cpk,, where
k’ mod v k" mod v k, is devoted to communication with the kth neighbour. Each
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estimator is used to continuously update an estimation of the speed of a particular
neighbour process. The collection of judges has the task to select under certain
conditions one communicator and to give to him the right to open the communication
channel of process to its corresponding neighbour.

We frequently use the technique of handshake by which we mean that each
subprocess modifies a flag variable observed by the corresponding neighbour subpro-
cess. Process contention between synchronized subprocesses is easy to implement (we
can allow each to take a separate step in a small round).

Our algorithm for the kth communicator subprocess Cpk (1 <--_ k <-_ 2v) of the poller
of process proceeds as follows:

Let k’= k mod v. At every time t_>0, Ei(1), Ei(D) is the list of targets of
edges of Gt departing from i zr, and D<_-v is the current number of targets. Those
variables are dynamically set by the oracle 4 and they are the neighbours to which
process is willing to open communication at time t. Note that, by our assumption
A2, oracle can remove an element from the list of targets (of edges of Gt departing
from i), only immediately after communication with this target has been established.
We furthermore assume that modifies the list of targets (and D) instantaneously.
As a consequence, our algorithms are not confused by dynamic removal of edges of
Gt, (in particular, improper communication can never happen). The subprocess cp’k
deals with the E(k’) neighbour. If k-<_ v, then CPk is an asker subprocess, else it is a
responder process. Cpk must first handshake with the corresponding subprocess of
process E i(k’) to which node wishes to communicate. We need two handshake
subprocesses (ask, respond respectively) per neighbour because of a certain asymmetry
in the handshake (some subprocess has to be the first to modify a flag). In particular
the asker procedure initiates the handshake and the responder answers to it.

Next, we wish to find a time slot in which the two neighbours may communicate.
Because there may be contention among other processes j which also wish to communi-
cate with (and consequently, other askers or responders of node also will handshake)
we must resolve the contention by a fair judge. To do this, we add the process CPk to
a queue and the collection of judge synchronous subprocesses of poller takes a
random process from this queue and allocates time slots for communication attempts.
To ensure that slower neighbours do not utilize any more total time on the average
than faster neighbours during communication attempts, we weight the probabilities of
subprocesses to be chosen from the queue by the factor

ai" o(A)’

where Aik is the current estimation of the steps of process per step of process k,
supplied by the estimator epk, and to(Ai)= Y (1/Ag).

The judge subprocesses are organized in a balanced binary tree of height log (2v)+
1. Any time a random process is to be selected from the queue, the supreme judge
subprocessjp enables the tree of the rest of the judges to conduct a tournament between
the waiting processes in the queue and to select a winner with the above stated
probability. In that way, the total number of steps needed for a winner to be selected
is O(log (2v)). (Note that less efficient ways of using a random number generator to
choose one waiting process from the queue could take O(v) steps of process i, because
of the form of the weight factor in the probabilities.)

Our technique of weighing the probability that subprocesses are chosen from the
queue, has the effect that each subprocess in the queue attempts to communicate on
the average 1/(2v/ v2/a) of the total time. (This is proved in our analysis following
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the formal description of the algorithms.) If a process is chosen by the judges but the
communication is not established, the algorithm requires that. subprocess to initiate
another handshake with its partner (to check if they are still mutually willing to
communicate and to synchronize steps). Then, it is again added to the queue to be
given another chance to establish communication. This process proceeds until either
the director of withdraws its willingness to communicate with E’(k’) or until it
establishes communication.

Note that the time slots for communication attempts, allocated by the supreme
judge jpo to each selected communicator, take into account the current speed ratio of
the process and its neighbour corresponding to that communicator, adjusted by a
factor related to the worst-case acceleration and the log2 2v delay in the process of
choosing a winner, to give the opportunity of at least one step overlap in time of
process andits neighbour, if their corresponding channels are both open.

We introduce random waits which help subprocess Cpk to eliminate the possibility
of schedules set-up by the adverse oracle M to have always a particular subprocess
arrive first in the queue and win the contest. This possibility is eliminated since we
have assumed that the oracle sets the speeds at time 0 and cannot affect the independent
random choices done by the processes. Also, we assume that the random number
generator RANDOM (0, l) of each subprocess yields truly random real numbers,
uniform on the interval [0, 1], and independent of the random numbers generated by
any other subprocess.

Note that we trade computation effort (parallelism) in a .node to achieve reliable
communication. This parallelism is limited because of the bounded valence v of the
graph Gt. We can always simulate these synchronous techniques. This will reduce the
eitective speed of each subprocess by only a factor of 7v + 1.

4.2. The algorithms of the poller subprocesses. In each process r, we assume
synchronous subprocesses

askers" cp’ cp
responders: cp + cp +2 cp
estimators: ep’t,.. ep,
judges: JPo, jP’,"" ,jP.

The askers and the responders are the communicators.
In the following algorithm, executed by each of the communicator subprocesses

cpk, <-k<=2v, we implement the queue of process by an array Q’(k), <-_ k<=2v.
Q’(k)- holds just if Cpk waits in the queue. Another array of binary values, mar-
riage’(k), l<-k<-2v, is used to indicate which communicator subprocess currently
holds process’s channel and attempts communication. When the predicate
marriage’(k) is true, then Cpk attempts communication at that time. The algorithms
have designed so that at most one of the marriage’(j), <=j =<2v, is set at any time.
We now present the algorithm for the communicator subprocesses:

process Cp’k
WHILE true DO

IF D’-> k THEN
BEGIN
W,- c RANDOM (0, l)
DO [WJ noop
IF k_< v THEN ASK, (E’(k)) ELSE RESPOND, (E’(k))
COMMENT: Add k to queue
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OD

Qi(k)(--
WHILE marriage/(k)= 0 DO a noop
ESTABLISH-COM (E/(k), c2Aik)
marriage (k) 0

END

A hoop is a single unit step in which no operation is executed. The constants c and
c2 are as follows:

c,=2(2v+1)c2, c2=4(cfl+1), fl=61og(2v).

The speed estimators epk, l<-k<-_2v, execute the following algorithm. The
algorithm continuously does a handshake in order to estimate the speed ratio between
the process k to which the handshake is attempted, and the process i, of which the
speed estimator is a subproeess.

process ep’k
DO FOREVER

Fk <--

LOOP UNTIL Fk/ is
A: F/k <- 0; s <-- CURSTEP

LOOP UNTIL Fk/=0
CURSTEP-s

B: Aik 2
OD

Note that F/k is a flag set by i, read by k. We assume at time 0, F/k initialized to 0.
The special register CURSTEP gives the current step of process i. We assume that a
step consists of an elementary statement of the algorithms; ep’k’S execution assures
that ik is (within a factor of 2) the actual speed ratio of processes and k, since from
step A to step B the fastest of the partners does CURSTEP-s steps and the slowest
does 2 steps.

4.3. The algorithms of the judge subprocesses. The algorithm of the supreme
judge is

process jP
WHILE true DO

IF queue Q/not empty THEN
BEGIN
Use the tree ofjudges to select a random element k of the queue Q/with
probability

COMMENT: delete k from Q/
Q’(k)0
marriage (k) -WHILE marriage/(k)- DO noop

END
OD
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Note that the supreme judge triggers the operation of the tree of judges. In each
level, the winners of the previous level are paired up and half of them are selected.
The judge subprocesses of each level execute in parallel synchronously. Finally, the
jPo accepts the choice of the root of the tree of judge subprocesses to be the com-
municator which is going to attempt communication. The supreme judge removes this
winner subprocess from the queue Q’ by setting Q’(k) to 0 and allows the winner to
attempt communication (so as to use process’s channel) by setting marriage’ (k) to
1. Note that we can test if Q’ is empty by keeping a counter of the number of elements
in Qi.

We now give the algorithms of the judges.

process jp
WHILE true DO

IF Q’ is not empty THEN
BEGIN
FOR level= 1,. .,log (2v)+ DO
BEGIN

L’-level; do 6 noops
END

k *- choice’ (4v)

marriage’ (k) -WHILE marriage’ (k)- DO noop
END

OD

The rest of the judges are organized in a full binary tree of 4v nodes. The leaves
are the processes jp’ "’1, ,JP2o. Each internal node m {2v/ 1,. , 4v} has two
children LCHILD (m), RCHILD (m). The root is the process jp,o. Each jp,,, has its
level stored in MYLEVEL (m).

process jp’m
IF MYLEVEL (m) L’ THEN
BEGIN

IF Li= THEN
BEGIN

choice (m) - mmarriage (m) - 0
IF Q(m)=0 THEN sum (m)0 ELSE sum (m),- 1/A,m

END
ELSE
BEGIN

r RANDOM (0, l)
m - LCHILD (m)
mE <-- RCHILD (m)
sum’ m sum’ (m,) + sum’ (m2)
IF r<sum’ (mt)/sum’ (m)
THEN choice (m) choice’ (m)
ELSE choice’ (m) choice (m)

END
END
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RANDOM (0, 1) is a uniform random number generator which returns a random
real between 0 and 1. We assume each ofthe outputs ofRANDOM (0, 1) is independent
of.any other Output. Note that each judge subprocess which is not a leaf uses RAN-
DOM (0, 1) to select one of the choices of its children with conditional probability
sum (m)/(sum (m)+sum (m2)) where m, m2 are the children of m.

LEMMA 4.1. it takes/3 6 log(2v) steps for the tree ofjudges to select a winner

from the queue .Qi.
Proof The judges of each level work synchronously in parallel and each does at

most 6 steps, per iteration of their loop. Since the tree has a height of log (2v), the
total number of steps required is/3 6 log (2v).

LEMMA 4.2. If Q’(k)= then the probability that the winner is communicator Cpk

is at least 1/(A,k" to(A/)).
Proof The probability that Cp’k will be selected is the product of the conditional

probabilities that Cpk will be selected in each node of the path from k to 4v, which is
the root. We shall follow an inductive argument on the level of nodes in the tree.
Observe that after execution of the program of process jp, the variable sum’ (m) is
the sum of sum (j) over all j’s which are leaves of the subtree rooted at m.

Claim. Let k be any of the leaves of the subtree rooted at m. Let to(m) be the sum
of sum’ (j) over allj’s which are leaves of the subtree rooted at m, given that Q/(k) 1.
The probability that choice’ (m) is k is equal to 1/(A/k" to(m)).

Proof of Claim. Let m be a node whose children are leaves. In the program that
the process jp executes, the probability that the left child is selected is

sum’ (LCHILD (m))
sum’ (LCHILD (m)) +sum (RCHILD (m))"

The probability that the right child is selected is

sum (RCHILD (m))
sum’ (LCHILD (m))+sum (RCHiLD (m))

Let the level of a node be its distance from the leaves plus (the leaves are at
level 1). Let us now assume the claim true for any node of the level l-1. Let m be
any node of level l, with children m and m2 at level l-1. Let k be any of the leaves
of the subtree rooted at m. The probability that choice’ (m) is k, is equal to the
probability that either choice’ (ml) or choice (m2) is equal to k and that k is furthermore
selected by process jp’m. Since k is a descendant of m, it can be a descendant of only
one of ml, m2. Without loss of generality, let us assume that k is a descendant of m.
By the induction hypothesis, the probability that choice’ (m)= k, is

Aik" sum (ml)"

By the code ofjpm the probability that choice (m) choice (m) is

sum (m)
sum’ (m) + sum’ (m2)"

The probability that choice’(m)- k is equal to

A,k" (sum’ (m,)+sum (m2))

which is the product of the above two probabilities. But sum (m)+sum’ (m2)--
sum (m) to(m).
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To finish the proof of the lemma, we apply the result of the claim for m being
the root of the tree and note that

o(m) <= o(a,). D

4.4. Low level synchronization procedures. The following are the low level syn-
chronization procedures used by the poller algorithms:

procedure aski (target)
BEGIN

Qi,target
WHILE mtarget,i--0 DO noop
Qi,target 0;
WHILE Atarget,i DO noop

END

The setting of the flag Qi,target to means that asks the target. If the target detects
Qi,target= then it answers positively by setting Atargct, 1. Both partners reset these
flags to 0 at the end of procedure ask and respond. We assume at time 0 these flags
are initially 0.

procedure respondi (asker)
BEGIN
LOOP UNTIL Qasker,
BEGIN
Ai,r-WHILE Qar, DO hoop

Ai,asker 0
END

END

Let s be the maximum number of steps we are allowed to keep the channel open
before we fail. We finally present the code for the procedure ESTABLISH-
COM (target,s). During its execution process opens its channel to process target.

procedure ESTABLISH-COM (target,s)
BEGIN
OPEN CHANNELi.targt
DO s-2 noops
CLOSE CHANNEL,targt

END

The procedure OPEN CHANNELi,targt results is the appearance of ,, target at the
time of its execution, and CLOSE CHANNEL,targt sets 4*, target.

5. Correctness properties of our proposed implementation and time analysis.
LEMMA 5.1. The implementation guarantees, a partial matching with respect to the

relation .
Proof. For the sake of contradiction, assume that there is a > 0 and processes i,

j, k such that i,,,tj and i,,, k. This implies that at time both poller subprocesses
cpj and Cp’k have the corresponding marriage variables set and the channel open. But
this is impossible, because the supreme judge subprocess does not allow more than
one marriage variable to be on at the same time.

A subprocess Cpk gets the channel when it executes ESTABLISH-COM (k)..
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LEMMA 5.2. Death ofa process does not affect the communication ofother processes.
Proof Death of process "target" at any time will only cause blocking of only the

subprocess Cptarset per neighbour oftarget. This does not disrupt the other subprocesses
of the neighbours, l-1

LEMMA 5.3. Suppose that i, j start to be mutually willing to communicate at some
time and continue to be willing for 5 local rounds. Then all four subprocesses cpj,, cpj
and cp, CP/2 (with jl mod v =j2 mod v =j and il mod v i2 mod v i) will arrive in the
queues of and j in 5 local rounds.

Proof Note that at each time the slower of i, j will do only one step in the busy
waits of procedures ask or respond. The result follows simply by counting the steps
to be executed in each of the procedures. [3

Let Ao be the current estimation by of the ratio of steps of per step of j as
provided by the process ep. As we noted in 4.2, execution of ep assures that
A0 is (within a factor of two) the actual speed ratio of processes and j. Let pi be the
ratio 1/(to(Ai)A). In the following we assume that the oracle M is tame with respect
to processes i, j in the time interval T they attempt communication.

Let S0, be the average number of steps that cpj makes before it is selected to
attempt communication, measured from the time it enters the queue.

LEMMA 5.4. Let Aj be the most current estimation used in the last competition in
which cp was the winner. Then S# <-_ 2vc2A0, where c2 4v(ceil + as definedpreviously).

Proof The probability that cpj is the winner, each time it participates in the
contest, is at least pi by Lemma 4.2. Let x be a random variable which counts the
number of selections done before cpj is selected. Then, prob {x t}_-< (1-p) t. The
mean value of x is

t.prob{x=t}=<--.
t=o Pij

Each time cpj is not chosen, it waits in the queue Q for an average number of steps
bounded above by

20 2tC2, C2AkPk <-----------.
=

So

1 (,,2 vc,_

pj \to(A)/= 2vc2A"

LEMMA 5.5. The relative position of the time intervals during which the channels of
two neighbour processes are open, is a uniform independent random position and is not

affected by the oracle .
Proof By assumption, the oracle sets the speeds of processes at time 0 and cannot

affect their independent .probabilistic choices. Furthermore, in our algorithms, each
subprocess Cp’k of a process goes through a random wait of sufficient length before
each return to the queue of process i. In particular, the mean length in steps of waiting
interval is the mean number of local rounds to attempt communication. As a con-
sequence, random waits are uniformly distributed in this interval. [3

Let process Cpk be in the queue Qi if Q(k)= 1. Let A 2v(1 + v/2ce).
THEOREM 5.1. Each subprocess expects to get the channel at least 1/ A of the time.

Proof Let SQ,k be the average number of steps Cpk attempts to communicate by
executing ESTABLISH-COM. Let Aik be the estimation used in the last competition
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in which the judges selected Cp’k to be the winning process. By Lemma 5.4 and since

2v

For any time interval T, let TQ,k be the subinterval of T in which cp get the channel.
Let 8 be the mean speed of process during T. Let tx mean (length T,k)/length (T)).
By Lemma 5.5, our algorithm introduces uniform random translations in time. Then

length
So,klength (T)

and length(T)8= (S’
kF

where F is the set of indices of subprocesses contending in the queue. Clearly, the
worst case contention happens when all 2v subprocesses are in the queue. Also, the
length of T is the sum of time in channel for each process plus the time of competition
for each process. In the case where process is the fastest and all neighbours slow
down with the same worst case acceleration a, So,k is the same for all subprocesses
in the queue. Hence,

2v

length (T)
k=l

implying

S,kIx>--
k (1 +/3/S’O,k) 2V(1 + V/2Oe)

since/3/ SQ,k <= V/2Ot. l-]

Note that the above theorem justifies the use of the estimate (A. o(A))- as the
probability to select the subprocess cp’ from the queue.

In the following we assume _-< i, k’ _-< v and k k’ + v. Thus cp’, is the asker and
cp is the responder.

LEMMA 5.6. Theprobability ofinstantaneous overlap ofopen channels ofsubprocesses
’andcp cp is at least 1/ h

Proof. By Theorem 5.1 and Lemma 5.5. l-1

Let success in communication between and k’ be an overlap of open channels of
and k’ for at least one step of both processes i, k’. A phase of subprocess cp’ is a

random wait, a handshake with cp’a wait in queue and a communication attempt.
Let /min /2h -.
THEOREM 5.2. The probability ofsuccess in communication in a phase ofsubprocess

cp’ is at least /m.
Proof. When the subprocess cp’ opens its channel, the number of steps done from

the time of the estimation of A, used in the selection process of the judges, is
/3 6 log (2v) and hence, since A, >_ 1, the new speed ratio can be A, + a/3 --< (a/3 + 1)A
in the worst case.

In the case where process is the fastest and process k’ slows down continuously
with the maximum acceleration, process will do more and more steps per step of k’.
This case is the worst case, since it gives an upper bound to the number of steps during
which cp, has its channel open, in order to guarantee that cp’ will make at least 2
steps. In this case, a communication attempt of c=A, time slots where c_ 4(a3 + 1)
guarantees that cp’ will make at least 2 steps during the time cp has its channel open.
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Note the independent random relative position to these steps with respect to Cpk S

steps (due to independent random waits in the poller subprocesses’ algorithms). Thus,
given that there is an overlap, the probability is at least 1/2 that the length of the
overlap is at least step.

Hence, by Lemma 5.6, there is an overlap and its length is at least one step of
both processes with probability at least 1/2.1/A2. [-’]

Note that the above theorem justifies the selection of the constant c2 4(aft / l)
in the communicators’ algorithm.

Let be the class of oracles for which the out-valence of each node of Gt is v
for all t. This class of oracles creates the maximum contention and gives the worst
relative response time.

Let qik(h/.) be the probability that it takes exactly h phases for subprocess Cpk

tO communicate with cpk’.
Let Ymax 1/(2v)2.
LEMMA 5.7. For any oracle ,

q,k(h/d) < (1 ’)/min) h-I

For oracles

q,k(h/M) <-- min)h-I
’)/max"

Proofi Since in each phase, the probability of successful communication is at least

Ymin and at most l, we get
q,k(h/) <= (1 7min) h-l

by an application of Bayes’ theorem of conditional probabilities.
For oracles in class c, by Theorem 5.2 the probability of successful communication

in-a phase is at least 7min. Furthermore, this probability is at most 7max, due to the
contention of all 2v processes in any communication attempt.

Let E, be the event "cp does not succeed in communicating with cp k’ at phase m".
Let H,, be the intersection event i Ei.
Let E,, be the complement of E,.
Let Ho be the empty event.
Then for e c

q,(h/)= Prob (E,,,/Hm_,) Prob (h/H-).

But Prob(Em/Hm_l)<=l-Ymin for any m and Prob(Ek/Hk_l)<--Ymax Hence,
qik(h/c)(1--)tmin)h-l/max

By using the above lemma and known expressions (see Feller [1966]) for the mean
and the tail of a geometric we get

LEMMA 5.8. For oracles in c

LEMMA 5.9. For oracles in c

where

re, 0<z e <z 1, Prob (h > hmax(e)} e

hmax(8
log (’Ymin e) log Ymax

log Ymin)
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Note that, by Lemma 5.1 and Theorem 5.1 in the worst case relation of speeds of
processes i, k, the total length in steps of a phase of subprocesses Cpk is the number
of local rounds in the random wait plus the number of local rounds up to the end of
the communication attempt. This sum is c 2(2v+ 1)c2.

This justifies the use ofthe constant c in our algorithms for the poller subprocesses.
THEOREM 5.3. For the worst case of any "adverse" oracle M, the mean number of

local rounds to achieve communication is

’max 2()<----ct __’7i’-= 4cA "" O(1)6 log v)
’min

and the e-response of the presented implementation of VS-DCS is

S(e)<-c, hmax(e) O(vSa log v log ).
Proof. By the previous remark and the fact that

hmax(e)
log (’min e/’max) log(e (1 +-a))log (1- 1/A 2) A2 -! v

2v+ log e- 1+-a 13

6. Conclusion. We have utilized new adaptive techniques to deal with arbitrary
speed variability. Since we have assumed global parameters a and v to be constant,
by Theorem 5.3 our VS-DCS system has relative real time response. Our restrictions
on processors rates are much less than in our previous work described in Reif and
Spirakis [1984], [1984a]. Furthermore, the algorithms given in this paper are more
modular and simple in design.
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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY
AND ITS APPLICATIONS*

HIROSHI IMAIf, MASAO IRIf AND KAZUO MUROTA"

Abstract. We extend the concept of Voronoi diagram in the ordinary Euclidean geometry for n points
to the one in the Laguerre geometry for n circles in the plane, where the distance between a circle and a
point is defined by the length of the tangent line, and show that there is an O(n log n) algorithm for this
extended case. The Voronoi diagram in the Laguerre geometry may be applied to solving effectively a
number of geometrical problems such as those of determining whether or not a point belongs to the union
of n circles, of finding the connected components of n circles, and of finding the contour of the union of n
circles. As in the case with ordinary Voronoi diagrams, the algorithms .proposed here for those problems
are optimal to within a constant factor. Some extensions of the problem and the algorithm from different
viewpoints are also suggested.

Key words. Voronoi diagram, computational geometry, Laguerre geometry, computational complexity,
divide-and-conquer, Gershgorin’s theorem

Introduction. The Voronoi diagram for a set of n points in the Euclidean plane
is one of the most interesting and useful subjects in computational geometry. Shamos
and Hoey [15] presented an algorithm which constructs the Voronoi diagram in the
Euclidean plane in O(n log n) time by using the divide-and-conquer technique, and
showed many useful applications. Since then, various generalizations of the Voronoi
diagram have been considered. Hwang [6] and Lee and Wong [10] considered the
Voronoi diagrams for a set of n points under the Ll-metric, and the L1- and Lo-metrics,
respectively, and gave O(n log n) algorithms to compute them. Lee and Drysdale [9]
studied the Voronoi diagrams for a set of n objects such as line segments or circles,
where the distance between a point and an object is defined as the least Euclidean
distance from the point to any point of the object, and therefore the edges of these
Voronoi diagrams are no longer simple straight line segments but may contain fragments
of parabolic or hyperbolic curves. They gave an O(n(log n)2) algorithm to construct
these diagrams, and Kirkpatrick [7] reduced its complexity to O(n log n).

Here we extend the concept of usual Voronoi diagram in the Euclidean geometry
for n points to the one in the Laguerre geometry for n circles in the plane, where the
distance from a point to a circle is defined by the length of the tangent line. Then the
edges of these extended diagrams are simple straight line segments which are easy to
manipulate. We show that there is an O(n log n) algorithm for this extended case.

In spite of the unusual distance employed here, the Voronoi diagram in the
Laguerre geometry can be applied to solving efficiently a number of geometric problems
concerning circles. By using this extended Voronoi diagram, the problem of determining
whether or not a point belongs to the union of given n circles can be solved in O(log n)
time and O(n) space with O(n log n) preprocessing. We can also solve the problem
of finding the connected components of given n circles in O(n log n) time, which can
be applied to a problem in numerical analysis, namely, estimating the region where
the eigenvalues of a given matrix lie [4]. The problem of finding the contour of the
union of n circles can also be solved in O(n log n) time, which can be applied to image
processing and computer graphics. As in the case of the problems connected with the

* Received by the editors December 15, 1981, and in final revised form August 20, 1983.
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ordinary Voronoi diagram, the methods proposed here are optimal to within a constant
factor.

Some further generalizations of the problems and the algorithms from different
viewpoints are also suggested.

1. Laguerre geometry. Consider the three-dimensional real vector space R3

where the distance d(P, Q) between two points P= (xl, yl, Zl) and O (x2, y2, z2) is
defined by d2(P, Q) (Xl- x2) +(y- y)-(z- z). In the Laguerre geometry [1],
a point (x, y, z) in this space R3 is made to correspond to a directed circle in the
Euclidean plane with center (x, y) and radius Izl, the circle being endowed with the
direction of revolution corresponding to the sign of z. Then the distance between two
points in R3 corresponds to the length of the common tangent of the corresponding
two circles. Hereafter we consider the plane with distance so defined. Note here that,
so long as the distance dL(Ci, P) between a circle Ci C(Q; r) with center
and radius r and a point P (x, y) is concerned, the direction of the circle has no
meaning since the distance dL(C, P) is expressed as

2(1) d2(C,, P) (x- x,) +(y- y,)Z- r,,

d(C, P) being the length of the tangent segment from P to C if P is outside of C.
Note that, according as a point P lies in the interior of, on the periphery of, or in the
exterior of circle Ci, d2(C, P) is negative, zero, or positive, respectively. The locus of
the points equidistant from two circles C and C is a straight line, called the radical
axis of C and Cj, which is perpendicular to the line connecting the two centers of C
and Cj. If two circles intersect, their radical axis is the line connecting the two points
of intersection. Typical types of radical axes are illustrated in Fig. 1. If the three, centers

(a) (b} (c}

(Ci :Cj) (Cj’Ck)

(Ck,C
(d)

FIG. 1. Radical axes and radical centers.
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of three circles Ci, Cj and Ck are not on a line, the three radical axes among Ci, Q
and Ck meet at a point, which is called the radical center of Ci, Cj and Ck (see Fig. 1 (d)).

2. Definition of the Voronoi diagram in the Laguerre geometry. Suppose n circles
Ci C Q; r) Q (x, y)) are given in the plane, where the distance between a circle
C and a point P is defined by dL(Ci, P) as in 1. Then the Voronoi polygon V(C) for
circle C is defined by

(2) V(C) {pR21d2L(C,P)<-_d2L(C,P)}.

Note that the inequality d2c(C, P) _-< d2c(C, P) determines a half-plane so that V(Ci)
is convex. However, note also that V(C) may be empty and that C may not intersect
its polygon V(C) when circle C is contained in the union of the other circles. The
Voronoi polygons for n circles Ci (i-- 1,..., n) partition the whole plane, which we
shall refer to as the Voronoi diagram in the Laguerre geometry (see Fig. 2). A corner
of a Voronoi polygon is called a Voronoi point, and a boundary edge of the Voronoi
polygon is called a Voronoi edge. Furthermore, a circle whose corresponding Voronoi
polygon is nonempty (empty) is referred to as a substantial (trivial) circle. In Fig. 2,
circle C3 is trivial and all the others are substantial. It is also seen that, in Fig. 2, circle
C2 has no intersection with V(C2). A circle that intersects the corresponding Voronoi
polygon is said to be proper, and a circle which is not proper is called improper. The
following is immediate from the above definitions.

/

/v(ce
7)

FIG. 2. Voronoi diagram in the Laguerre geometry.

LEMMA 1. (i) A trivial circle is necessarily improper.
(ii) An improper circle is contained in the union of the proper circles.

Obviously, if ri 0 for all i, the Voronoi diagram in the Laguerre geometry reduces
to that in the ordinary Euclidean geometry.

In a Voronoi diagram in the Laguerre geometry, a Voronoi edge is (part of) a
radical axis and a Voronoi point is a radical center. Since the diagram is planar, and
Euler’s formula [5] still holds, we have

LEMMA 2. There are O(n) Voronoi edges and points in the Voronoi diagram in
the Laguerre geometry for n circles.

In the case of the Voronoi diagram in the ordinary Euclidean geometry for n
points P (i--1,..., n), the Voronoi polygon V(P) is unbounded iff point P is on
the boundary of the convex hull of the n points Pi, but, for the Voronoi diagram in



96 HIROSHI IMAI, MASAO IRI AND KAZUO MUROTA

the Laguerre geometry for n circles C with center Q, this statement needs some
modification, as in Lemma 3 below. In Fig. 3, the center Q2 of C2 lies on the boundary
of the convex hull of the centers, but V(C2) is empty.

/" v(c3

FIG. 3. Relations between the convex hull and Voronoi polygons.

LEMMA 3. In the Voronoi diagram in the Laguerre geometry, the Voronoi polygon
V( Ci) is nonempty and unbounded if the center Qi of the circle Ci is at a corner of the
convex hull of the centers Qi,. Q,. Furthermore, if the center Qj of a circle Cj is on
the boundary of this convex hull but not at a corner, its Voronoi polygon V(C) is either
unbounded or empty. If the center Qk of a circle Ck is not on the boundary of this convex
hull, its Voronoi polygon V( Ck) is either bounded or empty.

Proof. Consider the Voronoi diagram in the Laguerre geometry for n circles
Ci(Qi; ri) (Qi=(x, y); i= 1,..., n), where we can assume y yi (i ]) without loss
of generality. First recall (cf. (1), (2)) that a point P=(x, y) belongs to V(C1) iff

d2(C1, P) --< d(C, P), 1, , n,

(3)

where

(xi- x)x + (Yi- Y)Y <= Ri, i=l,...,n,

2_ x- y2+ r21)/2.Ri (xZi + y- r

Next, note that the center Oa of Ca lies on the boundary (including the corners) of
the convex hull of { Oli 1,. , n} itf

(4) :l(a, fl)( (0, 0)): a(x,-xa)+(y-yl)<=O, i=l,...,n,

since all the centers O (i= 2,..., n) lie on one side with respect to a line passing
through (xa, Yl).

Suppose that V(Ca) and (Xo, Yo) E V(Ca). Then, V(Ca) f) is unbounded
itt a half line starting from (Xo, Yo) is contained in V(Ca), i.e.,

=l(a,/3)( (0, 0)), VM(>0): (x, y)=(xo+Ma, yo+Mfl) satisfies (3),
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which is easily seen to be equivalent to (4) above, so that V(C1) # ) is unbounded
iff the center Q1 of C1 lies on the boundary of the convex hull.

When the center Q1 lies at a corner of the convex hull, there exist two distinct
pairs of (a,/3), say, (al,/31) and (a2,/32) such that (4) holds and that the vectors
(xi-xl, Yi-Yl) (i=2,..., n) can be represented as linear combinations of (al,/31)
and (a2,/32) with nonpositive coefficients one of which is strictly negative. The assertion
that V(C1)# easily follows from the fact that (3) holds for (x, y)=(Ma, Mfl) with
a sufficiently large M(>0), where (a,/3) (al + a2,/31 +/32).

3. Construction of the Voronoi diagram in the Laguerre geometry. We shall
show that the Voronoi diagram in the Laguerre geometry can be constructed in
O(n log n) time. The algorithm is based on the divide-and-conquer technique, which
is very much like the one proposed initially by Shamos and Hoey [15] in constructing
the Voronoi diagram in the ordinary Euclidean geometry for n points, but which is
different in some essential points. We shall briefly review Shamos and Hoey’s algorithm
first, and then explain the difference.

Shamos and Hoey’s algorithm works as follows. For a given set S {P1, P2," , Pn}
of n distinct points, we sort them lexicographically by their (x, y)-coordinates with
the x-coordinate as the first key. Then, renumbering the indices of the points in that
order, we divide S into two subsets L {P1, P2," ", Pin and R {P[n/2]+l," ", P,}.
We recursively construct the Voronoi diagrams V(L) and V(R) for points in L and
R, respectively, and merge V(L) and V(R). If we can merge V(L) and V(R) in O(n)
time, the Voronoi diagram V(S) can be computed in O(n log n) time.

By virtue of the manner of partitioning S into L and R, there exists a unique
unicursal polygonal line, called the dividing (polygonal) line, such that every point to
the left [right] of it is closer to some point in L [R] than to any point in R [L]. Once
this dividing line is found, we can obtain the diagram V(S) in O(n) time simply by
discarding that part of Voronoi edges in V(L) and V(R) which lies, respectively, to
the right and to the left of the dividing line.

Hence, the main problem in merging V(L) and V(R) is to find the dividing
polygonal line in O(n) time, which is actually possible by virtue of the following
properties (Lemmas 4 and 5) of the dividing line.

LEMMA 4. The dividing line is composed of two rays extending to infinity and some

finite line segments. Each element (a ray or a segment) is contained in the intersection

of V(Pi) in V(L) and V(P) in V(R) for some pair of Pi L and P R and is the
perpendicular bisector of Pi and P. Iq

LEMMA 5. Each of the two rays is the perpendicular bisector of a pair of consecutive
points on the boundary of CH(S), the convex hull of points of S, such that one is in L
and the other in R.

Lemma 4 implies that, given a ray, we can find the dividing line in O(n) time by
tracing it from the ray to the other by means of a special scanning scheme, i.e., by the
clockwise and counterclockwise scanning scheme [9]. Lemma 5, on the other hand,
enables us to find a ray in O(n) time from CH(S), which, in turn, can be found in
O(n) time from CH(L) and ell(R) [14], [15].

Most of the above ideas for the Euclidean Voronoi diagram, with suitable modifica-
tions, can be carried over to obtain an efficient algorithm for constructing the Voronoi
diagram in the Laguerre geometry for n circles C(Qi; r) as follows.

The first problem is how to partition the set of given circles into two subsets. We
partition the set S of n circles C into two sets L and R with respect to the coordinates
of the centers Q of C. That is, we sort centers Q (i= 1,..., n) lexicographically by
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their (x, y)-coordinates with the x-coordinate as the first key and divide them into
two subsets. Then, the locus of points equidistant (in the Laguerre geometry) from L
and R, which we call the dividing line (see Fig. 4), enjoys the same property as in the
Euclidean case, as stated below.

I

FIG. 4. Merging the Voronoi diagrams in the Laguerre geometry.

LEMMA 6. The dividing polygonal line is unicursal, consisting of two rays and
several finite line segments. Every point to the left [right] of this polygonal line is closer
(in the sense of the Laguerre geometry) to some circle in L [R ] than to any circle in R ILl.

Proof. By rotating clockwise the axes, if necessary, by a sufficiently small angle,
we can assume that x # xj (i# j). Then there exists no Voronoi edge parallel to the
x-axis.
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It suffices to prove that, for any t, there exists one and only one intersection point
P (s, t) of the dividing line with the line y t, i.e,, the dividing line is monotone and
hence unicursal. By the assumption that xi # xj (i# j), there exists at least one such
point P= (s, t), since the point (-oo, t) is nearer to L than to R whereas the point
(+oo, t) is nearer to R than to L.

For such a point P=(s, t) let Ci(Qi; ri) be the circle in L that is nearest to the
point P and Cj(Q; r) the circle in R that is nearest to P. Since x < x, we see by
elementary calculation that, for some e > 0,

(5) (s+ e, t) V(C) and (s- e, t) V(Ci).

Suppose that there were more than one intersection point, say, P1-" (S1, t), P2-"
(s2, t),. , Pk (Sk, t) (Sl < S2 <" < Sk; k >- 2). It follows from (5) that the points
(s, t) with s Sl + e < s2) are nearer to R than to L, whereas the points with s s2- e
(> sl) are nearer to L than to R. Therefore, there exists one and only one intersection
point P (s, t) of the dividing line with the line y t. The Lemma then follows by the
continuity arguments. [3

It should be noted that the property of the above Lemma 6 does not hold for the
Voronoi diagram for line segments, i.e., that there may appear an "L-island" in the
R-region and vice versa, which makes the problem quite complicated [9].

The second problem is to trace the dividing line from a given ray to the other ray
in linear time. Since a statement similar to Lemma 4 holds for the Voronoi diagram
in the Laguerre geometry, we can simply utilize the ordinary clockwise and counter-
clockwise scanning scheme by taking advantage of the fact that the Voronoi edges are
straight lines.

The last problem is to find a ray in O(n) time. The ray is found just as in the
ordinary Voronoi diagram from the convex hull of the centers (cf. Lemma 5), provided
that the new hull edge is not degenerate (i.e., not collinear). In the degenerate case,
however, the property of Lemma 5, as it stands, does not necessarily hold, and
something more is needed. For example, consider the case shown in Fig. 5(i), where
one of the new hull edges is degenerate. Let be the line of the new degenerate hull
edge of the convex hull of the centers. Even if Q4 and Q5 are the closest pair of centers
on such that C4 e L and C5 e R, the radical axis of C4 and C5 does not appear in the
Voronoi diagram (Fig. 5(ii)). In place of Lemma 5, we have the following Lemma 7
in the Laguerre geometry.

LEMMA 7. Consider the line of the new hull edge (in the degenerate case, edges)
of the convex hull of the centers Q1, Q,. Let L and R be sets of circles in L and
R, respectively, with their centers on I. Let C, LI L and C, R

_
R be two circles

which have the corresponding Voronoi edge e* in the Voronoi diagram V(Lt U R) in
the Laguerre geometry for the subset Lt I..J Rt of circles. Then, e*, which is the radical
axis of C, and Cj,, is a ray of the dividing line in merging V(L) and V(R).

Proof. From the Lemma 3, it is obvious that the two circles corresponding to a
ray ot V(L t.J R) have their centers on the boundary ot the convex hull of Q1," , Q,.
Therefore, the edge e* is the only candidate for the ray ot the dividing line. [3

In order to find the ray of the dividing line in O(n) time, we find the Voronoi
edge e* in the diagram V(LI R) for circles in L 13 R in linear time in the tollowing
way. Note that the Voronoi edges of V(L t.J Rt) are all parallel.

First, we construct the diagrams V(L) and V(R) for circles in L and in Rt,
respectively, from the diagrams V(L) and V(R), which can be done in linear time as
tollows. Considering a part of the diagram V(L) far from the line l, we see that two
circles in L share a Voronoi edge in V(L) iff they share a Voronoi edge in V(L).
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C7

C3 C6

C7

C3 C6

V(CI) v(C2) V(C3) V(C6) V(C7)

FIG. 5. Finding a ray in a degenerate case. (i) Degenerate new hull edge (Lt={C1, C2, Ca, C4},
Rt={Cs, C6, C7}). (ii) V(LU R). (iii) V(L) and V(R). (iv) V(Lt) and V(Rt).
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V(RZ)

V(C5)

V(C1) V(C2) V(C3)

V(C6) V(C7)

e*

c7

V(C4)

V(L)

FIG. 5. (cont.)

Hence, the diagram V(Lt) can be constructed simply by picking out the Voronoi edges
(rays) of pairs o circles in Lt in the diagram V(L). (In the example of Fig. 5, the
V(Lt) shown in Fig. 5(iv) by broken lines can be obtained by extending that part
(consisting of parallel lines) of V(L) which is far down to the bottom in Fig. 5(iii).)
A similar construction is valid or the diagram V(R).

Next, we can find e* from V(L) and V(Rt) in linear time as follows. Since all
the Voronoi edges in both diagrams V(Lt) and V(Rt) are perpendicular to l, we can
merge the diagrams V(Lt) and V(Rt) to obtain V(Lt U RI) in linear time in a way
similar to that in which we merge two sorted lists into a single sorted list. In the merged
diagram of V(Lt), and V(Rt), each region between two neighbouring edges is the
intersection of two Voronoi regions, one in V(L) and the other in V(R). For each
region of the merged diagram, with which is associated a pair (Ci E L, CjE R) of
circles, we examine whether or not there exists a point equidistant (in the Laguerre
geometry) rom Ci and Cj within the region; i there exists one, the radical axis o Ci
and C is the ray e*. (In the example ot Fig. 5(iv), the ray e*, lying in the intersection
of V(C3) in V(Lt) and V(C6) in V(R), is equidistant from C3 and 6"6.) Since the
number of those regions in that diagram is O(n), we can find e*, which is the ray of
the dividing line, in O(n) time. V(LtU Rt) is ready to obtain from V(Lt), V(Rt)
and e*.

Thus, it has been shown that the Voronoi diagram in the Laguerre geometry for
n circles can be constructed in O(n log n) time.

4. Applications.
Problem 1. Given n circles in the plane, determine whether a given point P is

contained in their union or not.
Once we have constructed the Voronoi diagram in the Laguerre geometry for the

given n circles Ci(i= 1,..., n), we have only to find the Voronoi polygon V(Cj)
containing P and check if P lies in Cj. If P is not in C, then for any circle C,
d(C, P)->_ d2(Cj, P)> 0, and therefore P is not in any circle. Since we can construct
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the Voronoi diagram in the Laguerre geometry in O(n log n) time, and locate a point
in a polygonal subdivision of the plane in O(log n) time and O(n) storage, using
O(n log n) preprocessing [8], [12], we can solve this problem completely in O(log n)
time and O(n) storage with O(n log n) preprocessing.

Problem 2. Partition the set of n circles into the connected components. That is,
find the connected components of the intersection graph of the n circles, i.e. the graph
whose vertices are the circles and which has an edge between two vertices iff the circles
corresponding to them intersect in the plane.

This problem arises in numerical analysis when we estimate the eigenvalues of a
matrix by means of Gershgorin’s theorem [4]. Though the intersection graph can have
O(n2) edges, we can solve this problem in O(n log n) time as follows with the help
of the Voronoi diagram in the Laguerre geometry.

Since an improper circle is contained in the union of the proper circles (Lemma
1) and does not affect the connectedness of the other circles, we first consider only
proper circles. For the connectedness of proper circles, we have:

LEMMA 8. For any pair ofproper circles C and C’ in the same connected component,
there exists a sequence C C1, C2," , Ck C’ of proper circles such that every pair of
consecutive circles intersect each other so that they have the corresponding Voronoi edge.

Proof. Consider the connected component St which consists of proper circles and
contains C and C’. Since the union of circles in $I is a connected region and is
partitioned into CiN V(Ci) (Ci.S1)[i.e., U{CilfiSI}- U{CiN V(Ci)ICSI}], we
can take a path within this connected region from a point in C n V(C) to a point in
C’N V(C’). Considering .a sequence C CI, C2,’", Ck C’ of circles in the order
in which this path passes through C n V(C) (Ci Sz), we can see that every pair of
consecutive circles in this sequence intersect each other so that they have the corre-
sponding Voronoi edge. []

We construct a subgraph G of the intersection graph of the n circles which is
guaranteed by Lemma 8 to carry the same information as the intersection graph so
far as the connected components of the proper circles are concerned. For each pair
of proper circles (Ci, Cj) having a common Voronoi edge, we put an edge connecting
Ci and Cj in G if the two circles C and C have a nonempty intersection in the plane.
The graph G can be constructed in O(n) time since there exist only O(n) Voronoi
edges. Furthermore, the connected components of G can easily be found in O(n) time.

In order to find which components the improper circles belong to, we first make
a list of all the improper circles, among which the trivial circles are found in the course
of the construction of the diagram and the substantial but improper circles are found
by scanning all the Voronoi edges. Next, for each improper circle Ci, we find a proper
circle that intersects Ci by locating the center Qi of Ci in the diagram; if Q V(C),
then C is a proper circle that contains Q, i.e., intersects C. The set of centers of
improper circles can be located in the diagram in O(n log n) time by means of the
simple algorithm which makes use of a balanced tree [11]. Thus, the total time to find
the partition of n circles into the connected components is O(n log n).

This algorithm is optimal to within a constant factor. In fact, we have
LEMMA 9. Any algorithm which finds the partition of n circles into the connected

components makes at least II( n log n) comparisons under the linear decision tree model

A referee has kindly informed the authors that this lemma holds true not only under the linear decision
tree model but also under the more precise algebraic computation tree model, based on the recent result
by Ben-Or (see M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15thACM Symposium on
Theory of Computing, Boston, 1983, pp. 80-86).
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Proof. This follows immediately from the fact that the element-uniqueness prob-
lem, i.e., to determine whether given, n real numbers are distinct, reduces in linear
time to the connected-component problem, where the lower bound ot f(n log n) is
known for the element-uniqueness problem under the above model of computation
[3]. D

Problem 3. Find the contour of the union of n given circles in the plane.
This kind of problem is sometimes encountered in image processing and computer

graphics. First, we construct the Voronoi diagram in the Laguerre geometry for n
circles and then collect that part of the periphery of each circle Ci which lies in the
Voronoi polygon V(Ci) for i= 1,..., n. The validity of this algorithm is obvious.
Concerning the number of circular arcs on the .contour, we have the following.

LEMMA 10. The number of circular arcs on the contour is O(n).
Proof. To distinct pairs of consecutive arcs of the contour, there correspond distinct

Voronoi edges (i.e., radical axes), the. number o which is O(n).
This algorithm is optimal for the contour problem.. In fact, we have
LEMMA 11. The complexity of finding the contour of the n circles in the plane is

f(n log n) under the decision tree model.
Proof. We show that sorting n real numbers Xl, x2," , x, reduces to this problem

in O(n) time. First, find x. min (xi) and x* =max (x), and let R x*-x.>-O. Then,
consider n circles with centers (x, 0) and radii R (see Fig. 6). The contour of the
union of these circles consists of circular arcs, and the order of arcs, according to which
the contour can be traced unicursally, gives us the sorted list of n numbers.

FIG. 6. Reduction of sorting to finding the contour of the union of circles.

5. Discussion. Consider the Voronoi diagram in the Laguerre geometry for n
circles C(Qi; ri) (Qi=(x, yi); i=1,... ,n). This diagram will remain invariant if
2 2ri.(i 1,..’, n) are replaced simultaneously by r-R with some constant R; in other
words, this diagram can be regarded as the Voronoi diagram for n points Q (x, y)
in the plane where, with some constant R, a distance d(Q, P) between Q and a point
P (x, y) is defined by

2d2(Q,,P)=(x-x)2+(y- yi)2-r +R.

On the other hand, the two-dimensional section (with z =0) of the Voronoi
diagram in the three-dimensional Euclidean space for n points P (x, y, zi) (i
1,..., n) is a kind of Voronoi diagram for n points Qi (x, y) (i 1,..., n), which
we will call the section diagram (or, the generalized Dirichlet tessellation [13]), with

the distance d(Q, P) between Q and a point P= (x, y) defined by

d2(Q,,P) (x x,)2+(y- y)2+ z2
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2 2Hence, by setting r R- z with sufficiently large constant R, the algorithm we
presented here can be applied to the construction in O(n log n) time of the section
with the plane z =0 of the Voronoi diagram for n points in the three-dimensional
Euclidean space.

More generally, we can consider the section of the Voronoi diagram in the
k-dimensional space with the distance d(P, Pj) between two points, P x and
Pj x Rk, defined by

d2 P,, P) (x,- x G x, x
where G is a k x k symmetric matrix [13], [16]. We can apply the algorithm presented
here to such section diagrams even if G is not positive definite (for example, G =
diag[1,-1,-1]). Here, it should be noted that the Voronoi diagram in the Laguerre
geometry itself is the section with the plane z 0 0t the Voronoi diagram or n points
P (x, y, z) in three-dimensional space where the square of distance between two
points (xl, Yl, Zl) and (x2, Y2, Z2) is defined by (x1-x2)2+(y1-Y2)2-(zl-z2)2.
Nevertheless, it would be worth while to consider the Voronoi diagram in the Laguerre
geometry in connection with the circles since, then, the Voronoi edges and the Voronoi
points have the geometrical and physical meanings of radical axes and radical centers,
respectively.

Condutling remarks. We have shown that the Voronoi diagram in the Laguerre
geometry can be constructed in O(n log n) time, and is useful for geometric problems
concerning circles. Brown [2] considered a technique of inversion which is also useful
for geometrical problems for circles. In act, it can be applied to the problems treated
in the present paper. However, our approach is intrinsic in the plane and would be of
interest in itself. We have also discussed the relation between the Voronoi diagram in
the Laguerre geometry and the two-dimensional section o the Voronoi diagram in
the three-dimensional Euclidean space.

Aeknowletlgment. The authors thank the referees for many helpful comments,
without which the paper might have been less readable.
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AN EFFICIENT FORMULA FOR LINEAR RECURRENCES*

CHARLES M. FIDUCCIAt

Abstract. The solutions to a scalar, homogeneous, constant-coefficient, linear recurrence are expressible
in terms of the powers of a companion matrix. We show how to compute these powers efficiently via
polynomial multiplication. The result is a simple expression for the solution, which does not involve the
characteristic roots and which is valid for any module over any commutative ring. The formula yields the
nth term of the solution to a kth order recurrence with O(/(k). log n) arithmetic operations, where (k)
is the total number of arithmetic operations required to multiply two polynomials of degree k-1. Thus if
the ring supports a fast Fourier transform, then O(k. log k. log n) operations are sufficient to compute the
nth term.

Key words, linear recurrences, difference equations, companion matrices, algebraic complexity, poly-
nomial arithmetic, fast algorithms, parallel algorithms

1. Introduction. Let the infinite sequence Fo, F1, F2," be a solution to the kth
order linear recurrence

(1.1) Fn+k CoFn + C1fn+1.3v....3t. Ck_lFn+k_l.

Given the coefficients, the initial values and an arbitrary natural number n, we
wish to compute efficiently the nth term Fn without computing all terms which precede
it. Toward this end, let F[i :] denote the row vector [F, F+I, , F]. Equation (1.1)
can then be written in the vector-matrix form

(1.2)

where C is the k x k companion matrix

F[n+l:n+k]=F[n:n+k-1]. C,

1
C

1
C= 1 c2

1 Ck-1

From (1.2) we see that, in terms of the initial values F[0: k-1], we have

(1.3) F[n:n+k-1]=F[O:k-1]. Cn.
If in (1.3) we let n range over all multiples of k, the entire solution F[0:oo] can

be written as the infinite matrix equation

(1.4) F[0: oo] F[0: k 1]. C*,

where, by definition, C* is the k x c matrix

(1.5) C*=[I Ck C2k C3k "].

Equation (1.4) shows that any solution to (1.1) is a linear combination

(1.6) Fol +"" + Fk-lflk,

* Received by the editors February 3, 1983, and in revised form September 19, 1983. A preliminary
version of this paper was presented at the Twentieth Annual Allerton Conference on Communication,
Control and Computing, Monticello, Illinois, October 1982.

t General Electric R & D Center, Schenectady, New York 12345.
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where/3i, henceforth called the ith basic solution, is the ith infinite row of C*. This
terminology is suggested by the fact, evident from (1.6), that/3i is the solution to (1.1),
when F[0: k-1] is taken as the ith vector of the standard basis.

We also see from (1.3) that the nth term Fn of a solution is the inner product of
the vector of its initial values times the first column of Cn. Because the inner product
is easy, we will confine our attention to’computing the first column of the matrix power
C

In any semigroup, the nth power x" of an element x can be computed with at
most 2. log n semigroup multiplications by the well-known method of repeated squaring

x" (x"), x"+ x(x"), x x.

Urbanek [4] suggests this approach for computing F, with O(k3. log n) arithmetic
operations, by using the classical O(k3) algorithm to multiply k k matrices. Gries
and Levin [3] give more efficient recursive formulas for computing the required entries
on C" with O(k2. log n) operations; unfortunately, their method sheds no light on
what these entries are.

We show that, for the purpose of computing the nth power of a companion matrix
C, indeed any polynomial p(C), matrix multiplication can be replaced with modular
polynomial multiplication. This not only reveals what the entries of p(C) are, but also
yields a simple expression for the nth term F,. Unlike existing formulas, such as the
well-known one for the nth Fibonacci number, no characteristic roots are required.
The new expression immediately explains the result of Gries and Levin, gives a more
efficient O(ka’59 log n) algorithm, and yields an O(k.log k.log n) algorithm over
rings that support an FFT (fast Fourier transform).

2. Arithmetic with a companion matrix. In the sequel, the underlying scalar
domain, from which the coefficients of the recurrence are taken, is assumed to be an
arbitrary commutative ring K with 1. As usual, K[X] denotes the ring of polynomials
over K, while K[X]/(f(X)) denotes the ring of polynomials modulo the monic
polynomial

(2.1) f(X) Xk -(Co+ caX +... + Ck_axk-a).
For concreteness, we view K[X]/(f(X)) as the set of all polynomials of degree less
than k in which arithmetic is done modulo f(X). Doing arithmetic in K[X]/(f(X))
is then equivalent to doing it in K[X] and taking the result modulo f(X). To avoid
the repeated use of the operator rood f(X), the congruence class in K[X]/(f(X))
containing X will be denoted by :. This means that for any p(X) in K[X], the element
p(:) in K[X]/(f(X)) "is" p(X)mod f(X). In particular, f(:)=0; so that

(2.2) k CO ._ C1:._, .. Ck_lk-1.
It is well known that f(X) is the characteristic polynomial of the companion

matrix C; so that f(C) O. Since the characteristic polynomial of a companion matrix
"comes free", from its last column, one obvious way to compute C is first to use the
method of repeated squaring to compute X mod f(X)= := r(:), say, and then to
compute r( C) C.

The problem thus reduces to doing fast multiplication in K[X]/(f(X)). This can
always be done with O(k2) operations, by doing one multiplication and one division.
Modular multiplication can, in fact, be done much faster. Indeed, it has the same
complexity as polynomial multiplication, because division is reducible to multiplication
[1]. We will henceforth let /(k)= (k, K) denote the total number of arithmetic
operations required to multiply two polynomials of degree k-1 in K[X]. We note
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[1], [2] that/z(k) O(k1"59) for any ring K, and that/x(k) O(k. log k) if K supports
an FFT or any Vandermonde transform [2]. For our purposes, the most relevant result
is the following"

Fact. X rood f(X)= n can be computed with O(/z(k) log n) operations.
Returning to the computation of C, we see that once r(:) has been computed,

we can then compute C r(C), with an additional O(k3) operations, by using Horner’s
rule and the fact that, owing to its sparseness, C can be multiplied by any k x k matrix
with O(k2) operations. This yields an O(tz(k) log n + k3) algorithm for computing
C. A slight improvement is possible because polynomials p(C) of low degree are
sparse; we need not pursue this, however, for we will show that C can be computed
with only O(/z(k). log n + k) operations. In fact, if our only interest is to compute
the nth term F, we need not compute C at all, as we will shortly derive an efficient
polynomial expression for any desired column of Cn.

This more efficient method is based on a simple lemma from Fiduccia [2]. Consider
the equivalence between K[X]/(f(X)) and K k (obtained by choosing the basis 1, :,
so2,..., :k-1 for the former and the standard basis for the latter) that identifies
p(:)=p0+pl:+. "+Pk_lk- with its column vector of coefficients /=
[Po Pl’’" Pk-1]. Formally, this equivalence is given by

(2.3) p(:)=[1 : :2 :k-1]./3"
We shall henceforth make no distinction between p() and/, calling them equal. This
gives us the benefits of both matrix notation and polynomial notation.

We are immediately confronted with the question of which polynomial in
K[X]/(f(X)) is equal to the vector C./ in K k. The following lemma shows that
pre-multiplication by the matrix C is equivalent to multiplication by X mod f(X).

LEMMA 2.1 [2]. For any p() in K[X]/(f(X)), C.= p().
Proof. The proof is by direct computation of C. 16 and :p(:)= Xp(X) mod f(X).

Both computations are trivial, since C is sparse and since the second computation
requires only one step of the long division process. Alternatively, we may derive it
formally from (2.3), using the identity f(:)-0. More elegantly, and a hint of things
to come, note that the ith column of the companion matrix C is the element p(
so that C Po+" "+ Pk-1 p().

COROLLARY 2.2. For any q(X) in K[X] and any p() in K[X]/(f(X)),
q(C)./ q(:)p(:).

Proof. We use induction on the degree of q(X). Say q(X)- s(X)X+ qo; so that
q(C)’=s(C)(C.)+qo. Using Lemma 2.1 and induction, this is equal to
s()(p())+qop()=(s()+qo)p()=q()p(). V1

The reader may have noticed that we appear to be working on the wrong problem!
For if we were to take q(X) X in Corollary 2.2, we would obtain an efficient method
for pre-multiplying by C", not post-multiplying by it as required by (1.3). We resolve
this problem by using Corollary 2.2 to compute the columns of C rather than the
product itself.

COROLLARY 2.3. For any q(X) in K[X], the ith column of q(C) is q()i-1.
Proof. Choose p(:) :i-1 in Corollary 2.2; so that/ is the ith column of the k x k

identity matrix/, i.e., consider the matrix identity q(C)=q(C)I. Since the ith column
of I is p()=:i-1, the ith column of q(C), on the left, is q(C)./=q(:)p()=
q(:):i-1. [-]

PROPOSITION 2.4. For any q(X) in K[X], q(C) can be computed with N(q)+
k- 1)(2k- 1) arithmetic operations, where N(q) is the number of operations needed to
compute q(). In particular, C can be computed with O(t( k) log n + k2) operations.
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Proof. By Corollary 2.3, the first column of. q(C) is q(:); this can be done with
N(q) operations by hypothesis. Using Corollary 2.3 again, along with Lemma 2.1, the
(i + 1)th column of q(C) is C times its ith column. Each of these k 1 multiplications
by C takes at most k multiplications and k-1 additions; hence, all the remaining
entries of q(C) can be done with (k-1)(2k-1)= O(k2) operations. We know that
the first column :n of C can be computed with N(q)= O(tz(k) log n) operations;
so the total number of operations to compute all the entries of C is O(/z(k) log n +
k2).

3. An exlressn Ir F.. As previously noted, (1.3) shows that F. is the inner
product of the vector F[0: k-1] of initial values times the first column of C". By
Corollary 2.3, this column is X" mod f(X)= ". Thus if [yo,""", Y-], say, is the
coefficient vector of ", then

(3.1) F, yoFo+"" "+ Yk-lFk-1
Using the inner product operator (.,.) we obtain the simple expression:

THEOREM 3.1.

F, (lEo F_l], ) =(lEo F-l], X mod

Since the inner product can be computed with 2k-1 O(l(k)) operations, we
obtain, as a corollary, our main complexity result"

PROPOSI’ION 3.2. The nth term F of a kth order linear recurrence can be computed
with O(/x(k)" log n) arithmetic operations, where/x(k) ix(k,K) is the total number

of operations required to multiply two polynomials of degree k- 1 in K[X].
The bulk of the work is the computation of sc" X" mod f(X). We may of course

use any method at our disposal for this computation, making use of any special
knowledge about the polynomial f(X) and the base ring K. It is well-known that
solutions exist based on the roots of f(X); those solutions are, of course, equivalent
to the expression given by Theorem 3.1 after an appropriate change of basis for
K[X]/(f(X)) based on the factorization properties of f(X) over K or its extensions.

Equivalence, however, has nothing to do with complexity. Consider for example
the case when K is a field and f(X) is irreducible; so that K[X]/(f(X)) is a field of
degree k over K. The classical expression for Fn is a linear combination of the nth
power of each of the k roots of f(X). Since these roots are in K[X]/(f(X)), the nth
power of each root can be computed with O(/z(k). log n) operations; however, as
this must be done for each of the k roots, the total cost will be O(k./(k). log n).
So, even if we ignore the cost of finding the roots of f(X), the classical method is k
times less efficient than our solution; this is because we compete the nth power of
only one root of f(X)--the "symbolic" root :.

4. The universal solution. Let us delve further into other possible solutions to
(1.1) by noting that its right-hand side is simply a K-linear combination valid over
any K-module M (essentially any set closed under linear combinations). Thus, given
initial values Fo, F1,’", Fk-1 in M, the recurrence will generate a solution F0, F1,
F2," in M. This suggests that Theorem 3.1 has a more general abstract form"

THEOREM 4.1. ForanyK-linear mappingL, fromK[X]/ f(X)) into anyK-module
M, the infinite sequence L(1), L(:), L(:2), Z(:3), is a solution to (1.1) in M. All
solutions to (1.1) in all K-modules M are of this form.

Proof. It is clear from (2.2) that the infinite sequence of powers

(4.1) 1, :, :2, s3,
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is a solution to (1.1) in K[X]/(f(X)), since for all n, we have

(4.2) ,+k con + cln+l .+.. + Ck_ln+k-1.
Apply L to both sides and invoke its linearity to establish the first part of Theorem
4.1. To establish that all solutions are as claimed, let Fo, F1, F2," be a solution to
(1.1) in M. Since 1, , :2,..., :k-1 is a basis for K[X]/(f(X)), there is always a linear
mapping L such that

(4.3) L(1) Fo, L(:) F1, ,L(k-a)=Fk_l
For any element p()=po+’’’+pk_k-1 in K[X], we then have L(p(:))=
poFo+’’’+Pk_lFk_. We establish that F,, =L(n) for all n by induction. It is true
for n 0,..., k-1 by definition o L. Assume that F L(s) for all i< n + k. Since,
by hypothesis, Fo, F1, F2," is a solution to (1.1), we can substitute (4.3) into (1.1)
to get

(4.4) Fn+k coL() +’’" + Ck-lL(n+k-1).
The linearity of L and (4.2) then yield F,+k L(+k) for all n.

We again see that the nth term F, of any solution in any K-module M is

(4.5) Fn L(:") 3/oFo + 3/1El +’’" + 3/k-lFk-1,

where 3/0+ 3/1:+" + 3/k-1k-l, say. This expression is identical to (3.1), except
that the F are now arbitrarily chosen initial values in M. Note that Theorem 4.1 is
an independent abstract reaffirmation of our previous results. No appeal was made to
(basis dependent) companion matrices.

Theorem 4.1 shows that the sequence (4.1) in K(X)/(f(X)) is, in some sense,
the universal solution to (1.1), since all other solutions in all other K-modules are
linear images of it. It is interesting to pursue the reason for this universality to get an
intuitive feeling for it.

For notational simplicity, we confine our attention to solutions in K and consider
the infinite matrix equation F[0: o] F[0: k-1]. C* given by (1.4), where by defi-
nition

C*=[I C C2 C3 ...].

As previously noted in (1.6), F[0, oo] is the linear combination

Fo +...-.I- Fk_l[k,

where fl is the ith infinite row of C*. This row is the ith basic solution to (1.1)
generated by choosing the ith element of the standard basis as the vector F[0:k-1]
of initial values. Hence, the rows of C* are precisely the k basic solutions from which
all other solutions can be obtained. The universality of solution (4.1) is now evident
from Corollary 2.3; for the powers of : are precisely the column vectors of C*, i.e.,

(4.6) C*=[1 : 2 3 ...].

Consequently, as we generate the next element in the power sequence (4.1), in
K[X]/(f(X)), we are computing the next column of C*, and thus simultaneously
computing the next term of every one of the k basic solutions/31,’’’, ilk.

As an interesting application of these observations, consider the obvious shift-
register implementation of (1.1). This is shown in Fig. 1, and is valid over any K-module
M. The boxes represent delay elements (to store the current state), whose internal
labels comprise the initial state-vector of the shift-register. In this implementation, the
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)F

FiG. 1. The obvious implementation of the recurrence (1.1).

initial state consists of the initial values of the recurrence. At each step, the circuit
performs k scalar multiplications and k- 1 additions in M to compute the next term
of the single specific solution generated by the given initial values Fo,’", Fk-1.

Now consider the shift-register shown in Fig. 2, which operates strictly over the
base ring K. If its current state is a column k-vector/ff [Po,""", Pk-1], say, then its
next state will clearly be C./5. Hence, by Lemma 2.1, the shift-register’s next-state
function is multiplication by :. It follows that if its initial state is any p(:) in
K[X]/(f(X)), its state after the nth iteration will be sC"p(:). If we start it with the
initial state p(:)=[1,0, ,0]=1, in K[X]/(f(X)), it will generate the power
sequence (4.1). In particular, the infinite sequence produced at the output of the ith
delay element will be precisely the basic solution

FIG. 2. The generator of the powers 1, , 2, 3,. ..
This is interesting from a complexity viewpoint; for this "power generator"

simultaneously computes all k basic solutions to (1.1) using only k multiplications and
k-1 additions (both in K) per iteration. Moreover, this shift-register is inherently
faster than the one in Fig. 1, since that one requires at least log k time, per iteration,
to compute the term F,+k. This speed-up is accomplished at the expense of a high
"fan-out" from the last stage of the shift-register in Fig. 2.

Considering the fact that (1.1) uses 2k-1 operations to generate each term of a
solution, the above observations establish the following rather surprising complexity
result:

PROPOSITION 4.2. The first n terms of all basic solutions ill," ", fig to the kth order
linear recurrence (1.1) can be computed with (2k- 1)(n- k- 1) O(k. n) arithmetic
operations.

Proof. Follows directly from (1.5) and (1.6), because these k. n terms comprise
the first n columns of the matrix C*. Since its first k columns form the identity matrix,
start with column k / 1 (it comes free from column k of C). To generate each of the
remaining n-(k / 1) columns, pre-multiply the most current column by the matrix C;
this uses at most 2k-1 operations per column.

Since the first n columns of C* contain O(k. n) entries, this is (within a factor
of 2) an optimal algorithm for computing these terms. Note that each new term of
each basic solution fli is being computed with only one multiplication and one addition
per term. By contrast, (1.1) always uses 2k-1 operations per term, even for a basic
solution.
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Proposition 4.2 remains valid over any algebraic structure in which equations
(1.1) and (1.5) make sense; for example, the coefficient ring K may be replaced by
an arbitrary semiring. An even more general valid setting is obtained by replacing the
K-module structure by an (additive) monoid with endomorphisms.

Another interesting property of the second shift-register is that it operates indepen-
dently of the initial values Fo,’" ,Fk-1 of the recurrence. These values may be
introduced, at any time, by performing a K-linear transformation on the current
state-vector :n of the shift-register. One potentially practical bnefit of this is that at
any stage, having done the bulk of the computation, we can experiment with various
initial values, ot the recurrence, without having to restart the computation. Indeed, as
a consequence of the universality of the power sequence 1, :, :2, :3,... we may
"fan-out" the state-vector to as many linear transtormations as desired and simul-
taneously compute as many solutions, each with its own initial values, in as many
different K-modules, as desired.

5. Conclusions. We have shown that the power sequence X mod f(X), n-> 0,
plays a fundamental role in the efficient solution to a linear recurrence. This was done
both concretely, using companion matrices, and abstractly, using K-modules. In the
process, we learned how to do efficient arithmetic with a companion matrix and derived
a simple generic formula for the solution. The formula does not involve characteristic
roots and yields the nth term of a kth order recurrence with O(k. log k. log n)
arithmetic operations over any ring which supports an FFT. This is a considerable
improvement over the O(k3. log n) method and the previously best known
O(k2. log n) algorithm.

We have also shown that, unlike the obvious method suggested by (1.1), which
uses 2k- 1 operations to compute each term of a single particular solution, all k basic
solutions can be simultaneously computed with no more than two operations per term.
This k-fold speed-up is not merely an asymptotic improvement, but an honest-to-
goodness gain valid for any k.

This speed-up begs the issue of whether an algorithm exists to generate the first
n terms of a single solution with fewer than the obvious O(k. n) operations. The
author has recently established that this computation can be done with only O(n. log k)
operations, via the FFT, even for the nonhomogeneous case. Because the methods are
substantially different from those presented here, we leave it for a tuture paper.
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SPARSE SETS IN NP-P: RELATIVIZATIONS*

STUART A. KURTZ’{"

Abstract. We construct an oracle relative to which P NP and there are no sparse sets in NP-P. The
well-known construction of Baker, Gill and Solovay [SIAM J. Comput., 4 (1975), pp. 431-442] gives an
oracle relative to which there is a sparse set in NP- P. Together, these results show that simple modifications
of conventional proof techniques cannot establish whether or not sparse sets exist in NP-P, even if one
assumes P NP.

Key words, polynomial time (P), nondeterministic polynomial time (NP), sparse sets, relativizations,
oracles, forcing

1. Introduction. Relativizations in complexity theory have recently come to play
an unexpectedly important role. These results appear to be somewhat problematic to
our community: first, because the methods of proof are often highly technical and
somewhat foreign; and second, because it is not immediately obvious how these results
should be interpreted. The existence of an oracle relative to which some complexity
theoretic statement $ holds is at best weak evidence for the truth of S (as an
unrelativized statement), as frequently another oracle will exist relative to which S
fails. Further, the existence of two such oracles is not credible evidence that the
statement in question is independent of the usual formal systems of arithmetic, as
many provable nonrelativizing statements, both trivial and deep, attest.

The existence of an oracle relative to which $ holds does tell us something (beyond
the expertise of its creator at oracle constructions). Simply stated, it tells us that any
proof of S cannot be based on relativizing notions, e.g. closure conditions or uniform
enumerability.

In this paper, we construct an oracle A relative to which there are no sparse sets
in NP-P, while guaranteeing that pA NpA. The well-known construction of Baker,
Gill and Solovay of an oracle B relative to which P NP explicitly yields a sparse
(tally) set in NPB- PB. Together, in light of the preceding paragraph, these two oracles
demonstrate that no proof based solely on the assumption that P NP and basic
recursion theoretic properties of P and NP can establish whether or not sparse sets
are present in NP-P. In particular, the existence of sparse sets in NP-P cannot be
deduced from the hypothesis P NP by clever modification of Ladner’s density theorem
[La]. (The principal technique of Ladner’s proof was first used by Borodin, Constable,
and Hopcroft [BCH].) Our result shows that such techniques alone cannot suffice.

Hartmanis, Immerman, and Sewelson [HIS] have extended this work to show that
the existence of sparse sets in NP-P is equivalent to the separation of deterministic
and nondeterministic exponential time. Thus, the principal theorem of this paper is
seen, in retrospect, to be equivalent to a theorem of Book, Wilson, and Xu [BWX]
which provides an example of an oracle relative to which exponential deterministic
and nondeterministic time collapse, but P and NP are separated. Nevertheless, the
proof we use is novel, and can be applied in a variety of situations where priority
arguments have been used in the past.

We assume familiarity with the paper of Baker, Gill, and Solovay [BGS], and a
general acquaintance with Baker and Hartmanis [BH]. Hopcroft and Ullman [HU]
serves as a general reference.

* Received by the editors September 21, 1982, and in final form October 17, 1983.

" Department of Mathematics, The University of Chicago, Chicago, Illinois 60637.
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In the remainder of this paper, the [BGS] strategy will refer to the diagonalization
technique employed by Baker, Gill, and Solovay to construct an oracle relative to
which P # NP.

2. An oracle.
THEOREM. There is an oracle A such that pA NpA and there are no sparse sets

in NPA- pA.
Let LA denote the language consisting of all strings tr for which there exists a r

of the same length such that t A. In notation, LA= {tr: (l)[Itr I1&t A]}.
To ensure NP P we will construct A so that LA is not in pA. (It can be easily

seen that LA is in NPA for all oracles A.) As is often the case, a complex goal is more
easily realized if it is broken into smaller pieces. Thus, we will ensure that LA is not
in pA by satisfying each of the following requirements"

R," LAopAs

where pA is the sth set computable in polynomial time from the oracle A in some
fixed enumeration. These requirements have the advantage that the satisfaction of
each such requirement can be verified on the basis of only finitely much information
about A.

Our other goal is to ensure that there are no sparse sets in NPA- pA. To do this,
we will attempt to code the sparse sets in NPA into A so that they can be recovered
in polynomial time. Let NPeA denote the eth NPA language in some standard enumer-
ation. Let Pe denote the eth polynomial in some standard enumeration of the
polynomials. We can assume without loss of generality that NPeA is computable in
nondeterministic time Pe however, we cannot assume that we have any idea in advance
as to how sparse NpAe is. Because of this, we will need to make.infinitely many coding
attempts for every language NpAe, one for every polynomial density. Of course, once
we see that NpAe does not have a certain density (by dint of this density having been
exceeded), we need feel no compunction to continue with that particular coding
attempt.

In order to describe the coding strategy, we first describe a tripling function with
certain technically important properties. Each triple e,i,n will determine an odd integer
ke,i,n unique to it. We will use the strings of length ke,i,n to code elements of NpAe of
length n whenever there are fewer than p(n) such elements. We may assume that
ke,,,, is computable (in unary representation) in polynomial time from n (also in unary
representation) for fixed e and i, and furthermore that ke,,,, is greater than pe(n), n,
and p(n). (Such a tripling function can be implemented by a simple modification of
Rogers’ pairing function [Ro, p. 64]-r(n,m)=1/2(x2+2xy+y2+3x+y). We simply
define ke,,,, to be 2z(-(e, i), z(’(pe(n), p(m)), n))+ 1.)

Now, if NpAe has fewer than p(n) members, we will include the string tr0 k’,’,"-"

in A if and only if tr is in NpAe. Notice that because this coding string is of length ke,,,,
it can be uniquely parsed. Also notice that the inclusion or exclusion of the coding
string depends only on A restricted to strings of strictly lesser length than .tr-thus a
coding string cannot have been queried by the computation it encodes.

The construction itself is carried out in stages s e w. The purpose of the sth stage
is to satisfy the sth diagonalization requirement, i.e. to ensure that LA pA.

Each stage is a complex entity unto itself. This complexity is due to possible
interactions between the coding and diagonalization strategies. To accomplish the
diagonalization, we will want to use essentially the [BGS] strategy. The difficulty occurs
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when we attempt to set up a computation pA(n) to diagonalize against. This computa-
tion may attempt to query strings not of the form trz (z of the same length as tr). In
[BGS] such queries were harmless, conceptually because they had nothing to do with
tr’s possible membership in LA, and technically because any queries made about
undetermined strings could be immediately resolved by excluding such strings from A.

In this computation we cannot arbitrarily include or exclude such strings, as they
may be intended for encoding computations. Attempts to anticipate the coding may
fail, for the computation being encoded may be the very one we want to set up for
tr’s membership in LA--thereby thwarting our attempted diagonalization.

At this point things seem fairly grim. Nevertheless there is a solution. The critical
observation is that while we do need to do considerable coding for the coding strategy
to work, the amount of coding at each level is only linear, (in that no more than k
coding bits are required o length k) whereas the number o possible points of
diagonalization is exponential. Thus, while we are not able to choose precisely which
string tr will be used for diagonalization purposes, if we are careful, there will be such
a string.

A key idea is drawn from forcing in arithmetic. (The notion of forcing was
introduced by Cohen [Co] to establish the independence of the continuum hypothesis.
It was subsequently modified by Feferman [Fe] and others for use in arithmetic.
Jockusch [Jo] is a particularly attractive representative of current work in recursive
function theory on forcing.) We will justify our use of this terminology later. We are
working in a very simplified setting, and the sentences we force are themselves simple.
No formal acquaintance with these notions is presumed.

The construction builds A in levels. At the end of each stage s we .will have
determined precisely those membership questions about A for strings of length less
than some integer ms. By convention, and to keep notation uniform, m-1 is 0.

Each stage is divided into three phases, each with its own strategies and goals.
During the first phase, we act only to satisfy coding requirements, while extending A
to all strings of length less than some even integer m. It is our intention to arrange
that LA(tr) pAe(tr). During the second phase, we endeavor to extend A to strings of
length greater than m and less than or equal to ps(m). This is the heart of the
construction. While we extend, we need to make sure that the coding requirements
are satisfied. This is harder than it seems, because we will not have determined A for
certain strings which are shorter than those being used for coding. Somewhat remark-
ably, we can do this, at the cost o determining A or a small number o strings o
length m. (Phase I guarantees that "small" is "small enough.") During the third and
final phase, we complete the determination of A for strings of length m. It is during
this phase that we are able to apply the [BGS] strategy and guarantee that the
diagonalization requirement will be satisfied.

The construction--Stage e.
Phase I (idling). The purpose of the first phase is to gain sufficient room for the

following phases. During this phase, no attempt is made to satisfy the diagonalization
requirement. Rather, we only worry about satisfying the coding requirement. For this
reason, we referto this as the "idling" phase of this stage. Inductively, we assume that
membership questions about A have been decided for all strings of length less than
some integer ms-1. This phases consists of substages k, ms-1 <- k < m, where m is the
least even integer greaterthan or equal to m-i such that 2"/2> p(m).

Substage k. Include a string z of length k in A if and only if this is necessary to
meet the coding strategy, i.e. if k ke.i,n and there is a tr of length n in NpAe such that
"I" (7"0 ke’i’n- n.
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Phase II (forcing). This phase consists of substages, one for each k from rn + 1
to ps(m). During each substage, we completely determine all membership questions
about strings of length k in A, while endeavoring to decide as few questions about
strings of length m as possible. (Recall, we intend to win our diagonalization require-
ment at a string of length m/2.) During each substage, we will determine membership
questions in A for all strings of length k, as well as for at most k2 strings of length m.
The purpose of each substage is to guarantee that the strings of length k perform
whatever coding is required, while leaving A as undetermined as possible for strings
of length m.

If k ke,i,n, then substage k will consist of two subphases. Readers familiar with
forcing will recognize the purpose of the first subphase is to force either the statement
"NpAe contains no more than pi(n) elements of length n" or its negation, where our
forcing conditions are extensions of the determined portion of A to include new strings
of length m.

Substage k. If k does not equal ke,i,n for some choice of e, i, and n, we decide
that no strings of length k are in A, and proceed to the next substage (or to phase III
if k is Ps(m)). Otherwise, we proceed by endeavoring to include as many strings of
length n in NpAe, either until no more can be added, or until NpAe contains at least
pi(n) many such strings. To add a new element of length n to NpAe, we decide some
undecided membership questions about A for strings of length m. It is easily seen that
if we can add a string of length n to NpAe, we can do it by deciding no more than
p(m) < k many strings of length m in A. Thus, we see that no more than p2(m) many
strings of length rn were decided about A during this substage, as we added no more
than p(n)( < k <= ps(m)) many strings of length n to NPne each of which required
adding no more than Pe (n) < k <= p(m)) many strings of length m to A.

At this point, how we satisfy the coding requirement depends on the outcome of
the previous paragraph. If we arranged that NpAe contains at least p(n) many strings
of length n, then the coding requirement is trivially satisfied, as NpAe fails to meet the
sparseness condition. If, on the other hand, we did not arrange this, then no matter
how A is further extended to strings of length m, no new strings of length n will
appear in NpAe. Thus, we include a string z of length k in A if and only if z tr0k-n

for some tr of length m, such that the portion of A already determined is sufficient to
ensure that tr NpAe. Because no new strings of length m can appear in NpAe as the
result of any further action we can take, the coding requirement will be satisfied.

Phase III (diagonalization). As a result of Phase II, we easily see that at most
p3(m)(<2"/2) many strings of length m of A were decided. Thus there must be a
string tr of length m/2 such that no string of the form try-, r also of length m/2, has
been decided about A. At this point we easily utilize the [BGS] diagonalization strategy
to arrange that LA(tr) PA(tr). At this point, we can set m=p(m), and continue to
stage s + 1.

We leave to the reader the routine task of verifying that the construction achieves
what we purport it to.

3. A brief reflection. We would like to spend a moment reflecting on this con-
struction.

There appears to be considerable confusion as to what constitutes a priority
argument, a forcing argument, and a diagonalization argument. Often times, the
boundaries between these notions are imprecise, nevertheless there are certain features
of an argument that might lead one to call it one type of argument, rather than another.
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All of these constructions have the property that they are driven by attempts to satisfy
infinitely many requirements. In the cases of interest here, there are only countably
many requirements, and the satisfaction of each requirement ultimately depends on
only finitely much information about the set being constructed. All of these construc-
tions proceed in countably many stages.

The simplest of these constructions is the diagonalization. In a diagonalization,
the sth requirement is effectively satisfied during the sth stage. Furthermore, it is
possible to see effectively how each requirement is ultimately satisfied.

The next most complex type of argument is forcing. In a typical forcing construc-
tion, the sth requirement is satisfied during the sth stage of the construction, but
ineffectively. In a forcing construction, there is usually no effective way to determine
precisely how a requirement was satisfied. Forcing arguments (at least in arithmetic)
are finite extension arguments. Because of this, the boundary between forcing and
diagonalization is fuzzy indeed. Nevertheless, there is a different "feel" to simple
diagonalization requirement as opposed to a forcing construction. Because of the way
forcing the negation of a sentence is defined, a universal characteristic of forcing
arguments is that one performs an action repetitively (and often ineffectively) until
one has either performed it enough times (in which case one has forced a sentence),
or until one is no longer able to perform it (in which case one has forced the negation
of some sentence).

Priority arguments are the most complex of these types of arguments. In a priority
argument, one is attempting to construct an object with certain effectiveness properties.
This is typically not a concern in a forcing argument. This presents a real difficulty, in
as .much as one cannot usually determine effectively how a certain requirement is to
be satisfied. (In a typical case, a requirement requires one sort of action if a certain
computation converges, and another altogether different sort if it does not. Of course,
there is no effective way to ascertain whether or not a given computation will converge.)
The solution is to place a priority on the requirements so that for each requirement
there are only finitely many other requirements with higher priority. During each
stage, one endeavors to satisfy that requirement of highest priority for which decisive
action can be taken. In this attempt to take decisive action, it is important that no
action taken to satisfy requirements of higher priority be undone. (Usually one has
no recourse but to undo work done for the sake of requirements of lesser priority.)
Thus, the feel of a priority argument is completely different from either forcing or
diagonalization. Because of the dynamic nature of the construction, one cannot argue
that any specific requirement has been finally and forevermore dealt with at any point
during the construction. Only after the construction can one argue that such a point
must have arisen.

In classifying the argument of the theorem above, there is some difficulty. Certainly,
from a "stage to stage" perspective, this is nothing more than a diagonalization
proof--and in this sense nothing out of the ordinary is claimed of it. However, within
a stage, the construction is very much a forcing construction. The objection can be
raised that what we are doing could be done effectively--but only at the cost of a
rather generous notion of what is and what is not computable. Analyzing the timing
of this construction is difficult, and certain optimizations are likely, possible, but we
doubt that this construction can be carried out in time less that 222. This strains our
notion of computable. Furthermore, this construction does possess (during thesubstages
of phase II) that "do it untilyou’re done or can’t do it any more" aspect characteristic
of forcing constructions.
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Finally, we have found that the distinction between polynomial and exponential
is analogous to that between finite and infinite. This analogy has been extremely helpful
to us in discovering methods of proof---or exporting known methods from recursion
theory, in all respects, our nomenclature is derived by analogy to recursion theoretic
arguments, not from literal lemma by lemma and definition by definition translation.

4. Epilogue. The work reported in this paper set off a flurry of activity, both by
us and by Juris Hartmanis and his students at Cornell.

The oracle of the previous section came as quite a surprise, as it suggested a
"computational universe" quite different from the one we believe we live in. Hartmanis
has often described his interst in sparse sets by asking people to consider why problems
in NP are hard" is it because they contain difficult instances, or are they difficult only
in the aggregate. In the universe of this oracle, there are no difficult individual instances.

In an effort to encorporate this oracle into his world view, Hartmanis [HIS] showed
that the existence of sparse sets in NP-- P was equivalent to the separation of determinis-
tic and nondeterministic exponential time. This is a truly remarkable result. In some
sense, it can be viewed as having made the current work superfluous, as Wilson [Wi]
(see also Book, Wilson and Xu [BWX]) provides an example of an oracle relative to
which deterministic and nondeterministic exponential time collapse, while separating
NP and P. Certainly, their proof is simpler than the one presented here..

On the other hand, the method contained herein is powerful, and can be used
to prove significantly more than we stated. In particular, at Hartmanis’s urging, we
modified the proof to demonstrate the existence of oracles for which "pseudo-sparse"
sets of arbitrary sub-exponential density failed to exist in NP-P. (The modification
is technically a bit tricky, but not particularly deep.) This provides us, via a simple
padding observation of Hartmanis, with oracles relative to which NP-complete sets
have comparatively fast (2"/) algorithms. Vivian Sewelson has also provided examples
of oracles relative to which such fast algorithms exist, without eliminating the sparse
sets. Sewelson also constructed a remarkable oracle relative to which deterministic
and nondeterministic exponential time collapse, but there remain co-sparse sets in
NP-P.

We would also like to point out that the technique of our theorem can be used
to obtain nonpriority constructions of oracles relative to which (most of) the Homer-
Maass [HM] results hold. For example, a slight modification of the construction of the
preceding section yields an oracle relative to which P and NP are different, but every
infinite NP set contains an infinite P subset. Many other people have discovered
nonpriority proofs of some of the Homer-Maass results, but the original priority
constructions remain the most elegant.

Acknowledgments. We would like to thank many people for their role in this
paper, and its development. First, we want to thank the people at or visiting Cornell
during the AMS Summer Institute in Recursive Function Theory: Juris Hartmanis,
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The question of the role of relativizations in computer science has been the focus
of considerable research and discussion recently, as the power and variety of techniques
for relativization has increased dramatically. The comments at the beginning of this
paper on the role of relativizations are my own, nevertheless, they have been influenced
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ON FAULT-TOLERANT NETWORKS FOR SORTING*

ANDREW C. YAOf AND F. FRANCES YAOt

Abstract. The study of constructing reliable systems from unreliable components goes back to the work
of von Neumann, and of Moore and Shannon. The present paper studies the use of redundancy to enhance
reliability for sorting and related networks built from unreliable comparators. Two models of fault-tolerant
networks are discussed. The first model patterns after the concept of error-correcting codes in information
theory, and the other follows the stochastic criterion used by von Neumann and Moore-Shannon. It is
shown, for example, that an additional k(2n-3) comparators are sufficient to render a sorting network
reliable, provided that no more than k of its comparators may be faulty.

Key words. Batcher’s network, comparators, fault-tolerant, Hamming distance, merging, networks,
sorting, stochastic

1. Introduction. Consider sorting networks that are built from comparators,
where each comparator is a 2 input-2 output device capable of sorting two numbers
(Fig. 1). It is of interest to construct sorting networks for n inputs using a minimum
number of comparators (see Knuth [5]). It was well-known (see [5]) that at least
O(rn log n) comparators are needed, and an upper bound was provided by Batcher’s
sorting network [2] which used O(n(log n2) comparators. For a long time it remained
an open problem to determine the order of magnitude of the true minimum number
of comparators needed. Recently, Ajtai, Komlos, and Szemeredi [1 settled this problem
by giving an ingenious construction of an n-input sorting network that uses O(n log n)
comparators. In this paper we look into this problem in a new setting. Suppose that
some of the comparators are potentially faulty; how can one still design economic
networks that will sort properly? We shall assume that, for a faulty comparator, the
inputs are directly output without a comparison (Fig. 2).

min (x,y)

Y
’/

max (x,y)

FIG.

FId. 2

The study of constructing reliable systems from unreliable components goes back
to the work of von Neumann [8], and Moore and Shannon [6]. Currently, the subject
of fault-tolerant computing is an active area of research (see, e.g. [7]). The present
paper studies the use of redundancy to enhance reliability for a particular problem,
similar in spirit to the work on switching networks by Moore and Shannon [6].
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From the standpoint of analysis of algorithms, our models resemble the problem
of sorting with unreliable comparisons. In that direction, a study of binary search with
allowance for unreliable comparisons was done in [3].

2. Definitions and notation. An n-network a is a finite sequence of the form
[il jl][i2: j2]" [ir jr], where each pair Ill: jl], with 1 -< il < jt <= n, is called a compara-
tor. Any input vector x=(xl, x2,’’’, x,) R" of n real numbers is transformed into
an output vector y R" by the network a, as described below. Associate with a
comparator [i, j] the mapping from R" to R" defined by

(Xa, x2,""", x,,)[i" j] (X’l, x’2, x’.),

’= min {xi, xj}, ’= {xi, xj}. The network a thenwhere x[=x if l{i,j}, and xi x max
defines a mapping from R" into R" by successively applying the mappings induced.., and [ir" jr]. In other words, for any xR", the output y=xaby [il "Yl], [i2" Yz],
is defined by

and

X
(0)

X,

x(l)--x(l-1)[il" jl] for 1 -< <- r,

XCX X(r).

We shall represent an n-network a as shown in Fig. 3, where from left to right
each comparator lit’it] is drawn as a vertical bar connecting the ith and the jth lines.
We input x (Xa, Xz, , x,) from the left end, with line carrying xi. As a comparator
[il’j] is passed, the smaller of the two incoming numbers moves to the upper line il,
and the larger to the lower line jl (see Fig. 4 for an example). Thus, between the/th
and the (l + 1)st comparators, the number carried by line is the ith component of
the vector x/). In particular, (xa)i is the number found on line at the right end of
a. We call x/) the Ith state vector of input x relative to a.

1st line

2nd line

3rd line

4th line

FIG. 3

7 2 2

10 110

8 8 10

8

FIG. 4

A vector x (Xl, x2,... Xn) is sorted if X X2""" X A sorting network for
n elements, or an n-sorter, is an n-network a such that, for any input x R ", the
output vector xa is sorted. For instance, the network in Fig. 3 is easily seen to be a
4-sorter. For each n, let S(n) denote the minimum number of comparators required
by any n-sorter. It is known [1] [5] that, for large n, S(n) is of order n log n.
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Let us now consider the situation when "faulty comparators" may be present. As
the effect of having faulty comparators is equivalent to deleting them from the network,
an n-sorter may no longer be an n-sorter if there are faulty comparators. Indeed,
since the usual emphasis in the design of sorting networks is to avoid redundant
comparisons, it is expected that every comparator is crucial in an efficient sorter. It
is, therefore, an interesting question whether economic sorting networks would have
to look quite different when some fault-tolerant properties are required. We shall
discuss two models, with different fault-tolerant criteria, in the following sections. The
first model ( 3) patterns after the concept of error-correcting codes in information
theory, and the other ( 5) follows the criterion used in von Neumann [8] and
Moore-Shannon [6].

3. The k-fault model. Let k >-0 be an integer. We are interested in constructing
n-sorters which can sort properly if no more than k of its comparators are faulty.
Formally, a k-tolerant n-sorter is an n-sorter a such that, if any k (or fewer) of its
comparators are removed, the resulting n-network is still an n-sorter. Let Sk(n) be
the minimum number of comparators needed in any k-tolerant n-sorter. Trivially
Sk(n)<=(k+l)S(n), since we can obtain a k-tolerant n-sorter by replacing every
comparator in an optimal n-sorter with k + 1 copies. Our main result in this model is
the following theorem, which states that any n-sorter can be made k-tolerant by
appending to it a network with O(kn) comparators. The rest of this section is devoted
to a proof of Theorem 1.

THEOREM 1. If a is an n-sorter, then there exists an n-network with k(2n-3)
comparators, such that aft is a k-tolerant n-sorter.

COROLLARY. S(n)<-S(n)/ k(2n-3).
We need the following "zero-one principle" [5].
LEMMA 1. Let be an n-network. If x is sorted for every x {0, 1}", then is an

n-sorter.

Proof. See Knuth [5, 5.3.4, Thm. Z].
Let 0 denote the n-network [1: 2][2: 3]... [i: i+1]... In-2: n-1][n-l: n]x

[n-2: n-l]... [i: i/1]... [1:2] (see Fig. 5), and /3 O k the concatenation of k
such networks. Clearly,/3 consists of k(2n-3) comparators.

FIG. 5

PRoPOsxrior 1. Let be any network obtained from the n-network a by deleting
some k’ comparators where k’ <= k. Then x is sorted for any x {0, 1 }n.

We shall prove Proposition 1 below. Theorem 1 then follows immediately in view
of Lemma 1.

Write := a’/3’, where a’ and /3’ are the networks resulting from a and /3
respectively when some a and b comparators have been removed, with a + b <= k. In

We use a/3 to denote the concatenation of a and/3.
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the remainder o this section, we will use x, y, etc. exclusively or vectors in {0, 1}n.
For any vector x, we use xs to denote the sorted vector that has the same number of
O’s as x. We first show that the difference between xa’ and xs is at most 2a in terms
of their Hamming distance. (The Hamming distance D(x, y) of x and y, for x, y {0, 1 }n,
is the number of components where x and y differ.) We then show that the network
fl’, with at least k-b => a "good" copies of 0, can reduce that distance to zero.

LEMMA 2. D(x[i j], y[i: j]) -< D(x, y) for any cornparator [i: j].
Proof. It suffices to show that

D((x,, x)[l: 2], (y,, yi)[1 2])-<_ D((x,, x), (y,, y)).
This is clearly true if the right-hand side is either 0 or 2. Now, when the right-hand
side is 1, that means one of {(xi, x), (yi, y)} has exactly one 0, and the other has either
two or no 0. In either case, we have D(x[i’j], y[i" j])= 1.

LEMMA 3. D(x[i j], y) <- D(x, y) + 2.
Proof. It suffices to prove that

D((x,, x/)[1 2], (y,, y/)) -<_ D((x,, x/), (y,, y/)) + 2,

which is obviously true. [3

LEMMA 4. Let a’ be an n-network obtained from the n-sorter a by deleting some
a comparators. Then for any x,

D(xa’, x) =< 2a.
where x, is the sorted version of x.

Proof. Let x( denote the/th state vector of x relative to a as defined in 2, and
y() the state vector of x relative to a’ in the corresponding interval. Then, according
to Lemmas 2 and 3,

D(x(t), y(0)__< 2x (the number of deleted comparators among the first of a)

by induction on/. Therefore, D(xa’, xa) <= 2a, and the lemma follows since xa x.
Now we consider the effect of/3’ on xa’. The network 0 is designed so that if a

vector z differs from zs only by a transposition, i.e., z=(0, 0, 0,... 0, 1, 1, ...,
i, ..., 1, ..., 1) (t/denotes the complement of d), then 0 can carry out the desired
swap for z. In general, 0 applied to an arbitrary vector z which is not sorted reduces
the Hamming distance of z and zs by at least 2.

LEMMA 5. D(zO, z) <_- D(z, z) 2 if D(z, z) > 0.
Proof. Let z(t) denote the state vectors of z relative to 0. Suppose there are m O’s

in the components of z; the following facts can easily be checked.
Fact A. D(z(1), z)= 2 x (the number of l’s in the first m components of z(t)).
Fact B. D(z(), zs) is nonincreasing as increases.
Fact C. (z("-l)),, 1.
Proof ofFact C. By the construction of 0, (z("-1)). max {zl, z2," , z,}. Since

D(z, zs) > 0, Zl, z2," , z, cannot be all 0.
We now prove Lemma 5.
Case 1. Suppose z,,+l 0. Then (z(’-1)),,,+1 0 and (z("-l)), 1 by Fact C. The

ruth comparator [m:m + 1] will swap the two components, and hence z(’’) has one
fewer l’s in the first m components than z(’’-1). The lemma then follows from Facts
A and B.

Case 2. Suppose Zm+ 1. Then Fact C implies that (z(’),,, 1. It is easy to see
that (z(2"-’-3)), 1 and (z(E"-"-a))m+l =0. The (2n- m-2)th comparator [rn: rn +
1] then swaps these two components in (2n--m--3), causing ,(2n--m--2) to have one fewer
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l’s in the first m components than Z(2n-m-3). The lemma again follows from Facts A
and B

Fact D. For any n-network y. D(zy, zs) <= D(z, Zs).
LEMMA 6. Assume D(z, zs)<-2a, and let ’ be a network obtained from fl by

deleting no more than k-a comparators. Then z’ z.
Proof. Write [=(1)[(2)... (k), where each /3 () is a copy of O. Let /3’=

T(1),)/(2) T(k) such that for some 1 <- il < i2 <" < ia <= k, y(il) (i,) 0 for all 1. If
we write w(j) =zy(1)y(2). y(J) and w() =z, then as j increases, D(w(J),Zs) does not
increase by Fact D, and in fact decreases by at least 2 when j it and D(w(), zs)> 0
by Lemma 5. Thus D(w(k), z) =< 2a 2a 0. As w(k) z/3’, this implies that z/3’
Zso [-]

Proposition 1 is. an immediate consequence of Lemma 4 and Lemma 6. This
completes the proof of Theorem 1.

4. Networks related to sorting. The k-fault model of the previous section extends
naturally to comparator networks for other tasks, such as merging and selection.

An (m, n)-merging network a is an (m + n)-network such that, for any x Rm/n

satisfying Xl -< x2 =<" =< x, and x,+l -< x,-2-<-" -<- xn, the vector xa is sorted. Let
M(m, n) denote the minimum number of comparators needed by a. An mr-network
fl (minimum-finding) for n inputs is an n-network such that, for any x R", (x/3)1
min {Xl, x2,""", x,}. Let Y(n) denote the minimum number of comparators needed
by/3. It is known that Y(n)= n- 1 and

1/2n log2 (m + 1) <=M(m, n) <- (n + m)[log2 m]/2+ m/2 [lg2m])

(Batcher [2, 5.3.4], Floyd [5, 5.3.4, Thm. F], Yao and Yao [9]). The k-fault model
for sorting networks can immediately be generalized to these networks. Let Mk(m, n)
and Yk(n) denote the corresponding minimum number of comparators for such
networks with k-fault tolerance.

Theorem 1 implies immediately that

Mk(m, n) <= M(m, n) + k(2(m + n)- 3).

For Yk(n), we have the following theorem.
THEOREM 2. Yk(n)=(k+l)(n-1) for k>-O.
Proof. Let a be any k-tolerant mr-network for n inputs. For each ], 1 < ]_-< n,

there must be at least k / 1 comparators in a of the form [*, ]].2 Otherwise, when all
comparators of the form [*, j] are faulty, the input (Xl, x2," , x,) with xt 1 6tj will
not have the correct output under a. Thus, Yk(n) _--> (k + 1)(n 1). The reverse
inequality follows from the fact that a k+l, where /3
[n-l: n][n-2: n-l]... [i: i/1]... [1: 2], is a k-tolerant mr-network. [3

5. The stochastic-fault model. In the preceding two sections, we have discussed
fault-tolerant networks in a framework that allows at most k faulty comparators. For
sorting and merging networks, the addition O(kn) comparators needed is relatively
small compared to the basic cost of n log n; for minimum-finding, this extra kn cost
is k times the original basic network.

For very large networks, the assumption of no more than k faulty comparators
may be too restrictive. It is reasonable to expect that some fixed fraction, say 10-4,
of the basic units are faulty. A natural extension of the previous model then leads to
the following question. How many comparators are needed to construct an n-sorter

2 We use [*, j] to denote any comparator of the form [i" h] where h j.
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which remains reliable if any 10-4 of the comparators in it are faulty? Unfortunately,
reliable networks in this case do not exist when n is large (n > 104+ 1). Indeed, we
assert that if a fraction of 1/(n- 1) of the comparators may be faulty, then there does
not exist any reliable n-sorter in this sense. For any n-sorter a, let j {2, 3,... n} be
such that at most 1/(n-1) of the comparators in c are of the form [*" ]; then ce

clearly will not sort all inputs properly if all such comparators [*’j] are faulty (cf. the
proof of Theorem 2). In view of this fact, we will define a more relaxed, stochastic
model that is very similar .to the models studied in yon Neumann [8], Moore and
Shannon [6].

A stochastic model. Let 0 < e, 8 < 1 and n be an integer. An n-network a is an
(e, 8)-stochastic n-sorter if the random n-network a’, obtained from a by deleting
independently each comparator with any fixed probability 8’_-< 8, is an n-sorter with
probability at least 1- e.

In an (e, 8)-stochastic n-sorter, we shall refer to 8 as the fault probability (of the
comparators), and e as the failure probability (of the network). Let S(’(n) be the
minimum number of comparators required by any (e, 8)-stochastic n-sorter. Similarly,
we can define (e, 8)-stochastic merging networks for m + n inputs, (e, 8)-stochastic
mr-networks for n inputs, and the corresponding complexity M(’)(m, n), Y(’)(n).

A conventional method of achieving reliability is to replace a basic component
by several unreliable components which simulate the basic component with high
reliability [6], [8]. In our case, connecting in series m comparators, each with 8
probability of fault, gives the effect of a single comparator with fault probability 8 m.
If a is an n-network with N comparators (none are faulty), the network/3 obtained
from a by replacing each comparator with m comparators in series is called the
canonical m-redundant network of a. The probability for/3 to. be a network performing
the same mapping as a is at least (1-8")N, which is greater than 1-e for large N if
m > (log (N/e))/log (1/8).

DEFINITION. For given e, 8 and network a, the canonical m-redundant network
/3 of ce with m chosen just large enough so that/3 becomes an (e, 8)-stochastic network
is called the canonical (e, 8)-stochastic network simulating a.

It follows from the preceding discussion that, for fixed e, 8, an arbitrary network
a with N comparators may be simulated by its canonical (e, 8)-stochastic network
which is of size O(N log2 N). It is of interest to study the optimality of this basic
strategy for enhancing reliability. As this method exploits redundancy in a primitive
way, it is also not surprising that more efficient constructions exist for many problems.
We shall bear out these points in the following results. The first result illustrates the
optimality of the canonical construction for minimum-finding.

Given n > 1 and m > 0, let mi [(m + i- 1)/(n- 1)] for 1 <= < n. The mi’s form
a partition of m into n-1 almost equal parts in that m m and Ira,-m;I--< 1 for
all i, j; they are also the unique set of n- 1 numbers satisfying these conditions (see
[4, 1.2.4, Example 38]). Define g,n(m)=Ila_<_<n (1-8’’). It is easy to see that
g,n(m) is a nondecreasing function of m for fixed n and 8 < 1.

THEOREM 3. Let 0 < e, 8 < 1. Then Y(’)(n) m where m is the smallest positive
integer satisfying g,n m >= 1 e.

COROLLARY. For any fixed 0<e, 8<1, Y(’(n)=O(n log2 n) as n---oo. 3

Proof. The network In-l" n]m[n-2 n-1]"... [2" 3]m"-:[1 2]’"- is easily
seen to be a valid mr-network with probability at least g,,(m), which is at least 1-e
by the definition of g,,. This proves that Y’)( n) _-< m.

The O notation means that there exist constants a, b>0 such that a(n log2 n) <= Y(’)(n) <= b(n log2 n).
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To prove the reverse inequality, we observe that, in any (e, 8)-stochastic mr-
network a for n inputs, we must have

(5.1) [I (1-8)--> l-e,
2_j_n

where lj is the number of comparators of the form [*" ]].
Fact E. Let k > 0 be an integer and 0< < 1 a real number. The expression

(1--k’)(1--k), where kl and k2 are nonnegative integers satisfying kl+ k2 k, is
maximized when [k- kE[ <-- 1.

Proof ofFact E. Otherwise, assume that the maximum is achieved at (kl, k2) with
kl > k2 + 1. Then

This implies

or

or

(1 kl)(1 8k) > (1 ( k1-1) (1 k2+1).

t kl / k2 < 8k1-1 - k2+1,

k2> kl-1,

which is a contradiction.
In (5.1) let 1=.2<_<__ 1. By repeated application of Fact E, the expression

I-I2___<n (1-81j) is maximized when [li-l[ <- 1 for all 2<_-i,]<-n. Therefore

g,,,(/) >-- I-[2_<__<_ (1-/tJ) >-- 1-e.
This implies that l_>-m. We have proved Theorem 3.

To prove the corollary, let t=log (1-(1-e)1/-1)), m’= [t](n-1) and m"=
[tJ 1)(n- 1). It is easy to check that g,(m’) >_- 1 e and g,,,(m") < 1 e. The

monotonicity of g,, then implies that m"_-< Y’)(n)_-< m’. It is easy to check that, for
fixed 0 < e, < 1, we have (R)(log n) as n oo. This implies that m’= O(n log n),
m"= O(n log n), and hence Y’)(n)=O(n log n).

The canonical (e, )-stochastic network may not always be the best solution
possible, as the following example shows.

Consider the 3-sorter a=[2" 3][1" 2][2" 3], and its canonical (e,-1E)-stochastic
sorter fl =[2" 3]"[1" 2]"[2" 3]". By definition, the value of m is the smallest positive
integer such that (1-1/2m)3> 1-e. It follows that

m= [-log2 (1-(1- e)l/3)].
For e << 1, the total number of comparators in/3 is then

3 rn 3(1og2 (1/e) + log2 3) / O( e ).

We shall now show that there exist (e, 1/2)-stochastic 3-sorters using only 2 log2 (1/e)+
O(ln In (3/e)) comparators. That is, the canonical construction uses nearly 50% more
comparators than is necessary when e 0. The result follows from the next theorem.

THEOREM 4.

S(,)(3 21og2 (1/e)+ O(ln In (3/e))
log2 (1/8)
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Proof. We first compute Y(’)(3), which according to Theorem 3 is the smallest
rn satisfying

(1--[m/2])(1--stm/21) >- 1 e.

Writing m’ m/2], we obtain

1 8’’>_ (1- e) 1/2 1-1/2e + O(e2).
This leads to

m_> 2m,_2_>_ 21og2 (l/e) + O(1)
log2 (1/)

As S(’)(3)_>- Y(’)(3), we have proved that

S(,)(3) >_ 21og2 (l/e) + O(1)
log2 (1/8)

To prove the reverse inequality, we construct a 3-sorter at [2: 3]([1: 2][2: 3])
(Fig. 6). We shall prove that, for some constant c, the network at with l=
(log2 (1/e)/ c In In (3/e))/log2 (1/8) is an (e, 8)-stochastic 3-sorter. This then proves
the theorem.

FIG. 6

Writing x for [2" 3] and y for [1" 2], we can denote at by the string at
yxyxy.., xy. For added clarity, we also use the subscripted notation at
yoxlYlX2y2"’" xtyt where xi and Yi refer to the ith [2" 3] and (1" 2] comparators,
respectively. It is easy to see that, when comparators are deleted, the resulting network
a fails to be a valid 3-sorter if and only if a[ does not contain a substring which
belongs to yx/y or xy/x, i.e., a y/x*t.J x*y/U x*. Thus the probability Pt that a
is less than Pl / P2 / P3 where

1) a[ y+x* with probability

(5.2) pl <- Y k(1+1) k821+1-k
1__<k<__1+1 k

(1-8)

since we must have a YilYi2" yijxij+lxij+2 x where 1-<_ k-< l+ 1,

l<=]<=k, and O<=ia<...<ii<ii+<...<ik<--l.
After simplifications, (5.2) becomes

P1<-(1-8)’(1+1)’8 ( k- 1
(1 ))k-l

=(1-8) (/+1). 8k

2) ax*y* with probability pE=Pl<-(1-8).(l+1).8 t, since network at is
symmetric with respect to left-right reversal.
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3) a x* with probability

Therefore P=Pl +P2+P3<-3(l+ 1) 6/. It can be verified that by choosing

l=[ln(c/e)+2(lnln(c/, e)) ] where in c> 3
In (1/6)

we will have pl<=3(l+l)6l<--e. This proves the theorem. [3

6. Concluding remarks. We have studied efficient ways to achieve fault-tolerant
ability in some particular problems. The canonical redundancy method sometimes
yields economic networks (as for minimum-finding in both models), but not always (it
works poorly for sorting in both models). It would be of great interest to find other
general principles besides the canonical method.

Some related open problems:
1. For fixed e, 6, we know that C n log n -<_ M(’)(n) =< c2n(log n)2, and the same

bounds hold for S(’)(n). Question: Determine the order of M’)(n) and S(’)(n).
We conjecture that these functions grow faster than O(n log n), as the intuitively much
simpler minimum-finding network has complexity Y’)(n)=O(n log n) already.

2. For fixed 6, determine S’)(3) as e0. In particular, is our construction
optimal?

3. The interpretation of a network as a string, and the probability of fault being
the probability of a random substring not containing some particular patterns give rise
to questions in a more general setting, which may be of interest by themselves.

REFERENCES

[1] M. AJTAI, J. KOMLOS AND E. SZEMEREDI, An O(n log n) sorting network, Proc. 15th Annual ACM
Symposium on Theory of Computing, April 1983, Boston, pp. 1-9.

[2] K. E. BATCHER, Sorting networks and their application, Proc AFIPS 1968 SJCC, Vol 32, AFIPS Press,
Montvale, NJ, pp. 307-314.

[3] D. J. KLEITMAN, A. R. MEYER, R. L. RIVEST, J. SPENCER AND K. WINKLEMANN, Coping with
errors in binary search procedures, Proc. 10th Annual Symposium on Theory of Computing, San
Diego, CA, 1978, pp. 227-232.

[4] D. E. KNUTH, The Art of Computer Programming Vol. 1, 2nd edition, Addison-Wesley, Reading, MA.
[5] ., The Art of Computer Programming Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1975.
[6] E. F. MORE AND C. SHANNON, Reliable circuits using less reliable relays I-II, J. Franklin Inst., 262

(1956), 3, pp. 191-208, no. 4, pp. 281-297.
[7] Proceedings of the IEEE, special issue on fault-tolerant digital systems, 66 (1978), pp. 1105-1300.
[8] J. VON NEUMANN, Probabilistic logics and the synthesis of reliable organismsfrom unreliable components,

in Automata Studies, Princeton Univ. Press, Princeton, NJ, 1956, pp. 43-98.
[9] A. C. YAO AND F. F. YAO, Lower bounds on merging networks, J. Assoc. Comput, Math., 23 (1976),

pp. 566-571.



SIAM J. COMPUT.
Vol. 14, No. 1, February 1985

1985 Society for Industrial and Applied Mathematics

010

ON THE EXPECTED PERFORMANCE OF
PATH COMPRESSION ALGORITHMS*

ANDREW C. YAOf

Abstract. We consider the expected running time of an equivalence algorithm using the path compression
rule (but not the weighting rule). An O(n) expected running time is proved for the execution of a random
equivalence program in the Spanning Tree Model.

Key words, equivalence program, expected running time, path compression, set merging, spanning tree
model

1. Introduction. Let S be a set of n elements. An equivalence program r on S is
a sequence of equivalence instructions (x[1] y[1], x[2]= y[2],..., x[m] y[m]) with
each x[i], y[i] S. Starting with n equivalent classes each containing one element, an
equivalence instruction x[i]= y[i] asks whether x[i] and y[i] currently belong to
different equivalent classes, and if so requests that the two classes be merged.
Equivalence programs have many applications, such as the processing of
EQUIVALENCE statements in FORTRAN [4]. A common method to implement an
equivalence program is by using a set merging scheme. A set merging scheme (see
AHU [1], Tarjan [7]) maintains the equivalence classes as sets and processes commands
of the forms FIND (x) and UNION (A, B). The command FIND (x) requires that
the name of the set containing x be returned, and the command UNION (A, B) asks
that the two sets with names A and B be merged into one. To implement an equivalence
program using a given set merging scheme, one need only replace each equivalence
instruction x[i]= y[i] by the sequence FIND (x[i]), FIND (y[i]), UNION (A,B),
where A, B are the names of the sets containing x[i], y[i] (omit the UNION if A B).
In this paper, we are interested in the expected running time of a random equivalence
program, when a particular set merging scheme is used. This set merging scheme uses
a forest data structure, and employs a path compression rule [1], [7]; we will refer to
this scheme as quick merge with path compression (or, QMP). The expected performance
of equivalence algorithms using other set merging schemes has been extensively studied
in Knuth and Sch6nage [5], Yao [9]. It seems reasonable to regard the expected
performance on equivalence programs as a benchmark for the average-case behavior
of a set merging scheme (Doyle and Rivest [2] discussed the expected cost of a set
merging scheme by considering a sequence of random FINDs and UNIONs directly,
however).

In the QMP set merging scheme, the family of subsets (equivalence classes) are
represented by a forest of disjoint rooted trees. Each tree corresponds to a subset,
with the name of that subset stored at the root. Command FIND (x) accesses the node
v representing x and triggers a traversal up the tree to its root r. In addition to returning
the name of the subset, FIND (x) also performs a path compression from v to r, i.e.,
connecting every node on the path directly to r. Command UNION(A, B) is imple-
mented by attaching the root for subset A to that for subset B. For definiteness, we
charge 1 time unit for UNION and time units for FIND, where is the number of

* Received by the editors July 31, 1981, and in final revised form November, 1983. This research was
done while the author was visiting the Computer Science Department, IBMSan Jose Research Center,
5600 Cottle Road, San Jose, California. This work was supported in part by the National Science Foundation
under grant MCS-77-05313-A01.

? Computer Science Department, Stanford University, Stanford, California 94305.
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nodes on the traversed path. It is known that, with QMP, the worst-case time for
performing a sequence of O(n) UNIONs and FINDs is @(n log n), where the lower
bound proo is due to Fischer [3] and the upper bound is due to Paterson [6].

We now describe the randomness assumption we will use on the equivalence
program. Let r, be the set of all equivalence programs tr=(x[1] -= y[1], x[2]-=
y[2], ., x[n- 1]-- y(n- 1]) such that the set o edges {x[i], y[i], 1 _-< < n, orms a
spanning tree for the set S. Clearly, I,1 n"-2(n 1)!2"-1, where the last factor 2
accounts for the fact that each edge {a, b) can appear as either a b or b-- a. Let us
consider the spanning tree model [5] [9], in which each equivalence program tr

is equally likely. Let CMP be the expected running time of a random tr when QMP
is used.

Our main result is the following theorem.
THEOREM 1. CnQMP’- O(/’/).
As an intermediate step, we will prove a result of some independent interest

(Theorem 2 below) that applies to the expected running time under any randomness
assumption belonging to a general class.

Consider a model r for random equivalence programs, specified by a probability
distribution p(cr). We call z a canonical model if p(cr)=0 for all cr ,. For each
tr, let CMP be the running time of cr when QMP is used. The expected running time
is then cMP=p(cr)CMP. Note that the Spanning Tree Model is a canonical
model z(0") such that e(,)(o’)= 1/[r.[ for all cr

For any or, let W(tr) be the new equivalence class obtained from the merge of
the two equivalence classes containing x[i] and y[i], when the ith instruction x[i]-- y[i]
of cr is performed. Let a=Y,log2 IW(tr)l. For a model r, define the potential of
as H.=E p.(tr)ao

THEOREM 2. For any canonical model z,

C?uP -<_ 2H. + 5(n- 1).

In 2 we briefly review Paterson’s proof [6] for the worst-case upper bound on
the QMP running time. In 3 we establish Theorem 2, which involves a refinement
of Paterson’s analysis. We then prove Theorem 1 in 4 by using Theorem 2. Some
remarks and open problems are given in 5.

2. Paterson’s entroly. In this section we review Paterson’s proof [6] for the QMP
worst-case upper bound.

Let T be a rooted forest with only internal nodes. For each v T, let WT(V) be
the number of descendants of v (including itself). The entropy of T is defined to be
Ho(T) =Y.,oT 1og2 (WT(V)). Clearly Ho(T)_ n log2 n, if T has n nodes.

LEMMA 1 (Paterson [6]). Suppose a path compression of length + 2 is performed
along a path Vo, Vl, , vt, vt+l in T. Let T’ be the new resultant tree. Then there exists
a 1 < fl <-_ (tOT(V)) 1/ such that

H(T) H(T’) => log2

Proof (sketch). The expression

H(T)-H(T’) E (log2 WT(V,)--Iog2 (WT(V,)-- WT(V,-1)))
l<_i<_t

(under the constraint 1 =< WT(1)O) < WT(1)I) < < WT(1)t) is minimized when { WT(Vi)}
orm a geometric progression {c/3 i} with a => 1, a/3= WT(V,). The lemma follows by
an explicit evaluation.
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For any sequence tr of O(n) UNIONs and FINDs, one can equivalently first carry
out all the UNIONs, followed by the FINDs (which are now "partial" FINDs as the
path compressions may end at nodes other than the roots of the forest) [1]. Let T
be the forest obtained ater all the UNIONs are performed, but before any FIND is.
The subsequent (partial) FINDs will modify the forest and decrease its entropy. Each
FIND with cost + 2 > log2 n + 2 will decrease the entropy by at least t, according to
Lemma 1. Thus, the total cost or FINDs is bounded by Ho(T,)+ O(n), plus the costs
due to the FINDs with individual cost <-log2 n + 2. It follows that the total cost for
the FINDs is O(n log n); the UNIONs, o course, only cost O(n). This finishes
Paterson’s proof of an O(n log n) upper bound for OMP.

3. Proof of Theorem 2. An equivalence program tr induces a sequence tr’ of
UNIONs and FINDs that the QMP algorithm actually executes. We will use T to
stand for T,,.

LEMMA 2. For any tr ,
CtP-< Ho(T) +a+ 5(n 1).

Proof. Let tr (x[1] y[1], x[2]-= y[2],..., x[n- 1] y[n- 1]), and $2,-1G S,
S2i - S be the components containing x[i], y[i] just before the ith equivalence instruc-
tion is executed. Consider the sequence of path compressions 1, :2,""", :2n-2 that
QMP carries out on T, where 2i-1 is induced by FIND (x[i]) and 2i by FIND (y[i]).
Let li be the length of :; define J={ill> log2 Is,l/2} and J2={ill --<log2 Is, l/2}. Let
A1 Y.J1 t and A2 Y-J2 t, where t 1-2. As each UNION only costs one unit
time, we have

CtP n- 1+ li<=5(n-1)+A+A2.

We first prove A1--< Ho(T). Each : will successively modify the forest T and
decrease the entropy of the forest by at least ti log2 (ill (/3-1)) according to Lemma
1. It is easy to see that the quantity wT(vt,) in Lemma 1 is at most [S[. It follows that
1 < fl <=(wT.(vt,))/, _-<2 (since t> log2 Is, I). The entropy decrease is thus at least t.
This implies H0(T) _>- Y1 t Ai.

To finish the proof of Lemma 2, we need only prove A2 -< a. By definition,

A2<-- log2 Is, l-<- log Is, I.
ieJ2 1<----i--<--2n--2

Observe that, except for the n-1 $ with Is, I-- 1, the S are in one-to-one correspon-
dence with the W.(tr) in the expression a=Xl_<__._llOg2l(r)l. This proves
A2-< a. l-]

LEMMA 3. For any tr ,,,
Ho( <-_

Proof. Let v T and let Dv be the subtree rooted at v. In the formation o T,
there is a unique UNION instruction that makes Dv a component o the orest; let
x[iv] =- Y[io] denote the equivalence instruction that induces this UNION. Clearly,
IWv(tr)l wr(v). It is also evident that distinct v give distinct iv. Hence

Ho(T)<_ y lOgEIWj(tr)[=a, l-i
l<--j<n

It follows from Lemmas 2 and 3 that CuP<= 5(n-1)+ 2a. Taking the average
with weight p(tr), we obtain Theorem 2.
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4. Proof of Theorem 1. Because of Theorem 2, it suffices to prove H O(n)
for r r(0n. Take a random tr in the Spanning Tree Model. Let Pnk be the probability
that IVl k and IVy[ n-k, where Vx and Vy are the two components containing
x[n-1] and y[n-1] just before the last instruction x[n-1]- y[n-1] in r. It is easy
to verify the following facts:

(A) Pnk 2(n 1) n

(B) Let trx be the subsequence of tr acting on Vx, and try be the subsequence of
o- acting on Vy; then Crx is a random equivalence program in the spanning tree model
z(0k-l), and similarly try is a random equivalence program in the model -(0"-k.

Fact (B) is immediate from the definition of a random equivalence program. Fact
(A) follows from a simplification of the equation

()k(n-k) - 2- .--2( 2.--(k_,)k -(k- 1) (n- k) n- k- 1)
P -2( 2-n n-l)!

In the above expression, the factor () comes from enumerating the choice of V, and
Vy, k(n k) comes from enumerating the choice of x[n 1 and y[n 1 within V,
and V; () is the number of ways to interleave , and , and the remaining
numerators give the number of possible , and y. (Facts (A) and (B) were also shown
in [5, 9], although the spanning tree model there was phrased in a slightly different
language.)

Let r H. where r r. It follows from Fact (B) that

and

r. log2 n + , Pnk (rk + m-k) for n > 1,
0<k<n

A recurrence relation of this form with Pnk as in (A) was studied in Knuth and
Sch6nhage [5, eq. (12.8)], where it was shown that the solution satisfies r O(n).

We have proved Theorem 1.

5. Remarks. For any equivalence program cr=(x[1]-=y[1], x[2]-=y[2],"’,
x[n- 1] -= y[n- 1]) -n, consider the union tree Y defined in Knuth and Sch/Snhage
[5, 13] as follows: For 1 -< < n, construct a new node whose left subtree is the union
tree for the current component containing x[i] and whose right subtree is the union
tree for the current component containing y[i] ("current" means just before performing
the instruction x[i] -= y[i]); the union tree for a single element is a leaf. (Note that Y
is different from the tree T considered before, as can be seen from the fact that Y
is always a binary tree.) We can regard c as the "potential" of the tree Y, defined
by YvY log2 w(v), where w(v) is the number of leaf-descendants of v. Theorem 2
can then be described as "the expected running time of QMP in a canonical model "
is bounded by the average potential of a random union tree in r".

In the Spanning Tree Model, we have shown that the equivalence algorithm using
path compression has an expected O(n) running time for carrying out n 1 equivalence
instructions. It is easy to show by a similar argument that the expected running time
of the first instructions is O(l). However, it is not known if the expected running
time for performing the /th instruction is O(1) for every 1 =< < n. An interesting
related open problem is the determination of the average rank of elements in the final
forest data structure. In passing, we remark that there are algorithms that run in
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worst-case O(n) time on the spanning tree model, and in fact on any canonical model
(Tarjan [8]).

Although our motivation for studying this model is mainly theoretical, the result
may be relevant in some situations involving sparse graphs. Consider the processing
of equivalence instructions in Kruskal’s minimum spanning tree algorithm for random
weighted input graph Gen, such that each connected graph with e edges on n vertices
is equally likely to occur, and each of the e! different permutations of edge weights is
equally likely to happen. When e n- 1, the distribution of the sequence of equivalence
instructions is the same as in the spanning tree model considered in this paper. It is
even plausible that as long as e O(n), the result obtained in the spanning tree model
may give a better estimate of the cost than in other models, say, the random graph
model [5], [9], as connectivity is a severe constraint (a random graph in that model
does not become connected until e O(n log n)). It is an interesting open problem
to confirm this conjecture, and more generally, to analyze the compression algorithm
in this "random Ge,n" model with general e, n.

Two other randomness models for equivalence programs have been discussed in
the literature. In the Doyle-Rivest model [2] any pair of equivalence classes is equally
likely to be joined. It is not hard to show that H O(n) in this case; from the
discussions in [5, 13], one can obtain the recurrence rn=log2n+l/(n-1)x
k (rk-brn-k), where rn stands for H with n elements. This implies an O(n)
expected running time for QMP. In the random graph model [5], [9], the expected
time for QMP is an unresolved question. The present approach yields only a trivial
O(n log n) bound, since a component of size f(n) is involved with probability I(1)
in the /th equivalence instruction for l>(1/2+e)n, which gives H=(n log n). Bob
Sedgewick (private communication, 1979) has done an extensive simulation up to
100,000 nodes. The running time appears definitely nonlinear in n, and is consistent
with an n log n growth. A theoretical resolution of this case is a major remaining
open problem in the analysis of set merging algorithms.
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FINDING EXTREMAL POLYGONS*

JAMES E. BOYCEt, DAVID P. DOBKINt,

ROBERT L. (SCOT) DRYSDALE III AND LEO J. GUIBAS

Abstract. Given n points in the plane, we present algorithms for finding maximum perimeter or area
convex k-gons with vertices k of the given n points. Our algorithms work in linear space and time
O(kn lg n+ n lg2 n). For the special case k 3 we give O(n lg n) algorithms for these problems. Several
related issues are discussed.

Key words, extremal polygons, maximum area, maximum perimeter, geometric complexity

1. Introduction. In this paper we present efficient algorithms for certain geometric
optimization problems in the plane. Typical of these problems is the following. We
are given n points in the plane and wish to choose a convex k-gon with vertices k of
the given points and whose perimeter is maximal. The special case k 2 is the classical
problem of finding the diameter of a point set in the plane. An algorithm presented
in this paper will find the maximum perimeter k-gon in time O(kn lg n + n lg2 n), and
linear space. The correctness of our algorithm is based on certain interesting com-
binatorial properties of extremal perimeter polygons. Surprisingly, the same com-
binatorial properties hold for polygons extremal under other measures as well, such
as area. Thus an isomorphic algorithm can be used to find the largest area convex
k-gon with vertices k of the n given points (within the same time bound). For the
case k 3, a special trick allows us to solve these problems in time O(n lg n).

We begin our presentation by studying in 2, some of the combinatorial properties
of extremal polygons. In 3 we use these properties and a dynamic programming
approach to develop an algorithm for finding a maximal rooted k-gon in time
O(kn lg n). Then in 4 we use the rooted polygon algorithm to obtain the results
stated above.

The diameter, as well as some other variants of these problems are quite old but
fast algorithms for them are relatively new. Several authors have given algorithms for
particular cases which require that the convex hull of our given collection of points
be found first. Shamos [Sh] was the first to present an algorithm for the diameter
problem which works in linear time (once the convex hull is given). He also gave a
linear algorithm for finding the maximum area quadrilateral with vertices four of the
given points. Dobkin and Snyder [DS] gave a linear time algorithm for the maximum
area triangle. Our dynamic programming ideas in 3 are similar to those discussed by
F. Yao in [YF]. The quadrangle inequality of that paper can be used to give us an
O(n2 lg n) algorithm for the maximum perimeter triangle problem. The problem of
finding the minimum area ellipse containing a collection of points was the subject of
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recent work by Post [P]. The routing paper of Dolev and Siegel [DOS] uses a divide
and conquer approach similar to ours. Finally, A. Yao [YA] gave the first subquadratic
algorithm for finding the diameter of a set of points in 3-space.

As is often the case in geometry arguments there is a considerable subtlety in
some of the correctness proofs required. We exhibit examples which show that other
plausible algorithms may fail to find the truly maximum k-gons. And our techniques
do not obviously generalize to dimensions higher than 2, where even the diameter
problems is not known to be solvable in nearly linear time. Again we give examples
that show how plausible generalizations can fail. These remarks are amplified in 5.

Some of our results dualize in a natural fashion. We can find under certain
conditions, minimum area or perimeter k-gons surrounding (circumscribing) our
collection of points, by exactly analogous techniques. A brief description of these
results appears in 6, along with a mention o some applications.

We have also considered the problem of obtaining minimum perimeter k-gons
with vertices among our n points. We have an O(k4n lg n +(/4)k’kn) algorithm for
this problem based on finding an extended Voronoi diagram of our points. We plan
to report on this result elsewhere., The case of minimum area seems to be significantly
harder (possibly because small perimeter implies that the vertices are well localized
in space, but small area does not). The best bound for the minimum area triangle has
been obtained by Dobkin and Munro [DM] and is O(n2 lg n).

2. The structure of extremal polygons. In this section we investigate a number
of properties possessed by maximal polygons in either the area or the perimeter sense.
The next two sections use these properties in order to devise efficient algorithms for
finding such polygons.

Informally speaking, it is very plausible that the vertices of maximal polygons
should be sought among the extremal points in our collection. This intuition is brought
out by the following theorem. See also Fig. 1. Note that we allow our polygons to
contain duplicated vertices.

FIG. 1. Maximal k-gons use vertices of the convex hull.

THEOREM 1.1. The vertices of convex k-gons maximal in area or perimeter are
points on the convex hull of our collection of points.

For perimeters a slightly stronger assertion is actually true. The vertices of maximal
k-gons must be essential vertices (corners) of the polygon which is the convex closure
of our point collection.

Proof. Let A be a vertex of a maximal k-gon and assume that A is interior to
the convex hull. Let B and C denote the neighbor vertices of A on the k-gon.
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If our k-gon is maximal in area, then consider a line parallel to line BC sweeping
the plane from BC towards vertex A. Since A is not on the convex hull, some point
A’ other than A, will be the .last point of our set encountered in the sweep of this
line. Clearly the triangle A’BC has larger area than ABC, and thus A’ can be substituted
for A to give us a larger area k-gon: a contradiction. (If A’ makes the polygon
nonconvex, then just replace it by its convex hull, which has still larger area.)

Simila:rly, if our k-gon is maximal in perimeter, then consider the ellipse passing
through A, with B and C as loci, and its tangent at the point A. If A is interior to
the convex hull, then there is a point of our set on the other side of the tangent from
the ellipse, and that point can function as the point A’ above, since A’B + A’C >
AB /AC. (Again, convexification may be necessary. But it is well known that a convex
polygon enclosing another has larger perimeter.)

Caution must be taken in extending vertices to the boundary. If vertices are moved
in turn, a nonsimple polygon may result. However, we are able to circumvent this
difficulty by moving all vertices at once along the bisectors of the exterior angles of
the k-gon.

In the perimeter case, A must in fact be a corner of the convex hull, since if a
point is constrained to lie on a line segment, its sum of distances to two other points
is maximized at an endpoint of the segment. This is a simple consequence of the
convexity of ellipses. Consider the smallest ellipse with loci the two other points and
containing both endpoints of our segment. That ellipse contains in fact the whole
segment.

If 2 or more vertices lie on an edge of the boundary, care must be taken in moving
vertices to corners. In particular, 2 vertices spread to opposite. In the case of 3 vertices,
the extremal vertices spread and the interior vertices need only be moved consistently.
Although vertices of maximal area k-gons need not be corners of the convex hull,
maximal area k-gons always exist which do have vertices corners of the convex hull. [q

In many situations the above theorem is a powerful tool, as the number of points
on the convex hull of a collection of points is typically much less than the number of
points in the collection. Several results are known in this direction which are summarized
in Santalo [S]. Since we are interested in worst-case behavior, however, it may appear
that this theorem does not help us at all, as in the worst case each of the points in our
collection could be a vertex of the convex hull. Thus finding the convex hull need not
reduce the number of points we must consider.

There is, however, another significant advantage to taking the convex hull, other
than throwing away all points that are not vertices of it. This is that there is a well
defined cyclic order among the remaining points. The exploitation of this cyclic order
is the key so the subsequent lemmas on which the algorithms are based. From now
on we will always assume that the points in our collection be on a convex perimeter
and thus can be cyclically ordered. It is well known that the convex hull of a set of
points can be computed in time O(n lg n) (see, for example, Graham [G]), and since
all of our time bounds are larger than or equal to this, they will not be affected by
assuming that this preprocessing step has been done. If fewer than k points are left
as vertices of the convex hull, then we can stop. Our maximal polygon is the convex
hull with some vertices taken with multiplicity greater than 1.

In the lemmas below we will be considering simple convex polygons with vertices
some subset of our points. The ordering of the vertices along the polygon will agree
with the cyclic ordering of the points discussed above. We will be interested in maximal
polygons that are constrained in various ways. A rooted polygon will be a polygon
with one of its vertices fixed at a given point. An interval is a collection of points
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consecutive in the cyclic ordering. Two intervals will be called nonoverlapping if they
intersect at most in a common endpoint. A restricted polygon is one whose vertices
are constrained to be in successive nonoverlapping intervals. A rooted restricted polygon
is a restricted polygon with one vertex constrained to be in a degenerate interval
consisting of a single point. Two polygons with vertices points in our collection are
said to interleave, if between every two successive vertices of .one, there is a vertex of
the other (possibly coinciding with one of them). It is clear how two k-gons may
interleave. See Fig. 2. But a k-gon may also interleave an/-gon, for k l, if they have
some coincident vertices.

FIG. 2. Two interleaving k-gons.

The following lemmas apply to maximal k-gons in either the perimeter or area
sense with vertices in our collection of points. (But both must be maximal in the same
sense.) They provide the basis for our algorithms.

LEMMA 2.1. A maximal rooted k-gon and a maximal rooted k + 1)-gon sharing
the same root interleave.

LEMMA 2.2. A (globally) maximal k-gon and a maximal rooted k-gon interleave.
We will say that k consecutive nonoverlapping intervals I1, I2," , Ik are spanning,

if whenever a maximal k-gon has a vertex in one of them, it has exactly one vertex
in each of them.

LEMMA 2.3. Let 11, I2,’’’, Ik be k spanning intervals, and let x be a point in 11.
Consider the maximal restricted k-gon rooted at z, with its remaining vertices constrained
to lie one in each of the intervals I2,’", Ik respectively. The vertices of this k-gon
subdivide each of our intervals into two nonoverlapping parts (both containing the
subdividing vertex). Let these parts be called L, and R, for the interval L in the order
in which they occur along the cyclic order Then both L1, L2, , Lk, andR1, R2, , Rk
are spanning sets of k intervals.

The basic tool in the proofs of these lemmas is what we call the crossing transform
applied to two polygons, a transformation that is always measure (perimeter or area)
increasing. The idea of the crossing transform is illustrated in Fig. 3. It is applicable
whenever we have two adjacent vertices of one polygon that are not separated by a
vertex of the other. The transform simply interchanges the two noncrossing edges
shown with the two crossing diagonal edges. Of course this now has merged our two
polygons into a single (nonsimple) polygon. As it turns out however, in our context
there will always be another place where the crossing transform can be applied as well,
and this second application will break up this polygon into two simple polygons again.
The two resulting polygons will be shown to have a combined measure that exceeds
the measure of the two original polygons. This statement is in fact true even after the
application of a single crossing transform, if we take care to define the perimeter and
area of a nonsimple polygon appropriately. It also implies the following interesting
combinatorial result.
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FIG. 3. The crossing trans’orm.

LEMMA 2.4. If we are given 2k points forming the vertices of a convex 2k-gon,
then the way to break them up into two groups of k each so as to maximize the sum o"
the perimeters of the two convex k-gons thus formed, is to use all the odd vertices ’or
one k-gon and all even ones for the other.

We now proceed to make precise the above informal remarks, and prove these
lemmas. We intend to apply the notions of perimeter and area to nonsimple polygons,
as well as polygons consisting of disjoint collections ot vertex cycles. It is clear how
to define the perimeter ot any such polygon. For area, we need to be more careful.
The area of a simple polygon can be thought ot as the integral over the plane o a
function which is 1 for points inside the polygon, and 0 or points outside. We will
use an analogous definition for arbitrary polygons: we just integrate the winding
number, which counts how many times the polygon wraps around each point (it can
be a negative quantity). Thus for areas covered twice we multiply the ordinary area
by two, and so on.

We now consider the effect of the crossing transform to a generalized polygon,
which in our case consists of two normal convex polygons. The crossing transform
applies whenever we have four vertices A, B, C, D occurring in this order in the cyclic
ordering, but such that A and D are consecutive vertices, of a polygon, as are B and
C. The transtorm breaks the edges AD and BC, and adds the edges AC and BD.
Note that each vertex still has degree two, so the outcome is a polygon. It is clear that
this transform will always increase the perimeter of the resulting polygon, for we are
replacing a pair of opposite sides ot a convex quadrilateral with its diagonals. (It is a
simple application of the triangle inequality to show that the diagonals ot a convex
quadrilateral always have longer total length than either pair of opposite sides.)

When it comes to area it is not true that the crossing transform always helps. For
this conclusion we need some additional assumptions, which follow from the maximality
ot the two initial polygons. First we need an elementary geometric fact. Consider our
standard convex quadrilateral ABCD, and let the sides AB and CD intersect at at
point X on the opposite side ot side BC from A and D, and let the diagonals intersect
at the point Y, as in Fig. 4. We claim that the area of BCY is less than the area of
ADY. This is easily seen by adding to both triangles the triangle ABY. We must
compare now the areas of triangles ABC and ABD. These triangles have a common
base. AB, and the height ot ABC from C is certainly smaller than that ot ABD from
D, as follows from the assumption that X and D on opposite half-planes with respect
to BC.
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FIG. 4. A geometric inequality.

It is easy to verify that the change in the area of our polygon when the crossing
transform is applied to the convex quadrilateral ABCD is a(ADY) a(BCY), where
a denotes the area function. Thus the crossing transform will increase the area, as
long as we can guarantee that sides AB and CD intersect on the opposite hal-plane
of BC from A and D. This will be so, because of the assumption that the (simple)
polygon containing edge AD is maximal. For suppose instead that AB and CD
intersected on the same side of BC as A and D. Consider E, the other neighbor of
D in the polygon containing AD, as in Fig. 5. By assumption AB intersects CD on
the opposite side of AD from B and C. Since E lies between D and A in the cyclic
ordering, it must afortiori be the case that AE intersects CD on the other side of DE
from A and C. By the same argument we gave above, triangle ACE has larger area
than triangle ADE, contradicting the area maximality of the polygon containing AD.

FIG. 5. AB and CD must intersect on the other side of BC.
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From what we said so far it follows that given the assumptions of Lemmas 2.1
and 2.2, whenever the crossing transform can be applied it will increase both perimeter
and area. Let us think of the intervals defined by successive vertices of one of our
polygons as buckets into which the vertices of the other polygon may fall. If a bucket
gets no vertices, then these vertices can function as vertices B and C for an application
of the crossing transform. From the pigeon-hole principle we know that if that happens
then another bucket will get at least two vertices. Two consecutive of these can now
function as B and C for another application of the crossing transform, this time with
the role of the polygons reversed. It is easy to check that the first application of the
crossing transform does not invalidate the second. So if the crossing transform can be
applied once, it can be applied twice, and in fact the second application will give us
back two simple polygons whose areas (or perimeters) sum to more than those of the
original polygons. These polygons may not have the same number of vertices as the
originals. However the polygons reached when the crossing transform is no longer
applicable will interleave. This completes the proofs of Lemmas 2.1 and 2.2.

Given the machinery we have developed so far, we leave Lemmas 2.3 and 2.4 as
simple exercises for the reader.

3. Finding maximal rooted polygons. In this section we develop an algorithm for
finding a maximal rooted k-gon in time O(kn lg n). The algorithm proceeds in stages,
by finding successively maximal rooted j-gons for j 3, 4,..., k. We will postpone
discussion of the initial case j 3 and first talk about how we go from a maximal j-gon
to a maximal (j+ 1)-gon with the same root.

Lemma 2.1 tells us that exactly one vertex of the (j + 1)-gon, other than the root,
must lie in each of the j intervals defined by the vertices of the maximal j-gon. We
willuse a dynamic programming method for finding the (j+ 1)-gon, examining each
of the j intervals in turn. Note that if li denotes the length of the ith interval, then

E li=n+J

The successive examination of intervals gives rise to the formation of partial (or
incomplete) polygons and we must take a moment to properly define our measures
of area and perimeter for such polygons. We introduce the notion of a path, which is
just a sequence of vertices. We will use greek letters to denote paths, roman letters
to denote points, and semicolon to signify concatenation. Our polygons correspond to
closed paths, that is sequences of the form Po; Pl; P2; P; P0. We define our measures
of area and perimeter for paths as follows:

A(a; Pk-1; Pk)=A(a; p,-)+a(po; Pk-1; Pk.),

and

P(a; Pk-1; Pk)= P(a; p,_,)+ l(p,_,; p,),

where a(p0; Pk-1; Pk) denotes the area of triangle PoP,-xPk, and l(pk-x; Pk) denotes
the length of the edge Pk-lPk.

For our dynamic programming algorithm we will use a multi-stage graph technique,
as discussed for example, in Horowitz and Sahni [HS]. We maintain for each point z
in the ith interval the best (i.e. maximal in measure) path with one point in each of
the previous intervals and terminating at the root z. Let us denote such an optimal
path by Zz. Given these optimal paths for the ith interval, we now want to compute
the optimal paths for the (i + 1)st interval. This can clearly be done in time lili-1, by
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considering for each point u in the (i+ 1)st interval each possible predecessor z in the
ith interval. However, once again the idea of the crossing transformation will allow
us to do better. This is captured in the following lemma.

LEMMA 3.1. If y and z are two points on the + 1)st arc defined by the vertices

of a maximal rooted i-gon. 1; y", y and lz; z’; z are respectively two optimal step
paths leading to y and z, and if y precedes z in the cyclic order within the + 1)st arc,
then y’ precedes z’ in the cyclic order within the ith arc.

Again, the idea of the proof is that if this was not so then the last edges of the
two paths do not cross, and therefore by applying the crossing transform one can get
two other paths whose sum of measures exceeds the sum of measures of the old paths,
a contradiction. The details are omitted, as they are identical to those discussed in 2.

Lemma 3.1 implies that given the ith interval optimal paths, we can compute
those for the (i + 1)st interval in time O(li lg li/l + li_l). This is so because we can
choose z for the first time to be the median point of the (i+ 1)st interval and find the
best path to it in li steps. Now the predecessor z’ of z in the best path divides the ith
interval into two subintervals of total length
quartile points in the (i + 1)st interval and for each of them search the appropriate
subinterval of the ith interval. Thus together the cost of these searches will be l + 1.
At the next step we will be able to do four points of the (i + 1)st interval in total cost

l + 3, and so on. Thus the total cost for all the searches is

lg li+
X l, + 2i- 1 O(l, lg li+l +/,+).
i=1

Since each i is bounded by n, we can bound lg l by lg n. If we now sum all the
contributions for the successive stages, the total sum is clearly bounded by O(n lg n).
(Note that the last stage is a bit funny, as the last interval contains exactly one vertex,
namely the root.) We conclude that once we have a maximal rooted j-gon, we can
compute a maximal rooted (j+ 1)-gon with the same root in linear space and time
O(n lg n).

THEOREM 3.1. A rooted constrained k-gon whose vertices are constrained to lie in
intervals of total length n can be computed in time O(n lg n).

To get started we note that, for the perimeter case, Lemma 2.1 holds even for
j 2, so we can begin by finding the maximal chord out of the root z, which is a linear
time operation. For the maximum area case we need the following Lemma.

LEMMA 3.2. The maximum area rooted triangle can be found in time O(n).
Proof. A method for doing this works like Shamos’ diameter algorithm. Let A

be the root, and consider its neighbor vertex B in the cyclic order. We can find vertex
C, so as to maximize the area of triangle ABC by just examining further vertices along
the cyclic ordering as long as the area keeps increasing. The distances of points on a
convex figure to a chord form a unimodal distribution, so as soon as we pass the
maximum, we know that we have found it. It is clear from convexity that if point B
now advances along the cyclic ordering, then the best corresponding C also has to
move in the same direction. Thus as B advances, C never has to back up, and this
guarantees the linearity of the method.

This also follows, of course, from the results of [2]. combining the above observa-
tions we get the following result.

THEOREM 3.2. A maximal rooted k-gon can be computed in time O(kn lg n) and
linear space.

4. Floating the root. In this section we show how to obtain a (globally) maximum
(perimeter or area) k-gon. The word maximum, when used without other qualifiers,
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will always refer to a global maximum. To start with, we find a maximum rooted
k-gon, with root some arbitrary point z. This rooted k-gon partitions our points into
k non-overlapping intervals I, I2," , Ik SO that the maximum k-gon has exactly one
vertex in each of them (by Lemma 2.2). We will show how, given this partitioning,
we can find a maximum k-gon in an additional O(n lg2 n) time.

We accomplish this by choosing one of these intervals, say I, and then finding
the maximum rooted k-gons with roots each of the points in I. From 3 we know
that we can find a rooted restricted k-gon whose vertices are constrained to be in
intervals of total length in time 0(1 lg l). Naively applied, this would give us an
O(n2 lg n) algorithm for computing all these rooted k-gons. However, we can do
better by proceeding exactly as in the previous section.

Lemma 2,3 implies that once we choose a point z in I and find the maximum
k-gon rooted there, then this k-gon will partition the original intervals into two
collections, each of which is spanning. Thus again we can use a binary subdivision
technique on I1, so that the cost of computing a maximum k-gon rooted at the median
point of I1 will be O(n lg n). Then the cost of computing maximum k-gons rooted at
the 1/4 and 1/4 points of 11 will jointly be bounded by O(n lg n), and so on, for lg n
iterations. Therefore all the optimal k-gons with roots in Ix can be found in time
O(n lg2 n). The maximum k-gon is the best of them.

THEOREM 4.1. The maximum area or perimeter k-gon can be computed in time
O(kn lg n + n lg2 n), and linear space.

5. Comments and counterexamples. Our perimeter algorithm for k 2 is, of
course, finding the diameter of our point set. Note that our method uses time O(n lg n)
to find the diameter, even after the convex hull has been found. Shamos’ method, on
the other hand, requires only time O(n) for that step. His method is based on supporting
lines and uses the lemma that. the diameter is always an edge between two points that
are extremal along two directions in the plane, 180 apart. One can start two pointers
at, say, the points of smallest and largest x value, and then rotate them around the
convex hull so as to find all these extremal pairs. Neither pointer ever backs up, so
the total cost for this method is O(n).

Unfortunately, the supporting line technique does not generalize to k > 2. For
example, to find a maximum perimeter triangle, we might consider all triplets of points
which are extremal in three directions, 120 apart. As before, all these triplets can be
found in linear time once the convex hull is given, but the example below shows that
the maximum perimeter triangle need not be among them.

Consider the six points A, B, C, D, E, F with coordinates respectively (0, 1),
(0,-1), (100, 0), (.3, 1.2), (.3,-1.2), and (99.9, .1). See Fig. 6. It is easy to check that
ABC is the maximum perimeter triangle, but D and E always shelter either A or B
from touching the circumscribing triangle, except when A and B are on the same line.
In this case F shelters C.

FIG. 6. The supporting line fails.
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We have, however, a construction that reduces the problemo finding the maximum
perimeter rooted triangle to that o finding the diameter of a certain set--a problem
that we can solve with a supporting line idea in linear time. This implies that we can
find a maximum perimeter triangle in time O(n lg n).

For our construction we consider the figure obtained by drawing, a circle with
center each o our points and radius its distance to the root (to be called the flower).
See Fig. 7. Consider the root R, and the line segment joining it to some point X on
a circle with center the point P, as in Fig. 8. The point X will not be contained in any
other circle, if and only if point P is an extremal point of our original set in the direction
RX. Thus the convex hull of the flower consists of alternating circular arcs and (possibly

FIG. 7. Reducing a rooted triangle to a diameter problem.

FIG. 8. A condition for point X to be on the boundary.
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trivial) straight line segments. Furthermore there is at most one arc from each circle
on the hull, and they occur in the same order as the original points. Well-known
properties of convex sets [IB] imply that the diameter of the convex hull of the flower
connects two points lying on circular arcs and, since the diameters has to be normal
to the boundary, it passes through the centers of the corresponding circles. The triangle
with vertices R and those centers has perimeter equal in length to this diameter.

Conversely, it is clear that any triangle under consideration corresponds to a line
segment with endpoints on or interior to the convex hull and length equal to the
perimeter of the triangle. Thus if we can find the diameter of the convex hull of the
flower, we have found the maximum perimeter triangle rooted at R. It is easy to check
that Shamos’ diameter algorithm can be adapted to find the diameter of this continuous
figure in linear time. This, coupled with the floating the root technique of 4 shows
the following theorem.

THEOREM 5.1. The maximum perimeter triangle can be found in time O(n lg n).
It may be of interest to note that the supporting line idea does not easily generalize

to three dimensions, even for the diameter case, as the supporting hyperplanes at a
vertex do not have a linear ordering. We might consider the following variant: let
some face of the polyhedron act as a base, and look at the vertex furthest away from
it. Let all edges from that vertex to some vertex of the base be candidates for the
diameter. Next we roll the polyhedron onto a new base, and repeat this computation.
After a Hamiltonian roll through all the faces, we may think that we have found the
diameter. Unfortunately we have a simple example that shows that this method can miss.

Consider a right triangular prism with cross-section an equilateral triangle, and a
height much larger than the side of the triangle. At each end of the prism construct
a regular tetrahedron, using the end of the prism as a base. The prism is long enough
that diagonal lines from one end of the prism to the other are only slightly longer than
its height, so the diameter of the overall solid connects the apex of one tetrahedron
to the apex of the other. However, the apex of a tetrahedron is not the furthest point
from any face. The same situation occurs also in two dimensions if we are not careful
about resolving ties, as we see if we append two slightly obtuse isosceles triangles to
a rectangle, by glueing their long sides to the rectangle’s short sides, as in Fig. 9.

FIG. 9. A counterexample.

While we are on the subject of counterexamples, it is worth mentioning that two
maximal rooted k-gons do not necessarily interleave. The crossing argument breaks
down when it forces both roots on the same polygon, and given below is an actual
example for k 3 that shows the existence of maximal noninterleaved rooted triangles
in the perimeter case. Begin with an equilateral triangle inscribed in the unit circle,
with one vertex at (1, 0). Then construct a segment of length .2 tangent to the circle
at each vertex, with the segment centered on the vertex. Now perturb this figure by
raising A’ and C’ by .01, and lowering A and B by .01, as in Fig. 10. It can be checked
that the largest perimeter triangle rooted at A is ABC, and the maximum rooted
triangle rooted at A’ is ABC. These do not interleave one another, but both interleave
the overall maximum C’BC. A simple illustration of the same effect for k 2 is in
Fig. 11.
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A

FIG. 10. Maximal rooted triangles do not interleave.

r2
FIG. 11. Two maximal chords that do not cross.

We mentioned in the introduction some algorithms for finding minimum k-gons
based on extended Voronoi diagrams. The key lemma there is that minimum k-gons
occur as subpolygons of the points corresponding to a particular Voronoi region. One
can also consider the furthest point Voronoi, and hope that similar techniques can be
used for maximal k-gons. However, this is not obviously the case. Look at a regular
2k-gon. Its furthest point k-Voronoi consists of 2k wedges, each associated with the
k consecutive points "opposite" the wedge. The largest k-gon on the 2k points is the
regular k-gon using every second point, so it cannot be determined from this furthest
point Voronoi.

Finally the Dobkin-Snyder method for finding maximal area triangles in linear
time once the convex hull is given, fails to generalize to k 5. Consider the seven
points A, B, C, D, E, D’, E’ with coordinates respectively (-101, 0), (0, 0), (0,-101),
(-51, 1..01), (-50, 1), (1.01,-50), (1,-51), as in Fig. 12. The largest pentagon is

D E

oD
oE

FIG. 12. Missing the largest area pentagon.
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ADBD’C. The algorithm starts with ADEBD’. The D’ point moves to C, giving
ADEBC, then nothing moves. The base point is advanced, so we have DEBD’C. A
is closer to the DD’ line than C, so nothing moves. The base point advances, giving
EBD’E’C. C advances to A and E’ advances to C, giving EBD’CA. Nothing moves
further. Once again we advance the base point, and get BD’E’CA. A will not move,
so we advance the base point and get D’E’CAD. D advances to B, giving D’E’CAB,
and then A will not move. Again advancing the base gives E’CADB, and nothing
moves. Advancing the base again gives CADEB, and nothing moves. Finally the base
moves a last time to ADEBD’, and we are back to where we started.

6. Circumscribed polygons. Our results dualize in an interesting fashion. We can
consider lines, or actually halfspaces in the plane, instead of points. Keeping only
points on the convex hull corresponds to keeping only those lines whose halfspaces
support the intersection of all the halfspaces. Given n such halfspaces in the plane,
we can find the k of them whose intersection has minimum area or perimeter by a
dual of the original algorithm. Unfortunately this does not quite solve the problem of
finding the minimum perimeter (or area) k-gon surrounding a given collection of n
points.

A combination of the original and the dual algorithm lets us find an inscribed and
a circumscribed k-gon for a collection of points. This is a useful tool for many computer
graphics applications, such as hit detection or object intersection. If a point is inside
the inscribed k-gon, then it is inside the convex hull of our n points. If it is outside
the circumscribing k-gon, then it is outside the convex hull. If it falls in the crack
between the two, then a more complicated method can be used.

Such inclusion tests are especially efficient for k-gons of fixed shape, e.g. rectangles.
A supporting line idea can be used to find such minimum (in perimeter or area)
circumscribing k-gons with sides at fixed relative angles. If we fix the orientations of
all the sides, then we can find the smallest enclosing k-gon in time O(kn). Once we
have the vertices at which the sides of that polygon touch, we can let these vertices
rotate around and obtain the smallest polygon for all orientation in time O(kEn). The
extra factor of k comes in because we have to do an area or perimeter computation
once we have determined the supporting vertices of the circumscribing k-gon.
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SIMPLICITY, RELATIVIZATIONS AND NONDETERMINISM*

JOSt L. BALC,/ARf

Abstract. Relativizations of complexity classes in which simple sets exist are considered. A recursive
oracle is constructed relative to which a simple set exists for NP. Some other general theorems are proven,
showing that the time bounds are not a crucial hypothesis; bounds on the way in which the oracle is
accessible, namely, the number of queries and/or the number of nondeterministic steps, are shown to be
the fundamental hypothesis. As a result, simple sets are shown to exist in many different relativized complexity
classes.

Key words, complexity classes, relativizations, nondeterminism, bounded queries, immunity, simplicity,
NP

Introduction. The relationship between deterministic and nondeterministic models
of computation has been investigated for many years. The central problems appear to
be fundamentally difficult. The open problem that has dominated recent work is the
question of the deterministic and nondeterministic models restricted to polynomial
running times, that is, the "P ?NP" problem.

A simple analogy may be drawn between the class P and the class of recursive
sets on the one hand, and the class NP and the class of recursively enumerable sets
on the other hand: the class NP can be defined by applying polynomially bounded
existential quantifiers to predicates in P. Such an analogy suggests reasons for translating
the definitions and, when possible, the results of elementary recursive function theory
to the setting of polynomial time-bounded computation. As examples of there "transla-
tions," recall the Hartmanis-Berman conjecture that all of the NP-complete sets are
polynomially isomorphic, and the polynomial hierarchy specified by alternation of
polynomially bounded quantifiers on predicates in P.

However, even elementary propositions of recursive function theory become
difficult in the setting of polynomial time bounds; in fact, some are unsolved problems.
Recently, two such notions have been investigated, the notion of "immune" set and
the notion of "simple" set. Since the question P ?NP is open, it is not surprising that
the existence of a "P-immune" set in NP or of a "NP-simple" set in NP is not known.
This is the subject of the present paper.

The proof of Baker, Gill, and Solovay [1] of the existence of a set A such that
P(A) # NP(A) sets the stage for numerous investigations of the properties of relativiz-
ations of P and NP. Other such separating theorems have been developed and there
are two specific studies that are important for the present work. First, Kintala [6], [7]
considered relativizations of machines that run in polynomial time but have restrictions
on the number of nondeterminist[c steps in any computation. Thus, there is a recursive
set A such that for every integer k, the class of sets recognized relative to A by
polynomial time-bounded oracle machines with at most n k nondeterministic steps in
any computation is properly included in the corresponding class specified by machines
that may use nk/ nondeterministic steps. Second, Xu, Doner, and Book [11] observed
that the separating theorems proved by methods similar to Baker, Gill, and Solovay

* Received by the editors July 5, 1983, and in revised form April 17, 1984. The research reported in
this paper was performed while the author visited the Department of Mathematics, University of California
at Santa Barbara. This work was supported in part by a grant from the USA-Spanish Joint Committee for
Educational and Cultural Affairs, and by the National Science Foundation under grants MCS80-11979 and
MCS83-12472.

f Facultat d’Informhtica, Universitat Politcnica de Barcelona, Jordi Girona Salgado, 31, Barcelona,
34, Spain.
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do not really depend on time as a bound, but rather the number of oracle queries
allowed in a computation and the number of nondeterministic steps in a computation
combine to yield these results. Thus, they established a very general separating theorem
for relativizations of classes specified by machines with restricted nondeterminism.

If is a class of sets, then a set L1 is q-immune if Ll is infinite and no infinite
subset of L1 is in , and a set L2 is C-simple if L2 has an infinite complement, L2 is
in r, and the complement of L2 has no infinite subset in c.

Homer and Maass [5] showed that there is a recursive set A such that there is a
set in NP(A) that is P(A)-immune. Also, using priority methods, they showed that
there is a recursively enumerable set B such that NP(B) contains a set that is NP(B)-
simple. Sch6ning and Book [9] used a simple diagonalization in a different proof of
the first result and they extended the argument to a wide variety of other classes by
focusing not on time but rather on the number of oracle queries allowed in any
computation and on the amount of nondeterminism allowed in any computation. Thus,
Schoning and Book established two very general "immunity theorems" that establish
"strong separation" of relativized classes, ,separations witnessed by the appropriate
immune sets.

In this paper we establish a number of results about simple sets. The first result,
Theorem 1, strengthens the result of Homer and Maass mentioned above: there is a
recursive set A such that NP(A) has a set that is NP(A)-simple. The proof is by means
of a straightforward diagonalization (a "slow" diagonalization in terms of [4]) and
can be "lifted" to other circumstances. Thus, Theorem 3 and Theorem 5 provide very
general results on the existence of simple sets that parallel the results of Sch/Sning and
Book. A number of applications are given.

These results add very strong evidence to the argument that the study of determin-
ism vs. nondeterminism by means of relativizations has not illuminated the basic
difficulties but instead has illustrated the power of nondeterminism in steps that write
on the query tape and so generate a very large set of strings to be queried. This point
is made stronger when one notes that Theorem 5 is established in the setting of an
infinite hierarchy of functions that bound the amount of nondeterminism allowed in
computations.

1. Preliminaries. Throughout this paper, we consider decision problems encoded
as subsets of F* where F {0, }. For a word w, Iw denotes the length of w. We assume
some fixed ordering _-< of F* such that Ixl < lYl implies x < y.

The computational model considered here is the multitape oracle Turing machine,
deterministic or nondeterministic. For relativized computation oracle machines are
assumed to have a distinguished work tape, the query tape, and three distinguished
states, QUERY, YES, and NO. If some computation of such a machine enters the
state QUERY, then at the next step the machine transfers into the state YES if the
string currently appearing on the query tape is in a fixed oracle set; otherwise, the
machine transfers into the state NO; in either case the query tape is instantly erased.
For such a machine M and oracle set A, the set of strings accepted by M relative to
the oracle set A is L(M, A)- {wlthere is an accepting computation of M on input w
relative to oracle set A}.

Oracle machines are defined in the standard way and may be bounded with respect
to time or space by appropriate bounding functions. Time (space) bounds are assumed
to be running times so that a "clock" may be added to any such machine. Querying
the oracle costs just one step in time and the length of the query tape is bounded by
whatever space bound is imposed.
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Let f be a running time and let T be a class of running times. We denote by
NTIME (f, A) the class of sets accepted by nondeterministic machines with running
time f relative to oracle set A. Similarly, DTIME (f, A) denotes the corresponding
class specified by deterministic machines. Also, NTIME (T, A) kJr- NTIME (f, A)
and DTIME (T, A) UrT DTIME (f, A). Refinements of these classes will be intro-
duced in 4.

When considering machines that are nondeterministic, the expression, "always
halts" means that relative to every oracle set, every computation on every input must
halt. For example, this is the case for time-clocked machines specifying classes such
as DTIME (f, A) or NTIME (f, A).

Let rE be a class of subsets of F*. Denote by co-Cg the class {F* L L cg}. A set
L is cg-immune if L is infinite and no infinite subset of L is in cg. A set L is Cg-simple
if L is in cg and F*-L is cg-immune. In what follows, for any set L, the set F*-L
will be denoted L.

2. A simple set for NP relativized. The first result is the existence of a recursive
set A such that NP(A) {L(M, A)[M is a nondeterministic polynomial time-bounded
oracle machine} has a set that is NP(A)-simple. The existence of a rE-simple set for
any class rE shows a strong separation between and co-. The immunity results in
[9] maybe viewed as a strong separation between classes specified by deterministic
machine vs. nondeterministic machines. Similarly, the existence of simple sets implies
a strong separation between a class and the corresponding class co-rE, where rE is
specified by nondeterministic machines; this separation is witnessed by a set in co-
which is not "infinitely approximable" within rE.

THEOREM 1. There is a recursive set A such that NP(A) contains a simple set.

Proof The basic construction diagonalizes over an enumeration of the clocked
nondeterministic polynomial time-bounded oracle machines so that for any fixed oracle
set A, each set in NP(A) is presented infinitely often. Let NP, NP2," be an enumer-
ation of such machines; for each i, let qi be a nondecreasing polynomial bounding
NPi’s running time.

For any set AF*, let L(A)={wlw{O}*, or w=O and some word in A has
length of m}. Clearly, L(A) NP(A). The construction of A is based on a diagonaliz-
ation over NP(A) such that L(A) is NP(A)-simple. The set A is constructed in stages
so that at each stage n, the intersection of L(A) with L(NPj, A) for each j =< n is forced,
when possible, to be nonempty.

Construct A by performing in the natural order 0, 1, 2,... the stages as follows:

Stage 0
Ao:= {0}*;
m0:= 0;
Ro:= ;

end stage;
Stage n (n -> 1)

R. := R._ t.J {n}
rnn :=min {mlmax {qj(mn-)lj < n}< m, and max {q(m)[j <- n}<2m};
,An := An- {0ran};
if there exists j Rn such that 0"n L(NPj, An)

then
let jn be the least such j;
choose any accepting computation of L(NP, An) on input 0"-;



SIMPLICITY, RELATIVIZATIONS AND NONDETERMINISM |51

let w, be the least word of length m, not queried in the chosen
computation;

A,,:=A,U{w,,};
R.:= R. {j.};

end if;
end stage.

The set A is defined as A := {x F*lx A for almost every n}.
The conditions imposed on m, guarantee that adding or deleting words of length

m, does not alter the previous computations. In any single computation of a machine
NPi on an input x, at most q(Ix[) words can be queried; since there are 2"- words of
length m,, there is a word w, available if it is needed. Thus, the construction can be
performed.

It is clear that the set A is recursive. We show that L(A)= F*-L(A) is infinite.
By the definition of L(A), L(A) is finite if and only if L(A) contains all but finitely
many words of the form 0’% This implies that words of length m, are added to A in
all but finitely many stages n; hence, the "then" case occurred at all but finitely many
stages, and by the construction we see that the set R LI ,---o R, is finite; indeed, one
number is added and one deleted at each such stage. But no index of the empty set
can be deleted from R at any stage and every index is added to R at its own stage;
since there are infinitely many indices of the empty set, R is infinite. Thus, L(A) is
infinite as claimed.

Now suppose that for some j, L(NPj, A) L(A) and L(NPj, A) is infinite. Since
L(A)

_
{0m. In >- 0}, this means L(NP, A)

L(NP, A). Since ony finitely many indices are less than j, there is some stage n such
that j is the least index in R with 0m- e L(NP, A).:. At this stage w, is added to A, A
so that 0". e L(A), contradicting L(NP, A) L(A). Thus, for any j, if L(NPj, A)c__
L(A), then L(NP, A) is finite.

Hence, L(A) is NP(A)-immune and so L(A) is NP(A)-simple.
It is not difficult to combine this diagonalization with the one used by SchSning

and Book [9] so that the resulting set A has the property that simultaneously NP(A)
has one setthat is P(A)-immune and another set that is NP(A)-simple. Here we give
only the construction. We assume an enumeration Pl, P, of the clocked determinis-
tic polynomial time-bounded oracle machines. For each i, let qi be a nondecreasing
polynomial bounding both P’s running time and also NP’s running time.

For any set A_F*, define Leven(A)= {0 Ithere exists w A such that iw[ 2m}
and Lo,,(A) {0" there is no w A such that Iwl- 2m + 1}. Clearly, Levn(A) NP(A)
and Lo,,(A) co-NP(A).

The construction diagonalizes over P(A) at even stages and NP(A) at odd stages.

Stage 0
Ao := {ok[k is odd};
mo := O;
Ro := ;
So := ;

end stage;
Stage 2n 1 (n 1)

R2n_I ".-- R2n_2
S,_:= S,_ U {n};
m,_ := min {m[ max {q(m2,-)[j < n} < 2m + 1, and

max {qj(m) Ij <= n} < 2"+};
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A2.- := A2.-2- {02m2n-’+l}
if there is a j $2.-1 such that 0 "2n-, L(NPj, A2.-I)

then
let j2.-1 be the least such j;
choose an accepting computation of L(NPj._,, A2.-) on 0m2"-;
let WE._ be the least word of length 2m2._ + not queried

in this computation;
AEn-l:-’AEn_l{WEn_l};

end if;
end stage;
Stage 2n (n _-> 1)

R2n := R2n-1 L.J {n};
S2n := S2n-
m2. := min {ml max {q(m2.-)IJ < n} < 2m, and _. qg(m) < 22m};
if there is a j e R2. such that 0"- e L(P, A._l)

then
let j2. be the least such j;
R2n := R2, {j2n};
A2n := A2.-I;

else
let WE. be the least word of length 2m2. not queried in any

computation of L(P, A2.-I) on 0’:- for every j REn
A2n ;= A2n_l LJ { w2n}

end if;
end stage.

The set A is defined as A := {x F*[x A, for almost every n}.
Arguments similar to those used for the first construction show that both Lv,(A)

and Lodd(A) are infinite, that Lvn(A) is P(A)-immune, and that Lodd(A) is NP(A)-
immune. Thus, we have the following result.

THEOREM 2. There is a recursive set A such that NP(A) has both a P(A)-immune
set and also an NP(A)-simple set.

It is not known whether there is a set A such that some set L in NP(A) is
simultaneously P(A)-immune and NP(A)-simple, that is, L is in NP(A), L is infinite,
no infinite subset of L is in P(A), and no infinite subset of L is in NP(A). We continue
to investigate this problem.

3. Simple sets for other relativized classes. The proof technique used to establish
Theorem is applicable to a wide variety of complexity classes other than NP. Clearly
no class closed under complementation admits a simple set. But our investigation is
concerned with the necessity of the polynomial time bound. A careful analysis of the
proof of Theorem shows that the polynomials are not used as a bound on the running
times but rather that running times bound the number of oracle queries in computations
and also the number of nondeterministic steps in computations. This is by no means
surprising when one considers the results in [2], [3], [9], [10], Ill]. In this section we
state two results whose proofs are based on the constructions in 2.

Let f be a function on the natural numbers. For any set A, let L(A) be defined
as Lf(A):={O’[for all wA, Iw[f(m)}.

Iff is a running time, then it is clear that for every set A, Lf(A) NTIME (f, A).
By diagonalizing over a class of machines, it is possible to construct A so that Lr(A)
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is immune with respect to this class. Thus, if L.r(A) is in the class, then it will be simple
with respect to this class.

TqEOREM 3. Let M Mi >- be an effective enumeration ofa class of nondeter-
ministic oracle machines that always halt, and let T {til >= 1} be a class of running
times. For every set B, let L(M, T, B) denote the collection of sets L( M, B) such that M
is in M and for some in T and all inputs w to M, some accepting computation ofM on
w makes at most t(Iwl) oracle queries. Suppose that (i) for every f, g T, f(n) <2g’) for
all but finitely many n, and (ii) there is a finite set F such that for every set B, there are
infinitely many with L(Mi, B)= F. Then for any fixed f T, there is a recursive set A
such that Lc(A) is L(M, T, A)-immune hence if Lc(A) L(M, T, A), then Lr(A) is

L(M, T, A)-simple.
Clearly, Theorem is a corollary of Theorem 3. Before proving it, let us show

how the theorem applies. All these corollaries follow easily from Theorem 3.
For every set A, let NEXT (A) denote the collection of sets recognized relative

to A by nondeterministic oracle machines that run in time 2i" for some i> 0.
COROLLARY 3.1. There is a recursive set A such that NEXT (A) has a set that is

NEXT A -simple.
For each integer i>0, define exp(2,1, in)=2i and for integer j>0, define

exp (2,j+ 1, in) 2exp2J’i). Fix an integer h>0 and let T= {exp (2, h, in)li>O}.
COROLLARY 3.2. There is a recursive set A such that NTIME (T, A) has a set that

is NTIME (T, A) -simple.
For every set A, let NPQUERY (A) (PQUERY (A)) be the collection of sets

L(M, A) where M is a nondeterministic (deterministic) oracle machine that uses
polynomial work space and can make at most a polynomial number of oracle queries
in any accepting computation. See [2] for interesting properties of these classes.

COROLLARY 3.3. There is a recursive set A such that NPQUERY (A) has a set that
is NPQUERY (A)-simple.

If one considers the "bounded query" machines [2], [3] that specify classes of the
form NPQUERY (A) and allow bounds of the form exp (2, h, in), then one can apply
Theorem 3 to obtain a result similar to Corollary 3.3.

Let us turn to the general theorem.
Proof of Theorem 3. Without loss of generality we assume that each machine M

operates within the bound t T on the number of queries. This can be achieved by
constructing a new enumeration M<ij> obtained by adding a "clock" tj from T that
stops machine M if it attempts to query the oracle more than the allowed number of
times. Then an effective "renaming" of the enumeration of T allows us to assume that
t bounds the number of queries of M.

Fixf T and perform the construction as follows. Note that it is an easy adaptation
of the proof of Theorem 1.

Stage 0
Ao := {0}*;
too:= O;
Ro := ;

end stage;
Stage n (n -> 1)

R, := R_ t.J {n}
mn:=min{mlmax{tj(m)lj<=n}<2s(") and m is greater than Iwl for any w

queried to the oracle in a computation chosen at earlier stages}"
An := A,_ {0f(rn’)}
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if there is a j Rn such that 0" s L(M, A,)
then

let jn be the least such j;
fix an accepting computation that queries the oracle at most tin (m) times;
let w, be the least word of length f(m) that has not been queried in the

fixed computation;
A:=AnU{w.};
R:= R-{j};

end if;
end stage.

As in Theorem 1, the conditions imposed in mn guarantee that the construction
can be performed, and that previously considered computations do not change. On
the other hand, such a m, exists, as follows from the hypothesis. All but finitely many
indices of the finite set cited in the hypothesis must remain forever in R, so Ly(A) is
infinite. For each i, if L(Mi, A){O}* and L(Mi, A)is infinite, then at some stage n,
the index is removed from R,. Thus, Ly(A) is L(M, T, A)-immune.

This theorem parallels the first immunity theorem in [9], which asserts that under
similar hypotheses immune sets exist in relativizations of complexity classes (possibly,
those specified by nondeterministic machines). Under hypotheses strong enough to
imply both the hypothesis of Theorem 3 and that of the first immunity theorem, the
constructions can be merged in the same way as was done in 2 to obtain Theorem
2. We omit the proof; it involves no new ideas.

THEOREM 4. Let T be a class of running times, and let M={M,li->I} and
ME {M2,il >_- } be effective enumerations of deterministic and, respectively, nondeter-
ministic oracle Turing machines that always halt. Further, assume that

(i) for everyfT, and every integer, there is a get such that c. f(n)< g(n) for
almost all n;

(ii) for every f, g T, f(n) < 2e,(,,) for almost all n;
(iii) for every i, there is a T that bounds the number ofqueries in the computations

of M,;
(iv) for every i, there is a T that bounds the number of queries in some accepting

computation on any input word w L(M2,, A);
(v) there is a finite set that appears infinitely often in both the classes L(M, T, A)

and L(M2, T, A);
(Vi) for some fixed f,fET independent of A, the sets Lf(A) and Lf2(A are in

L(M2, T, A) and the intersection of the range off and the range off2 is finite.
Then there is a recursive A such that Lf(A) and Lf,(A) are, respectively, L(M, T, A)-
immune and L(M2, T, A)-simple.

Observe that hypotheses (i) and (ii) together imply that the sum of a finite fixed
number of functions of T is bounded by 2g(n) for any g T. This is the only nontrivial
fact needed in applying the hypotheses to a construction similar to that used in the
proof of Theorem 2.

Theorem 4 applies to the classes DEXT and NEXT, to the complexity classes
specified by other hyperexponential time bounds exp (2, h, in) as defined above, to
PQUERY and NPQUERY, and to many other complexity classes.

4. Refining nondeterminism. Some interesting work has been done in recent years
regarding the existence of properly infinite hierarchies of relativized complexity classes
where each class in the hierarchy is defined by bounding the number ofnondeterministic
steps the machines specifying the class are allowed to make. Kintala [6], [7] considered
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oracle machines that operate in polynomial time. For each integer and each set A,
let P(A)n, be the collection of all sets L(M, A) where M operates in polynomial time
and in every accepting computation on any input of length n, M can make at most n
nondeterministic steps. In a similar way, for each integer and each set A, define
P(A)0ogn),. Kintala showed that there are recursive sets A and B such that for all i>_-0,
P(A), P(A)n,+, and P(B)(log,),+ P(B)0og,),+2. Xu, Doner, and Book [11] established
a general separating theorem that yields Kintala’s results as corollaries. Sch6ning and
Book [9] established a general immunity theorem that yields as corollaries the existence
of recursive sets A and B suchthat for all > 0, P(A),,+, has a set that is P(A),,-immune
and P(B)log),+2 has a set that is P(B)0ogn),+-immune. Here we establish a general
simplicity theorem that parallels the result of Sch/Sning and Book.

A machine M operates in nondeterminism g(n) if for every input string x to M,
every computation of M on x has at most g(Ix[) nondeterministic steps.

Let M be a class ofnondeterministic oracle machines, and let T and G be classes
of nondecreasing functions. Assume that. for each M in M there are functions s T
and g G Such that for every input string x to M, every computation of M on x makes
at most t(lxl) oralce queries, and M operates in nondeterminism g. Further, assume
that for every s T and g e G there is some M in M satisfying this condition. For every
set A and gG, define D(M,A)e,={(M,A)[MM operates in nondeterminism g}.

THEOREM 5. Let M {M, >- } be an effective enumeration ofa class ofnondeter-
ministic oracle machines that always halt, and let T={t[i]li>= 1} and G={g[i]li>= 1}
be classes of running times such that (M, T, G) satisfy the above conditions. Suppose that
the following hold:

(i) for every tsT and gG, t(n)<2" for almost all n;
(ii) for every g G and every set B, Lg(A) D(M, B)g;
(iii) there is a finite set F such that for all g G, all T, and all sets B, there are

infinitely many such that F L(M,, B), M operates in nondeterminism g, and
for every input w, every accepting computation ofM, on w relative to B queries
the oracle at most t(Iwl) times.

Then there is a recursive set A such thatfor every g G, the set Lg(A) is D(M, A)g-simple.
Again we turn to some examples before giving the proof of Theorem 5.
COROLLARY 5.1. There is a recursive set A such that for every i> O, P(A),, has a

set that is P(A) n,-simple.
COROLLARY 5.2. There is a recursive set A such that for every i> 1, P(A)<log.)’ has

a set that is P(A)oog,),-simple.
For every set B and every integer i> 0, let PQUERY (B),, and PQUERY (B)0og,),

be the restrictions of NPQUERY(B) (or extensions of PQUERY(B)) defined
analogously to P(B),, and P(B)0og,),.

COROLLARY 5.3. There are recursive sets A and B such that for every i>0,
PQUERY (A),, has a set that is PQUERY (A),,-simple and PQUERY (B)<log,) has
a set that is PQUERY (B)oog,),+-sim_ple.

Fix an integer h>0 and let T={exp(2, h, in)[i>O}. For every set B and every
integer i>0, let DTIME (T, n)exp(2,h,in) be the collection of all sets L(M, B) where M
operates in time bounded by some function in T and in nondeterminism exp (2, h, in),
and let DQUSP (T, B)exp(:Z,h, in) be the collection of all sets L(M, B) where M operates
in space bounded by some function in T, the number of oracle queries made in any
of M’s accepting computations is bounded by some function in T, and M operates
in nondeterminism exp (2, h, in). See [3].

COROLLARY 5.4. There is a recursive set A such that DTIME (T, A)exp(2,h,in) has a
DTIME (T, A)xp<:.h,,)-set simple set.
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COROLLARY 5.5. There is a recursive set A such that DQUSP (T, A)exp(2,h, in) has a
DQUSP (T, A)xp(E,h,i,)-simple set.

For other examples of classes to which Theorems 3-5 apply, see [3], [9], [10], I11].
Now we turn to the proof of Theorem 5. Let us assume any standard polynomial-

time computable tripling function, so that (s, r/, ’) is one-one and onto from 3 to. We assume that the inverses (the projections) are also polynomial-time computable.
Proof of Theorem 5. First we need a recursive presentation of tag D(M, A)g. In

order to do this, we build a new enumeration ofmachines which we call M’ {M _>- },
by constructing each machine M[, =(:, r/, ’), behaving like the seth machine in M,
M, with a clock for t[r/] that stops the machine if more than t[7] queries are made,
and with a clock for g[’] bounding the number of nondeter.-ninistic steps in the
computations. Notice that the machines M[ such that i= (sc, r/, ’o) for a fixed ’o form
a recursive presentation of D(M, A)g[ol.

From the index of the machine M it is possible to recover the bounds and g
corresponding to M’. For the sake of clarity, when these bounds are needed we will
say "let t, g be the bounds corresponding to the machine M", instead of indicating
the index of and g by means of the projections.

Construct the oracle A by performing in their natural order stages 0, 1,. ., as
follows:

Stage 0
Ao := {0}*;
mo:= O;
Ro := ;

end stage;

Stage n (for n => 1)
R.:=R._{n};
An := A._;
m.:=min{m[lw[<m for any w queried at earlier stages, and t(m)<2g(rn) for

the bounds and g corresponding to machine M, for each 1-<j-< n};
An := An--{og(m")[g is the nondeterminism bound corresponding to machine M

for each _-< j <- n};
if there is a j R. such that 0m- L(M, A)

then
let j,, be the smallest such j;
let and g be the bounds corresponding to M;
fix an accepting computation with query bound t(m) and nondeterminism
bound g(m);

let w be the least word of length g(m) not queried in this computation;
R,,:= g,-{j};
A.:=A.U{w,,};

end if
end stage.

As in the construction in 2, every index of the finite set F must remain in R
from some stage on. So, case "then" must fail to appear infinitely often.

For any g G, once some machine operating in nondeterminism g has entered
R,, at each stage in which case "then" does not occur no word of length g(m,) is
allowed to remain in A; so Lg(A) is infinite.

On the other hand, let M be any machine of M’ operating in nondeterminism g,
and assume that L(M,A) is infinite and that L(M,A)c_ Lg(A); eventually a word
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0"- L(M, A) will be found, because after finitely many stages j must be the least
index to be deleted from R,. But this stage will add to A a word w, of length g(m,)
yielding 0’n Lg(A). So, no infinite set in.D(M, A)g is included in Lg(A).

Hence, Lg(A) is D(M,A)g-immune. But Lg(A) D(M,A)g by hypothesis, so
Lg(A) is D(M, A)g-simple.

It is possible to combine this result with the second immunity theorem in [9] in
the same way as Theorems 2 and 4. No new ideas are needed. We omit this combined
result.

Acknowledgments. The author wishes to thank Ronald Book and Uwe Sch/Sning
for their help, friendship, and kind sharing of their own ideas. Contributions of an
anonymous referee to the clarity and correctness of this paper, particularly Theorem
5, are gratefully acknowledged. Finally, the author wishes to thank Ms. Leslie Wilson
for her assistance with the manuscript.

REFERENCES

[1] T. BAKER, J. GILL AND R. SOLOVAV, Relativizations of the P= ?NP question, this Journal, 4 (1975),
pp. 431-442.

[2] R. BOOK, Bounded query machines: on NP and PSPACE, Theoret. Comput. Sci., 15 (1981), pp. 27-39.
[3] R. BOOK, C. WILSON AND XU MEI-RUI, Relativizing time, space, and time-space, this Journal, 11

(1982), pp. 571-581.
[4] W. GASARCH AND S. HOMER, Relativizations ofthe exponential time hierarchy, unpublished manuscript,

1982.
[5] S. HOMER AND W. MAASS, Oracle dependent properties of the lattice of NP sets, Theoret. Comput.

Sci., 24 (1983), pp. 279-289.
[6] C. M. R. KINTALA, Computations with a restricted number of nondeterministic steps, Ph.D. dissertation,

Pennsylvania State University, 1977.
[7] C. M. R. KINTALA AND P. FISCHER, Refining nondeterminism in relativized polynomial time-bounded

computations, this Journal, 9 (1980), pp. 46-53.
[8] N. LYNCH, On reducibility to complex or sparse sets, J. Assoc. Comput. Mach., 22 (1975), pp. 341-345.
[9] U. SCH6NING AND R. BOOK, Immunity, relativizations, and nondeterminism, this Journal, 13 (1984),

pp. 329-337.
[10] A. SELMAN, XU MEI-RUI AND R. BOOK, Positive relativizations of complexity classes, this Journal, 12

(1983), pp. 565-579.
[ll] Xu MEI-RUI, J. DONER AND R. BOOK, Refining nondeterminism in relativized complexity classes, J.

Assoc. Comput. Mach., 30 (1983), pp. 677-685.



SIAM J. COMPUT.
Vol. 14, No. 1, February 1985

(C) 1985 Society for Industrial and Applied Mathematics
013

POLYNOMIAL TIME ALGORITHMS FOR THE MIN CUT
PROBLEM ON DEGREE RESTRICTED TREES*

MOON-JUNG CHUNGt, FILLIA MAKEDON,
IVAN HAL SUDBOROUGH AND JONATHAN TURNER

Abstract. Polynomial algorithms are described that solve the MIN CUT LINEAR ARRANGEMENT
problem on degree restricted trees. For example, the cutwidth or folding number of an arbitrary degree d
tree can be found in O(n (log n)d-E) steps. This has applications to integrated circuit layout, in particular
the layout of Weinberger arrays [41]. This also .yields an algorithm for determining the black/white pebble
demand of degree three trees. We also show that for degree three trees, cutwidth is identical to search
number and give a forbidden subgraph characterization of degree three trees having cutwidth k.

Key words. MIN CUT LINEAR ARRANGEMENT problem, cutwidth, search number, black/white
pebble demand, integrated circuit layout, VLSI

1. Introduction. Let G V, E) be a finite undirected graph. A (one-dimensional)
layout of G is a one-to-one function tr mapping the set of vertices V onto
(1, 2,..., VI). We consider the following layout problem:

MIN CUT LINEAR ARRANGEMENT PROBLEM (MIN CUT)
Instance: A finite undirected graph G (V, E) and a positive integer k.
Question: Does there exist a layout tr such that, for all (1-<_ <IV[), there are

at most k edges in the set cut(i)={{x, y}Eltr(x)<=i ^ tr(y) > i}?

The cutwidth of G with respect to a layout tr, denoted y(G) is defined as
max{Icut(i)l" 1 <-i<lVI}. The cutwidth of G, denoted 7(G), is defined as the
minimum over all layouts tr of y(G). A simple example is shown in Fig. 1.

(a)

(b)

FIG 1. (a) A tree T. (b) A layout minimizing the sum of the edge lengths. (c) A layout minimizing the
cutwidth.
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MIN CUT is one of several one-dimensional layout problems for undirected
graphs. Other layout problems are the BANDWIDTH MINIMIZATION problem
and the OPTIMAL LINEAR ARRANGEMENT problem [2], [9], [10], [13], [15],
[22], [30], [38]. The MIN CUT problem for general graphs is known to be NP-complete
[11], [39]. A recent result shows that it is NP-complete even when restricted to graphs
with maximum vertex degree three [23]. F. R. K. Chung [3] and others call the cutwidth
of a graph its "folding number."

The complexity of the MIN CUT problem when restricted to trees has been an
open problem.of some recognized importance. Lengauer [19] described a polynomial
time approximation algorithm for this problem. Lengauer’s algorithm obtains a layout
r for any tree T such that y(T)< 2y(T). In addition, Lengauer gave a linear time
algorithm to obtain an optimum layout of a complete k-ary tree, where k is any
positive integer. Some of the known applications for the MIN CUT LINEAR
ARRANGEMENT problem when restricted to trees are discussed below.

1.1. Black/white pebble demand for binary trees. Let G V, E) be a directed
acyclic graph. The black/white demand of G is the minimum number of pebbles
required to play the black/white pebble game on G. The rules of the black/white
pebble game are:

A white pebble may be placed on any vertex at any time.
A white pebble may be removed from a vertex only if all the predecessors of
that vertex are pebbled.
A black pebble may be placed on a vertex only if the predecessors of.that vertex
are pebbled.
A black pebble may be removed from a vertex at any time.

The object of the pebble game is to place a pebble on a distinguished vertex called
the sink, using as few pebbles as possible.

Let T (V; E) be a directed binary tree with a sink vertex of degree one. The
number of black and white pebbles needed to pebble the sink of T is equal to the
cutwidth of the underlying undirected tree. (We wish to thank Nick Pippinger for
pointing this out to us [34], [35], [36].) This can be seen by the following observations:

1. Let T be such a tree and let S be a black/white pebble game strategy for T
using k pebbles. (We can assume that S does not involve recomputation [21].) A
defining move of the sequence of steps in S is a move that either adds a black pebble
to a vertex or deletes a white pebble from a vertex. Define a layout r of T by r(x)=
if and only if the ith defining move of $ involves vertex x. It follows that y(T)=< k.
This is because at the ith defining move if the edge (y, z) is in cut(i) then there is a
pebble on y. Since every vertex has out-degree at most one, it follows that each of
these pebbles is on a unique vertex. Hence the size of cut(i) is bounded by k for all i.

2. Let T be a directed binary treee whose sink has degree one. Given a cutwidth
k layout cr of T we can construct a pebbling strategy S for the black/white pebble
game on T that uses at most k pebbles. During step of this strategy the goal is to
add a black pebble or to remove a white pebble from vertex r-l(i). To accomplish
this, white pebbles are added to all unpebbled predecessors of O’-1(i), a black pebble
is placed on r-l(i) or a white pebble is removed, and then black pebbles are removed
from all vertices r-l(j), j -<_ which are not predecessors of some vertex if-l(h), h > i.
By induction on it can be shown that the number of pebbles on the vertices of T at
each step is not greater than the sum of the number of edges passing over o’-1(i) in
the layout and the number of predecessors of r-(i). Using the fact that every vertex
in T has at most two predecessors and one successor and the fact that any vertex with
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two predecessors has a successor, this sum can be shown to be bounded by k. As this
is true at every step, the black/white pebble demand of T is bounded by its cutwidth.
(Note: it follows by a similar argument that if T is a directed tree with in degree _-<d

in which the sink has degree one, then the black/white pebble demand of T is not
greater than y(T)+ [(d-1)/21. Thus it follows that the black/white pebble demand
of such a tree is between y(T) and y(T)+ [(d-1)/2J. So, the algorithm we present
for determining the cutwidth of a tree also gives approximate information about the
black/white pebble demand for arbitrary degree bounded trees.)

Previous work on the black/white pebble demand of trees has appeared in [16],
[17], [21], [26]. Our MIN CUT algorithm gives an O(n In n) algorithm for determining
the black/white pebble demand of binary trees.

1.2. YLSI layout. A central problem in VLSI is area efficient embeddings of
various graphs in the plane. There are methodologies for automated component
placement that suggest placing circuit elements in rows or along a single line [5], [6],
[7], [20], [27], [33], [40], [43]. For example, Dolev and Trickey [5] have such a strategy
in mind when they consider the MIN CUT LINEAR ARRANGEMENT problem for
trees with the additional restriction that the edges are not allowed to cross. (They give
an O(n log n) algorithm for this planar layout version of MIN CUT on trees.) Foster
and Kung [7] consider the construction of VLSI circuits for regular languages with
programmable building blocks. The circuits form degree three trees and, when auto-
matic construction is desired from a given regular expression, one assigns the active
elements to positions along the bottom row of a "programmable recognizer array"
(PRA); the connections using at most log n tracks above. To minimize the number of
tracks (and hence the area) for such circuits one positions the basic cells along the
bottom row of the PRA in such a way that cutwidth is minimized.

Another important application is the layout of logic circuits using Weinberger
gate arrays [1], [41], [43]. This technique is used in several experimental silicon
compilers.

We describe an algorithm which solves the MIN CUT problem for trees. The
algorithm obtains the optimum cutwidth or folding number for an arbitrary tree. In
addition, for any fixed d>= 3, the algorithm takes at most O(n(log n)a-2) steps to
determine the cutwidth of a degree d tree with n vertices. We observe that the degree
of the polynomial time bound grows with the degree of the tree. (Recently, Yannakakis
[42] has also found an O(n log n) algorithm for all trees.)

We also give an algorithm that not only determines the cutwidth but produces an
optimal layout as well.

It should, perhaps, be noted that a layout to minimize cutwidth is not, in general,
the same as a layout to minimize the sum of all the edge lengths (the latter being the
goal of the OPTIMAL LINEAR ARRANGEMENT problem). For example, in Fig.
1, the first layout is among the best for OPTIMAL LINEAR ARRANGEMENT, but
is not optimal for cutwidth, and the second layout is among the best for cutwidth, but
is not a good layout for OPTIMAL LINEAR ARRANGEMENT. There are several
results concerning the OPTIMAL LINEAR ARRANGEMENT problem on trees in
the literature [2], [12], [15], [38]. The best result currently is due to F. R. K. Chung
[2] and gives an O(n158) algorithm. Optimal layouts for cutwidth are quite obviously,
in general, not good layouts for bandwidth. It is known that the BANDWIDTH
MINIMIZATION problem, even for degree three trees, is NP-complete [9].

In 2 we give a general characterization of cutwidth k trees. For the special case
of degree three trees we give a specific sequence of tree families with the property: a
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tree has cutwidth at most k if and only if it does not contain a homeomorphic image
of a tree in the (k + 1)st family. In fact, the same result was obtained by Parsons [31],
[32] for the notion of search number. Thus, we obtain the somewhat surprising result
that, for the class of trees with degree three, a tree has cutwidth k if and only if it has
search number k. (The search number of a graph is defined in [25]. In fact, a more
recent result shows that search number and cutwidth are the same for all degree three
graphs [22]. This uses the fact that "recontamination" does not reduce search number
[14].) In 3 we give an O(n(log n)d-l) algorithm for determining the cutwidth of any
degree d tree. In 4 we give a related algorithm for determining the cutwidth of a
degree three tree in time O(n log n). This algorithm is then used to speed up the
degree d algorithm to O(n(log n)d-2). The decision algorithms described in 3 and
4 yield information that can be used to produce an optimal layout of the tree. An
algorithm to construct the layout is described in 5. We conclude with a list of open
problems.

2. Characterization of trees with cutwidth k. Let T (V, E) be a tree and let
{u,. Xl,"’, x}

_
V. Define T(u, Xl,’", x) as the largest subtree of T that contains

u but does not contain any of Xl,"’, x. This definition is illustrated in Fig. 2. Let tr

be a layout of T. The vertex which is mapped to 1 by tr is referred to as the leftmost
vertex in the layout. The vertex which is mapped to lVI by tr is referred to as the
rightmost vertex.

T(x,v) T(u,x,x2)

FIG. 2. Notation for undirected tree.

THEOREM 2.1 (general characterization theorem). Let T be an undirected tree.
y(T)<= k ceevery vertex u of degree at least two has neighbors Xl, X2 such that
3,(T(u, xl, x2)) <- k- 1.

It follows from Theorem 2.1 that the tree in Fig. 3 has cutwidth four since vertex
u does not have neighbors Xl, x2 such that y(T(u, Xl, x2))<= 2.

FIG. 3. Application of Theorem 2.1.

Proof. (=:>) Assume to the contrary that y(T)<= k and there exists a vertex u of
degree ->2 such that for every pair of vertices Xl, x2 adjacent to u, y(T(u, Xl, x2))-> k.
Now let tr be a layout of T such that T(T)-< k and let P be the path connecting the
leftmost and rightmost vertices of T under tr. if u is an internal vertex of P let Xl, x2
be the neighbors of u on P. As shown in Fig. 4(a), P passes entirely over T(u, Xl, x2)
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in the layout but since y(T(u, x1, X2)) -> k it follows that the cutwidth of the layout
exceeds k, contradicting the assumption. If u is an endpoint o P then let x be the
neighbor of u on P. In this case P passes over T(u, x) and again we obtain a contradiction
since y(T(u,x))>-k. Finally if u is not on P, let x be the neighbor of u on the path
from u to P. Once again, P passes over T(u, x) yielding a contradiction.

() Consider two cases. First suppose that every vertex u has a neighbor x such
that y(T(u, x)) _-< k 1. Starting from any vertex Yl, construct a path yl,. , Yr, where
y(T(yi, Yi+I)) =< k- 1 for 1 _-< i< r and y(T(yr, Yr-1)) <- k- 1. This construction is shown
in Fig. 4(b). It is clear that y(T)_-< k.

T(U,X 2)

(b)
Y2 Yr- Yr

v(T(Yl ’Y2)) < k v(T(yt, y,_ )) < k

v(T(Yl, u, Y2)) ( k /(T(u,Yl,Z1)) ( k v(T(z1, u,z2)) (k

FIG. 4. Illustrations for Theorem 2.1.

Next suppose that there is some vertex u such that for all neighbors x of
u, y(T(u, x)) -> k. By the hypothesis, u has neighbors Yl, Zl such that y(T(u, Yl, Zl)) -<-
k- 1. Now if Yl is not a leaf then it has a neighbor Y2 such that 3’(T(yl, u, Y2)) -<- k- 1.
Similarly if Y2 is not a leaf then it has a neighbor Y3 such that y(T(y2, Yl, Y3)) <- k- 1.
Continuing in this fashion one can construct a path u, Yl,’", Yr such that for 1-<_

i<--r-2, ),(T(yi+I, Yi, Yi/2))--<k-1, and y is a leaf. One can construct a similar
path u, Zl," ", zs. This construction is illustrated in Fig. 4(c). Again it is clear that
y(T)<-k. [3

Let Td(k) denote the set of smallest trees with degree d and cutwidth k.
COROLLARY 2.1. T(1) is the singleton set containing the tree wih two vertices.

For k > 1 each ree in T( k) can be formed by identifying a leaf in three (not uecessarily
distinct) trees .from T k 1).

This construction is illustrated in Fig. 5 for T(2), T(3), and T(4).
Proof. The proof is by induction. The basis, k 1 is immediate. Assume then that

k > 1 and let T be any tree in T(k). By Theorem 2.1, T must contain a vertex u
with neighbors x, x2, x2 such that 7(T(u, x, x2))=> k- 1, 7(T(u, x, x))_-> k- 1 and
"),(T(u, x2, x))>_-k-1. Since T is a smallest degree three tree with cutwidth k, it
follows that T(u, x, x2), T(u, x, x) and T(u, x2, x) must be smallest degree three
trees with eutwidth k-1, that is they must be in T(k-1).

Let rid(k) be the number of vertices in a smallest degree d tree with cutwidth k.
COROLLARY 2.2. n(k) 3-+ 1.
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FIG. 5. T3(2), T3(3), and T3(4).

Proof. By induction. The basis k 1 is immediate from Corollary 2.1. Assume
then that n3(k-1) 3k-2+ 1. By Corollary 2.1,

n3(k) 3n3(k- 1)-2 3(3-+ 1)-2 3- + 1.

The next corollary relates the cutwidth of a tree to its search number. To understand
the notion of search number, let G (V, E) be a graph and think of the vertices of
G as rooms, and the edges as interconnecting corridors. Now, assume that there is an
escaped convict lurking somewhere within G. Your job is to organize a search party
to capture the fugitive and since you have limited resources you want to do it with
the fewest possible number of searchers. The search number of G is the minimum
number of searchers required to guarantee that the fugitive is captured. The following
result follows immediately from Theorem 2.1 and a characterization of trees with
search number k given by Parsons [31]. (We are indebted to S. L. Hakimi for pointing
out Parson’s result.)

COROLLARY 2.3. A degree three tree has cutwidth k it has search number k.
The next theorem provides a forbidden subgraph characterization of degree three

trees with cutwidth k. First we require some definitions. Let f(T) be the set of trees
obtained from T by replacing a single edge {u, v} with the tree shown in Fig. 6, where
x and y are new vertices and neither u nor v is adjacent to a leaf of T. If S is a set
of trees, f(S) is the union of the sets f(T) for all T in S. Let L3(1) be the singleton
set containing the tree on two vertices. M3(k) is the union of L3(k) and f(L3(k)).
L3(k + 1) is the set of trees that are obtained by identifying a leaf in three (not
necessarily distinct) trees from M3(k). For k <_- 5, L3(k) T3(k).

FIG. 6. Definition of f T).

THEOREM 2.2. Let T be a degree three tree. 3’(T) k: Tcontains a homeomorphic
image of a tree in L3(k) and does not contain a homeomorphic image of any tree in
L3(k/ 1).



164 M.-J. CHUNG, F. MAKEDON, I. H. SUDBOROUGH AND J. TURNER

Proof. By induction. The basis, k 1, is obvious. By Theorem 2.1, T has some
vertex u with neighbors xl, x2, x3 such that 7(T(u, xl, x2))>= k- 1, y(T(u, Xl, x3))>=
k-1 and 3’(T(u, x2, x3))>= k- 1. By the induction hypothesis each of these subtrees
contains a homeomorphic image o a tree in L3(k- 1). Consider the subtree consisting
of these three images together with the paths that join them to u. This is a homeomorphic
image of a tree in L3(k). Since each tree in L3(k+ 1) has cutwidth k+ 1, T cannot
contain a homeomorphic image of any tree in L3(k A-1). !3

Theorem 2.2 can be generalized to give a somewhat more complex forbidden
subgraph characterization of degree d trees.

The next theorem relates the number of vertices in a degree bounded tree to its
cutwidth. This will be used in the complexity analysis of our cutwidth minimization
algorithm.

THEOREM 2.3. Let T be a degree d tree with cutwidth k. T contains at least
d/ d 2) k- + 1 vertices.

Proof. By Theorem 2.1 T contains a vertex u with neighbors x,-.., Xr (r<= d)
such that y(T(u, xi, xj))>=k-1 for l<-i<j<=r. Now select xi, xj so that IT(x,u)l >
IT(x, u)l>--IT(Xh, U)l for l<=h<=r, iS hs.i. I ITl=n and IT(u,x,x)l=m then (m-
1)<=((r-2)/r)(n-1) or n>=(d/(d-2))(m-1)+l, since r/(r-2)>-d/(d-2). Since
this holds or all trees T and since m >-na(k-1) it ollows that

na(k)ed (na(k- 1)- 1)+ 1>_- (ha(l)- 1) + 1=
d

COROLLARY 2.4. Let T be a degree d tree with n vertices. 7(T) < (d/2) In n+ 1.

Proof. Let k 3’(T). By the theorem

In n d
n>(d/(d-2))k-l, k-l<ln(d/(d_2))<-lnn. [3

3. A eutwidth minimization algorithm tot trees. This section describes a general
algorithm for the cutwidth minimization problem on trees. The time bound for the
algorithm is

0((k+d- l)n log n)d-1

where n is the number of vertices in the tree, k is its cutwidth and d is the maximum
vertex degree. For trees with fixed maximum degree this quantity is O(n(ln n)a-1).

In the remainder of this section we assume that all trees are directed and rooted.
This is strictly for notational convenience. The cutwidth of a directed tree is the same
as the cutwidth of the underlying undirected tree.

If T is a tree, T[u] denotes the induced subtree with root u. T[u, x,..., Xr]
T[U]-t3= T[xi]. These definitions are illustrated in Fig. 7.

T[x,y] T[y

FIG. 7. Notation for directed trees.
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Let T be a tree with root u and children t)l,’’" t)d of u. Define 8(T)=
minl__<===a max {y(T[v]), y(T[u, v])} when d=> 1 and, 8(T)=0 when d =0. Note that
8(T) <- y(T) <= 8(T) + 1, since T is formed by joining T[v] and T[u, v] together with
an edge, for every i.

Let x be a vertex in a tree T and let k be a positive integer. We say that x is
k-critical if k 8(T[x]) and for all children y of x, y(T[x, y])=> k.

The next theorem is essentially a restatement of Theorem 2.1. We will find this
form more convenient in what follows.

THEOREM 3.1. Let T be a tree with root u and let k =8(T). y(T) k T has no
k-critical vertex or T has exactly one k-critical vertex x and x has children y, z such that
7(T[u, y, z]) < k.

Proof. (:=>) Let T’ be the underlying undirected tree. I T has two k-critical
vertices v, x then one can show that at least one of them, say x, does not have neighbors
y, z such that y(T’(x, y, z))< k, contradicting Theorem 2.1. Similarly, if T has a
k-critical vertex x with no children y, z such that y(T[u, y, z])< k, then x has no
neighbors y, z such that y(T’(x, y, z)) < k, contradicting Theorem 2.1. (Note T’(x, y, z)
is the underlying tree for T[u, y, z].)

() If T has no k-critical vertex then every vertex x in T’ has neighbors y, z
such that y(T’(x, y, z)) < k, and by Theorem 2.1 y(T) <_- k. Since 8(T) k, y(T) k.
If T has exactly one k-critical vertex x that satisfies the condition stated, then Theorem
2.1 applies and again

Using Theorem 3.1 we can compute the cutwidth of small trees by hand. We will
illustrate this procedure with an example before giving the formal presentation of the
algorithm. Given a tree T, we work from the bottom up assigning labels to each of
the vertices in the tree. These labels consist o a decreasing sequence of integers; the
largest integer in the sequence is the cutwidth of the subtree whose root is the associated
vertex. Consider the tree TI shown in Fig. 8(a). The label next to vertex b means that
the cutwidth of the subtree containing just vertex b is 0. Given the labels on b and c
we want to use Theorem 3.1 to determine the cutwidth o T1. The first step is to
determine 8(T1). In this case, one can see that 8(T)= 1, hence the cutwidth of T is
either 1 or 2. The next step is to determine if TI contains a 1-critical vertex. In act,
a is 1-critical, so the next step is to determine if a satisfies the condition given in the
theorem. In this case the answer is yes, since y(Tl[a, b, c]) 0 < 1. Thus, according to
the theorem, y(T1)= 1, which is clearly true. The label next to vertex a in the figure
is [1, 0]. The meaning of this label is that (1) the cutwidth of Tl[a] is 1 and (2) Tl[a]
contains a 1-critical vertex with children b, c such that the cutwidth of T[a, b, c] is 0.

Now consider the tree T2 shown in Fig. 8(b). Using the result for T1, one can
show that 8(T2)= 1. Thus, we want to determine if T2 contains a 1-critical vertex. In
fact d is 1-critical, so the next step is to determine if d has children x, y such that

T 1"

t)tol L)tol to )to 0to 3)tol ctoi Lgtol c(9tol t)tol qDtol

(a) (b) (c) (d)

FIG. 8. Example to illustrate cutwidth computation.
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3’(T2[d, x, y])< 1. Since it does not, we conclude rom Theorem 3.1 that 3’(T2)= 2.
The label next to vertex d means that the cutwidth o T[d] is 2 and T2[d] contains
no 2-critical vertex. A similar argument can be used to determine the cutwidth of T3
in Fig. 8(c).

Now consider T4 in Fig. 8(d). Using the results of the previous examples we can
show that 3(T4)= 2. We can also see that j is a 2-critical vertex. Since ] has children
a, d such that 3’(T4[j, a, d])= 0 < 2 it follows from Theorem 3.1 that the cutwidth of
T4 2. Furthermore, the label for vertex ] is [2, 0].

We now proceed with the formal presentation o the algorithm. We will use the
usual lexicographic ordering on decreasing sequences of integers. [al,’" ,ar]<
[bl,""" ,bs] if (1) for some (l <= <=min {r, s}), ai<bi and for all (l<-<i),aj=bj
or (2) r < s and for 1 <= j <= r, aj b. We will also apply set operations to such sequences
with the obvious interpretation.

Let T be a tree with root u. We define F(T) recursively as follows:
If 3’(T) 0 then F(T) [0].
If 3"(T)= k and T contains no k-critical vertex then F(T)=[k].
If y(T)= k and T contains a k-critical vertex x then,

F(T) [k] U min F( T[u, y, z])
y,z

where y, z range over all children of x.
We can restate this definition in iterative form as follows. F(T)=[al,""", ar] if

al >. > ar -> 0 and T contains vertices Xl," , x-i where xi has children yi, z such
that

1. For 1 <= <= r, 3"( T[u, yx, Zl, ", y-, Zi--1]) a.
2. For 1 < r, xi is an a-critical vertex in T[u, y, Zl," , Yi-1, zi-].
3. T[u, Yl, Zl," Y-I, z_] contains no at-critical vertex.
4. There is no sequence Ibm,..., bs]<[a,..., a] that also satisfies conditions

1-3.
Let T be a tree with root u having children Vl," ", va. In Fig. 9, an algorithm

called F is described which computes F(T) from F(T[v]),-.., F(T[va]). By applying
Gamma (.) recursively we can attach a label A(x)=F(T[x]), to each vertex x. A
procedure for computing these labels is shown in Fig. 10. An example of a tree with
the labels attached to the vertices is shown in Fig. 11. Once the labels have been
computed finding an optimal layout is straightforward. The layout algorithm is described
in5.

procedure Gamma (S Sd)
[21 Relabei if necessary that S )
[31 if -0 then return [0]
[4] if then begin
[5] if rain St 0 then return St
[61 y’--min {x >0 [xS}
[71 return [y] U Ix >y IxStl
[8] end
191 {_d >

0] S_t Gamma ($2 Sd)
S "-Gamma (S, S)

il2] {St US}
II31 k-(T)
[14] if -maxS2 then [k+l]
[15] if maxSt ot_k -minS then begin
[161 if -maxSt then return [k] $2

else return
[18] end
[191 T[v t] cont_ains k-critical
[201 if -rnaxS then return [k+ll
[211 H .-Gamma(S-[kI,S2 S)
[22] if -maxH then [k+ll
[231 else return [k] H
(241 end

FIG. 9. Recursive algorithm for computing F(T) from r(T[u, v]),..., F(T[u, va]).
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procedure Label (T,x)
[2] Let v= vd be the children of
[31 Let S +-Label(T[vl,v) for < d.
[4] X(x)*--Gamma(S
[51 return X(x)
[61

FIG. 10. Vertex labeling procedure.

t[3,2,1]

2]

[31

i[31 1,01

[Oil
[Ol

FIG. 1 1. Example of vertex labeling produced by Gamma (.).

[Ol

The following theorem establishes the correctness of the algorithm.
THEOREM 3.2. Let T be a tree with root u having children vl,’", va and let

Si F( T[v,]), for all ] <-, <- d). Gamma (St,..., Sa) F( T).
The proof of Theorem 3.2 requires a technical result given in Theorem 3.3. Let

T and Tz be trees. The notation T:Tz denotes the tree obtained by making Tz a
subtree of the root of T. This operation is illustrated in Fig. 12.

THEOREM 3.3. Let R, S, S’ be trees with roots u, v, v’ and let T R. S, T’ R. S’.
r(s) <= r(s’) r(T) <- r(T’).

The situation described in Theorem 3.3 ,is shown in Fig. 13. The proof is given in
the appendix.

ToT

Ta T

FIG. 12. Definition of T. T2.

R ,S R S’

FIG. 13. Illustration for Theorem 3.3.
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The following corollaries to Theorem 3.3 are used in the proof of Theorem 3.2.
Let TI" T2 Tr denote (... ((T1. T2)" T3)’’ ")" Tr).
COROLLARY 3.1. LetR, S, S, S’, S’, be trees. If F(Si) <- F(S) ]’or 1 <-i <-

r then r(R. S ) <-F(R. S S’).
Proof. By successive applications o Theorem 3.3,

F(R. S, S) <_-r(R. S’.S. S)<-... =<r(R. S S’,).

Let R, S be trees and let u be a vertex in R. Let R. Slu denote the tree formed by
making the root of S a child of u as shown in Fig. 14.

FIG. 14. R" $.

COROLLARY 3.2. Let R, S, S’ be trees and let u be a vertex in R and let T R.
T’=R. S’I,. r(s)<-r(s’)r(T)<-r(T’).

Proof. Let u be the root o R. The proof is by induction on the length o the path
from u to u. (Basis) Assume u. In this case the statement reduces to Theorem 3.3.
(Induction) If # u then let w be the child of u that is on the path rom u to u. By
induction we can assume that F( T[w]) -< r( T’[]). We can then apply Theorem 3.3
with R[u, w, T[w] and T’[w] and the result follows. [3

COROLLARY .. Let T be a tree with root u hauing children ,. , d >= 1,
such that r(r[vd)->_ .->_r(r[v]). 8(T)=max {y(T[v,]), y(T[u, v,])}.

Proof. The result is trivially true for d 1. Assume then that 1 < <= d. Since T[vii
is a subtree of T[u, vii, y(T[Vl])<= y(T[u, vii). We can now apply Theorem 3.3 (with
R T[u, Vl, v], S= T[v] and S’= T[Vl]), yielding y(T[u, vii)-< y(T[u, v]). Hence
max {y(T[vl]), y(T[u, v)}<-max {y(T[v,]), y(T[u, v,])}, l]

COROLLARY 3.4. Let T be a tree with 8( T)= k and let u be a vertex with child x
such thatfor all children y of u, F(T[x]) => F(T[y]). Then u is k-critical: y( T[u, x]) -> k.

Proof. The forward implication is immediate. For the converse, let y be any child
of u, let S T[y], S’= T[x], R T[u, x, y] and note that R. S T[u, x] and R. S’=
T[u, y]. By Corollary 3.2, y(T[u, x]) <-_ y(T[u, y]). [3

COROLLARY 3.5. Let T be a tree with root u, let /( T) k and let x be a k-critical
vertex. If y, z are children o]’ x such that ]:or all children w of x w y), F(T[y])>_-
F(T[z]) _-> F(T[w]) then /(T[u, y, z]) < k and F(T) [k] U F(T[u, y, z]).

Proof. By definition of F(T), x has children v,w such that F(T)=
[k]UF(T[u, v, w]). By Corollaries 3.1 and 3.2, F(T[u, y, z]) <- F( T[u, v, w]). Hence
r(T)=[k]Ur(T[u, y,z]).

Proof of Theorem 3.2. Let T be a tree with root u having children v,..., va,
let S F(T[vi]), [or all (1 =< =< d), and let S >=. >-_ Sa. We want to show that
Gamma (S,. , Sa) F(T). We first prove the correctness for the special cases (d =< 1)
and (d -> 2 ^ 8(T) 1). When d _-< 1, Gamma (.) is given by one of lines [3], [5] or [7].

line [3]. d =0. This means that T consists of a single vertex and by definition
r(r) =[0].

line [5]. d 1 ^rain $1 #0. Let S =r(T[v])=[a,..., a,] and let x,, y, z (1 <=
i<r) be the vertices referred to in the definition of F(.). Let H=



POLYNOMIAL TIME ALGORITHMS FOR MIN CUT 169

T[u, Yl, ZI," Yr-1, Zr--1] and note that 8(H) at. Since ar > 0, H has no a-critical
vertex, and by Theorem 3.1 y(H)= ar. Now, let J T[u, y, Zl,’", Yr-2, Z,-2] and
note that 6(J) a_. Since a_ > 0, the only possible a,_-critical vertex in J is x,-1,
and since y(H) ar < ar-x, Y(J) ar-1 by Theorem 3.1. Continuing in this fashion
yields F(T) F(T[Vl]).

line [7]. d 1 ^min S =0. Let $1 [’(T[/31]) =[al,""", ar] and let x, y, z (1 <=
i< r) be the vertices referred to in the definition of F(. ). Let w =min {x > OIx . S1}
and let a w- 1. Since ar O, T[va, ya, za," , y_a, Zr-a] consists of a single vertex.
Obviously 3’(T[u, Yl, Zl," , Yr-1, Zr-1]) 1. For all j (i-< j =< r), y(T[u, Yl, zl,. ,
Y-I, Z-l]) a-i + 1, by repeated applications of Theorem 3.1. Since w > 0 and w S1,
T[u, Yl, Zl," , Y-I, zi_a] has no w-critical vertex. For 1 -<_ < i, x is an a-critical
vertex in T[u, Yl, Zl,’", y-, Z-l]. Thus F(T) [al,""", ai-1, W] as claimed.

When (d >= 2 ^ (T) 1) T is a subtree of the tree shown in Fig. 15. If d 2 then
the values of Sa and $2 computed in lines [10] and [11] are correct, since we have
established the correctness of Gamma (.) for d < 2. In particular $1 [1], Sz [0] and
hence the value of k computed in line [12] is 1. If F(T[v])= [1] then /31 has one child
and Gamma will return [1, 0] at line [16] which is correct. If F(T[Vl])=[1, 0] then
/31 has two children and Gamma will return [2] at line [20] which is correct. Thus
Gamma is correct if d 2 and 6(T) 1. Consequently, when d 3 and 6(T) 1, the
values of S1 and Sz computed in lines [10] and [11] are correct. In particular $1 [1, 0]
and $2 [1]. In this situation, Gamma returns [2] at line [14] which is correct.

FIG. 15. Special case of Theorem 3.2nd=>2A(T) 1.

The proof now proceeds by induction on d and 8(T). Assume that Gamma is
correct for all trees T’ in which either the root has fewer than d children or the root
has d children but 8(T) < k. Thus, the values of $1 and $2 computed in lines [10] and
[11] are equal to F(T[u, vii) and F(T[u, Vl, v2]) respectively, and the value of k
computed in line [12] is equal to 8(T) by Corollary 3.3. Now considering each of the
return statements in lines [14], [16], [17], [20].

line [14]. d => 2 ^ k d(T) ^ k y(T[u, Vl,/32]). Since k y(T[u, Vl, v2]), k
3"(T[u, v]) and by Corollary 3.4 u is k-critical. By Theorem 3.1, 3’(T)= k + 1 and
since T contains no (k + 1)-critical vertex, F(T)= [k + 1].

line [16]. d -> 2 ^ k 8(T) ^ k > 3’(T[u, v, v2]) ^ T[v] does not contain a k-
critical vertex^ u is k-critical. By Theorem 3.1, 3’(T)= k, and by Corollary 3.5,
F(T)=[k]UF(T[u, Vl, v2]).

line [17]. d -> 2 ^ k 8(T) ^ k > 3’(T[u, v, v2]) ^ T does not contain a k-critical
vertex. By Theorem 3.1, 3’(T)= k, and since there is no k-critical vertex, F(T)= [k].

line [20]. d => 2 ^ k 8(T) ^ k > 3’(T[u, vl, v]) ^ T[/31] contains a k-critical
vertex ^ u is k-critical. By Theorem 3.1, 3’(T)= k + 1, and since T contains no (k +
1) -critical vertex, F(T) k + 1 ].
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At line [21], we have d>=2^F(T[u, 91])<.k ^ Tits1] contains a k-critical vertex.
Let x be the k-critical vertex in T[Vl] and let y, z be children of x such that
F(T[va, y, z])=Sa-[k]. Since 6(T[u, y, z])< k, the value of H computed in line 21
is F( T[u, y, z]) by the induction hypothesis. Considering the return statements in lines
[22] and [23].

line [22]. F(T[u, y, z]) k. By Theorem 3.1, y(T) =[k + 1], and since T contains
no k + 1) -critical vertex, F(T) k + 1 ].

line [23]. F(T[u, y, z])< k. By Theorem 3.1, y(T)=[k] and by Corollary 3.5,
r(T)--[k]Ur(T[u, y,

Thus, we have shown that the procedure Gamma returns the correct value,
r(r[u]), n

The time required to execute Label (.) is proportional to n times the time required
to execute Gamma (.). Excluding the recursive calls to Gamma at lines [1.0], [11]
and [21], the time required to execute Gamma is O(d log n).. (This follows from
Corollary 2.4.) Note that the recursive call at line [11] can be ignored since the
computation performed there is actually a subset of the computation made at line [10].
Consequently we can express the number of recursive calls required to compute
Gamma ($1, ", Sa) using the recurrence M(k, d) <=M(k, d- 1) +M(k- 1, d) where
k max $1U... U Sa. This follows from the observation that in line [10] the number
of subtrees is reduced by one and in line [21] the max S U... USa is reduced by at
least one. Of course this is the defining recurrence for the binomial coefficients. Using
the boundary conditions M(k, 1)= M(0, d)= 1 yields

M(k, d)<(k+d-1)d-1

Using Corollary 2.4 we can show that for fixed d, M(k, d) <- O((log n)d-1). This means
that the time complexity of Gamma is O((log n)d). If we select a degree one vertex
as the root of T then d -< D- 1 where D is the maximum vertex degree for the entire
tree. Hence the time required to execute Label is O(n(log n)-).

4. A cutwidth minimization algorithm tot degree three trees. Megiddo et al. [25]
describe an O(n log n) algorithm for determining the search number of a tree. Megiddo
[24] shows how to reduce this time bound to O(n). As a direct consequence of Corollary
2.3 these algorithms can be used to determine the cutwidth of a degree three tree,
although of course they will not directly yield the optimal layout. In this section we
describe an O(n log n) algorithm for degree three trees that is based on the general
algorithm presented in 3. This algorithm is simpler than the search number algorithm
given in [25] and can be used to obtain an optimal layout. Furthermore, we can use
it to reduce the complexity of the degree d algorithm by a factor of log n.

Let T be a tree with root u having children Vl, v2. Figure 16 gives a procedure
Gamma2 for computing F(T) from F(T[v]) and F(T[v]). Notice that there is no
degree restriction on T[Vl] or T[v]. The correctness of the algorithm is established
by the following theorem.

THEOREM 4.1. Let T be a tree with root u having children v, va and let S
F(r[v]), S F(T[v.]). Gamma2(S, S:) F(r).

Proof. The correctness of the assertion at line [13] of Fig. 16 follows from Theorem
3.2. Let k maxH and note that k <- y(T) <_- k + 1. Consider three cases.

Case 1. H f3 H . Let h max {min H, rain H}. We claim that F(T)
[i >- hli e H1U H]. The proof is by induction on Igl / Ig.l. (Basis) Assume.H =[k].
Then T[v] contains no k-critical vertex and since H >_- H and H f3 H , max Ha <
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[!1 itmeedtwe Gamma2(StS2)
[21 {Relabel if necessary that St $2.}
[3] ifminStaOthtmHt.-St
[41 else begl.
151 j.-min
[61 nt-Dl

[8] If min $2 #0 then H2"-$2
t91
[I0] *-min {i>OlilS2]
[111 H2-[)I u b" > li s2j
[121
[13l lilt =rtrlu,vl),n=rtrlu,vt])l
[14] IfHt H2-ta
[15] h--max {min Ht,min H

[181 Ht O H
[191 if -minH-minHt
[20] remm [0] O[l ) H U H]
[211 min[j
[22] re[i]U[j>i [jH, OH2]
[23]

FIG. 16. Procedure ]:or computing F(T) from r(T[vl]) and l-’(T[v2]).

k. Hence u is not k-critical either and F(T)= [k] as claimed. (Induction) If [HI > 1
then T[v] contains a k-critical vertex x with children y, z such that F(T[v, y, z])=
H-[k]. By the induction hypothesis F(T[u, y, z]) [i => h]i (nl-[k]) LJ n2]. Since
the largest integer in this sequence is less than k it follows from Corollary 3.5 that
r(T)=[k]t3r(T[u, y, z]).

Case 2. H1 fq H2 [min H1] [min H2]. Let h min H1. We claim that F(T)
[O]U[i>=hlieHUH2]. The proof is by induction on IHII+IH21. (Basis) Assume
H1 H2 [h]. Then neither T[Vl] nor T[v2] contains an h-critical vertex. However
u is h-critical and hence by Theorem 3.2 F(T)=[h, 0] as claimed. (Induction) If
IH11+IH21>2 then T[Vl] has a k-critical vertex x with children y, z such that
F(T[Vl, y, z])= Hi-[k]. By the induction hypothesis

r(T[u, y, z])= [0]U [i > hli (H,- [k]) U H2].

Since the largest integer in this sequence is less than k it follows from Corollary 3.5
that F(T) [k] t_J F( T[u, y, z]).

Case 3. Hl fq H2 ^ (H f’l H2 [min H1] v (Hl fq H2 [min H2]). Let h=
maxHfqH2 and i=min[]>hl]C:HIUH2]. We claim that F(T)=[i]U
[]> ill H1 U H2]. We consider two subcases.

Subcase 3a. > k. In fact, in this case, k + 1 since k max H1 > max H2. We
claim that F(T) =[k / 1]. The proof is by induction on k- h. (Basis) Assume k- h =0.
Note that T[Vl] contains a k-critical vertex. Since k H2 it follows that u is also
k-critical, and by Theorem 3.2, F(T) [k / 1 as claimed. (Induction) Assume k- h >
0. Note that H contains a k-critical vertex x with children y, z such that F( Tit)l, y, 2’])
Hi-[k]. By the induction hypothesis F(T[u, y, z])=[k] and thus by Theorem 3.2,
F(T) [k+l].

Subcase 3b. < k. The proof is by induction on k- i. (Basis) Assume that k- 1.
Then T[v] contains a k-critical vertex with children y, z such that F(T[v, y, z])=
H-[k]. By Subcase 3a, F(T[u, y, z]) =[i]. Applying Theorem 3.2 yields F(T) =[k, i].
(Induction) Again T[v] contains a k-critical vertex x with children y, z such that
F(T[v, y, z]) H-[k]. By the induction hypothesis F(T[u, y, z])
[i]U[j>ilj(H-[k])UH2]. By Theorem 3.2 then r(T)=[k]Ur(T[u, y, z]) as
claimed.

For any degree three tree T we can determine the cutwidth by applying Gamma2
from the bottom up. Each call to Gamma2 requires time 0(IS1+1S21)<= O(k) where
k 3’(T). By Corollary 2.4 k O(log n), hence the cutwidth of T can be determined
in time O(n log n).
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The procedure Gamma2 can also be used to speed up the degree d algorithm.
By calling Gamma2 whenever the current vertex has two children, one step o recursion
is eliminated, reducing the time required to execute Gamma by a factor of log n. This
yields an O(n (log n)a-2) algorithm or determining the cutwidth of a degree d tree.
In [24], Megiddo gives a linear time algorithm or determining the search number o
a tree. The technique used there can also be used to give a linear time version of
procedure Gamma2. This in turn, can be used to reduce the complexity of the general
algorithm by another factor o log n.

It is also worth noting in passing that almost all random trees have a maximum
vertex degree that is O(log n/log log n) [29]. Using this one can show that the general
cutwidth minimization algorithm runs in time O(n2/) on randon trees where e is any
positive constant.

5. A layout algorithm. The labeling algorithms described in the previous sections
produce a label A (x)= F(T[x]) for every vertex x in T. Using these labels one can
produce an optimal layout of T. The basic idea is contained in the proo of Theorem
2.1. If y(T)= k and T has no k-critical vertex then every vertex x has a child y such
that 3’(T[x, y])< k. Consequently one can construct a path Vl," , vs where Vl is the
root of T, vs is a leaf and y(T[v, v+])< k for 1 <=i< s. This is illustrated in Fig. 17.
Once we have found this path we apply the layout algorithm recursively to the subtrees
T[v, V+l]. If T does have a k-critical vertex x then one can construct a similar path
v,. , v,. In this case Vl and v are both leaves and x is contained in the path.

"y( T[vl v2l) < k "),( Tlvs- vd < k

FIG. 7. Motivation ]’or layout algorithm.

ffoeedere Layout (T,h,k,o4os)
121 the root of T
[31 if is the only in T then begia
[41 (r).-pos
[51 pos.--pos +
[61 retam
[71
181 lit’ has child such that X(x) > [kl thee begia
[91 y.- the that satisfies ,(y) [k
[10] and for all children of y, X(z) [ki
[II] else y.-r
[12] <vt v:>-’chain(T#A)
[13] fe each in T de
141 k(x).--k(x) [k

[151 Layout(T(vl,v2)A,k-l..pos)
[16] fe j-2 to s-I de
[17] Layout(T(v iV i),k--I ,pos)1+
[18] Layout(T(vs,vs_t)eX,k-l,,pos)
[191 return
[201 el

FIG. 18. Layout procedure.

A procedure for computing the layout from the labels is shown in Fig. 18. T is
a tree for which a cutwidth k layout is required and A is the set of labels produced
by one of the labeling algorithms from the previous sections. Upon return from
Layout (T, A, k, tr, i) each vertex in T is assigned a unique position in the layout tr

starting at position i. More precisely Vx T,i<=tr(x)<i+lTI and Vx, y T, tr(x)
tr(y). Note that the notation for undirected trees is used to specify the subtrees in the
recursive calls to Layout. The procedure chain (.) locates the path discussed above,
and is shown in Fig. 19. Figure 20 shows the layout obtained for the tree whose labels
were given in Fig. 20.
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[I] procedure clmln(T,v,,X)
[2l Let Vo-V and let vo, v, be maximum length
[3] path in T satisfying the following conditions for 6
[4] (a) vl is the parent of vi+t and
[5] (b) for all children of v, (v+t) ,(x).
[6] if has less than two children tl
[7] retma <v,
[8] Let be child of that satisfies # and
[9] k(ut) )k(x) for all children of such that
[10] Let ut ,,: be maximum length path in T satisfying
11 the following conditions for 161 <

[12] (a) u is the parent of u+t and
3] (b) for all children of u, ,(u+t) ,(x).

[14] retttm <, vl,v,u
ItS1

FIG. 19. Procedure for finding a chain.

T[w,,] TIo,w] T[a,l,nl Tin,r] T[r,C] TIC,N]

T[a,l,n]:

T[n,rl: T[w,l]:

T[r,C]:() T[C,N]: (:)mm.

TIO,w]:

FIG. 20. Example of layout procedure.

6. Open problems. Until recently, the main open question was whether the MIN
CUT problem could be solved in polynomial time for unrestricted trees. Yannakakis
[42] has now reported a polynomial time algorithm for this problem.

To our knowledge, no good approximation algorithms have been proposed for
the MIN CUT problem on graphs. At the same time there is no evidence that such
algorithms do not exist. No effort has been made to bound the cutwidth of random
graphs. This is a necessary first step in understanding the probabilistic performance of
cutwidth minimization algorithms.

A natural extension of the MIN CUT problem is to edge weighted graphs; the
weight of a cut being the sum of the weights of all edges in the cut. There is a
straightforward log space reduction from the PARTITION problem to this weighted
MIN CUT problem on trees. Hence even for trees the problem is NP-complete.
However it is not known to be strongly NP-complete. In particular the complexity of
the MIN CUT problem on trees with edge weights in {1, 2} is open.
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Perhaps the most surprising aspect of current research on the MIN CUT problem
is the connections that have been found to seemingly unrelated problems. The
equivalence of cutwidth and black/white pebble demand on degree three trees in which
the sink has in-degree one was completely unexpected and we thank Nick Pippenger
for pointing it out to us. As we noted above, this connection not only yields an exact
pebbling algorithm for degree three trees, it also yields approximation algorithms for
pebbling degree d trees. A closer study of this relationship could deepen our under-
standing of both problems. Another surprise was the connection between cutwidth
and search number. We have shown their equivalence for degree three trees. Makedon
and Sudborough [22] have strengthened this to degree three graphs. Recently Chung
[4] has shown a connection between the topological bandwidth and the cutwidth of
trees. This could lead to efficient algorithms for the topological bandwidth problem.

Appendix. The proof of Theorem 3.3 requires the following two lemmas.
LEMMA 3.1. Let R be the tree consisting of the single vertex u, let S and S’ be trees

with roots v, v’ and let T=R.S, T’ =R.S’. F(S)<-F(S’)=>7(T)<-3"(T’).
Proof. If 7(S)< 3’(S’) then the result is immediate. Assume then that 7(S)=

7(S’) k. Note that k 8(T)= 8(T’). The proof proceeds by induction on IF(S)[. If
F(S) =[0], then 7( T) =1-< 7( T’). Assume then that k>0. If F(S)=[k] then S has
no k-critical vertex. Consequently T has no k-critical vertex, and by Theorem 3.1,
3’(T) k _-< 3’(T’). This establishes the basis of the induction.

Now assume that S and S’ violate the lemma, where IF(S)] > 1. Also, assume that
there is no pair of trees H, H’ that also violate the lemma where IF(H)[ < [F(S)[. We
continue to let 7(S)= 7(S’) k. Note that since F(S)-<_F(S’), [F(S’)]> 1. Hence, S
contains a k-critical vertex x with children y, z such that F(S[v, y, z])= F(S)-[k] and
S’ contains a k-critical vertex x’ with children y’, z’ such that F(S’[v’, y’, z’])=
F(S’) -[k]. This is illustrated in Fig. 21. Since S and S’ violate the lemma, 3’(T) > 3’(T’).
In fact, we must have 3’(T)= k + 1 and 3’(T’)= k. Now, since x is the only k-critical
vertex in T, 3’(T) = k + 1:=> 7(T[u, y, z]) >- k, by Theorem 3.1. Also, since x’ is k-
critical, 7(T’) k7(T’[u, y’, z’]) < k. Thus 7(T[u, y, z]) > 3’(T’[u, y’, z’]). Since
F(S) <- F(S’), F(S[v, y, z]) -< F(S’[v’, y’, z’]). Hence Sly, y, z] and S’[v’, y’, z’] also
violate the lemma, giving the desired contradiction, lq

FIG. 21. Illustration for Lemma 3.1.

LEMMA 3.2. Let R, $, S’ be trees with roots u, v, v’ and let T R. S, T’ R. S’.
F(S) _-< F(S’) => 7(T) -< 3’(T’).

Proof. If 3’(S)< 3’(S’) then we can take any optimal layout of T’ and substitute
S for $’ without increasing the cutwidth of the layout. Assume then that 3’($) 3’($’)
k and let 3’(R)= m. The proof is by induction on [R. Sl. The lemma is clearly true if
S consists of a single vertex. This together with Lemma 3.1 provides the basis of the
induction. Assume that R, $, $’ violate the lemma and that there are no H, J, J’ that
also violate the lemma, where In" JI < IR" Sl., We consider three cases.
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Case 1. m < k. Note that 6(T)= k, and since R, S, S’ violate the lemma, 3’(T)
k + 1, 3’(T’)= k. If $ has no k-critical vertex then neither does T and by Theorem
3.1 y(T)= k, which is a contradiction. If, on the other hand, S does have a k-critical
vertex then so does S’. Assume then that S has a k-critical vertex x with children y, z
such that I’(S[v, y, z]) F(S)-[k] and S’ has a k-critical vertex x’ with children y’, z’
such that F(S’[v’, y’, z’])<F(S’)-[k]. Now, since x is the only k-critical vertex in T,
y(T) k + 1 =:> y(T[u, y, z]) ->_ k by Theorem 3.1. Also, since x’ is k-critical, 3’(T’)
k=:>y(T’[u, y’,z’])<k. Thus, y(T[u, y,z])>y(T’[u, y’,z’]). Since F(S[v, y,z])=
r(s)-[k] and F(S’[v’, y’, z’]) r(S’)-[k], R, Sly, y, z], S’[v’, y’, z’] also violate the
lemma giving a contradiction.

Case 2. m > k. Note that 3(T) <- m, and since R, S, S’ violate the lemma, y(T)
m / 1 and 3’(T’)= m. If R has no m-critical vertex then the only possible m-critical
vertex in T is u. But if u is not m-critical in R then u has two children r, s in T such
that y(T[u, r, s]) < m. Then, by Theorem 3.1, y(T) m, which is a contradiction. Thus
R must contain an m-critical vertex x. Since x is also m-critical in T’, y(T’) m =>that
x has children y, z such that y(T’[u, y, z]) < m. If x is the only m-critical vertex in T,
then by Theorem 3.1, y(T) m + 1==> y(T[u, y, z])>- m. If x is not the only m-critical
vertex in T, then the other must be u, and by the definition of m-criticality,
3’(T[u, y, z]) -> m (since y and z are both in the same subtree of u). Thus R[u, y, z], S, S’
violate the lemma giving a contradiction.

Case 3. m k. Note that 3(T) k. Since R, S, S’ violate the lemma, 3’(T) k + 1,
y(T’) k. Now, if u is k-critical in R, then by Theorem 3.1, y(T’) k + 1, a contradic-
tion. If neither R nor S has a k-critical vertex then the only possible k-critical vertex
in T is u. But since u is not k-critical in R, u has children r, s in T such that
y(T[u, r, s])< k. Then, by Theorem 3.1, y(T)= k, which is a contradiction. Thus, if
neither R nor S has a k-critical vertex, then neither does T, and again by Theorem
3.1, y(T) k. Thus either R or S must have a k-critical vertex. By Theorem 3.1, they
cannot both have a k-critical vertex since, that would imply 3’(T’)> k. If S contains
a k-critical vertex x then S’ contains a k-critical vertex x’ and we proceed as in Case
1. If R contains a k-critical vertex we proceed as in Case 2.

Proof of Theorem 3.3. The proof is by induction on IF(T)I. Lemma 3.2 provides
the basis Assume then that R, S, S’ violate the theorem and that there are no H, J, J’
that violate the theorem such that [F(H. J)l < IF(T)I. By Lemma 3.2, y(T) y(T’),
thus for F(T)> F(T’) to be true we must have y(T)= y(T’)= k and T must have
some k-critical vertex x. We consider three cases.

Case 1. x S. In this case x has children y, z such that F(S[v, y, z]) F(S)-[k].
Since F(S)=<F(S’), S’ must have a k-critical vertex x’ with children y’, z’ such that
F(T’[u, y’,z’])=F(T’)-[k]. Hence F(T’[u, y’,z’])<F(T)-[k]<=F(T[u, y,z]) and
F(S[v, y,z])<=F(S’)-[k]<F(T[u, y,z])<=F(S’[v ’, y’,z’]). Thus R,S[v, y,z] and
S’[v’, y’, z’] violate the theorem giving a contradiction.

Case 2. x R- { u}. In this case x is k-critical in both T and T’ and has children
y, z, y’, z’ such that F(T[u, y, z]) F(T)-[k] and F(T’[u, y’, z’]) F(T’) -[k]. Since
F(T’) < F(T), r(T’[u, y’, z’]) < r(T[u, y, z]) -<_ F(T[u, y’, z’]). Thus R[u, y’, z’], S, S’
violate the theorem giving a contradiction.

Case 3. x u. Since u is k-critical in T, it has no child y such that 3’(T[u, y]) < k.
If u is not k-critical in T’ then u has a child y’ in T’ such that y(T’[u, y’])< k. If
y’ e R then R[u, y’], S, S’ violate Lemma 3.2. If y’ v’ then 3’(T[u, v]) k >
y(T’[u, v’]), but this is clearly absurd, since T[u, v] R T[u, v’]. Thus u is k-critical
in both T and T’. Further u has children y, z, y’, z’ such that F(T[u, y, z]) F(T)- [k]
and F(r’[u, y’, z’])= F(r’)-[k]. Consider two subcases.
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Subcase 3a. y’ # v’ # z’. Since F(T’) < F(T), F(T’[u, y’, z’]) < F(T[u, y, z])
F(T[u, y’, z’]). Hence R[u, y’, z’]), S, S’ violate the theorem giving a contradiction.

Subcase 3b. y’ v’. Since F(T’) < F(T), F(T’[u, v’, z’]) < F(T[u, y, z]) <=
F(T[u, v, z’]), but this is contradictory since T’[u, v’, z’] T[u, v, z’].

Acknowledgments. The authors wish to thank John Ellis and Manrique Mata,
participants in the algorithms and complexity seminar at Northwestern University for
their valuable suggestions. We would also like to thank F. R. K. Chung for pointing
out an error in an earlier version of Theorem 2.2.

REFERENCES

[1] M. A. BREUER, Min-cut placement, J. Design Automation and Fault Tolerant Computing, (1977),
pp. 343-362.

[2] F. R. K. CHUNG, On linear arrangements o.f trees, Bell Laboratories TM-80-1216-31, Murray Hill,
NJ, 1980.

[3], Some problems and results on labelings of graphs, in The Theory and Applications of Graphs,
G. Chartrand, ed., John Wiley, New York, 1981, pp. 255-264.

[4] ., On the cutwidth and the topological bandwidth of a tree, SIAM J. Alg. Disc. Meth., 6 (1985),
to appear.

[5] D. DOLEV AND H. TRICKEY, Embedding a tree on a line, IBM Technical Report RJ3368, 1982.
[6] A. FELLER, Automatic layout o.f low-cost quick turnaround random-logic custom LSI devices, Proc.

Thirteenth Design Automation Conference, 1976, pp. 79-85.
[7] M. J. FOSTER AND H. T. KUNG, Recognizing regular languages with programmable building-blocks,

in VLSI-81 Conference, Aug. 1981.
[8] MICHAEL R. GAREY, DAVID S. JOHNSON AND L. J. STOCKMEYER, Some simplified NP-complete

graph problems, Theoret. Computer Sci., 1 (1976), pp. 237-267.
[9] MICHAEL R. GAREY, R. L. GRAHAM, DAVID S. JOHNSON AND D. E. KNUTH, Complexity results

]’or bandwidth minimization, SIAM J. Appl. Math., 34 (1978), pp. 477-495.
[10] MICHAEL R. GAREY AND DAVID S. JOHNSON, Computers and Intractability--A Guide to the Theory

of NP-Completeness, W. H. Freeman, San Francisco, 1979.
[11] F. GAVRIL, Some NP-complete problems on graphs, Proc. 11th Conference on Information Sciences

and Systems, John Hopkins Univ., Baltimore, MD, pp. 91-95.
[12] M. K. GOLDBERG AND I. A. KLIPKER, Minimal placing of trees on a line, Technical Report,

Physico-Technical Institute of Low Temperatures, Academy of Sciences of Ukrainian SSR, 1976.
(In Russian.)

[13] EITAN M. GURARI AND I. H. SUDBOROUGH, Improved dynamic programming algorithms ]’or
bandwidth minimization and the rain-cut linear arrangement Problem, J. Algorithms, to appear.

[14] A. S. LAPAUGH, Recontamination does not help, Technical Report, Computer Science Dept., Princeton
Univ., Princeton, NJ, 1983.

[15] M. A. IORDANSKII, Minimal numberings of the vertices o.f trees, Soviet Math. Doklady (1974), pp.
1311-1315.

[16] T. LENGAUER, Black-white pebbles and graph separation, Acta Inform., 16 (1981), pp. 465-475.
[17] Z. LENGAUER AND R. E. TARJAN, The space complexity o.fpebble games on trees, Inform. Processing

Lett., 10 (1980), pp. 184-188.
[18],Asymptotically tight bounds on time-space trade-offs in a pebble game, J. Assoc. Comput. Mach.,

29 (1982), pp. 1087-1130.
[19] THOMAS LENGAUER, Upper and lower bounds on the complexity of the rain-cut linear arrangement

problem on trees, SIAM J. Alg. Disc. Meth., 3 (1982), pp. 99-113.
[20] A. D. LOPEZ AND H-F. S. LAW, A dense gate matrix layout method ]’or MOS VLSI, IEEE Trans.

Electronic Devices, ED-27 (1980), pp. 1671-1675.
[21] M. C. LouI, The space complexity of two pebble games on trees, MIT Technical Report, MIT/LCS/TM-

133, Massachusetts Institute of Technology, Cambridge, 1979.
[22] F. S. MAKEDON AND I. H. SUDBOROUGH, Minimizing width in linear layouts, Lecture Notes in

Computer Science, 154, Springer-Verlag, New York, 1983, pp. 478-490.
[23] FILLIA S. MAKEDON, I. HAL SUDBOROUGH AND C. H. PAPADIMITRIOU, Topological bandwidth,

in Proc. 8th Colloquium on Trees in Algebra and Programming, 1983; SIAM J. Alg. Disc. Meth.,
6 (1985), to appear.



POLYNOMIAL TIME ALGORITHMS FOR MIN CUT 177

[24] N. MEGIDDO, Linear time algorithm .for search number in trees, unpublished manuscript, April 1981.
[25] N. MEGIDDO,. S. L. HAKIMI, MICHAEL R. GAREY, DAVID S. JOHNSON AND CHRISTOS H.

PAPADIMITRIOU, The complexity o.f searching a graph, Proc. IEEE Foundations of Computer
Science Symposium, 1981, pp. 376-385.

[26] F. MEYER AUF DER HEIDE, A comparison of two variations o" a pebble game on graphs, Theoret.
Comput. Sci., 13 (1981), pp. 315-322.

[27] T. OHTSUKI, H. MORI, E. S. KUH, T. KASHIWABARA AND T. FUJISAWA, One-dimensional logic
gate assignments and interval graphs, IEEE Trans. Circuits and Systems, CAS-26 (1979), pp.
675-684.

[28] BURKHARD MONIEN AND I. H. SUDBOROUGH Bandwidth constrained NP-complete problems, Proc.
11th ACM Symposium on Theory of Computing, 1981, pp. 207-217.

[29] JOHN W. MOON, Counting labeled trees, Canadian Mathematical Monographs 1,112 (1970).
[30] CHRISTOS H. PAPADIMITRIOU, The NP-completeness o.f the bandwidth minimization problem, Com-

puting, 16 (1976)., pp. 263-270.
[31] T. D. PARSONS, The search number o[ a connected graph, Proc. Ninth Southeastern Conference on

Combinatorics, Graph Theory, and Computing, 1978, pp. 549-554.
[32], Pursuit-evasion in a graph, in Theory and Application of Graphs, Y. Alavi and D. R. Lick,

eds., Springer-Verlag, New York, 1976, pp. 426-441.
[33] G. PERSKY, D. DEUTSCH AND D. SCHWEIKERT, LTXmA minicomputer-based system for automated

LSI layout, J. Design Automation and Fault Tolerant Computing, 1 (1977), pp. 217-255.
[34] N. PIPPENGER, Pebbling, IBM Research Report RC8258, 1980.
[35] ., Advances in pebbling, IBM Research Report RJ3466, 1982.
[36], private communication.
[37] R. R. REDZIEJOWSKI, On arithmetic expressions and trees, Comm. ACM, 12 (1969), pp. 81-84.
[38] YossI SHILOACH, A minimum linear arrangement algorithm,for undirected trees, this Journal, 8 (1979),

pp. 15-32.
[39] L. STOCKMEYER, private communication to M. R. Garey and D. S. Johnson, 1974; see [10, p. 201].
[40] S. TRIMBERG, Automating chip layout, in IEEE Spectrum, 1982, pp. 38-45.
[41] A. WEINBERGER, Large scale integration of MOS complex logic: a layout method, IEEE J. Solid

State Circuits, 2 (1967), pp. 182-190.
[42] MIHALIS YANNAKAKIS, A polynomial algorithm .for the min-cut linear arrangement o.f trees, Proc.

IEEE Symposium on the Foundations of Computer Science, 1983.
[43] H. YOSHIZAWA, H. KAWANISHI AND K. KANI, A heuristic procedure.for ordering MOS arrays, Proc.

Design Automation Conference, 1975, pp. 384-393.



SIAM J. COMPUT.
Vol. 14, No. l, February 1985

1985 Society for Industrial and Applied Mathematics
014

ADDITIVE COMPLEXITY AND ZEROS OF REAL POLYNOMIALS*

J. J. RISLER

Abstract. Let P R[X] be a polynomial of additive complexity k (the additive complexity is the minimal
number of +/- operations needed to compute P over R). It is shown that there exists a constant C (independent
of P) such that the number of distinct real zeros of P is _<-C k2.

This is an improvement on a result of Borodin and Cook (SIAM J. Comput., 5 (1970), pp. 146-157).
This result is then generalized to polynomials in several variables, the number of zeros being replaced by
the number of connected components of the zero set.

Key words, real polynomials, additive complexity, real roots of polynomials

Introduction. Let P R[X] be a polynomial with coefficients in the field R of real
numbers. The additive complexity of P, noted LR+(P), is by definition the minimum
number of additions and subtractions required to evaluate P over R (beginning with
the constants and the polynomial X), using the four arithmetical operations (addition,
subtraction, multiplication and division). The number of multiplications and divisions
is therefore not counted in L+R(P).

Let Z(P) be the real zeros of P, Z(P) the number of distinct real zeros of P,
R(k) the set of polynomials P such that LR+ P) <-- k, and p(k) the least upper bound
of Z(P) for Pc g(k).

Borodin and Cook ([B-C]) have shown that there exists a constant C such that
.2Ck

p(k)<-22""

where this expression has k-1 exponentiations.
On the other hand, Borodin and Cook [B-C] and Van De Wiele IV-W] have shown

that p(k)>-3k, and it is conjectured that p(k)=3k (or at least that there exists C>0
such that p(k)<-ck).

I will show here that there exists C > 0 such that p(k)<-_ C k2. This result is then
generalized to several variables, the number of distinct real zeros being replaced by
the number of connected components of the zero set.

1. Additive complexity of polynomials in one variable over the real field. By defini-
tion, a polynomial P R[X] is in R(k) if there exists a system of k + equations:

SI ClXmO, -- dlX"6,,,
k-l k-l

(1) Sk Ck H ST"k + dk I-I S’;’,
=o i=0

k

P, ck+ 1-I $7’’’+ (with So X),
i=0

with mi,j and m,j in Z, ci and di in R, and P(X) evaluated from P. by successive
elimination of the Si <= <- k).

We will show:
k2TH.OREM 1.1. There exists a constant C such that p( k) <- C (i.e. every polynomial

P R[X] which can be evaluated over R wtth" k +operattons" has less than C real zeros).

* Received by the editors July 5, 1983 and in revised form August 15, 1983.
f University of Paris VII, UER de Math6matique, 75 251 Paris Cedex 05, France.
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The proof is based on a result by Hovansky which uses a variant of "Descartes’
Lemma," which says that any P R[X] with n nonzero monomials has less than n
distinct zeros in R*+. (R*+ is the set of positive real numbers, and R* is the set of
nonzero real numbers.)

THEOREM 1.2 ([H], and [H2]). Let P,..., P, 0 be a system of n polynomial
equations in real variables X,. ., Xn, the total number of nonconstant monomials (in
the polynomials P,. .., P,) being k. The number of nondegenerate solutions in R*+)
of this system is less than 2(k(k-)/E)(rld 1) k.

Let us recall that a system of n equations in n unknowns is nondegenerate at a
point if the Jacobian determinant of the system is nonzero at this point.

Remarks 1.3. l) The notions of a nondegenerate solution and an isolated solution
are not the same (for a system of n equations in n unknowns).

2) Hovansky’s proof of his theorem shows that the same result is true if the
exponents of the Xi (1 <= _-< n) are in Z or in Q. We will use this fact because in the
system (2), below, the exponents can be in Z so as to accommodate division as a basic
operation.

3) One can conjecture that Hovansky’s result is true for all the isolated solutions
of a system of equations, however, for the special systems we consider here (cf. Lemma
1.4 and Proposition 1.5), the distinction between isolated and nondegenerate zeros is
not important.

We shall apply this result to the system of k + equations in k + unknowns
X So, S, S"

SI ClXmO, + dlXm,

k-I k-I

(2) Sk Ck I-I S’ + dk I-I S’i=o i=o

k

O=C+l 1-I S7’’’+’.
i=0

LEMMA 1.4 The real solutions of (2) are nondegenerate ifand only if the real roots

of the polynomial P are simple.
Proof. It is enough to prove that if (X, S,. ., Sk) is a solution of (2), then P’(X)

is equal to J(X, S,..., Sk), where J is the Jacobian determinant of the system (2).
We will do this by induction on k.

Let
T,(X)=S,(X),

T(X) S=(X, T,(X)),

We have then:
T(X) s(x, T,(X),..-, T,,_,(X)).

oP, oP,+.P’(X) =----+ T(X) oS----( "+ T’k(X)
OSk’

and by the induction hypothesis, T[(X) is the Jacobian determinant of the system

SI ClXmO, + dlXm,

i-I i=1

Si ci I-I s’,,,-4- di 1-I Sr;,’ (with So X),
=o =o

for l<-_i<=k-1.
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To prove the lemma, it is now enough to look at the Jacobian determinant of the
system (2), which has the form

-1 0

OS2 OS2-1 0 .... Q.E.D.
OX OSl

OP, OP, OP,
OX OS OSk

So, if we want to apply Theorem 1.2, we must suppose that all the real roots of
P are simple. This will be possible by the next proposition.

PROPOSITION 1.5. There exists e (with ]e] 1) such thatfor small enough (t R):
(a) all the roots of the polynomial P(X)-elt are simple;
(b) the number of roots ofP(X)- e]t is greater than the number of roots ofP(X)

(i.e. card (P(X)- e[t])-(0) -> card P-’(0)).
Proof (a) is true if is not equal to some P(X), where the X are the roots of

the derivative P’(X). (This is an elementary version of Sard’s Theorem, which is
essential in the proof of Theorem 1.2.)

For (b), one has to count the number of intersection points of the line y=
with the curve defined by y P(X).

Let us assume that the curve y P(X) cuts the line y 0 at n points such that
among them there are"

n points where the intersection is transverse (in these points the derivative of P
is not zero and corresponds to simple roots of P),

n2 local minima (for P(X));
n3 local maxima (for P(X));
n4 points where P’(X)=0, and P(X) changes of sign in a neighborhood.
We have then n n + n2 + n3 + n4.
If we assume for instance that n >- n3, the next lemma shows that e + is

convenient for condition (b) of Proposition 1.5.
LEPTA 1.6. Under the above hypothesis, the number of real roots of P(X)= is

n + 2n2+ n4 for small enough.
Proof This fact is elementary and is illustrated by Fig. 1. It is seen that P(X) has

six roots and P(X)= has seven for small enough t. Q.E.D.

Itl

FIG. 1. n =2 (points b and e)" n2=2 (points c and f)" n3= (point a)" n4= (point d).
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Proof of Theorem 1.1. By Proposition 1.5, it is enough to majorize the number of
roots of the equation P(X)= C, where C is a suitably chosen constant.

We will thus apply Theorem 1.2 to the system (2’) (deduced from (2) by replacing
the last line with C Ck+ I-I k S"’.k/’).i=0

This system has 3k / nonconstant monomials. There are then less than

2k+(k + 2)3k+23k(ak+l)/2 (k + 2)k+2(9k2+Sk+2)/2

solutions in (R*)k+. But Hovansky’s Theorem 1.2 does not depend on the number of
constant monomials in the equations in (2’). It is then possible to make a perturbation
of the system (adding little constants to the equations) and assume that all the real
solutions of (2’) are in (R*)k+. This operation does not change the total number of
solutions of (2) because all the roots of P are simple.

We have then

p(k) <= (k + 2)3k+2(9+5k+)/ -< C

for k large enough, and with C < 32.
Theorem 1.1 is now completely proved.
Remark 1.7. Making a direct generalization of Descartes’ lemma, one can conjec-

ture like Kuchnirenko that if P P, 0 is a system of equations such that P
has k monomials -< -< n), then this system has less than I-I = (k nondegenerate
solutions in (R*+)".

The proof of this conjecture for the system (2’) would imply a bound of Ck for
p(k) (with C < 5).

2. Additive complexity of polynomials in several variables. If P R[XI,’’’, X,],
let C(P) be the number of connected components of Z(P). (It is well known that
C(P) is finite; anyway, this fact will be a consequence of the following proof.)

THEOREM 2.1. There is a function O(k, n): NxN N such that for all
R[X, ,X,] with LR+(P) <- k, one has C(P) <- O(k, n).

Proof The proof is made by induction on n, the case n having been resolved
inl.

Let Cb(P) be the number of bounded (i.e. compact) components of Z(P), and
Cn(P) the number of nonbounded components.

LEMMA 2.2. There exists an affine hyperplane H c R" intersecting at least C, (P)/2
unbounded components ofZ P).

Proof. (A similar argument is in [H], 2.) Let Zi be a nonbounded component
of Z(P), and Ci a smooth connected and unbounded curve such that C c Z. In the
sphere S"-1, let P be a limit point (for IIxll-, /o) oV the set x/llxll, with x

If H is a hyperplane (with 0 H) such that PigH for all i, and one of the
half-spheres delimited by HI contains more than half of the points Pi, then an affine
hyperplane H, parallel to HI and far enough in the direction of this half-sphere, will
intersect half of the Ci and half of the Z. Q.E.D.

Now let PH be the restriction of P to H. If LR+(P)<--_ k, one can look at PH as a
polynomial in n variables with L+R(P/) <_- k + n (because the equation of H has
less than n + operations).

We have then C,(P)_-<2O(k + n- 1, n- l) bythe induction hypothesis and Lemma
2.2.

We must now majorize Cb(P). As in we may now assume that Z(P) is smooth,
eventually increasing LR+(P) by one. (The proof is the same as the proof of Proposition
1.5.)
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PROPOSITION 2.3. There exists e R (with [e 1) such that for small enough t:

(a) Z(P-eltl) is smooth;
(b) the number of compact components ofZ(P-eltl) is greater than Cb(P).
Proof. The proof is similar to the proofs of Proposition 1.5 and Lemma 1.6. The

only different thing to do is to verify that if P-(0) has nl compact connected
components such that P takes positive values in a neighborhood, then P-l(t) (with
> 0) has more than n compact connected components. This is an easy exercise in

general topology. Q.E.D.
LEMMA 2.4. Let r be the number of distinct solutions of the system

P(X,..., Xn) 0,

(3)
(x,,..., x)--o,
aX

aP
(x,,-.., x)-- o.

Then 2Cb(P) <_- r.
(In this lemma we do not assume that r is finite; let us recall that Cb(P) is the

number of compact connected components of Z(P)c Rn.)
Proof. The solutions of (3) are exactly the critical points of the function X

restricted to Z(P). But if C is a compact connected component of Z(P), then X,
restricted to C has more than two critical points.

LEMMA 2.5. The polynomial P beingfixed (with Z(P) smooth), there exists a linear
change of coordinates, Xi M(X) (1 <= <- n) (where M Gl(n, R)), such that in the
new coordinates, the system

aP aP
(4) P=0, -0, 0ox ox’
has a finite number of solutions, all nondegenerate.

Proof. This is a result of "Bertini type," classical in algebraic geometry; cf. for
example [K1, Lemma 1].

LEMMA 2.6. Let P(X,...,X,)R[X,...,X,] such that LR+(P)<-k. Then
LR+(aP/aX)<-3k(k+ 1)/2(l <-i<-n).

Proof. We may assume here that P is a one-variable polynomial. Let us then look
at the system of l:

S ctX"*, + dX’’,,

k-l k-l

Sk Ck 1-I s.",, .k + dk I-I "q.-,"k.
i=o i=o

k

e Ckd-I H S?i’k+l (with So X),
i=0

and again let TI(X)= S(X), TE(X)= S2(X, TI(X)),.’’, Tk(X)= Sk(X, T(X), ,
Tk_,(X)).

We have then

aSk aSk
__

aSkT,(X) 7.+ T(X) + T’k_,
aSt
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and

OP. OP. +. T’ OP,P’ X --O-+ T - ..+ k--k
By construction one has LR+(Tk_)=< k-1. We may hence assume, by induction

on k, that we can evaluate Tk_ and T:_ with less than 3k(k- 1)/2=t= operations. Then
the evaluation of Tk will take one + operation more, the evaluation of T: will take
2k-1 operations more (because in the expression of T there are k-1 +signs, and
each OSk/OSi has two monomials), and the evaluation of P’(X) will take k + operations
more.

We have then L+(e’)<-3k(k 1)/2+3k=3k(k+ 1)/2. Q.E.D.
Remark 2.7. Baur and Strassen [B-S] have proved that for the multiplicative

complexity L (or total complexity L) over any field F, we have
L(P, OP/OX, 0P/OX,)<-_3 L(P) (respectively, LF(p, P/OX, OP/OX,,) <-

5" LF(P)). For the additive complexity, such a strong result is not possible; consider
P XX2" X,. However, it is possible that Lemma 2.6 can be substantially improved,
and there may be some analogue of the Baur-Strassen result for additive complexity.

We can now finish the proof of Theorem 2.1. If we want to majorize Cb(P), it is
enough by Lemma 2.4 to majorize the number of solutions of the system (4), and we
will be able to use Hovansky’s Theorem 1.2 because of Lemma 2.5.

We shall in fact apply Theorem 1.2 to the system (similar to (2)) from which we
can evaluate P and the OP/OXi (1 <-_ <-n) from the constants and the X. This system
has 2n(k+ 1)+ k(k-3)/2 variables and the same number of equations. The variables
are: X[ (l_<-i-<n), X (l=<i<=n), S (1-<_i-<_k), S/S (l<-_i<-k, l<=j<=i), Si/X
(l<-i<=k, l_-<jn-1) and OT/OX (l<=i<-_k,. l=<j=<n-1). The total number of
monomials of the system is bounded by a third-degree polynomial q(n, k) in n and
k, namely n(n+l)+3k(k+l)/2+(3n-1)(k(k+3)/2) (see Lemma 2.6, where it is
shown how to evaluate OP/OX from the system evaluating P). The application of

q(n k)Theorem 1.2 gives a bound for Cb(P) of C where C is an appropriate constant.
The proof of Theorem 2.1 is now complete.

Note added in proof Prof. Volker Strassen told me after the impression of this
paper that Dima Grigoryev independently found similar results (Lower bounds in
algebraic computational complexity, Notes of Scientific Seminars of LOMI, 118 (1982),
pp. 25-82, USSR Academy of Sciences, Steklov Math. Inst., Leningrad Dept.).
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FACTORING POLYNOMIALS OVER
ALGEBRAIC NUMBER FIELDS*

SUSAN LANDAUt

Abstract. We show that if f(x) is a polynomial in Z[a][x], where a satisfies a monic irreducible
polynomial over Z, then f(x) can be factored over O(a)[x] in polynomial time. We also show that the
splitting field of f(x) can be determined in time polynomial in ([Splitting field of f(x): O], log If(x)l).

Key words, algebraic number fields, norm, polynomial factorization

1. Introduction. Mathematicians have long sought efficient algorithms for factor-
ing polynomials over the rationals. In 1793 Frederick von Schubert showed that the
problem of factoring over the integers was decidable [Kn]. If f(x) is the polynomial
one desires to factor, von Schubert’s idea was to compute f(1), f(2), , f(n), where
n is the degree of f(x). Consider a possible sequence d(1),..., d(n), where d(i)
divides f(i). A sequence defines a potential divisor of f(x), which can be found by
interpolation. All divisors of f(x) can be found in this way--if one has enough time.
The algorithm is exponential.

If one raises questions of efficiency, one must begin by asking how much space is
required to write down the factors of f(x)= x"+ a,,_lx"-l+ + ao. It is not difficult
to show that the roots of f(x) are polynomially bounded in size, which implies the
factors of f(x) can be written down in polynomial space. (Mignotte [Mil], [Mi2]
demonstrates tight bounds on the size of factors.)

Algorithms which were developed for factoring polynomials over the integers had
exponential running time. An important one which worked well on average was created
by Zassenhaus in 1969 [Za.] His idea was to factor f(x) mod p, for a carefully chosen
prime p, and then to lift the factorization to pk for a large integer k. (In 1969 Berlekamp
[Be] discovered an algorithm which factored a polynomial of degree n over Z/pZ in
O(n3p) steps.) The factorization mod pk is examined to give a factorization over the
integers.

Zassenhaus’ algorithm has the problem that its worst case running time is
exponential in the degree of the polynomial to be factored. For a time it seemed it
might be easier to check polynomial irreducibility than to factor. In 1979 Weinberger
[Wei] showed that under the Generalized Riemann Hypothesis, testing irreducibility
of polynomials is in polynomial time. In 1981 Cantor [Can] proved that irreducible
polynomials had succinct certificates. Still the problem of factoring univariate poly-
nomials over the integers remained stubbornly exponential.

In 1982 Lenstra, Lenstra and Lovfisz announced an algorithm to factor f(x)=
a,x’+ + ao Z[x] into irreducible factors over Z[x] in

O(n9+e + n7+e log2+e (y. a/2))

steps, for all e > 0. The L3 algorithm brings many important problems into polynomial
time. It is natural to ask if their algorithm can be extended to larger fields, in particular,
are there polynomial time algorithms for factoring polynomials over algebraic and

* Received by the editors August 19, 1982, and in final revised form July 9, 1983. This work was
partially supported by the Office of Naval Research under grant N00014-80-C-622.

f Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts 02139.
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transcendental extensions of the rationals? In this paper we answer the first question
affirmatively.

We do so by using norms, a technique proposed by Kronecker in 1882. Assume
that a satisfies g(t)= t" +a,,,_ltm-x 4-...+ao which is irreducible over Q. If f(x)=
x"+,,-xxn-X+ ’+/30, where/3i =Yj- bija, bZ, then we can factor f(x) over
Q(a)[x] in time polynomial in the size and degree of g(t) and f(x). (Chistov and
Grigoriev [CG] have also observed that Kronecker’s technique produces a polynomial
time algorithm.) By generalizing the algorithm in [L3], A. K. Lenstra [AKL] has found
a different method for factoring polynomials over algebraic number fields in polynomial
time.

This paper is organized as follows: 2 Background, 3 The norm, 4 Computa-
tions in algebraic number fields, 5 An algorithm, and 6 Ramifications and open
questions.

2. Background. It is a simple matter to show that if g(x) divides f(x) in Z[x],
then g(x) is polynomial size as a function of f(x) to write down. The situation is only
slightly more complex in the case of algebraic number fields. We begin with some
definitions. An element a is algebraic over a field K itt a satisfies a polynomial with
coefficients in K. An extension field L is algebraic over a field K itt every element in
L is algebraic over K. It is well known that every finite extension of a field is algebraic;
the finite extensions of Q are called the algebraic number fields.

Every algebraic number field is expressible as Q(a) for a suitable a. The field
Q(a) is isomorphic to Q[t]/g(t), where g(t) is the minimal (irreducible) polynomial
for a. In our algorithms we will work with the number field in its formulation as
Q[t]/g(t), although certain of our proofs will be in terms of Q(t). Let the degree of
g(t) be m. The conjugates of a are the remaining roots of g(t): c2" a,, c can be
thought of as a l. Since Q(a) is of characteristic 0, by the minimality of g(t) we know
the ci’s are all distinct. (Note that the fields Q(c) are all isomorphic.)

It is convenient for us to consider a special class of algebraic numbers, the algebraic
integers. A number a is an algebraic integer itt it is a root monic polynomial over Z.
For the remainder of this paper we assume a al, c2," , c, are algebraic integers
satisfying g(t), a monic irreducible polynomial over Z. The set of algebraic integers
of K Q(a) form a ring, frequently written OK. This ring is a natural extension of
the integers, and in particular, Gauss’ lemma generalizes:

PROPOSrrION 1.1. Let f(x) OK[X] be monic. Then f(x) factors as the product of
two polynomials with coefficients in K ifff x) factors as the product of two polynomials
with coefficients in OK.

If we factor f(x), a polynomial in a number ring, the factors of f(x) also lie in
the number ring. It is somewhat more complicated than it was in the case of the
integers to show that factors of f(x) over OK will have short descriptions. First we
need to know what the ring of integers of an algebraic number field looks like. In
general, computing a basis for the ring of integers of an algebraic number field is at
least as hard as determining the squarefree part of an integer [Mar], and it may be as
difficult as factoring. Fortunately it is not necessary to do so:

PROPOSITION 1.2. Let a be an algebraic integer satisfying g( t), a monic irreducible
polynomial over Z. The ring of algebraic integers of Q(a) is contained in (1/d)Z[t],
where

d21disc (g(t)) I-I (ai- a)2.
i<j
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If we factor a polynomial over Z[a][x], we are guaranteed that the coefficients
of the factors lie in (1/d)Z[a]. If we show that an integer coefficient of a factor of a
polynomial in a number field is less than the integer "a" say, then the coefficient can
be written as b/d where Ibl<lal/Idl. Thus bounding a coefficient in absolute value
bounds it in length of description.

We consider this question in greater detail. If g(t) / a,,-1
"-1 +" / ao, ai

in Z, then we define the size of g(t), Ig(t)[ (m-1 1/2
i=0 a) Following Weinberger and

Rothschild, we define the size of/3, /3]] to be the maximum of the absolute values of
the conjugates of/3. If f(x)= flnXn+ fln_lX-1 +’" "+ flO, with/3i jl bijaj, then the
size of f(x), f(x)]], is defined to be max/(jl b.)1/2. Then we have the following
theorem, whose proof appears in the Appendix.

THEOREM 1.3 (Weinberger and Rothschild). Let fl be a root of f(x) Z[a][x],
notation as above. Then fl]l <- 1 +f(x)]. Assume that f(x) is monic, and let

h(x) h,x + hr_lX-1 +" + ho
be a factor of f(x) in (1/ d)Z[a][x] which is primitive. If hi
(1/d)(Cim-1 Otto-1 /’’’ / Cio), then Icl <- d(7)f(x)]]lg(t)l" disc (g(t))-/2.

The result of Theorem 1.3 is somewhat cumbersome to express. As we are
concerned with asymptotic running times, we will assume that Ic,l <-f(x)](mlg(t)l) m.

It is often easier to compute in the rationals than in the algebraic number fields,
because of the rationals’ simpler structure. A useful tool is the norm, which relates
elements in the number fields to elements in Q. Let =ao+ala+" "/am-lOtm-l
Q(a). Then

Norm (/3) N(/3) 1-I (ao+aloti +’’ / am-lain-I).

If cr is an element of the Galois group of g(t) over Q, then or(a)= ai, where ai is a
conjugate of a over Q. Then

a(N(fl))=o’ (I-[i (ao+aa,+"
=H tr(ao+ aa +’’’ +am_lan-l)

=l-I (ao+alai+’’" + a,.-la-1)

N(/3),

and since tr just permutes the ai’s we conclude that N(3) Q. (In particular, for q
in Q, we have N(q)= q".) Since the norm is the product o[ multiplicative unctions,
the norm itseff is multiplicative, i.e. N(y/3) N(y)N(/3). We can think of a polynomial
f(x) Q(a)[x] as a polynomial in two variables x and a, and denote it by f,,(x). It is
quite natural to extend the definition of norm to polynomials in Q(a)[x] by

N(f(x)) I-I f,,(x)

If f(x) O(a)[x], N(f(x)) O[x]. Under appropriate hypotheses, a polynomial in
Q(a)[x] can be factored by taking the norm of the polynomial, factoring the norm
over the rationals, and raising that to a factorization over the number field. We examine
these hypotheses in greater detail in the next section.
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3. The norm.
THEOREM 1.4. Let f(x) Q(a)[x] be irreducible. Then N(f(x)) is a power of an

irreducible polynomial in Q[x].
Proof. Suppose not. Then N(f(x)) C(x)D(x) Q[x], where C(x) and D(x) are

relatively prime. N(f(x))=i]if(x): therefore f(x) must divide C(x) or D(x) in
Q(a)[x]. Without loss of generality, f(x)lC(x), which implies that there exists g(x)
Q(a)[x] such that f(x)g(x)=C(x). Let tr: Q(a)[x]--Q(ai)[x] be an element of
the Galois group which sends a to ai. Then tr(C(x))= C(x) since C(x) is in Q[x],
but tr(f(x))=f(x) and tr(g(x))= g,,,(x). Thus we have f(x)lC(x) for all ai which
are conjugates of a. Now C(x) and D(x) are relatively prime (and not both 1.)
Therefore for all ai, f,(x)XD(x), which implies that N(f(x))=I-Iif(x)= C(x), and
consequently N(f(x)) is a power of an irreducible polynomial. [3

THEOREM 1.5. Let f(x) Q(a)[x] be such that N(f(x)) is squarefree. Then if
N(f(x)) 1-Ii Gi(x) is a factorization into irreducible polynomials in Q[x], then f(x)=
1-Ii gcd (f(x), Gi(x)) is a factorization into irreducibles in Q(a)[x].

Proof. Let gi(x)=gcd (f(x), Gi(x)). Then we need to show that each gi(x) is
irreducible, and that each irreducible factor of f(x) appears in I-Ig(x). Let h(x) be
an irreducible factor of f(x) in Q(a)[x]. By Theorem 1.4, N(h(x)) is a power o an
irreducible polynomial. But N(h(x))lN(f(x)), and N(f(x)) is squarefree; thus
N(h(x))= Gi(x) for some i.

The norm is multiplicative; thus the norm of f(x) equals the product of the norms
of the irreducible factors of f(x). Each G(x) is the norm of some irreducible factor
of f(x). The G(x)’s are all irreducible and distinct, which implies that the g(x)’s are
all distinct and irreducible. Since all the irreducible factors of f(x) appear as some
gcd (f(x), Gi(x) we are done. Iq

Our algorithm should now be clear. We begin with f(x). So long as N(f(x)) is
squarefree, we factor it over the rationals, then compute gcd’s to obtain a factorization
over Q(a)[x]. These steps--computing the norm, factoring over the rationals, and
taking gcd’sare all in polynomial time. The question of what to do if N(f(x)) is not
squarefree remains. Kronecker [Kr] observed that so long as f(x) has no repeated
roots in Q(a)[x], f(x) can be "twiddled" so as to obtain a polynomial with squarefree
norm. The proof we present is due to Trager [Tr.]

LEMMA 1.6. Let f(x) Q(a)[x] be a squarefree polynomial of degree n, where
[Q(a): Q]= m. Then there are at most (nm)2/2 integers s such that N(f(x-sa)) is
not squarefree.

Proof. Instead we show that there at most n(n-1)m(m-1)/2 integers s such
that N(f(x-sa)) has a repeated root; this will immediately imply the result. Suppose
that the roots of f(x) are {fli}, then the roots of N(f(x-sa)) are {fli+ sa}, where
the a’s are conjugates ofa. Then N(f(x- sa)) has a repeated root iff/3 + sai Ok + Sat,
for some i k or j I. This would mean s=(at--a)/(flk--fli). (We can divide, since
f(x) squarefree means that flk /3, for k i.) Clearly there are at most (n(n- 1)m(m-
1))/2 such s. [q

The algorithm we have suggested to factor polynomials requires the computation
of norms. In the next section we show how we can do this in polynomial time.

4. Computations in algebraic number fields. The coefficients of the norm are all
symmetric functions in the a, since N(f(x))=l-I f,(x). The straightforward way to
calculate them takes exponential time. Fortunately there is a way around this difficulty.
Let h(x) hx + h_lX-1 +... + ho, k(x) kx + k_lX-1 +. + ko, for h, k K, a
field. We define the resultant,
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Resx (h(x), k(x))=

ks 0 0 hr 0 0

ks 0 0 hr-1 hr 0 0

ks-1 ks 0 hr-2 hr-1 hr 0

ks-r ks-r+1 ks hr-s hr-s+l hr

0 0 ko k 0 0 ho h
0 0 0 ko 0 0 0 ho

$

It can be shown that Resx (h(x), k(x))= h 1-Ii k({3i), where the/3i are roots of
h(x) [vdW]. Thus N(f(x))=l-I,f,(x)=(Rest (g(t),f(x, t)))/g, where f(x, t) is f(x)
with t’s substituted in for a’s.

We introduce the resultant because it is a computationally efficient way to compute
the norm. After we examine gcd algorithms, we will be ready to factor polynomials
over algebraic number fields.

Algebraic computation has benefitted from the fact that many classical algorithms
in algebra and number theory are highly efficient. This includes the Euclidean algorithm;
however, a naive implementation runs the problem of coefficient blowup. Collins, and
Brown and Traub were able to resolve this difficulty by using the theory of subresultants.
In our algorithm, we will need to compute gcd’sof polynomials over Q and over
algebraic number fields. We generalize Brown’s result in Corollary 8. The proof appears
in the Appendix.

THEOREM 1.7 (Brown). Let f(x) and g(x) be polynomials over Q[x], of
degree m and n respectively. Then gcd(f(x),g(x)) can be computed in
O(max2 (log If(x)l, log Ig(x)l)(max4 (m, n))) steps.

COROLLARY 1.8. Let a satisfy a monic irreducible polynomial g( t) overZ of degree
rn and With discriminant d. Let f(x), rE(X) be polynomials over Or, K Q[t]/ g( t) with
maximum degree n and [fl(X)]], [fE(X)]] bounded by [f(x)]. Then gcdr (fl(x), f2(x))
can be computed in O(n7m2 log2 Ig(t)[ log2 [f(x)]]) steps.

5. An algorithm. Let a be a root of g(t), a monic irreducible polynomial with
coefficients in Z, and discriminant d, and suppose f(x) of degree n is a polynomial
whose coefficients lie in O, where K Q(a). We can think of f(x) as a polynomial
in two variables, x and a. (When there is no risk of confusion, we use f(x) and f(x, t)
interchangeably.) In 2, we sketched an algorithm due to Kronecker, for factoring
polynomials over an algebraic number field. We find h(x)=gcd (f(x), f’(x)). Then
h(x) is squarefree, and all the irreducible factors of f(x) appears as factors of h(x).
We compute an integer "c" such that No/o(h(x-ca))= F(x) is squarefree. Using
the L3 algorithm, we factor F(x)=I]__F(x) over Q. By computing the
gcdo> (F(x), h(x)) for i= 1,..., r, we obtain a factorization of h(x) over Q(a).
This allows us to determine a factorization of f(x) over Q(a). Algorithm 2.1, which
given g(t), a monic irreducible polynomial over Z, and f(x), a polynomial in O,
where K Q[t]/g(t) factors f(x) over Or[x] appears in the Appendix.

THEOREM 2.1. Algorithm 2.1 computes a factorization of f(x), a polynomial of
degree n over Or[x] into irreducible factors in Or[x]. It does so in
O(m9+n7+ log2 Ig(t)l log2+ ([f(x)](mlg(t)l)(mn))) steps.
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Proof. The algorithm has four major steps. Step 1 computes the squarefree part,
h(x), of f(x). In order to factor f(x) it suffices to factor h(x). Step 2 computes an
integer c such that Norm(ot/g(0/o (h(x-ct)) is squarefree. Lemma 1.6 guarantees
that there is a c less than (degreeo (g(t))degreeo( (f(x)))2 which yields h(x-ct)
which has squarefree norm.

In Step 3, we factor l(x)=N(h(x-ct)). Theorem 1.6 assures us that if l(x)=
N---1 El(X) is a complete factorization of l(x) in Q[x], then

h(x- ct) fi gcd (F(x), h(x- ct)) fi f(x- ct)
i-----1 i’1

will be a complete factorization of h(x-ct) in Q(a)[x]. We are interested in a
factorization of h(x) however; we compute f(x)=gcd (Fi(x+ct), h(x)). All that
remains to be done is the factorization of k(x). Because all irreducible factors of k(x)
appear as factors of h(x), by computing gcd’s in Step 5 we obtain a complete factoriz-
ation of f(x).

By the work of Collins, Brown and Traub on polynomial gcd’s, it is clear that all
of the above steps can be done in polynomial time. We do a careful analysis to obtain
the bounds of the theorem. Note that the work of Weinberger and Rothschild shows
that h(x) in Stepl, and the fi(x) in Steps 4 and 5 are polynomial size in
(log f(x)]], log [g(t)[, m, n) to write down.

Step 1 requires one gcd over Q[t]/g(t) to obtain k(x) and h(x). The time required
for Step 1 is subsumed by the time required for steps 2 and 4.

In Step 2, we must find a c such that.Norm(ot,l/g(t))/o (h(x-ct)) is squarefree.
We compute the norm by resultants. The resultant is the determinant of a 2m x 2m
matrix whose entries are coefficients of x in h(x-ct). The integer coefficients of in
h(x-ct) are bounded by B1 nnf(x)]](mlg(t)l)’(mn) in absolute value, and there-
fore the integer coefficients of the resulting polynomial, the Norm, are bounded by
B2=(2m)!B"=(2m)!(n"f(x)(mlg(t)[)m(mn)")TM. We need to determine if
N(h(x-ct)) is squarefree, and we do this by factoring No(,,)/o(h(x-ca)) over Z/pZ,
where p does not divide disc(No()/o(h(x-ca))). Let p be a Prime which does not
divide disc(No()/o(h(x-ca))). (We are guaranteed there is such a prime less than
log (n"B"-1) [L3, p. 27.]) Now if p is such a prime, then N(h(x- ca)) has a squarefree
faetorization mod p. The time required to factor a polynomial of degree n over Z/pZ
is O(n3p) steps [R]; thus the factorization takes no more than a constant times
n3 x ran(log f(x)] + m log (m[g(t)l)) O(n4m(log [If(x)] + rn log m[g(t)[)) steps.
Since it must be repeated at most mn times, Step 2 requires at most
O(nSm2(log f(x)]+ rn log (m[g(t)[))) steps.

Step 3 factors l(x)=No()/o(h(x-ca)) which is squarefree. The integer
coefficients of x in N(h(x-ct)) are less than a constant x(f(x)](m[g(t)l)"(mn)")"
in absolute value, or require at most O(m(log (f(x)](mlg(t)[)"))) bits to write down.
Thus l(x) can be factored in o(mg+n7+ log2+ (f(x)](mlg(t)[)"(mn)")) steps to
factor.

In Step 4, we compute at most n god’s of polynomials. The factors determined
in Step 3 of the algorithm are of degree at most ran, and have coefficients of length
at most (logf(x)]] + rn log(m[g(t)[)) bits, while h(x) is of degree at most n, again with
integer eoefticients requiring at most (log[[f(x)]+mlog(mlg(t)[)) bits. Thus this
step can be done in at most O((mn)7 log2 (m[g(t)l) log2 (f(x)]+ m2 log2 (mlg(t)])))
steps, we do this at most n times, therefore requiring no more than
O(m7n8 log2 Ig(t)l(log2 [[f(x)]+ m2 log (mlg(t)[))) steps. Finally the running time of
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Step 5 is dominated by that of Step 4. Our total running time is dominated by Steps 3
and 4 of the algorithm, and the theorem is proved.

We observed earlier that an algebraic number field can be written as Q(a) for
an appropriate a. In our algorithm, we assumed that the number field over which we
are factoring was presented as Q(a). Suppose we were asked to factor f(x)
Q(a,/3)[x]; how would we proceed? We could calculate a primitive element for
Q(a, ), and apply the Algorithm 2.1 directly. Alternatively, we might observe that

N,/o((x))
In order to actor f(x) over Q(a,/3), we could compute No,./o(f(x)), and then
consider the question of factoring that polynomial over Q(a). Such an approach leads
to a bootstrapping technique for factoring which is, in some cases, faster than the
method of finding a primitive element. However, we have found it useful, and not
more costly to obtain a primitive element. Recall that if/3 satisfies h(x), an irreducible
polynomial over Q(a), then whenever No/o(h(x-ca)) is squarefree, Q(# + ca)=
Q(a,/3). We remind the reader that Lemma 1.6 guarantees that such a c can be quickly
determined.

6. Ramifications and open questions. The ability to factor allows many other
computations. Questions whose solutions were infeasible are now in polynomial time.
We list several consequences of Algorithm 2.1 before we suggest some open questions.

COROLLARY 1. Factoring multivariate polynomials over algebraic number fields is
polynomial time reducible to factoring multivariates over the rationals.

Proof. The algebraic property necessary for the proofs of Theorems 2 and 3 is
that Q(a)[x] is a unique factorization domain. Since Q(a)[x,... ,xn] is also,
Theorems 2 and 3 extend to these domains. To prove Lemma 4, we con-
sider f(x,... ,xn)s Q(a)[x,... ,xn] as a polynomial in Xl with coefficients in
Q(t)[x2,’’-, x]. (Note that since we can factor n + 1 variable polynomials over Q,
we can compute the gcd of n variable polynomials over Q(a).) Let
degxl (f(Xl,’’’, xn)) nl, and [Q(a) Q] m. As before, we assume f(Xl," ", x,) is
squarefree; otherwise we take the gde to obtain the square free part of f(xl," , x,).
Then N(f(xl,..., x,)) has no repeated roots. Viewing f(x,..., xn) as a polynomial
in Xl with coefficients in Q(a)[x.,..., x,], it has nl roots. The proof of the lemma
goes through as before, and we obtain our reduction.

Kaltofen [Kal], [Ka2], and A. Lenstra [Lpc] have independently shown that
factoring a polynomial with a bounded number of variables over the rationals is
polynomial time equivalent to factoring a univariate polynomial over the rationals. In
light of Corollary 2.3 and the earlier [L3] result, we conclude that factoring a polynomial
with a bounded number of variables over an algebraic number field presented as Q(a)
can be done in polynomial time.

COROLLARY 2. Let satisfy g( t), an irreducible polynomial of degree m over Z,
and let fl satisfy f(x), an irreducible polynomial of degree n over Z[a]. Then determining
if the intersection of Q(a) and Q() is Q can be done in time polynomial in
(log,lg(t)l, m, log [f(x)]], n),

Proof. Let h(x) be the minimal polynomial of/3 over Q. If a does not satisfy
h(x), (i.e. a and/3 are not conjugates over Q), then Q(a) f’) Q() Q iff h(x) remains
irreducible over Q(c). If a is a root of h(x), then Q(af)Q()=Qiff h(x)/x-a is
irreducible over Q(a). [3

Those number fields, Q(a), which are distinguished by the fact that a may be
expressed as a combination of several ruth roots are called the radical number fields.
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COROLLARY 3. Finding bases for radical number fields can be done in polynomial
time.

COROLLARY 4. Finding basesfor algebraic numberfields can be done in polynomial
time.

For a long time normal polynomialsmpolynomials which factor completely upon
adjoining a single root--weremost difficult to factor. However we would like to note
the following corollary:

COROLLARY 5. Let f(x)Z[x] be of degree n. Then f(x) can be checked for
normality in time polynomial in (log If(x)l, n). Furthermore, iff(x) is normal, computing
its Galois group can be done in time polynomial in (log If(x)l, n).

The algorithm proposed by Galois for computing splitting fields involved factoring
a polynomial of degree n! "Bootstrapping", factoring f(x) in Q[x, y]/f(y), adjoining
another root of f(x), etc., until a splitting field is reached, gives:

COROLLARY 6. Let f(x) be a polynomial in Z[x]. The splitting field off(x) can
be determined in time polynomial in ([Splitting field ((f(x))/ Q)" Q], log If(x)[).

Proof. Our algorithm is as follows" we begin with a field Q(al,’",
of degree ni over Q, in which f(x) has been factored. Let a+l be a root of f+l(X),
an irreducible factor of. f/+l(X) in Q(fli+l). Then whenever N(fi+l(X-k+lfli)) is
squarefree, ai+a + ki+lfli fli+l generates Q(al, ai+l) Q(fli+l). Then we factor
f(x) in Q(fl+a), and repeat the process. We must show:

(1) The k can be determined in time polynomial in (n,logf(x)l).
(2) The minimum polynomials for fl over Q have small integer coefficients, i.e.

the number of bits needed to write down the integer coefficients of the minimum
polynomial of fl is polynomial in (n, log [f(x)[).

(3) The number of bits needed to write down the integer coefficients of the factors
of f(x) in Q() are bounded by a polynomial function of (n, log If(x)l),

We prove Corollary 6 by induction on i. When i= 1, 1 al, and k 1, so (1)
and (2) are true, and (3) is a consequence of Theorem 2.1. We assume that the theorem
is true for i, i.e. that (1), (2) and (3) hold for i, and that we know fl (i.e. we know
the minimum polynomial for fl); we now prove it for i+ 1. Now we know that
k+a < n+1,2 by the discussion that follows the proof, of Theorem 2.1. Thus

[fl,+l [k,+,(k,( (k2a + a2) )+ a,)+

[k+l(k("" (k2+I)al+a2..’)+a)+

[(ki+l + 1)(k + 1)... (k2+ 1)al

(k,+l + 1)(k, + 1)... (k2+ 1)[al

(k+l + 1)(k, + 1)’" (k2+ 1)[f(x)

(ni+lni"" nl)41f(x).
_i+1 n.+lNote that (ni+lni""" hi)4( ni+l hill. We also know that the degree of fl+l

over Q(fl) is n+l. Now fl+ is an algebraic integer, since it is the sum and product
of various algebraic integers. The coefficients of the minimal polynomial for fl+l are

4n +14n +1bounded by (ni+lni"" nl) ]f(x) which is less than ni+ Thus they require
2 log ]f(x)] bits to write down. Thus (2) is proved..at most 4n+l log ni+l + ni+l

Now if fi+2(x) is an irreducible factor of f(x) in Q(fl,+l), then +2(x)=
i...(x-a,). If fi+2(X)=Xr+yr--lxr--l+’’’+yO, then 7]<2*[f(x)]. We wish

v"’1- c,#+; to dohowever, to bound the integer coecients of +2(x), where =o
so we apply Weinberger-Rothschild. Since +2(x) is a divisor of f(x) in Q(+I), we
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have Icql<=f(x)]](ni+lhi+l(t)) ",+1, where hi+l(t) is the minimal polynomial for i+l
over Q. Observations of the previous paragraph demonstrate that the coefficients of
hi/l(t) are polynomially bounded in size, and that the number of bits needed to write
down cq is polynomial in (ni+l, log ]f(x)[).

Finally we observe that the arguments used in part (2) of the proof of the main
theorem combined with the discussion on primitive elements yields a proof of (1).

A polynomial of degree n over Q usually has splitting field of degree n! over Q,
so Corollary 6 gives a bound which is exponential in n and Ifl(x)l. But there are many
subtleties about Galois groups to be exploited which indicate Corollary 6 can be greatly
improved. We include Corollary 6 in order to emphasize the fact that the ability to
factor has put many tantalizing problems within our grasp. We can test normality. We
can compute the Galois group if it is abelian. We can even test primitivity [LM]. All
of these can be done in polynomial time.

Appendix. We include here the proofs of Theorem 1.3 and Corollary 1.8, as well
as Algorithm 2.1.

THEOREM 1.3 (Weinberger and Rothschild). Let be a root of. f(x)e Z[a][x],
notation as above. Then ]] <= 1 +f(x)]l. Assume that f(x) is monic, and let

h(x) h,x" + h,_ix"-1 +" + ho

be a factor of f(x) in (1/ d)Z[a][x] which is primitive, if hi
(1/d)(c,,,-1 am-1 +’" "+ Cio), then Ic01 -< d(7)[f(x)]l(t)l disc (g(t))-/2.

Proof. It is not difficult to see that ff a and 3’ are algebraic numbers, then
[a+y[a]+r], and that [ar][a][]. We have noted previously that for a a
root o g(x), [a] 1 +max lal 1 +lg(t)l. A similar argument shows that fl]
1 +max,,1 +f(x)].

Suppose h(x)lf(x)in Q(a)[x]. By Proposition 1.1, h(x)e(1/d)Z[a][x]. Now
h(x)=xt+ht_lxt-l+...+ho=ies(X-fli), for some S{1,...,n}. Then h
(f(x)] by [Mil.] Now we seek to bound the integer coefficients of h.

--1I[ y Q(a), Y ==o ra, ri Q. Define y ra, and define a map L" C"
C" by L(ro,"’, r_a)=(ya,..., y). Note that this map is invertible and linear. It
is invertible because it is a Vandermonde matrix ormed rom a... a. We have
det (L) =disc (g(t)) /1. Let Ivl=max I ,1, and Irl=max It, I. Since all o the r Q,
y Q(a), and The action of L is multiplication by a matrix, which, by
abuse-of-notation, we also call L, rL y. Thus r yL-, and Irl IrllL-l, where

IL-1l=max (Z,% lq). If r=c/d, then .Icl<d()Kf(x)]lZ-al.
Next we bound IL-. The entries of L-1 are cofactors of L, divided by the

disc(g(t))/. By Hadamard’s inequality, we obtain an upper bound of

1(1 )1/2/=1 i=1

for the determinant. Then:

(m--1)1/2 (m--1)l/2laj[-l=(m--1)(m-1)/2( H [ailm-x)
I1 I1> I1>

Recall that g(t) is monic; by Mignotte we find that ,,<1 Illg(t)l, so that
1/2(m-1)<-l)/lg(t) disc (g(t))- bounds the absolute value of the entries of L.

Therefore
)/2re(m-l)- Ig(t)l -ll disc (g(t))1-1/.
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Thus

COROLLARY 1.8. Let a satisfy a monic irreducible polynomial g( t) overZ of degree
rn and with discriminant d. Let/’l(X), f2(x) be polynomials over Or,, K Q[t]/g( t) with
maximum degree n and [f(x)], [f2(x)] bounded by [f(x)]]. Then gcdr (fl(X), f2(x)
can be computed in O(nT.m2 log2 Ig(t)l log2 f(x)]) steps.

Proof. We assume that fl(X), f2(x) are primitive. In the gcd algorithm presented
by Brown [Br2], he computes polynomials Gi(x), where Gl(X)=fl(x), G2(x)=f2(x),

and

G3(x) (-1)1/1 pseudoremainder (Gl(X), G2(x))

G,(x)
(-1)’-/1 pseudoremainder (Gi_2(x), Gi-l(x))

with 8i being the degree of Gi(x), gi, the leading coefficient of Gi(x), and hi
g,-1/,, 1-&i__l

We perform the same algorithm with a minor modification. Each time we compute
the pseudoremainder Gi(x), we reduce the coefficients modulo(g(t)). Then S(l, m), the
size of a product of m such determinants, each of order l, changes accordingly; we find:

S( l, k)= Ik log f(x)](n + m log Ig(t)l).

Then we find that:

and

C < 2(3,-2 + 1 ni-2S(/i-1, 1 S( li, 3i-2 + 2)

C2) < (ni + 1)S(l, 1)S(li_,/i-2 + 1).

Then

C <2(2,,_2+3)n,_2S(1_1, 1)S(/, ,_2+ 2).

This implies that C < constant x nTm2 log2 Ig(t)llog2 f(x)]], which was to be shown.

ALGORITHM 2.1. FACTOR.
input: g( t) Z[t], monic, irreducible

f(x) Q[x, t]; f(x) with coefficients in Or,, K Q[t]/(g(t))
Step 1. c 1

,--0
k(x) gcdo0vg0 (f(x), f’(x))
h(x) f(x)/ k(x)

Step 2. l(x)Rest (g(t),h(x-ct))
While (gcd (l(x), l’(x)) # 1), do:
c<-c+l
l(x) <-- Res, (g(t), h(x- ct))

Step 3. Factor l(x)= I-Ii=x Fi(x)
Step 4. For i= 1,..., r, do:

(x) <-- gcdot,vso (Fi(x + ct), h(x))
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Step 5.

return:

If (k(x)= 1), then return {fi(x)}, c(t)
Else for i= 1,..., r, do:
While god (Fi(x + ct), k(x)) 1, do:
,-+1
]+,(x) god (F(x + ct), k(x))
k(x) k(x)/f+r(x)

{fi(x)}, where ]](x) is irreducible over O:[x], where K= O[t]/g(t),
n+’ (x)and f(x) ,.i=

Acknowledgments. Warm thanks to Rich Zippel, in whose class this result was
first observed, and who has tirelessly answered my many questions. Conversations with
Arjen Lenstra and Michael Ben-Or led to improved bounds in Weinberger-Rothschild
(Theorem 1.3), and the main algorithm respectively. Gary Miller contributed to the
proof of Corollary 6.
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THE COMPUTATIONAL COMPLEXITY OF SIMULTANEOUS
DIOPHANTINE APPROXIMATION PROBLEMS*

J. C. LAGARIAS"

Abstract. Simultaneous Diophantine approximation in d dimensions deals with the approximation of
a vector ot (a 1," ", aa) of d real numbers by vectors of rational numbers all having the same denominator.
This paper considers the computational complexity of algorithms to find good simultaneous approximations
to a given vector t of d rational numbers. We measure the goodness of an approximation using the sup
norm. We show that a result of H. W. Lenstra, Jr. produces polynomial-time algorithms to find sup norm
best approximations to a given vector t when the dimension d is fixed. We show that a recent algorithm
of A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz to find short vectors in an integral lattice can be used
to find a good approximation to a given vector a in d dimensions with a denominator Q* satisfying
<-Q* <-_2a/2N which is within a factor x/ 2(a+1)/2 of the best approximation with denominator Q with
_-< Q _-<d N. This algorithm runs in time polynomial in the input size, independent of the dimension d.
We also prove complementary results showing that certain natural simultaneous Diophantine approxima-

tion problems are NP-hard. We show that the problem of deciding whether a given vector a of rational
numbers has a simultaneous approximation of specified accuracy with respect to the sup norm with
denominator Q in a given interval 1 <- Q-<_ N is NP-complete. (Here the dimension d is allowed to vary.)
We prove two other complexity results, which suggest that the problem of locating best (sup norm)
simultaneous approximations is harder than this NP-complete problem.

Key words. NP-completeness, simultaneous Diophantine approximation, public key cryptography,
lattices, integer programming

1. Introduction. Simultaneous Diophantine approximation is the study of the
approximation properties of a vector of several real numbers a (c1,’’’, aa) by a
vector of rational numbers v=(pl/q,"" ,p,/q) all having the same denominator.
Here d is called the dimension of the problem. There has been considerable recent
work on algorithms to locate such approximations ([2],[4],[14],[15],[17]). Such
algorithms have a number of applications, e.g. to factor univariate polynomials with
rational coefficients [22] and to find units in number fields [2]. In addition, good
one-dimensional Diophantine approximations ([1], [6], [21]) and simultaneous
Diophantine approximations ([12], [20]) have been used in breaking several proposed
public key cryptosystems of knapsack type.

This paper studies the computational complexity of finding good simultaneous
Diophantine approximations. We first describe how recent results of H. W. Lenstra,
Jr. [15] and A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [14] give fast algorithms
for finding good simultaneous approximations. Then we complement these results by
proving that certain natural simultaneous Diophantine approximation problems are
NP-hard.

We use the sup norm to measure the goodness of a simultaneous Diophantine
approximation. The sup norm measure {{q}} for the degree of approximation to
by rationals with denominator q is given by

{{qa}}= max {qai}
l<__i<__d

* Received by the editors June 11, 1982, and in final form October 10, 1983. A preliminary version
of this paper appeared in the Proceedings of the 23rd Annual IEEE Conference on Foundations of Com-
puter Science, 1982.

f AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
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where {/3} denotes the distance to the nearest integer, i.e.

{/3 } min I/3- nl.
nZ

We associate to a vector t its (sup norm) best simultaneous approximation denominators
(BSAD’s), which are exactly those q for which {{qt}} is smaller than any of the {{q’a}}
with 1 -<_ q’ < q.

In order to obtain a well posed computational problem, the vector t must be
described by a finite input. This constraint leads us to consider t which are vectors of
rational numbers, i.e., a (al/bl,’", aa/ba) where the ai are integers and the bi are
positive integers. Here the {a, b: 1 =<i<= d} are the input data describing t.

For a long time it has been known that the ordinary continued fraction algorithm
provides a fast method of finding the best approximations to a single real number a.
No such algorithms were known which are guaranteed to find even relatively good
approximations in any dimension d_>-2 until very recently, cf. [2], [4], [17]. In 1981,
H. W. Lenstra, Jr. [15] found a polynomial-time algorithm for solving integer program-
ming problems in a fixed number of variables. This easily implies the following result.

TI-IEOREM A. For anyfixed dimension d, there exist algorithms to solve thefollowing
two problems whose worst case running time is bounded by a polynomial in the length
of the input.

(1) FINDING A GOOD APPROXIMATION.
INPUT. A d-dimensional vector ofrational numbers t (all bl, , aa/ ba)
and positive integers N, Sl and s2.
OUTPUT. A denominator Q with 1 <= Q <- N such that {{Qt}} <- Sl/s2,
provided at least one exists, and Q 0 otherwise.

(2) FINDING BEST APPROXIMATIONS.
INPUT. A d-dimensional vector ofrational numbers t al/ bl, , aa/ ba)
and a positive integer N.
OUTPUT. A complete list of all best simultaneous approximation
denominators Q to ot for which Q <-_ N.

The running time bounds for these algorithms increase as the dimension increases.
Lenstra’s running time bound for problems with input length L is of the form O(LC(a),
where c(d) grows exponentially with d.

More recently A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz (see [14]) found
a polynomial time algorithm, which we will call the 3L -algorithm, for finding short
vectors in a lattice A

_
Za. An important feature of the L3-algorithm is that it has a

running time polynomial in the input size, even when the dimension d of the lattice
is allowed to vary. Lenstra, Lenstra and Lovasz observed that the L3-algorithm can
be used to find simultaneous Diophantine approximations nearly as good as those
guaranteed to exist by Dirichlet’s theorem.

DIRICHLET’S THEOREM. For any vector o Ra and any positive integer N there
exists a denominator q with 1 <- q <-_ Na such that

{{qx}} N N-1

In particular, for a Qa Lenstra, Lenstra and Lovasz [14, Prop. 1.39] showed
that the 3L-algorithm can be directly used to find a denominator q with 1 =< q-<

Part (1) of Theorem A has been proved independently by A. Shamir and P. van Emde Boas.
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2n(n+l)/4Nd such that

{(qt/t <- N-’

We prove the following result, which shows that one can find in polynomial time a
simultaneous approximation denominator Q* for t e Qa with 1 <= 0"<= 2a/2N which
has {{O*}} within a constant factor (depending on d) of {{ Ot}} for the best possible
denominator 0 with 1 _<- 0 -< N.

THEOREM B. Let ( (a/ bl, , aa/ be) be given, and for a given positive integer
N set

3N(() min {{qt}}.
l<--:q_N

There is an algorithm which when given t and N as input will produce a denominator
O* with 1 <- 0"<= 2a/2N such that

{{ O*(]g}}-2(a-1)/2N

This algorithm runs to completion in O(d(d logz M+log2 N)4) bit operations, where
M max {[al, [bl: 1 <_- <_- d}.

Note that if the input to the algorithm of Theorem B is {(a, b): 1 -<_ -<_ d} together
with N, expressed as integers in binary, then the input length Z satisfies >-
max (d, log2, M, log2 N) so that the running time to the algorithm is at most
bit operations.

Theorem B follows by applying the L-algorithm to an appropriately chosen series
of lattices in Z+1. We give the precise details in 2.

Now we describe the main results of this paper, which are complementary results
showing that certain natural simultaneous Diophantine approximation problems are
NP-hard. We consider the following set recognition problems.

(1) GOOD SIMULTANEOUS APPROXIMATION (GSA).
INSTANCE. A finite vector of rationals t (al/bl,"" aa/ba) and posi-
tive integers N, Sl, and s2.
QUESTION. Is there an integer Q with 1-<_ Q<-N such that {{Q}} <_-

81/827
(2) LARGEST BEST SIMULTANEOUS APPROXIMATION (LBSA).

INSTANCE. A finite vector of rationals o (al/b,..., a,/b,) and posi-
tive integers (2, N with Q =< N.
QUESTION. Is Q the largest best simultaneous approximation
denominator to with Q < N?

(3) BEST SIMULTANEOUS APPROXIMATION IN AN INTERVAL (BSAI).
INSTANCE. A finite vector of rational numbers (a/bl," ad/b,)
and positive integers N1, N with N-<
QUESTION. Is there a best simultaneous approximation denominator Q
with N1 --< Q<--N29.

In these problems we allow the input to vary over all dimensions d. If the dimension
d were fixed, Theorem A implies all three problems could be solved in polynomial time.

Our main result is as follows.
THEOREM C. GOOD SIMULTANEOUS APPROXIMATION is NP-complete.
Theorem C is proved by a method inspired by Manders and Adleman [16]. We

use Theorem C to derive two consequences, concerning the problem of locating best
simultaneous approximations.
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THEOREM D. LARGEST BEST SIMULTANEOUS APPROXIMATION is in
co-NP. If NP co-NP then it is not in NP.

This result implies that one cannot improve the algorithm of Theorem B to find
the best sup norm approximation in an interval [1, 2a/EN] (instead of merely a good
one satisfying (1.1)) while retaining the polynomial running time, unless NP co-NP.
Theorem D is proved by means of a nondeterministic conjunctive truth table reduction
of GSA to LBSA.

THEOREM E. BEST SIMULTANEOUS APPROXIMATION IN AN INTER-
VAL is in the polynomial hierarchy complexity class A. It is NP-hard.

Theorems D and E together suggest that the problem of locating best simultaneous
approximations is computationally harder than that of locating good simultaneous
approximations.

In passing, we note that GSA problems are instances of a special type of integer
programming problem.

INTEGER PROGRAMMING WITH ATMOSTTWO VARIABLES IN EACH
CONSTRAINT (2-IP).
INSTANCE. Given a finite set of integer vectors {(al,k, aE,k, a3,k)." 1 <= k =< M},
and two functions tr, z: {1, 2," , M} {1, 2," , N}.
QUESTION. Does the integer program al,kXk + a2,kXk <= a3.k, 1 <-- k <- M
have an integer feasible solution {x" 1-<_i-< N}?

Theorem B immediately implies the following NP-completeness result.2

THEOREM F. 2-IP is NP-complete.
TheoremsC through F are proved in 3.
We propose two conjectures for further work. These conjectures, if true, would

more precisely delimit the computational complexity of finding good approximations
and best approximations.

CONJECTURE 1. If NP co-NP, then BSAI is not in NPU co-NP.
CONJECTURE 2. Let f(d) be a polynomial in d. Let ot=(al/bl," ", aa/ba) and

N be given and let N minl<__q_<N {{qt}}. Suppose there exists an algorithm which when
given ot and N as input will produce a denominator Q* with 1 <-_ Q* <-_ f(d)N such that

{{o*}} -<_ f(d)

whose running time is bounded by a polynomial of the input size not depending on d.
Then P NP.

2. Polynomial time algorithms tot finding good approximations.
Proof of Theorem A. The problem FINDING A GOOD APPROXIMATION

can be formulated as an integer programming problem in d + 1 variables and 2d + 2
constraints:

[aiB )(2.1) -siB<-s2T y-Bx, sIB, l<-i<--d

where B bb2.., bd, together with

l=<y-<_N.

Then solve this integer program using H. W. Lenstra Jr.’s algorithm [15].
To solve FINDING BEST APPROXIMATIONS, we first describe an algorithm

which finds the largest BSAD q to x in the interval 1-< q <-N, where N is given. We

2I owe this observation to R. Kaltofen.
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let Is, M1, N] denote the integer programming problem

aB(2.2a) -s <=-- y- x <_- s,

(2.2b) M1 -<- y -< N,

where (2.2a) is obtained from (2.1) by setting s2 B. We use H. W. Lenstra, Jr.’s
algorithm [i5] to solve a series of problems of the form Is, M1, N], varying s in the
interval 1 _-< s _-< B, using a bisection strategy to find the minimal s So for which the
system (2.2) is solvable. This takes at most O(log B) iterations. Then we fix s So and
vary M1, using a bisection strategy to locate the largest M1 for which the system (2.2)
is solvable. This takes at most O(log N) iterations. The value of M1 obtained is the
desired BSAD q. Second, we use this algorithm to successively locate one by one the
largest BSAD not yet found, until a complete list of BSAD’s is produced. There are
at most O(2a+l log B) BSAD’s in this list, using [11, Thm. 2.2] (see also [10]).
Consequently this algorithm halts in polynomial time.

Proof of Theorem B. The L3 algorithm finds a short vector x 0 in a lattice A
_
Za

where a basis v1,""’, va of the lattice is given as input. This algorithm is described in
14], where the following results are proved ([14, Props. 1.11, 1.26]). Here Ilxll denotes
the Euclidean length of a vector x, i.e. if x (x,..., xa) then

Ilxll= / /... /

PROPOSiTiON 2.1. (i) The L3 algorithm produces a short vector x 0 which satisfies
(2.3) Ilxll = -<- 2 Ilwll
for all nonzero w A.

(ii) Let the largest entry in the input basis (v,..., va) of A have absolute value
L. Then the L3 algorithm produces a short vector x .in O(d6(log L)3) bit operations.

We consider the following algorithm. Let a (a/bl,’", aa/ba).

Step 1. Determine whether or not there is some q* with 1 =< q*=< N such that
{{q’a}} 0. If so, halt. If not, proceed to Step 2.

Step 2. Let B bib2" ba. For each j in the range 1 =< j =< d + log B + log N apply
the L3 algorithm to a lattice A_ Z+ where A =(v, v2,’’’, va, v/+)) where

vi=(O, O, NB, O, 0)

is nonzero only in the ith coordinate, for 1-< i---d, and

a+l I, BNa, 2’

Let x) (x), ",-,a+") be the short vector in A produced by the L3 algorithm. Set
q *a+") and check whether or not

1 <= q <-_ 2a/2N.

I so, call q admissible and compute

max Ix

Step 3. Select an admissible q for which r/ is minimal and halt.
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We show that this algorithm has the required properties. We first prove the
algorithm is correct. We must show that whenever the algorithm reaches Step 2, it
then produces at least one admissible q for which

{{qfa}} -<x/ 2(d-l)/EtN
Assume we are in Step 2, and let q be a denominator which minimizes {{q}} for

1 <-_ q <-N, so that 6N {{q}}. Then 6N > 0 since the algorithm did not halt at Step 1,
so that

1
(2.4) n>----B"
Now consider that k for which

(2.5)

We claim that

(2.6)

Using (2.4) we have

22k-2q2 dB2N2tN < 22kq2.

1 -<_ k -< d + log B + log N.

dB2N2tN >- dN2 >- q2,

so that (2.5) forces k -> 1. The right side of (2.6) follows similarly from the condition

Now (2.6) shows that A Ak is examined in Step 2 of the algorithm. Let x =x(k)

be the vector produced by the L3 algorithm applied to Ak. We may write

..,,. (k)x -p*vl p2*v2 P*aVa + , -a+l.

If x (Xl," Xd+l), then

for 1 <_- <_- d, hence

( a, )xi=BN q*ffi-p*

max Ix, {{q*t}}BN.
l<_i<__d

Consequently

(2.7) Ilxll 2 -_> {{q*a}}ZBZNZ+ 2Zk(q*)z.
Let p, be the nearest integer to q(a/b) and consider the vector

W (PLY1 +’" "+pard)+" ,(k)
Vd+l

in A. Now

and

Hence

[wi[ =< BN6u, 1 <- <-_ d,

Wd+l[ 2kq.

Ilwll dBN + 2Zkqz.
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Now (2.3) yields

Ilxll = -<_ + 22kq2).
Combining this with (2.5) and (2.7), we obtain the inequalities

(2.8)

and

(q,)2 .1 (2a_dB2N26N)+q2.<(2,_l+__ 1)q2,

q2
(2.9) {{q*ot}}2<2a-d6N+2a-l+2kB2N-------5d2a-16iq.
Since q <= N, (2.8) proves that x is admissible. Finally (2.9) implies (1.1), so the algorithm
is correct.

Next we bound the running time of the algorithm. To carry out Step 1, we observe
that the least positive q** such that {{q**t}} =0 is

q** 1.c.m. {( b }ai, bi)
l<=i<=d

One can compute q** in polynomial time by repeatedly using the Euclidean algorithm.
Then check whether or not q**-< N. Using this procedure Step 1 requires at most
O(d(d log M+log N)3) bit operations. Step 2 applies the L3 algorithm to O(d log M+
log N) lattices. The lattice vectors in each A have maximum coordinate

L <- 2aMZaN2.

This bound together with Proposition 2.1 implies that the L3 algorithm takes
O(d6(d log M+log N)) bit operations applied to each A separately. Thus Step 2
requires O(d6(dlogM+logN)4) bit operations. Step 3 requires O((dlogM+
log N)z) bit operations. Consequently the algorithm halts after at most O(d6(d log M+
log N)3)bit operations.

3. NP-hardness of certain simultaneous Diophantine approximation problems.
Proof of Theorem C. Our goal is to show that the set

GSA* (, N, s, sa)" There is some O with 1 <- O <-- N for which {{O}}

is NP-complete. The set GSA* is clearly in NP, since we may guess" a good
one exists. We will, in fact, show that the subset

GSAI*={(t,N, s2)" There is some O with 1<= Q<=N for which {{Ot}}-<s}
is NP-complete. The NP-completeness of GSA* follows since GSAI* is a polynomial
time recognizable subset of GSA*.

To prove GSA* is NP-complete, we polynomial time many-one reduce (i.e.
Karp-reduce) the NP-complete problem WEAK PARTITION to the problem GSA1".

WEAK PARTITION.
INSTANCE. A finite vector (a,..., an) of integers.
QUESTION. Is the equation a__ ax 0 solvable with all x =-1, 0 or 1 and
with some x 0?

WEAK PARTITION was shown to be NP-complete by Shamir [19], and later
by van Emde Boas [3] and Rubin [18].
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In the remainder of the proof, we first describe the reduction, then prove it is
correct, and finally check that it runs to completion in polynomial time.

Reduction to WEAK PARTITION.
Step 1. We are given a {ai: 1 =< =< d} and are asked to recognize those a for which

d

(2.10a) Y’. ay O,
j=l

(2.10b) yj e {- 1, 0, 1 }, not all zero,

has a nonzero solution y (Yl," ",Ya).
We encode (2.10a) as a congruence. Set

d

(2.11a) A= Z lal.
j=l

Next let Po be the smallest prime such that poXal au. Define R by

(2.11b) p-l<=A<p.

Next we find a set of primes Q1," ", Qa and an integer T that satisfy the following
size conditions.

SIZE CONDITIONS.
(i) Q1 < Q2 <"" < Qa.
(ii) (Q, poala2 aa)= 1.
(iii) Q1TM >_- 4(d + l)poR.
(iv) Qa < 21/TQ1.

(We will prove such Q1," "’, Qa and T can always be found in the analysis of the
running time of this reduction.)

Using the Chinese remainder theorem, we find (01,..., 0a) such that 0 is the
smallest positive integer satisfying

(2.12a)

Oi-= a (mod poR),

OiO (mod Qj).

(2.126)

(2.12c)

In fact, if 07 is the smallest positive solution to (2.12a), (2.12b), then

(2.13) OJ= 0 QI"’" T
if 07 0 (mod Oi),

otherwise,

since one or both of these satisfy (2.12c). It follows that the system (2.10) is equivalent
to"

d

(2.14a) Y’. Oiy =- 0
j=l

(2.14b) yj {-1, 0, 1},

in view of (2.11) and (2.12b).

(mod poR),

not all zero,
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Step 2. We next encode (2.14b) as a search over a bounded interval. We introduce
a new variable Z defined by

d

(2.15) Z= Y Oy.
j=l

We set
d

(2.16) H= E 10 1,
]=1

and note that (2.14b), (2.15) imply that

(2.17) IZl <=n.
We define B (I-I]=l Qj)7- and observe that

(2.18) H<1/2B,

using the inequalities

101--< 10,.1 /pg Qp < 2pff Qx"" Qa
(] 2(a+1B,

which follow rom (2.12a), (2.12b), (2.13) and the size condition (iii) or T.
CLAIM 1. The system (2.14) is solrable if and only if the following system (2.19)

is solrable.

(2.19a) -H<-Z<=H,

(2.19b) Z 0 (moa pff),

(2.19c) Z--O, +/-0j (mod Of),l<-]<-d,
(2.19d) Z0.

(We defer verifying this claim to the proof of correctness.)
Step 3. We now convert (2.19) to a GSA problem. First, we find the unique 0

satisfying

(2.20a) 0j0 1 (mod Q]),

(2.20b) 1 -<_ O < Qf,
for 1-<_ ]-<_ d. This is always possible by the relative primality condition (ii) of the size
conditions. We choose as our GSA vector

1
(2.21a) Co- p,

(2.21b) a=Of, l<-]<=a,

and we choose

(2.21c) s2=Q(.

CLAIM 2. The system (2.19) is solvable if and only if the following GSA problem
(2.22) is solvable.

(2.22a) -H <- Z <- H,
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1
(2.22b) {Za} <=O, 0 =j_-<< d,

(2.22c) ZO.

Proof of correctness. It suffices to verify the two claims of equivalence.
Claim 1. Suppose (2.14) has a solution. Then (2.17) implies (2.19a), (2.14a)

implies (2.19b), (2.12a) and (2.14b) imply (2.19c). To show (2.19d) holds, note that
(2.14b) guarantees that some yj 0. Then (2.12a), (2.12c) imply that

Z-- 0jy0 (mod Q).
Hence Z 0, so (2.19) is solvable.

Suppose (2.19) has a solution. We first show that the yi can be uniquely recovered
from the data (2.19). In fact, using (2.12a) and (2.15), we have

(2.23) Z =- Oyj (mod Of)
hence we can recover y(mod Qf) using the invertibility of 0(mod Q) given by (2.12c).
In particular, (2.19c) now implies

(2.24) yi-l, 0 or +1 (mod 0).
Next, the Chinese remainder theorem guarantees the system of congruences (2.19c)
has exactly 3d solutions in the interval

-B<ZB,
since B (O) Using (2.18), we conclude that the system (2.19a) and (2.19c) has

3 solutions. However, we can explicitly exhibit 3 such solutions, i.e. those with
all y=-l, 0 or +1, (see (2.16), (2.18)) provided we can show they are all distinct.
And all 3 of them are distinct by (2.23), for if y0y thenZZ(mod O).
Consequently, we have found all such solutions and they all have y =-1, 0, 1. Also
(2.23) implies that Z=0 if and only if all y =0. Together with (2.19d), this proves
(2.14b) holds. Finally, (2.19b) and (2.15) imply (2.14a). We have shown (2.14) is
solvable in this case, and Claim 1 is proved.

Claim 2. Suppose (2.19) is solvable. Certainly (2.19a), (2.19d) imply (2.22a),
(2.22c), respectively. Now (2.19b) forces {Za0} =0. And, using (2.12a), (2.19c), we
must have

O J= l=0oro,
for 1 j d. Since 1/O 1/O, (2.22b) follows. Hence, (2.22) is solvable.

Now suppose (2.22) is solvable. Then (2.19a), (2.19d) hold. Also the size condition
(iii) for T implies that

Since (2.22b) holds for a0, this forces (Zao} =0 using (2.21a). Hence

Z--- 0 (mod p0R),
which is (2.19b). Next we use the size condition (iv) for T,

2 1
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which together with {Zaj} <= 1/Q forces {Zaj} =0 or 1/Qf since a has denominator
Q, for 1- ] <= d. This can only occur if

ZO,+/-O (mod Qf),
for 1 =< j-<_ d, which is (2.19c). Thus (2.19) is solvable and Claim 2 is proved. [3

Polynomial running time bound. It suffices to show we can find in polynomial time
a set of primes Po, Q1," ", Qa and an exponent T satisfying the side conditions. If so,
then the lengths of the binary expansions of the Qf are bounded by a polynomial in
the input length. The other operations of the reduction procedure (Chinese remainder
theorem, solving linear congruences, etc.) can all be carried out in time polynomial in
the input length.

Let E denote the input length, so in particular E => d. The product I-I=1 as has
length at most X2, hence has at most E2 distinct prime factors. Hence Po is one of the
first E2+ 1 prime numbers. We find it by trial division in O(E4) bit operations.

Finding the Q is the main problem. The relations (2.11a), (2.11b) imply

pff _< 2z:+A __< 22+(1og a)+l _< 222,
consequently, we choose

T=3X2.

For this choice of T we can be sure that the size condition (iii) holds, even if Q1 3.
We now use the following simple search subroutine to locate suitable primes Q.

Test for each x= 1,2,3... whether the interval Ix =Ix, (2)l/Tx] contains at least
d + E2+ 1 distinct prime numbers. Halt when such an x is found. We are guaranteed
that at least d of these primes satisfy the relative primality condition (ii) of the size
conditions, since there are at most E2+ 1 distinct prime divisors of poal""aa. The
size conditions (i), (iv) are automatically satisfied by such a set of d primes. In this
subroutine we test each integer y in Ix for primality by trial division by all integers
-<_x/, and for each prime y that we find we test whether size condition (ii) holds by
division. The number of bit operations involved in testing each interval Ix is 0((x3/2+
xX2)(log x)2).

It suffices to obtain an upper bound which is polynomial in E for the value of x
at which the search algorithm halts. We use the following result of Heath-Brown and
Iwaniec [7].

11THEOREM. For each , > there is a constant Xo() such that for all x > Xo() the
interval Ix, x + x] contains a prime.

We choose and x X15. Now

Hence

1
(2) 1/7" >- 21/3x2 >- 1 +6X2.

X X15 X15+x13

However, each interval IX15, X15 + X9] contains a prime. We have >> X4 such subintervals
in (2.24) and so we produce >> X4 primes in the interval (2.24), which is enough. Thus,
we can locate the required Q by a trial-divide process in O(X23) bit operations.

Remarks. (1) P. van Emde Boas has observed that this proof can be modified to
avoid the use of the deep result of Heath-Brown and Iwaniec [7]. His key idea is that
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the reduction of GSA* to WEAK PARTITION remains valid if the prime powers
Qf used in the reduction are replaced by pairwise relatively prime integers Ri satisfying
conditions like the size conditions (with T 1). To find such Ri, he notes that all the
numbers of the form U+pk where U=I-I’=lpj and with pv<pk <3pv are pairwise
relatively prime. Using a form of the prime number theorem with an explicit error
term, one can prove that for v-> CoE2 for a suitable constant Co the existence of a
subset of these integers with the properties required of the Rj is guaranteed. (Condition
(iii) of the size conditions must be replaced by U> pRo(V+ 1)2(d+ 1).)

(2) In any case the full strength of the Heath-Brown and Iwaniec result [7] is not
needed in the proof above. A result like theirs with any 6 < 1 suffices, e.g. the original
result of Hoheisel [8].

Proof of Theorem D. We study the complexity of the set:

LBSA* {(at, Q, N): Q is the largest BSAD to at with Q<=N}.

LBSA* is in co-NP, because its complement

LBSA* {(at, Q, N): Q is not the largest BSAD to at with Q<=N}

is in NP. (More precisely, the complement of LBSA* is the union of LBSA* and a
P-time recognizable set of ill-formed words.) To see this, we use the nondeterministic
Turing machine that "guesses" the largest BSAD Q’ -< N, and then checks that Q’ Q
and {{Q’at}} < {{ Qat}}.

To show that NP co-NP implies LBSA* is not in NP, we will use the notion of
nondeterministic conjunctive truth table reducibility, which we denote by _-< p (see
[13], p. 37; [9], [5], p. 161). We say A <= p B if there is nondeterministic oracle Turing
machine (NOTM) having/3 as an oracle, which accepts the set A, "YES" answers to
the oracle are permitted, the NOTM never halting if a "NO" answer occurs. (An
oracle Turing machine has a special oracle tape onto which an element x can be written,
and a special oracle state which will provide a "YES" or "NO" answer to the query
"Is xB?".) We use results of Leggett ([13], Theorem 3.1, Corollary 2.29.1, ct.
[5, p. 165]).

THEOREM (Leggett). NP is closed downwardly under qp, i.e. if A.<=pB and B
is in NP, then A is in NP. In particular, if A <-_pB and A is co-NP complete, then
NP co-NP implies that B is not in NP.

We use the set:

GSA* (at, N, $1, $2)" There exists no O with 1 =< Q =< N and {{ Oat}} =<

Theorem C implies that GSA* is the complement of an NP-complete set, hence is
co-NP complete.

Theorem D then follows from the following fact.

Fact. GSA* <=NpLBSA*.

To prove the fact, we consider a nondeterministic oracle Turing machine (NOTM)
having LBSA* as an oracle set. Now given (at, N, Sl, s2) the NOTM "guesses" the Q
which is the largest BSAD for t with Q_<-N, calls the oracle, gets a "yes" answer,
and then checks if {{Qat}} > s1/s2, If so, the NOTM halts and accepts (at, N, S1, $2).
Thus, this NOTM recognizes GSA*, proving the Fact. [3

Proof of Theorem E. We consider the set:

BSAI* {(at, N1, N2): There is a BSAD Q to at with N1 = t -< N2}.
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Theorem C showed GSA* is NP-complete. To show BSAI* is NP-hard, we exhibit a
polynomial time Turing reduction of GSA* to BSAI*. To do this we use a deterministic
oracle Turing machine (DOTM) which provides both "YES" and "NO" answers to
queries o the form "Is x BSAI*?" Given input (or, N, Sl, s2) this DOTM locates the
largest BSAD Q with Q-< N by an interval bisection strategy starting with the interval
[1, N], using at most O(log N) queries o the BSAI* oracle. It then checks ff {{ Qt}} <-

Sl/s2. If so, it accepts the input and halts, otherwise rejects the input and halts.
To show that BSAI* is in A, it suffices to show that BSAI* can be recognized

by a DOTM having a set in NP as an oracle [5, pp. 161-163]. We show a DOTM with
oracle set GSA* will do. Given (t,N1, N2) where t=(al/bl,’", an/b,), set D=
bl"" bN. Then every {{Qt}} m/D for some m, 0_-< m _-<D. Our DOTM locates the
minimal value mo/D of {{Qt}} for 1_-< Q<-N2 by a sequence of at most O(log D)
GSA* oracle calls using Sl m, s2 D and a bisection strategy on m. Then it locates
the smallest Q with {{Qt}} molD by a bisection strategy on the interval [1, N2],
using at most O(log N2) oracle calls. If N1 --< Q -<- N2, it accepts (a, N1, N2) and halts,
otherwise it rejects (a, N1, N2) and halts.

Proof of Theorem F. Any GSA problem can be polynomial time encoded as a
2-IP problem, using the encoding (2.1) of Theorem A.

Acknowledgment. I am indebted to P. van Emde Boas for suggesting improve-
ments to a draft of this paper, and to.. L. Lovasz for informing me of the details of the
L3 algorithm and pointing out its relation to simultaneous approximation.
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ARBORICITY AND SUBGRAPH LISTING ALGORITHMS*

NORISHIGE CHIBA AND TAKAO NISHIZEKVf

Abstract. In this paper we introduce a new simple strategy into edge-searching of a graph, which is
useful to the various subgraph listing problems. Applying the strategy, we obtain the following four algorithms.
The first one lists all the triangles in a graph G in O(a(G)m) time, where m is the number of edges of G
and a(G) the arboricity of G. The second finds all the quadrangles in O(a(G)m) time. Since a(G) is at
most three for a planar graph G, both run in linear time for a planar graph. The third lists all the complete
subgraphs K of order in O(la(G)t-2m) time. The fourth lists all the cliques in O(a(G)m) time per clique.
All the algorithms require linear space. We also establish an upper bound on a(G) for a graph G:
a(G) <- [(2m+ n)1/2/2], where n is the number of vertices in G.

Key words, arboricity, clique, complete subgraph, independent set, quadrangle, subgraph listing
algorithm, triangle

1. Introduction. The problems to list certain kinds of subgraphs of a graph arise
in many practical applications [2], [3], [4], [6], [8], [ 10], [ 11 ]. In this paper we introduce
a new simple strategy into edge-searching of a graph, which is useful to the various
subgraph listing problems. We choose a vertex v in a graph and scan the edges of the
subgraph induced by the neighbors of v to find the pattern subgraphs containing v.
The feature of the strategy is to repeat the searching above for each vertex v in
nonincreasing order of degree and to delete v after v is processed so that no duplication
occurs. We will show in the succeeding section that the procedure above requires
O(a(G)m) time. Throughout this paper m is the number of edges of a graph G, n is
the number of vertices of G, and a(G) is the arboricity of G, that is, the minimum
number of edge-disjoint spanning forests into which G can be decomposed [5]. We
use the rather unfamiliar graph invariant a(G) as a parameter in bounding the running
time of algorithms.

The strategy yields simple algorithms for the problems to list certain kinds of
subgraphs of a graph. The kinds of these subgraphs include "triangle, quadrangle,"
"complete subgraph of a fixed order," and "clique." Our algorithms are as fast as the
known ones if any, and a factor n is often reduced to a(G) in the time complexity.

In 2 we give an upper bound on a(G) for a general graph G: a(G) <-

[(2m+n)l/2/2], which implies a(G) <- O(m 1/2) for a connected graph G. In 3 we
give a simple algorithm which lists all the triangles in an arbitrary graph G in O(a(G)m)
time. In 4 we present an O(a(G)m) time algorithm for finding all the quadrangles
(i.e. C4) in G, which does not actually list C4 but finds a representation of all the Ca.
If G is planar, a(G) <_- 3, so these two algorithms run in linear time for planar graphs.
Because of the bound on a(G), they run in at most O(m3/2) time for general graphs.
In 5, extending the triangle listing algorithm, we present an O(la(G)t-Em) time
algorithm for listing all the complete subgraphs of order (i.e. Kt) in G, where is an
arbitrary number. Finally in 6 we present an algorithm for listing all the cliques in
G in O(a(G)m) time per clique. All our algorithms require linear space and exceed
the known algorithms [3], [6], [9] for the same purposes in running time, space, or
simplicity.

* Received by the editors December 15, 1982.

" Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980,
Japan.

210



ARBORICITY AND SUBGRAPH LISTING ALGORITHMS 211

2. Preliminaries. We first define some terms. Let G (V, E) be a simple graph
with vertex set V and edge set E. The edge set of graph G is often denoted by E(G).
The edge joining vertices u and v is denoted by (u, v). Throughout this paper we
denote by n the number of vertices and by m the number of edges of a graph. Let
d(v) denote the degree of a vertex v, that is, the number of edges incident to v. A
graph is planar if it is embeddable on the plane without edge crossing. It is well-known
that m <-_ 3n- 3 if G is planar [5]. A triangle in a graph is a cycle of length three (i.e.
Ca), in other words, a complete subgraph of three vertices (i.e. K3). An independent set
is a set of pairwise nonadjacent vertices in a graph. A clique is a maximal complete
subgraph in a graph. We denote by Ix] the smallest integer not less than x.

We next present two results; the first is concerned with the arboricity of a graph
and the other with the time required by scanning edges in a way of our strategy.

LEMMA 1. Let a graph G have n vertices and m edges. Then

(1)

(2)

(a) a(G)<= [(2m+ n)’/212];
(b) a(G) <- rn/2]; and
(c) a(G) <= 3 if G is planar [5, p. 124].

Proof (a) Nash-Williams [7] showed that

a(G) max [q/(p- 1)1
HG

where H runs over all nontrivial subgraphs of G, p is the number of vertices and q
the number of edges of H. Suppose that the maximum in the right-hand side of (2) is
achieved by a subgraph H having p vertices and q edges. Let k be the number of
edges of a complete graph with p vertices, that is, k p(p- )/2. Consider the following
two cases.

Case 1. k <-_ m.

a(G)= [q/(p-1)]_-< [k/(p-1)] [p/2]

[(2k+p)/2/2]<_ [(2m+n)/2/2].
Case 2. k >- m.

a(G)= [q/(p-1)] <-_ [m/(p-1)] <- [{mk/(p-1)2}/-]
[{(m(p- 1)+ m)/2(p- 1)}/2]

<_- [{m/2+ k/2(p- 1)}/2]
=[(2m+p)l/2/2]
<-[(2m+n)l/2/2].

(b) Immediate from (2).
(c) If G is planar, (2) implies that

a(G) <_- max [(3p 3)/(p 1) 3. Q.E.D.

Since a(K,)= In/2] [(2m+n)/2/2] where m n(n- 1)/2, there exist an
infinite number of graphs attaining the upper bound in (1). In this sense the bound is
best possible. It should be noted that a(G) O(1) for a large class of graphs including
(i) planar graphs, (ii) graphs of bounded genus, and (iii) graphs of bounded maximum
degree.
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LEMMA 2. If graph G- (V, E) has n 1)ertices and m edges, then

min{d(u), d(v)}<=2a(G)m.
(u,v)E

Proof. Let Fi (1<-i=< a(G)) be the edge-disjoint spanning forests of G such that
E(G)=t_JI<_i<_a6)E(F). Associate each edge of F with a vertex of G as follows:
choose an arbitrary vertex u of each tree T in forest F as the root of T; regard T as
a rooted tree with root u in which all the edges are directed from the root to the
descendants; and associate each edge e of tree T with the head vertex h(e) of e. Thus,
every vertex of F, except the roots, is associated with exactly one edge of F. Then we
have

min {d(u), d(v)}<- ’. d(h(e))
(u,v)eE li<=a(G) eeE(Fi)

=<i=<a(() veV

=2a(G)m. Q.E.D.

3. Algorithm for listing triangles. The triangle detection problem often arises in
many combinatorial problems such as (1) the minimum cycle detection problem [6],
(2) the approximate Hamiltonian walk problem in maximal planar graphs [8], and (3)
the approximate minimum vertex cover (or maximum independent set) problem in
planar graphs [3], [4]. Itai and Rodeh [6] presented an algorithm for finding all the
triangles, which uses an adjacency matrix, so requires O(n2) space but runs in O(m3/2)
time for general graphs and in O(n) time for planar graphs. Bar-Yehuda and Even
[3] improved the space complexity of the algorithm from O(n2) into O(n) by avoiding
the use of the adjacency matrix. On the other hand Papadimitriou and Yannakakis [9]
gave a linear, but a little complicated, algorithm for finding all the complete subgraphs,
i.e. Ki (1 <-i <= 4), in a planar graph with assuming a plane embedding of the graph.

Our algorithm for listing triangles in a graph G is very simple as shown below.
Observe that each triangle containing a vertex v corresponds to an edge joining two
neighbors of v.

procedure K3(G)
{Let G be a graph with n vertices and m edges.)
begin

sort the vertices 1)1, 1)2, 1) of G in such a way that d(1)1) d (1)2)’"
d(v,);
for i:= to n-2
do begin

{find all the triangles containing vertex vi, each of which corresponds
to an edge joining two neighbors of vi.}

1" mark all the vertices adjacent to v;
for each marked vertex u
do begin

2: for each vertex w adjacent to u
do if w is marked

then print out triangle (v, u, w);
3" erase the mark from u

end;
{delete v from G so that no duplication occurs.}
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end
end;

delete vertex vi from G and let G be the resulting graph

We have the following result on the algorithm.
THEOREM 1. Let G be a connected graph with n vertices and m edges. Algorithm

K3 lists all the triangles in G in O(a(G)m) time, and especially in O(n)’time ifG isplanar.
Proof. Since one can easily verify the correctness, we shall show that the algorithm

runs in O(a(G)m) time.
Clearly the degrees of vertices can be computed in O(m) time. Since the degree

of any vertex is at most n- l, one can sort the vertices in O(n) time by the bucket
sort [1]. We use doubly linked adjacency lists as a data structure to represent a graph
G. The two copies of each edge (u, v), one in the list of v and the other in the list of
u, are also doubly linked. Using such a data structure, we can delete a vertex v from
G in O(d(v)) time, and scan all the vertices adjacent to a vertex v in O(d(v)) time.
Now consider the time required by the ith iteration of the outmost for statement.
Statements l, 3 and 4 require O(d(vi)) time. Statement 2 requires at most

O(uN, d(u)) time, where d(u) denotes the degree of vertex u in the original graph
and N(vi) denotes the set of neighbors of v in the current graph. Therefore the total
running time T of the algorithm is bounded as follows:

T<=O(m)+O(n)+ ., O(d(vi)+ d(u)).
19i V uN(vi)

Since v has the largest d(v) among all the vertices in the current graph, we have
d(u) <-d(v) for each u N(vi). Since v is deleted at Statement 4, each edge of G is
involved exactly once.in the double summations above. Thus we have

T<-O(m)+O(n)+O( (u, E min{d(u),d(v)}).
Using Lemma 2, we have T<-_ O(a(G)m).

If G is planar, the algorithm runs in O(a(G)rn)<= O(n) time since a(G)_-<3 by
Lemma l(c). Q.E.D.

Algorithm K3 is conceptually very simple and easy to implement. Furthermore it
is at least as fast as the known ones [3], [6], [9] since O(a(G)m)<= O(m3/2) by Lemma
l(a).

The benefit of our strategy may be intuitively explained as follows: since we delete
the vertices one by one in the largest degree order, the graph tends to become sparse
soon; this also prevents the edges incident to a vertex of large degree from being
scanned many often.

Applying the strategy, we will give three more algorithms for other subgraphs
listing problems in the succeeding sections.

4. Algorithm for finding quadrangles. In this section, using our searching strategy,
we design an efficient algorithm for finding all the quadrangles.

If vertices Ul, u2, , u (l >-2) are all adjacent to two common vertices v and w,
that is, these + 2 vertices induce a complete bipartite graph K2.1, then any quadruple
(v, u, w, uj), <-i<j <= l, forms a quadrangle. Thus even in a planar graph, there may
exist O(n2) quadrangles. Instead of listing these quadrangles individually, we list a
triple (v, w, {Ul, u2,’", Ul}) representing them altogether.

Our algorithm C4 depicted below proceeds, for each vertex v of a graph, to find
all the quadrangles containing v" for each vertex w within distance two from v, the
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algorithm finds all such ut, u2," , Ul which are adjacent to both v and w, and stores
them in a set U[w]. When the quadrangles containing v have been found, v is deleted
in order to avoid the duplication.

procedure C4(G);
{Let G (V, E) be a graph with n vertices.}
begin

sort the vertices in V in a way that d (v,) -> d (I)2) _" d (v,);
for each vertex v e V do U[v] := ;
for i:=l to n
do begin

for each vertex u adjacent to v
do for each vertex w v adjacent to u

do begin
U[w] := U[w] {u)

end;
for each vertex w with U[w]l >= 2
do print out the triple (vi, w, U[w]);

for each vertex w with U[w] do U[w] := ;
delete the vertex vi from G and let G be the new graph

end
end;

The graph depicted in Fig. contains seven quadrangles. Algorithm C4 lists the
following five triples: (1, 5, {2, 7, 10}), (1, 4, {2, 3}), (3, 8, {4, 6}), (3, 9, {4, 6}), and
(4, 6, {8, 9}). The first triple represents three quadrangles.

10

FIG. 1. A graph containing seven quadrangles.

We easily obtain the following theorem.
THEOREM 2. Algorithm C4 obtains a representation of all the quadrangles in a

connected graph G in O(a(G)m) time, using O(m) space.
Note that Algorithm C4 does not store the triples. Since Algorithm C4 runs in

O(a(G)m) time, clearly all the quadrangles, if desired, could be represented by the
triples in O(a(G)m) space.

5. Algorithm for listing complete subgraphs. Observe the following fact: Algorithm
K3 finds a triangle (K3) containing a vertex v by detecting an edge (K2) in a subgraph
induced by the neighbors of v. In a similar manner, one can find a complete subgraph
Kt containing a vertex v by detecting a complete subgraph K_, in a subgraph induced
by the neighbors of v. We first present, for the sake of understanding, a simple recursive
algorithm for listing the complete subgraphs Kt of fixed order /(->2) in a graph
o=(v,).
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procedure COMPLETE(I, G)
procedure K(k, G);
{find all Kk in a subgraph Gk. C is a global stack.}
begin
if k=2
then for each edge (x, y) of Gk

do print out {x, y} t_J C
else for each vertex of Gk

do begin
let Gk- be the subgraph of Gk
induced by the neighbors of v;
add v to the top of C;
K(k-l, Gk-}; {find Kk_ in Gk-, which, together

with v, form Kk in Gk}
delete v from the top of C;
Gk := Gk--V {delete v to avoid the duplication}

end
end;
begin
C:=(R);
K(/, G)

end;

In the algorithm above Stack C contains a sequence of vertices which have been
known to be pairwise adjacent. When procedure K(k, Gk) is executed (at a recursive
call of depth l-k), C contains l-k pairwise adjacent vertices, and the subgraph Gk
contains all the vertices that are adjacent to every vertex in C. Procedure K(k, Gk)
finds all the Kk in Gk, each of which, together with the vertices in C, forms a Kt in
G. Noting these facts, one can easily verify the correctness ofthe algorithm by induction
on I. However the direct implementation of COMPLETE does not yield an efficient
algorithm because it had to produce and store a sequence of induced subgraphs of G.

In order to avoid the trouble above, we introduce a certain kind of vertex-labeling,
by which all the vertices are labeled either "/", "/-1",..., or "k". The vertices
labelled "k" induce the subgraph Gk currently processed. Let U be the vertex set of
Gk. We order the entries of the adjacency lists as follows: in the adjacency list of each
vertex v e V, the neighbors of v having labels not exceeding the label of v occupy the
first part of the list and the other neighbors appear in the latter part in nondecreasing
order of the labels. Thus all the neighbors of each vertex u U appear in the adjacency
list of u in nondecreasing order of the labels, so that the first parts of the adjacency
lists represent Gk. We also employ the same strategy as the triangle listing algorithm,
that is, process the vertices of Gk in the nonincreasing order of degrees in Gk. Thus
the procedure is refined as follows.

procedure COMPLETE(l, G);
procedure K(k, U);
{ U is the vertex set of Gk. dk(v) is the degree of vertex v in

begin
if k=2
then
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5:
6:
7:
8:
9:

10:
11:

1" for each edge (x, y) of the subgraph induced by U
do print out {x, y} U C

else
begin

2" sort the vertices in U in way that dk(Vl) dk(V2) >= >= dk(VluI), and store
them in list;
for i:= to uI
do begin

let U’ be the set of all the vertices which are adjacent to vi and labeled
"k"; { U’ is the vertex set of Gkl.}

3" relabel all the vertices in U’ "k-1";
4: in the adjacency list of each vertex u U’, move the neighbors of u in

U’ at the first part; {the vertices of Gk-1 occupy the first parts of the
adjacency lists of vertices in U’, which realize the adjacency lists of
Gk-1.}
determine the degree dk_l(U) of each u e U’ in Gk-1;
add the vertex vi to C;
K(k- 1, U’);
delete the top entry vi from C;
relabel all the vertices in U’ "k"; {recovery to Gk}
relabel vi "k+ 1"; {logical (not physical) deletion of v from Gk}
in the adjacency list of each vertex v U’, move the entry vi to the
position next to the last entry containing a vertex labeled "k";

end
end

end;
begin (of COMPLETE}
label all the vertices of G "1";
determine dl(V)(=d(v)) for each v V;
C:=Q;
K(l, V) { V is the vertex set of G GI}

end {of COMPLETE};

We have the following result on the algorithm.

THEOREM 3. If a connected graph G has n vertices and m edges, then Algorithm
COMPLETE lists all the complete subgraphs oforder (_->2) in G in O(la(G)-2m) time
using linear space.

Proof. (a) Correctness. Note that throughout the execution of COMPLETE the
entries of the adjacency lists are ordered as mentioned just before the refined algorithm.
then one can easily verify the correctness of the refined one as well as the original one.

(b) Space. We use the same data structure as the algorithm K3 to represent a
graph. One recursive call with respect to a vertex v produces a list which stores the
vertices in U in nonincreasing order of degree in Gk. The length of the list is at most
d(v). Therefore the total length over all the lists with respect to the vertices in C is
at most ,vc d(v) <-2m during the execution of the algorithm. Thus the algorithm
requires linear space.

(c) Time. We now establish the claim on the running time. If the subgraph Gk
induced by U has m edges and n vertices, let T(k, m, n) be the time required by
procedure K(k, U) to find all the Kk in Gk. Here T(k, m, n) does not count the time
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required by printing out Kt in Statement 1. First consider the case k 2, in which
Statement is executed. One can find all the edges of Gk in O(m + n) time, because
the edges of Gk occupy the first parts of the adjacency lists. Thus Statement requires
at most O(m+ n) time, and so T(2, m, n)= O(m+ n). Next consider the case k=>3.
Clearly Statement 2 can be executed in O(n) time. Consider the time required by the
ith iteration of the for statement. Statements 3 and 9 require O(dk(Vi)+ 1) time, and
Statements 6, 8, and 10 require O(1) time. Just before Statement 3 is executed, in the
adjacency list of each u U, the neighbors of u appear in nondecreasing order of the
labels, which are "k", "k + 1", ," l". Therefore Statement 4 is perfor,,med as follows:
in the adjacency list of each u U’, choose the vertices in U’ (labeled k- 1") among
the first dk(U) entries; and move them to the first part of the list. Thus State-
ment 4 requires O(uu, (dk(u)+ 1)) time. Similarly one can show that Statements 5
and 11 require 0(U, (dk(u)+ l)) time. Statement 7 requires T(k-1,
(Y,u, dk-l(U))/2, dk(Vi)) time by the definition of T. Note that the graph Gk-1 induced
by U’ has at most (Y, u, dk_l(U))/2 edges and dk(V) vertices. Thus, the ith iteration
of the for statement requires

O(dk(v,))+O ( ,
u, d(u)) +O(1)+ T(k- l, ( Y u, d_l(u))/2, d(v,))

time. Each v U satisfies dk(V)>= dk(U) for every u U’. Therefore Lemma 2 implies
that

E { O(d(
vi U

Thus we have the recurrence

T(2, m,n)=O(m+n),

T(k,m,n)<-O(a(Gk)m+n)+ T(k-l,( ud_,(u))/2, dk(vi)).
Vi U

Solving the reccurence with noting a( Gk_l) <-- a( Gk), we have T(k,m,n)=
O(a(Gk)-2m+n).

Since procedure COMPLETE (l, G) calls K(k, U) with k and U V for a
connected graph G= (V, E), it requires O(a(G)l-2m) time in total to find all the K!
in G. This fact implies that the number of K in G is at most O(a(G)-2m). Since one
can print out a K in O(l) time, the total running time of COMPLETE including the
time for printing is at most O(la(G)l-2m). Q.E.D.

Theorem 3 together with Lemma (c) imply that Algorithm COMPLETE lists all
the K4 in a planar graph in linear time. The time complexity is the same as the algorithm
of Papadimitriou and Yannakakis [9], but our algorithm does not need the plane
embedding of a graph.

6. Clique listing algorithm. Tsukiyama et al. [11] presented an algorithm MIS
which lists all the maximal independent sets in a graph G and requires O(mn) time
per maximal independent set. In this section, we first show that our strategy can reduce
the running time to O(a(G)m). Then, employing their idea and our strategy, we present
an algorithm which lists all the cliques in a graph G in O(a(G)m) time per clique.

The algorithm of Tsukiyama et al. is outlined as follows. Let G (V, E) be a

given graph with vertex set V {1, 2,..., n}. Each vertex is referred by the number.
Let G, <_- =< n, be the subgraph of G induced by vertices 1, 2, , i. N(i) denotes
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the set of vertices adjacent to in the given graph G. Assume that Ii-t is a maximal
independent set of Gi_t, then one can decide by the following rules whether I_ or
(L--N(i))U{i} is a maximal independent set in G:

(1) If I_ t’l N(i) , then L- is a maximal independent set of G.
(2) If there is no independent set I of G_ such that I- N(i) Ii_- N(i), then

(L--N(i))U{i} is a maximal independent set of G.
Thus they recursively generate all the maximal independent sets of Gi from the maximal
independent sets of G_. However duplications may occur in maximal independent
sets produced by rule (2), so they avoided the duplications by choosing the lexicographi-
cally largest one among all the independent sets I_ having the same Ii_- N(i).

Tsukiyama et al. [11 ] implemented the backtracking algorithm MIS in a way that
one recursive step on vertex is performed in O(,xvo_ti+,...,,,d(x))= O(m) time,
so that MIS requires O(mn) time to find one maximal independent set. An easy
observation leads us to an algorithm which requires O(a(G)m) time per maximal
independent set. We simply number the vertices of a given graph G in such a way
that d(1)=< d(2)=<...-< d(n), and apply the same recursive method. Then, applying
Lemma 2, we can easily show that the new algorithm requires

O( , _, d(x))<-O(min {d(u) d(v)})=O(a(G)m)l--i_n xN(i)-{i+l,...,n} (u,v)E

time per maximal independent set. Unlike the preceding three algorithms, we number
the vertices in nondecreasing order of degree so that the newly added vertex has the
largest degree in G. If G is sparse, the time complexity O(a(G)m) is considerably
better than O(mn).

The problem of listing all the cliques of a graph G is equivalent to that of listing
all the maximal independent sets of the complement G of G. Therefore the algorithm
suggested above can list all the cliques of a graph G in O(a(G)m) time per clique,
where m= n(n-1)/2-m is the number of edges of G. However, this algorithm is
not necessarily efficient for sparse graphs. Using a recursive method similar to MIS,
we next give an algorithm CLIQUE which lists all the cliques in O(a(G)m) time per
clique. Unlike the case of maximal independent sets, guaranteeing the time complexity
of O(a(G)rn) is not straightforward in this case, but requires some nontrivial arguments
especially on the "lexico. test".

The set of vertices in a clique C is also denoted by C. The following is the outline
of our algorithm CLIQUE.

procedure CLIQUE
procedure UPDATE (i, C)
{generate a new clique of G from a clique C of G_t.}
begin
if i=n+l
then print out a new clique C {C is a clique of G G.}
else
begin
if C N(i) then UPDATE (i + 1, C); {C is a clique of G.}
if both "maximality test" and "lexico. test" succeed
then
begin
SAVE := C-N(i); {save the vertices removed from current C}
C:=(CfqN(i))LJ{i}; {new C is a clique of G.}
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UPDATE (i + 1, C);
C:=(C-{i})LJ SAVE {recovery to old C}

end
end

end;
begin
number the vertices of a given graph G in such a way that d(1)=< d(2) <-... =<

d(n);
C := { }; {C is the unique clique of G1.}
UPDATE (2, C)

end;

In the algorithm above, "maximality test" checks whether the candidate of a new
clique C’ =(CO N(i))LJ{i} is indeed a clique (i.e. maximal complete subgraph) of
G. The "lexico. test" checks whether C is the lexicographically largest clique of G-I
containing C f’l N(i) (= Co). This test avoids the duplications of cliques. Note that
the same clique C’ of G may be produced more than once from distinct cliques of
G-I containing Co. One can easily verify the correctness of the algorithm CLIQUE
by induction on n. In what follows, we refine the algorithm so that it runs in O(a(G)m)
time per clique.

We begin with the following lemma, which implies that if a clique of G is generated
from a clique C of G-I in O(,xc d(x)) time, then one clique of G can be found in
O(a(G)m) time.

LEMMA 3. Let the vertices 1, 2,. ., n ofa graph G satisfy d (1) <- d (2) -<. _-< d (n),
and let Ci, <-i<= n, be an arbitrary clique of Gi where G Gn. Then, d(x)<-4a(G)m.

li<n xCi

(3)

Proof. Let c=max_,.lC,I. then Equation (2) implies that

c<-2a(Kc)<-_2a(G).

Since d(i)>=d(x) for any x C,

Z E d(x) - Z Z d(i) -l_i<--n xC l_in xC

Combining this with (3), we have

Y , d(x)<=4a(G)m.
lin xC

d(i)c<-_2mc.

Q.E.D.

The following three lemmas are concerned with the tests.
LEMMA 4 [maximality test]. Let C be a clique of G_l. Then, (C f’l N(i))U{i} is a

clique ofG if and only ifG has no vertex y N( i) C such that y < and N(y)
N(i).

Proof. Immediate. Q.E.D.
Using Lemma 4, one can perform the "maximality test" once in O(d(i)+

Y,xcnN) d(x)) time as follows: first compute T(y)= IN(y) fq C fq N(i)l for y V (in
that time); then check whether there exists y N(i)- C such that y <i and T(y)=
IC fq N(i)l. (We will describe the detail later in the refined algorithm CLIQUE.)

LEMMA 5. Let Co be a complete subgraph of a graph G. A clique C( Co) ofG is
the lexicographically largest one among all the cliques containing Co if and only if there
is no vertex y: C such that N(y) CoO Cy, where Cy {ke Clk> y}.
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Proof. Necessity. Assume that there exists a vertex y C such that N(y) Co Cy.
Then clearly there exists a clique containing {y} LJ Co Cy which is lexicographically
larger than C.

Sufficiency. Assume that there exists a clique C’ Co which is lexicographically
larger than C. Let y be the largest vertex in C’-C. Then C C’D Cy since every
vertex in (C C’) is less than y. Thus we have N(y) C CI C’ Co Cy. Q.E.D.

The direct application of Lemma 5 would require O(m) time to perform the
"lexico. test" once, so the algorithm would require O(mn) time per clique. The following
lemma yields a more efficient "lexico. test".

LEMMA 6 [lexico. test]. Let C be a clique of G which includes a complete subgraph
Co, where Co may be empty. Letp [C- Col, letjl <j2 <" <jp be the vertices in C Co,
and let jo O. For each vertex y

_
C, let S(y) IN(y) fq (Cy Co)I, and let jk > Y be the

smallest vertex in N(y) fq Cy Co) if S(y) >- 1. Then C is the lexicographically largest
clique containing Co if and only if every y C such that N(y) Co satisfies

(a) if S(y) >- then either S(y) + k < p orjk- > Y
(b) if S(y) 0 then jp > y.
Proof. Necessity. Assume that there exists a vertex y C such that N(y) Co,

violating either (a) or (b). If S(y)- 0 and jp < y, then Cy and there exists a clique
which includes {y} U Co and is lexicographically larger than C. Thus we may assume
that S(y) >- 1, S(y)+k-l-p and jk-I<Y. (Note that S(y)+k-l_-<p.) Then the
inequality jk_ < y implies Cy Co {jk, jk+," ,jp}, SO ICy Col P k + 1. Combin-
ing this with S(y)+ k-1 =p, we have S(y)=ICy- Col. Therefore there exists a clique
which includes {y} Cy U Co and is lexicographically larger than C.

Sufficiency. Assume that there exists a clique C’( Co) which is lexicographically
larger than C. Let y be the largest vertex in C’- C. Then we have N(y) Cy Co as
shown in the proof of Lemma 5. If S(y) 0, then clearly jp < y, violating (b). Thus we
may assume that S(y)->_ 1. Then clearly jk- < Y and S(y)- ICy- Col, so S(y)+ k-
ICy Col + k- p, violating (a). Q.E.D.

Using Lemma 6, one can perform the "lexico. test" once in O(,xc d(x)) time.
We first compute IN(y)fq(C-Co)l for y V-C and then alter them to S(y)=
IN(y) tq (Cy- Co)l, as shown in the refined CLIQUE. Thus the computation of S(y)
requires O(,xC_Co d(x)) time. Let G- Gi-1 as in the algorithm, then the direct access
of the vertices y C such that N(y) Co C f’l N(i)) would require O(i) time, which
maybe greater than O(c d (x)). However, we can perform the access inO(c d(x))
time as follows. If either Co or S(y)>-_ l, then y is accessible from the adjacency
lists of vertices in C. On the other hand, if Co and S(y) -0, then y is not accessible
from these lists. However, if (i) Co , (ii) C is not the lexicographicallylargest clique
containing Co in Gi_, and (iii) every y C satisfies condition (a) of Lemma 6, then C
does not contain the largest vertex i- of Gi_. (Consider the largest clique C’ and
the largest vertex y in C’-C.) Thus in this case we can perform the "lexico. test"
simply by checking whether C contains vertex i- l, as will be known in the algorithm.

We are now ready to present the refined algorithm CLIQUE.

procedure CLIQUE;
procedure UPDATE (i, C)
begin
if i=n+l
then print out a new clique C
else
begin
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10:

1: if C N(i) then UPDATE (i + 1, C);
{prepare for tests}
{compute T[y]=lN(y)f’l Ct3N(i)[ for y V-C-{i}}

2: for each vertex x C f3 N(i)
do for each vertex y N(x)-C-{i}
o T[y] := T[y] +

{compute Sly] IN(y) f’) (C N(i))l for y e V- C}
3: for each vertex x C-N(i)

do For each vertex y N(x)- C
do Sly] := Sly] +

FLAG := true;
{maximality test}

4: if there exists a vertex y e N( i) C such that y<i and T[y]=ICfqN(i)
then FLAG := false {(Cf3 N(i))U{i} is not a clique of

{lexico. test}
{C f3 N(i) corresponds to Co in Lemma 6}

5: sort all the vertices in C- N(i) in ascending order jl <j2 <’"<jp, where
p=lf -N(i)l;

{case S(y)>-1. See Lemma 6.}
6: fork:=l top

do for each vertex y N(jk)-C such that y <i and T[y]= [C fq N(i)l
do if y->jk

then S[y]:= S[y]- {alter S[y] to S(y)}
else
if (j is the first vertex which satisfies y <j)
then {S[y] S(y)}
if (S[y] + k p) and (y ->j-l) {jo 0}
then FLAG :=false; { C is not lexico, largest}

{case S(y) 0}
7: if C fq N(i)

then for each vertex yC:Ct_J{i} such that y<i, T[y]=ICON(i) and
S[y]=0

{access y from the adjacency list of a vertex in C fq N(i)}
do if jp <y then FLAG := false {C is not lexico, largest.}

else if jp < i-1 then FLAG :=false; { C is not lexico, largest.}
{reinitialize S and T}

8: for each vertex x C f’l N(i)
do for each vertex y N(x)-C-{i}

do T[y] := 0;
9: for each vertex x C- N(i)

do for each vertex y N(x) C
do S[y]:= O;

{FLAG is true if and only if (CN(i))t.J{i} is a clique of Gi and C is the
lexicographically largest clique of G_ containing C fq N(i).}

if FLAG
then
begin
SAVE := C- N(i);
C := (C f’) N(i)) l.J {i}
UPDATE (i + 1, C);
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C := (C- {i}) U SAVE
cad

end
end;

begin {of CLIQUE}
number the vertices of a given graph G in such a way that d (1) -< d (2) -<_. -<

a(n);
for i:= to n {initialize S and T}
do begin S[i] := O; T[i] := 0 end;
c:={};
UPDATE (2,C)

eml {of CLIQUE};

We have the following theorem.
THEOREM 4. Algorithm CLIQUE lists all the cliques of a connected graph G in

O(a(G)m) time per clique, using O(m) space.
Proof Using Lemmas 4 and 6, one can prove the correctness. Therefore we shall

concentrate on the claim on time and space.
Let C, be an arbitrary clique of G G,, and inductively define C, n- >_-i>_-l,

to be the clique of G from which C+t is generated by procedure CLIQUE.
Consider the time T(i) required by UPDATE (i, C_), excluding the time required

by the recursive calls in Statements and 10. Noting the remark mentioned just before
the refined CLIQUE, one can easily show that all the Statements 1-10 except 5 can
be executed in O(d(i)+lCi_ll+’.xec,_, d(x)) time. We now show that the sorting in
Statement 5 also requires at most O(Yxc,_, d(x)) time. One can sort p items in
O(p log p) time where p =IC_- N(i) [1]. Since the subgraph induced by C_- N(i)
is a complete subgraph, O(p logp)<= O(p(p- 1))<_- O(xc,__u<) d(x)). Here the
bucket sort should not be used, because it requires O(jp) time, which may be greater
than O(p logp). Thus T(i)<-_ O(d(i)+lC_]+,xc,_, d(x)).

Hence the total time required to generate C, is at most EE<_i<.n T(i)<=
O(E2in (d(i)+[Ci-l[+.xec,_l d(x))). Lemma 3 implies that the time is O(a(G)m).

Every UPDATE (i, C), <_- n, calls at least once UPDATE (i + 1, C) in Statement
or 10. In fact, if the recursive call does not occur in Statement 1, then it necessarily

occurs in Statement 10. Thus every call of UPDATE eventually generates at least one
clique, and hence the time spent by any statement is counted in the time above at least
once for some clique C, of G,. Thus we have shown that CLIQUE requires O(a(G)m)
time per clique.

Since set C is a global variable, C requires O(n) space. Since the sets of vertices
contained in the local variable SAVE are pairwise disjoint, SAVE requires O(n) space
in total. The arrays S, T and the adjacency lists require O(m) space. Thus CLIQUE
requires O(m) space in total. Q.E.D.

7. Conclusion. In this paper we introduced a simple edge-searching strategy and
presented the four efficient algorithms for the various subgraph listing problems. We
used the arboricity a(G), a rather unfamilar graph invariant, as a parameter in bounding
the running time of algorithms. Our algorithms are as fast as the previous ones if any,
and a factor n is often reduced to a(G) in the running time. The key idea is in Lemma 2,
which implies that if a certain operation on a graph consumes O(min {d(u), d(v)})
time for each edg (u, v) then the operation can be executed for all the dges in a
graph G in O(a(G)m) time. It is expected that this result will find a number of other
aplSlications in graph problems.
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Finally we remark that in this paper only the concept of arboricity is used in the
analysis of the running time of algorithms and that any of our algorithms requires
neither to find a(G) nor to decompose a graph into the minimum number of edge-
disjoint forests.
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MAXIMUM WEIGHT CLIQUE ALGORITHMS FOR CIRCULAR-ARC
GRAPHS AND CIRCLE GRAPHS*

WEN-LIAN HSU"

Abstract. Circle graphs and circular-arc graphs are the intersection graphs of chords and arcs in a
circle. In this paper we present algorithms for finding maximum weight cliques in these graphs. The running
times of the algorithms are O(n2+ m log log n) for circle graphs and O(mn) for circular-arc graphs. Our
algorithms are based on the scanning of appropriate endpoint sequences and efficient bookkeeping of results
for subproblems.

Key words, algorithms, graphs

1. Introduction. Let G V, E) be a simple graph, i.e., a finite, undirected, loopless
graph without multiple edges. Let V and E denote the vertex and edge set of G,
respectively. Let n VI and m [VI. A clique is a complete subgraph. An independent
set is a subset P V such that vi, vj P implies (vi, vj) E. The complement G of G
is the graph J=(V,.), where ={(x,y)lx, y V, xy and (x,y)C:E}. It is easy to
see that an independent set in G is a clique in G and vice versa. A weighted graph is
a simple graph with weights on its vertices.

A graph G V, E) is called a circular-arc graph if there is a one-to-one correspon-
dence between V and a set S of arcs in a circle such that two vertices are adjacent if
and only if the corresponding arcs have a nonempty intersection. S is called an
intersection model for G. If S is a family of intervals on a real line, G is called an
interval graph. If S is a family of chords in a circle, G is called a circle graph. Clearly,
every interval graph is a circular-arc graph since we can represent the intervals by arcs
on a circle. Fig. gives a circular-arc graph and its corresponding intersection model.
This graph is not an interval graph since we cannot represent the cycle X1X2X3X4 by
intervals on the real line. The interval model of a circle graph (which is also called an
overlap graph) is that (see [1]) each vertex of the graph corresponds to an interval on
a real line and each edge corresponds to two intervals overlapping without one being
completely contained in the other (i.e., strictly overlapping).

These classes of graphs have drawn considerable attention in recent years ], [4],
[5], [6], [7], [9], [10]. Circular-arc graphs (as a generalization of interval graphs) have
a potential role in genetic research [10]. This class of graphs has also been applied to
problems in traffic control [11] and computer compiler design [12]. Tucker [13] has
shown that recognizing circular-arc graphs can be done in O(n3) time. Gavril has given
a polynomial algorithm for finding a maximum clique in a circular-arc graph. His
algorithm involves a procedure for finding a maximum independent set of a bipartite
graph, which takes O(n2"5) time in the cardinality case [8], and O(n3) time in the
weighted case (using the maximum flow algorithm). Since this procedure is called n
times in his maximum clique algorithm, the total complexity is O(/I3"5) in the cardinality
case and O(n4) in the weighted case. In this paper we present an O(mn) algorithm
for the weighted problem assuming that the arc representation of a circular-arc graph
is given. The maximum clique problem on circle graphs can also be done in polynomial
time once an interval representation is given. Gavril has given an O(/I3) algorithm for

* Received by the editors April 6, 1982, and in revised form October 28, 1983. This research was
supported in part by the National Science Foundation under grant ECS-8105989.

f Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston,
Illinois 60201.
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FIG. 1. A circular-arc graph and its arc representation.

the weighted case; Buckingham [1], Rotem and Urrutia [9] have, independently, given
O(n2) algorithms for the cardinality case. We present in 2 an O(n2+ m log log n)
algorithm for the weighted case.

Our clique finding algorithm for circular-arc graphs is much more complicated
than that for interval graphs. This is essentially due to the fact that in using the interval
model for circular-arc graphs, there are arcs "crossing" both ends of the interval and
it becomes harder to count things by scanning the endpoint sequence "only" once.
Gavril’s approach to constructing a maximum clique in the neighborhood of each arc
exploits very little of the structure of circular-arc graphs. We develop an algorithm
based on the scanning of appropriate sets of arcs in a certain order. Using our approach,
constructing a maximum clique for the entire graph is about the same order of
complexity as constructing a maximum clique in the neighborhood of each arc.

2. An O(n2-1 m log log n) maximum weight clique algorithm for circle graphs. In
this section, we assume an interval representation of a circle graph is given; namely,
each vertex of the graph corresponds to an interval on a real line and two vertices are
connected by an edge if and only if the corresponding intervals strictly overlap. An
example of a clique is shown in Fig. 2. Without loss of generality, assume all endpoints
of the intervals are distinct. For each clique, let us call the interval with the smallest
left endpoint the beginning interval of the clique and the one with the largest left
endpoint the ending interval. Our maximum weight clique algorithm goes as follows.
For each interval, we compute a maximum weight clique beginning with this interval.
A maximum weight clique ofthe graph can then be chosen as the one with the maximum
weight from among these cliques.

FIG. 2. A clique in a circle graph (overlap graph).

Label the intervals as 1,. ., n according to their ascending left endpoint order.
Denote by xi, yi, the coordinate of the left, right endpoint of i, respectively. Let the
weight of an interval be wt (i) and the number of intervals strictly overlapping with
be deg (i). In the following we describe an O(deg (1)log n) algorithm which finds

a maximum weight clique beginning with interval 1. The same method is used to find
maximum weight cliques beginning with any interval.

First of all we determine the interval s such that xs < y, xs/ > Yl and s is the
rightmost. We only have to consider those intervals 2, , s which overlap with interval
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1. For this purpose we first extract the adjacency representation from the interval
representation of the circle graph; this operation takes at most O(n2) time. Our
algorithm scans the intervals 2,..., s from left to right. For each interval it scans,
the weight (denoted by A (i)) of a maximum clique beginning at interval and ending
at interval is computed. After the sth interval is scanned, a maximum weight clique
beginning at interval can then be selected.

The computation of A (i) can be carried out by a dynamic programming algorithm.
Let A (1) wt and A (i) 0 for those interval with y < y.

LEMMA 1. A i) wt i) + max {A (j) <-j < & yl <- y < y,} for all is.t. Y,>Yl.
Proof. Clearly, if a maximum weight clique beginning at interval and ending at

interval i, consists of the intervals 1, io, i, , im (where < io < i <. < ira), then
{1, io, i," ", i,,-l} is a maximum weight clique beginning at interval and ending at
interval i,,_. Thus (i,,) wt (ira) q- A (im_). It is also clear that A (ira) >= wt (i,,) + A (j)
for each j such that <-j <- im and y <- yj <- Yim" l-1

Hence, to find A (i) we just have to compare A (j) for all intervals j < such that
yj < Yi. This process can be speeded up by the following observation.

LEMMA 2. /fj <j2, Y,> Y2 and A(j)<--_A(j2), then deleting the information A(j)
will not change our computation of the weight of a maximum clique beginning with
interval 1.

Proof. By Lemma 1, A(j) will possibly be considered only when we compute
A(i) for some interval such that i>j and yi> y,. However, after A(j2) has been
computed we need not consider A (j) for any later calculation of A (i) with i>j2 and
y > y,.

We say j2 dominates j w.r.t. A(j)’s when they satisfy the assumptions in Lemma
2. Hence in the set {A(j)I 1-<j < i, y-< yj} we can delete dominated A(j)’s and order
the remaining undominated subset {A(j)[ _<-j < i, y -< y, A(j) > max_,<,yj,_<yj A(j’)}
into A (1) A (i) <. < a (i,,) where io < i <. < i,, and y< y, <. < Ym. In com-
puting A(i) we determine the integer k such that Yik < Yi < Yik+ and let ,(i)= wt (i)+
,X (ik). This formula conforms to Lemma since A (ik) max {A (J) _-<j < & y -< y <
y}. The presence of the new interval might create some other dominated intervals
{Jl i/ -<j -< i,,, A(j) < A (i)}. This set can easily be identified and deleted by comparing
A (i) and A(ik+),’’" one by one. Hence the insertion of A(i) and following deletions
give us a new set of undominated A(j)’s arranged in ascending A(/), yj and the same
procedure repeats for the next interval + 1. The only work involved at the ith iteration
is: (i) determining the integer k, which takes at most O(log n) time. A more sophisticated
implementation of these priority queue operations based on the idea of van Emde
Boas [2], [3] would reduce it to O(loglog n); and (ii) deleting ,X(j)’s dominated by
interval i. The former operation has to be repeated at most deg (1) times; the latter
deletions totaled at most deg (1) times. Hence the entire procedure of finding a maxi-
mum weight clique beginning at interval takes at most O(deg (1) log log n) time.
Repeating this procedure for every interval would take at most O(deg (i) log log n)
O(m log log n) time. The running time of the maximum weight clique algorithm on
circle graphs is therefore bounded by O(n2+ rn log log n), where O(n2) comes from
the adjacency representation.

3. An analysis of cliques in a circular-arc graph. Without loss of generality, assume
that all endpoints of the n arcs are distinct. Let the length of the circle be 1; we can
assume all arcs have lengths less than 1. Arbitrarily choose an arc from the collection.
Starting from the counterclockwise end of this arc, we can label all ends along the
clockwise direction as 1, 2, , 2n. Specify arbitrarily an order for the arcs and denote
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arc by (ai, bi), where ai is the label of its counterclockwise end and bi, the label of
its clockwise end. Note that a can be larger than b, in which case the arc (a, b)
extends across a, a+, ., 2n, 1,. ., bi. We also use (y, z) to denote the arc segment
of the circle with counterclockwise end y and clockwise end z. A label x is said to be
in (y, z) if its corresponding end falls in the open arc segment (y, z) (i.e., either (i)
y<x<z or (ii) y>z & (x> y or x<z)).

Two arcs (a, b), (aj, bj) are said to intersect strictly if a is in (a, b) and b is in
(ai, b) or the above holds with i,j reversed (intuitively, and j overlap but none is
properly contained in the other). Two strictly intersecting arcs and j are said to form
a Type I pair if together they do not cover the whole circle; otherwise, they are said
to form a Type II pair. These two types are depicted in Fig. 3. The next lemma gives
a classification of the cliques in a circular-arc graph.

Type pair Type Ii pair

FIG. 3. Two types ofpairs in P.

LEMMA 3. Let (ai, bi), (at, bt) be a collection A of arcs which form a clique in
a circular-arc graph G. Then one of the following two conditions is true:

(i) There exists an arc a, bi) which is properly contained in every other arc in A.
(ii) There exist two strictly intersecting arcs (ai, bi), (a, bj) in A such that no arc of

A is properly contained in either one of them andfor every other arc (ak, bk) in A exactly
one of the following conditions is true:

(a) (ak, bk) properly contains (ai, bi);
(b) ak is in (a, ai); bk is in (bj, b,);
(c) ak is in (ai, bj); bk is in (bi, ak);
d ak is in b, bi and also in bj, aj bk is in a, ak
(e) bi is in b, aj) ak is in bi, ai) bk is in b, bi) (note: in this case arcs and j

must form a Type I pair).
Proof. Let B be the subcollection of A that contains all arcs which do not properly

contain any other arc of A. If B contains a single arc (ai, b), then condition (i) holds.
Hence assume B contains more than one arc. If there exists a Type Ii pair i,j in B
then choose this pair. Otherwise pick any arc in B. Starting from the counterclockwise
end a of i, we can find an arc j in B such that aj is the most counterclockwise end
before bi. If a is in (ai, b), then we interchange the indices and j. Note that there
can be no arc in B with its counterclockwise end in (b, aj) but its clockwise end in (a, bj).

The proof for condition (ii) does not depend on whether and j form a Type I
pair or a Type II pair except that condition (ii) (e) is possible only for Type I pairs.
An illustration for each subcase is depicted in Fig. 4 for Type I pairs and j.

Now consider an arc (ak, bk) in A such that k # i, k #j. Suppose (ak, bk) does not
properly contain (a, b). Consider the following cases.
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Case

a
k

b
k

Case 2

a.

b
i

k

a
k

Case 3 Case 4

FIG. 4. Examples of condition (ii) with Type pairs and j.

Case 1. ak is in (aj, ai). Since (ak, bk) cannot be properly contained in (aj, b) we
have bk in (b, ak). Since (ak, bk) does not properly contain (ai, b) we conclude that
bk is in (bj, b). This implies condition (b).

Case 2. ak is in (a, bj). Since (ak, bk) cannot be properly contained in (ai, hi), we
have bk in (b, ak). This implies condition (c).

Case 3. ak is in (b, bi) and also in (b, aj). Since (ak, bk) cannot be properly
contained in (a, b), we have bk in (b, a). Since (a, bk) must intersect (a, b), we
have bk in (a, ak). This implies condition (d).

Case 4. None of the above cases apply. This can only happen when i,j form a
Type I pair and ak is in (b, a). Since (ak, bk) must intersect (a, b), we have bk in
(a, ak). However, bk cannot be in (ai, b) because then (ak, bk) would contain some
(as, bs) B (could be itself) with as in (b, bj), bs in (a, b), which is impossible by the
selection of (a, b) and (a, b). Hence bk must be in (b, ak). Since (ak, bk) does not
properly contain (ai, b), we have bk in (b, b), which is condition (e). [3

By Lemma 3, a clique in a circular-arc graph satisfies either condition (i) or
condition (ii). To find a maximum weight clique in G it suffices to find a maximum
weight clique among all cliques satisfying condition (i) and another one among all
cliques satisfying condition (ii). This is discussed in the next section.
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4. An O(mn) maximum weight clique algorithm for circular-arc graphs. Consider
a circular-arc graph G represented by its arc intersection model. First of all, we
construct a "containment graph" H from G with directed edges. Each vertex of H
corresponds to an arc in G. An edge (i,j) directed from to j appears in H iff arc
is properly contained in arc j. H is a transitive graph. The number of arcs which
properly contain an arc equal to the out-degree of i. Thus, it is not difficult to find
a maximum weight clique among all cliques satisfying condition (i) of Lemma 3.

Next, we calculate the weight of a maximum clique satisfying condition (ii) of
Lemma 3. A clique for which condition (ii) applies is said to be generated by its two
arcs (ai, hi), (aj, bj). It should be noted that such a clique does not contain any arc
which is properly contained in (a, b) or (a, b) and its weight is certainly bounded
by a maximum weight clique generated by (a, b), (a, b). Since there is no advance
information about which pair of arcs will generate a maximum weight clique satisfying
condition (ii), we simply consider the set P of all pairs of arcs that strictly intersect
and compute a maximum weight clique generated by each such pair.

For each pair (i,j) in P, we first compute the number of arcs satisfying one of
conditions (a), (b), (c), (d) and (e). Arcs satisfying (a) or (c) can be determined by
the containment graph H. Arcs satisfying (b), (c) and (d) can be found by searching
through every arc in G, which takes O(n) time. Denote the total weight of arcs satisfying
(d) by Aa(i,j). Since there can be at most O(m) pairs in P, this part of the algorithm
takes at most O(mn) time. (It can be carried out in O(n2 log n) time by using a more
sophisticated data structure. However the remaining part still takes O(mn) time.) It
remains to show that the remaining part can also be done in O(mn) time.

Further analyzing condition (ii), one can see that every arc satisfying condition
(a), (c) or (e) will intersect with any other arc satisfying condition (ii), but arcs satisfying
(b) might not intersect arcs satisfying (d). Hence we still have to make a careful
selection with regard to which arc satisfying (b) or (d) should be included in order to
form a clique with the maximum weight. The optimal selection from arcs satisfying
(b) or (d) will be determined separately for different types of pairs in P.

Let us first consider Type I pairs. For each arc we determine an optimal selection
for each Type I pair (i, j) in P. Denote the total weight of arcs selected (including the
weight of j but not i) by A(i,j). It should be noted that once the selection of arcs
satisfying (b) is determined, the corresponding set of arcs satisfying (d) which can be
included in a clique is also determined. Hence it is sufficient to consider the optimal
selection of arcs satisfying (b). We will use a dynamic programming procedure which
recursively finds A (i, j) for all arcs j such that (i, j) is a Type I pair in P. Each Type
I pair (i,j) satisfies that aj is in (hi, a). Therefore we can arrange all these arcs into a
list L {i, , i,,} according to the counterclockwise order of a,. Figure 5 shows an
example of a possible arc j forming Type I pair (i,j) with arc i.

We now describe the recursive formula used in our algorithm. Suppose we have
computed A(i, it) t-1,...,k-1 and want to determine A(i, ik). For each t
{1,..., k-l} such that Yt is in (bk, hi), let c(it) be the total weight of arcs in
{it+,"" ", ik_} whose clockwise ends are in (b,, b) (or equivalently, which properly
contain the arc it).

LEMMA 4.

A(i, ik) =max ] max [A(i, it)+ oz(it)+ Aa(it, i)], Aa(i, i).
t{l,"-,k-l}

bt is in (bik,b)

ProoJ] Consider an optimal selection S {i, i, i,. ., i, i} (ordered by their
counterclockwise ends). If 0, then A (i, ik)= Aa(i, i). Otherwise proceed as follows.
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-length of the crcle [

FIG. 5. An example of arcs between Type pair (i,j).

Starting from i, we can find the first arc, say i, such that it does not properly contain
any other arc in the selection S. Since S is an optimal selection for the pair (i, ik), the
following must be true:

") This, " q} must be an optimal selection for the pair (i, q1. The set{i, i q-i,
optimal selection results in a total weight h (i, i).

2. The set {i+,...,i} consists of all those arcs in the ordered subset
.!{lq( it), lr+l ik-l} which properly contain the arc i’ The total weight of this setq"

is
3. The set of arcs satisfying (d) for (i, k) whose counterclockwise ends are in

(Yik, yiq,) is included in the clique. The total weight of these arcs is Ad(i, i).
The total weight ofthe optimal selection S is thus A(i, i)+ a(i) + Ad(i, ik), which

must be maxtt,....k_
Our algorithm for computing A (i, j) on Type I pairs goes as follows. Sta with

an arc i. Scan the list L from left to right. Whenever an arc ik is scanned, execute the
following:

1. For each { 1,. ., k } such that b, is in (b, b), calculate A (i, i,) + a (i,) +
Ad(i,, ik). Take the maximum out of these numbers and Ad(i, ik) to be A (i, ik).

2. For each { 1,. ., k- l} such that b, is in (a, b), augment a (t) by wt (ik).
The calculation of each A (i, it) takes at most O(n) time. Since there are O(m) pairs
at most, the computation of all A (i, j) can be done in O(mn) time.

Next, we consider Type II pairs. For each arc j we determine an optimal selection
for each Type II pair (i, j) in P. Again, denote the total weight of arcs selected (including
the weight of but not j) by A(i,j). Since it is possible that the same clique can be
generated both by a Type I pair and by a Type II pair, we will now be concerned with
those cliques which cannot be generated by Type I pairs.

LEMMA 5. If a clique contains two arcs i, j such that i,j) is a Type I pair in P and
both and j do not properly contain any other arc in the clique, then this clique can be
generated by a Type I pair in P by condition (ii) of Lemma 3.

Proo Consider the subset B of arcs which do not properly contain any other arc
of the clique. Then i, j B. Staing from the left endpoint of i, we search for an arc k
in B such that ak is the most counterclockwise end before b. The existence of such
an arc k is ensured by the existence of the arc j. (i, k) is a Type I pair and the clique
can be generated by (i, k).
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Now, if an optimal selection for a Type II pair (i, j) contains an arc k satisfying
condition (d) with bik in (at, ai), then we claim that the corresponding clique can be
generated by a Type I pair. First, the two arcs j and k do not cover the whole circle.
Pick an arc, say k’, contained in arc k which does not properly contain any other arc
in this clique. Clearly, (j, k’) is a Type I pair in P. By. Lemma 5, this clique can be
generated by a Type I pair according to condition (ii) of Lemma 3. Hence we do not
have to consider the inclusion of arcs satisfying condition (d) with their clockwise
ends in (at, a). This leads us to consider arcs satisfying (b) and arcs satisfying (d)
with their clockwise ends in arcs extending between a and their counterclockwise
ends. However, these two types of arcs always intersect and there is no need to make
any selection. Therefore, for each Type II pair (i, j), the clique we need to consider
includes arcs satisfying (a), (b), (c), (e) together with those arcs satisfying (d) with
their right endpoints between x and their left endpoints.

Having determined an optimal selection for each Type I pair, formed the clique
for each Type II pair as above and calculated the maximum total weight of arcs
containing the same arc for each arc i, we simply choose a clique with the maximum
weight as our maximum weight clique. The time bound of our algorithm is O(mn).
The space bound is O(m), the number of pairs in set P.

5. Conclusion. In this paper we present two algorithms for finding maximum
weight cliques on circle graphs and circular-arc graphs. Both algorithms make use of
dynamic programming techniques. It remains to be seen whether more sophisticated
data representation could produce faster algorithms. For the case of circle graphs, we
have not been able to reduce the complexity of the weighted case down to O(n2). We
suspect that the weighted case is, indeed, harder than the cardinality case, which can
be done in O(n2) time. For circular-arc graphs, there are some steps which can be
carried out in O(n2 log n) time, but the dominating step is in selecting arcs satisfying
conditions (b) or (d) for Type I pairs, which takes O(mn) time.

6. Acknowledgment. We are grateful to an anonymous referee who suggested two
reductions in the time bounds of our algorithms.
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NEW DATA STRUCTURES FOR ORTHOGONAL RANGE QUERIES*

DAN E. WILLARDt

Abstract. Consider a set of N records corresponding to points in k-dimensional space (k => 2). This
article introduces one new data structure which uses memory O(N logk-t N) for supporting orthogonal
range queries with worst-case complexity O(logk- N) and several modifications of this proposal for a
dynamic environment. These results are especially useful when k 2.

Key words, augmented tree, data base, geometric retrieval, k-fold tree, multidimensional retrieval,
orthogonal range query, range query, relational data base, super-B-tree, partial match retrieval, decomposable
data structure

1. Introduction. Throughout this paper, S will denote a set of N records, each
corresponding to a point in k-dimensional space, and q will denote a request for the
subset of S satisfying a condition similar to"

(1) al < KEY. < bl & a2 < KEY. 2 < b2 (fg" tfu: ak < KEY. k <

Such requests q are called orthogonal range queries and we use the following notation:
(i) SET (q) will denote the subset of the initial file that satisfies q;
(ii) COUNT (q) will denote the number of records belonging to SET (q);
(iii) SUM (q) will denote the sum under any group-operator of some designated

value stored in the records belonging to SET (q).
The locate-and-copy time of a specified retrieval .algorithm will be defined as the amount
of runtime needed by the procedure to find and transfer the members of SET (q) into
the user’s workspace. This concept is not very useful because the degenerate case where
COUNT (q)= N forces all procedures to have an O(N) worst-case locate-and-copy
time for querying a file of N elements. Consequently, the literature of multidimensional
retrieval has employed other measurements of complexity in its worst-case analyses;
this paper will rely on the following three measurements"

(1) Worst-Case Locate Time. A retrieval algorithm will be said to respect the
worst-case locate-bound O(f(N)) if it will require no more than time O(f(N)+
COUNT(q)) for copying all the elements of SET(q) into the user’s workspace.
(Worst-case locate time is more meaningful than worst-case locate-and-copy time
because the new definition corrects for the copy time, which must be proportional to
COUNT (q).)

(2) Aggregate-Scan Time. A retrieval algorithm will be said to respect the aggre-
gate-scan bound O(f(N)) on a specified data structure if this algorithm needs no more
than time O(f(N)) to scan this data structure and calculate SUM (q) and COUNT (q),
for any query q.

(3) Expected Locate Time. Essentially, this bound represents the expected locate
portion of the locate-and-copy task, where this component is defined in the most
conservative possible sense. That is, suppose for any query q there exists integers J,
whose worst-case value lies in O(f(N)), and T, whose expected value lies in O(f(N)),
such that a retrieval algorithm can find in time T a collection of J lists L, L, , L,

* Received by the editors March 12, 1982, and in revised form August 27, 1983. This research was

supported in part by the Office of Naval Research under contract N00014-76-C-0914 while the author was
at Harvard University. The Harvard Aiken Laboratory Report TR-22-78 indicates the status of the research
at the time when left Harvard (1978).

? Computer Science Department, State University of New York at Albany, Albany, New York 12222.
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and two indices IINFi and -ifstP for each list such that the members of SET (q) consist
precisely of the disjoint union of the portions of lists L, , Ljq that lie between the

lINE and //suP. Then, this retrieval algorithm will be said to respect thelist’s indices _i

expected locate bound of O(f(N)).
The previous literature did not use this terminology, but its results can be readily

translated into it. Various data structures have been proposed, some of which are more
efficient in time and others in space. Some of the more space-efficient data structures
include k-d trees, quad trees, and box array hashing. The first two data structures,
originally proposed in [Be75], [FiBe74], were shown in [LeWo77] to have a worst-case
orthogonal locate complexity kNl-/k when the trees are perfectly balanced. ([Wi78c],
[WiS0] discuss some surprising aspects of imperfectly balanced variants of these trees.)
Techniques similar to box-array hashing [Bo81] are efficient when the range query
spans a very small geometric region. Nonoverlapping k-ranges improve retrieval time
by modestly increasing memory space, and overlapping k-ranges illustrate the potential
of quite large memory spaces [BeMaS0]. For any p > l, it is possible to construct an
overlapping k-range that uses space O(Np) and has a worst-case locate complexity
O(log N); since the time and space coefficients inside the O-notation become quite
large as p decreases, this very nice asymptotic result is unlikely to have many practical
applications. Although [LeWo77], [BeMaS0] confined their proofs technically to worst-
case locate time, they easily generalize to worst-case aggregates.

[BeS0], [BeSh77], [LeWoS0], [Lu79], [LuWi82], [Wi78a], [Wi79] and [WiLu84]
have studied how to optimize orthogonal range query time in a memory space that
lies intermediate between the extremes of the space O(Np) for overlapping k-ranges
and the space O(N) of the other data structures mentioned above. Each of these
articles established some query time of the form O(logk N) in space O(N logk-I N).
Since they were written during overlapping periods of time, several different names
have been assigned to the basically similar data structures proposed in these articles.
We will use the term first-generation k-fold trees to refer to these data structures. This
paper will introduce a more refined concept, called the second-generation k-fold tree,
which will occupy the same space as first generation k-fold trees but improve by a
factor of log N most of the time complexities of k-fold trees.

The precise results known about k-fold trees prior to the first draft of this paper
[Wi78b] are listed below:

(A) SUM(q) and COUNT(q) can be calculated in aggregate-scan time
O(logk N). (This result first appeared in [BeSh77] and is explained more fully in [Be80].)

(B) SET (q) can be retrieved in worst-case locate time O(logk N). (This result
was explicitly discussed in [Be80], [LeWoS0], [Wi78a] and implicitly in most of the
other articles.)

(C) Any sequence of n insertion and deletion commands can be executed in
worst-case time O(n logk N) on a first-generation k-fold-tree data structure whose
cardinality never exceeds N and which is initially empty [Lu78], [Lu79], [LuWi82],
[Wi78a], [Wi79], [WiLu84].

(D) The result in (C) can be strengthened to indicate the existence of a procedure
that executes individual insertion and deletion commands in strict worst-case time
O(logk N) [Lu79], [Wi78a], [Wi79], [WiLu84].

(E) Several of the results above can have their runtimes reduced by a factor of
log N in a batch environment where N operations on a set of size N are simultaneously
performed. Such batch procedures include:

(1) an algorithm that constructs an entire k-fold data structure in time
O(N logk- N) [BeSh77], [Be80]; and
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(2) a procedure that calculates estimated distribution functions in time
O(Nlogk- N) [Be80], [BeSh77]; also, given a batch of N queries
q, q2," , qN, this procedure can calculate all their SUM (q) and COUNT (q)
values in the same time.

Note that except for (E), all the items above discuss the complexities of retrievals,
insertions and deletions in an on-line (as opposed to batch) environment. Although
the articles cited in these items discussed technically only worst-case complexities,
their algorithms, in fact, had a complexity logk N in both the best and worst cases. In
this article, we show that it is possible to produce an almost across-the-board factor
log N reduction in complexity, thus deriving the new magnitude O(logk- N) for
on-line processing in any dimension K >-2. We say "almost" because our algorithms
do not reduce aggregate-scan complexities in a dynamic environment. Fredman has
proven that the latter reduction is impossible at least for the case ofaggregates calculated
over semigroups [Fr8 a]. However, without increasing memory space, we do improve
the worst-case complexity of aggregate-scan and locate-retrievals in a static environ-
ment, and alternatively the complexity of insertions, deletions, and locate-retrievals in
a dynamic environment. The latter factor log N improvement in expected complexity
can be accompanied by controls ensuring a worst-case retrieval complexity
O(logk-/2 N) and a worst-case insertion-deletion time O(logk N). It can also guarantee
O(logk-/2 N) wo.rst-case bounds on insertion, deletion, and locate-retrieval operations.
Essentially we obtain these improvements and more by proposing seven new data
structures which provide different advantages in a dynamic environment.

Three of our seven new data structures were proposed in the first draft of this
paper [Wi78b], and the other four were developed subsequently. No improvements
over our data structures are known in the aggregate model of retrieval, but recently
[Ch83] extended results from lEd81, Mc81 ] and showed that a factor log log N savings
in memory is possible for locate-retrievals if the copy time in the locate-and-copy
complexity is increased by a factor of 2 and the memory space coefficient expands by
an amount often exceeding log log N’s typical value. Section 8 describes the different
advantages of our seven data structures and Chazell’s alternative.

The discussion in this paper will be reasonably self-contained. Some ofthe sections
at the end will use Dietz’s theorem [Di84], the bounded balance method [WiLu84]
and q-fast tries [Wi81 ]. The reader will be able to follow the gist even if he is unfamiliar
with this material. Our techniques are likely to have further applications beyond those
discussed here. For instance, our concept could improve some of the complexities
from [AvSh81] by a factor of log N and it is partially relevant to detecting rectangle
intersections [BeWo80], lEd80], [LeWo81 ], [VaWo80]. Section 9 of Overmars’ disserta-
tion [Ov83] illustrates how our data structure Te(2) can be applied to queries about
the past, and [EdOv83] shows how to reduce its memory to O(N) in a batch environ-
ment. [Wi78a], [Wi83a, 83b, 84a, 84b] describe the principal practical application of
this article by illustrating how orthogonal range queries are very relevant to commercial
data bases.

Lower bounds for orthogonal queries are discussed in [Fr8 a], [Fr8 b], [Ya82].
References [EdKiMa82], [EdWe83], [CoYa83], [Wi82], [Ya83] discuss the variations
of this problem for nonorthogonal regions, such as polygons and polytopes. Although
our theorems apply to any dimension k => 2, they are especially practical when k 2
because the memory cost O(N logk- N) can become prohibitive otherwise.

2. Review of earlier literature and some useful intuitions. How do second-gener-
ation k-fold trees differ from their first-generation predecessor? This section will
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introduce the notations that enable us to discuss both concepts and their distinction.
Henceforth S will denote a set of N distinct k-tuples and T(k, S) a first-generation
k-fold tree for representing this set, similar to any of the structures mentioned in
[BeSh77], [aeS0], [LeWoS0], [Lu78], [Lu79], [LuWi82], [Wi78a], [Wi79], [WiLu84].
The seven new data structures proposed in the article will be distinguished by their
subscripts, thus denoted as Te(k, S), Ta(k, S), Td(k, S), etc.

Sometimes for simplicity, we will omit the symbols k and S when discussing our
new data structure; that is, T and Ti(k) will sometimes serve as abbreviations for
T,(k, S). The differences between our seven proposed data structures will become
apparent in the course of our discussion. Before defining these new data structures, it
is useful to review the definition of the first-generation data structure T. This review,
as well as most of the other discussion in this paper, will take place in the context of
the dimension k 2; this dimension provides both the simplest example of nontrivial
k-fold trees and their most practical example. Generalization to the case of higher
dimensions will take place at the end of this article.

The first-generation data structure T(2, S) will consist of two basic parts. Its first
section will be a binary tree of height O(log N) where the records are stored at the
leaf-level in order of increasing KEY-2 value. This section will be called the base-tree
and be denoted by B. The second part of the 2-fold tree T (2, S) will consist of a series
of auxiliary fields. Each node v in the base-tree B will be associated with an auxiliary
field AUX (v), consisting of a binary tree of height O(log N) that represents the subset
of S which descends from v in the base-tree B in order of increasing KEY. value.
Each node w in those auxiliary-field trees may (optionally) contain aggregate informa-
tion about its descendants (such as a field indicating the number of records descending
from w or sum of some special value stored in these descendants).

A data structure similar to a first-generation k-fold tree was first introduced by
Bentley and Shamos, in [BeSh77], and it was subsequently explored by Bentley, Lee,
Lueker, Willard, and Wong, as mentioned in the Introduction. We will now review
how orthogonal range queries may be performed in this tree T(2, S).

Define a node in the base-tree B to be critical with respect to the condition

a2 (KEY. 2 bE if[ all descendants of v satisfy this range condition but the same is
not true of v’s father. [Besh77], [Be79] and [LeWoS0] have noted that since the base
trees have heights O(log N), they contain no more than O(log N) critical nodes, all
of which can be found in a single search consuming time O(log N). The first step of
the two-dimensional orthogonal-range-query algorithm will find these critical nodes.
The second step will search on the range condition al KEY. bl the auxiliary fields
of these critical nodes. The precise nature of this search will depend on whether the
query consists of a request for SUM (q), COUNT (q) or SET (q) (see [BeSh77], [Be79]
and [LeWo80] for more details). In all cases, an overhead search time O(log N) will
be needed to search each auxiliary field--thereby producing a total complexity
O(log2 N) for searching the log N distinct auxiliary fields.

Note that this algorithm is repetitive in the sense that it applies the same search-
query al KEY. b to each of the auxiliary fields. In this paper, we show how
modified forms of k-fold trees that connect the auxiliary fields with special types of
pointers can usually avoid such repetitive searching, thereby reducing the query time
complexities by a factor of log N. These reductions will usually be possible, but not
always since they would then violate Fredman’s lower bound [FrSla].

3. Log N improvements of the time with downpointers. Throughout this paper the
term augmented tree will refer to a data structure, similar to first-generation 2-fold
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trees, consisting of a binary tree of logarithmic height, called the base, where the
records are stored at the leaf-level and sorted by increasing order of one specified key,
and a set of auxiliary fields where the particular field AUX (v), associated with a
base-tree node v, provides an alternate description of v’s descendants. The representa-
tive of a particular record R in one of the augmented tree’s auxiliary fields will be
called R’s entry. Throughout our discussion, we assume each auxiliary field AUX (v)
has precisely one entry for each leaf descending from v. All auxiliary fields in the next
four sections will be sorted by KEY. l, and the term "pseudo-entry" will refer to an
especially stored termination mark placed in the rightmost position of these auxiliary
fields with the value +o assigned to its KEY. value. The symbols X, Y and Z will
denote typical entries or pseudo-entries in an auxiliary field. The ith keys of these
entries will be denoted X. i, Y. and Z. i. The symbols vl and vr will denote the left
and right sons of an internal node v from the base-tree. Also for each entry X belonging
to AUX (v), its left-down-son is defined as that item Y in AUX (vl) with the smallest
Y. value satisfying Y. >_-X. 1. The right-down-son of X will be defined as the
analogous entry in the field AUX (vr). Pseudo-entries have been introduced into our
data structure because they guarantee every entry will have a nonnull left- and
right-down-son, a fact needed later to guarantee our algorithm will never get lost during
a search.

Now we define the two new data structures, Te(2, S) and Ta(2, S), which essentially
are augmented trees where every entry X contains two special pointers to its left- and
right-down-sons. These special pointers will enable us to avoid the repetitive searching
of 2 and thereby provide a factor log N saving in retrieval time. For simplicity, until
the end of the paper, we assume no two elements of S have the same value stored in
either their KEY. or KEY. 2 fields. The generalization to the case of repeating values
is easy and will appear in 7.

A second-generation 2-fold tree Te(2, S) will be defined as an augmented tree
data structure with three parts. Its first two components are the usual sections of a
logarithm height base-tree B sorted by KEY. 2 and auxiliary fields sorted by KEY. 1.
The latter will be stored in the format of a doubly-linked list. In addition to the forward
and back pointers required by a doubly-linked ordered list, each entry in AUX (v)
will contain a pointer to its left- and right-down-son. These fields will be called the
left- and right-downpointers. The third part of the second-generation tree T(2) will be
its dictionary D; this will consist of a binary tree of height O(log N)that indexes the
entries in the root’s auxiliary field by KEY. 1. An example of a second-generation tree
T(2) is illustrated in Fig. 1. The main difference between this data structure and
first-generation trees is that the tree T(2) contains the new left- and right-downpointer
fields. The pseudo-entry o serves as a termination mark at the right end of each
auxiliary field. This mark guarantees every node has a nonnull left- and right-down-son,
as is illustrated in Fig. 1.

Now, we introduce a definition which will play a major role in our algorithm
descriptions. Recall that a node in the base-tree B is said to be critical with respect to
the condition a2 ( KEY. 2 < bE iff all its descendants satisfy this condition but the same
is not true for its father. Let CRITICAL (a2, bE) denote the set of nodes critical to this
range condition and LEAST (v, c) the smallest entry in AUX (v) satisfying KEY. > c.
Then the critical entry set relative to the query a2 ( KEY. 2 < bE and the constant c will
be defined as the set {LEAST (v, c)[veCRITICAL(a2, b2)}. This set will be denoted
as CES (C, a2, bE); we will prove that it is possible to retrieve the full set of records
from any critical entry set in time O(log N). Most of our other time-complexities will
be a consequence of this retrieval theorem.
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a
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AUX(d) AUXle) AUXlf) AUXlg)

FIG 1. An illustration ofa tree Te(2 whose 4 records are the ordered pairs: (1, 4), (2, 1), (3, 3) and (4, 2).

One preliminary definition should be introduced. For any entry X belonging to
the root’s auxiliary field, the entry-tree of X, denoted t(X), will be defined to be a
binary tree whose root is X, whose depth-1 nodes are the left- and right-down-sons of
X, whose depth-2 nodes are the sons of these sons, and so on. By the definition of the
data structure Te(2), all its entry-trees are isomorphic to the base-tree B. Theorem
shows how to exploit this isomorphism to retrieve critical entry sets efficiently.

THEOREM 1. For any three constants a2, b2 and c with a <= bE, the second-generation
k-fold tree Te(2) makes it possible to retrieve the set CES (c, a, bE) in worst-case time
O(log N).

Proof. The algorithm for retrieving CES (c, a2, bE) consists of four steps. Its first
step will search the dictionary D to find that entry X belonging to AUX (root) which
has the smallest X. value satisfying X. ->_ c. The second step will walk the subtree
inside the base-tree B whose nodes are either critical with respect to the condition
a2< KEY. 2 < b or are the ancestors of critical nodes. The third step will find the
isomorphic image of this subtree lying inside the entry-tree t(X), using the down-
pointers to locate each node that it traverses. Define an entry Y in t(X) to be
"bottom-level" relative to (c, a2, b2) if the third step of our search visited Y but none
of its descendants. The final step of our search will make a list of all visited bottom
nodes. It is easy to see that this list corresponds to CES (c, a2, b_) and that each of the
four steps run in time O(log N), thereby showing CES (c, a2, b2) can be retrieved in
this time. Q.E.D.

The remainder of this section will explain the usefulness of the critical entry set
in performing two-dimensional orthogonal range queries. For any entry X belonging
to the critical entry set CES (a, a2, b), let COUNT (X, at, bt) denote the number of
entries which satisfy the range condition a < KEY. < b and lie in the same auxiliary
field as X. Note that these elements lie in consecutive positions to the right of X in
their common auxiliary field. Therefore, the time needed to copy these elements into
the user’s workspace is O(COUNT (X, al, bl)) when one begins with a pointer to the
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entry X. This observation suggests the following algorithm for performing an orthogonal
range query of the type SET (q) in a k-fold tree of the form Te(2):

(1) Apply the algorithms from Theorem to construct the critical entry set
CES (al, a2, b2).

(2) For each X belonging to the set CES (a, a2, b2), perform a walk that begins
at X and proceeds to the right through the auxiliary field containing X until reaching
the first element Y with Y. 1-> bl. Print a list of all the elements visited during this
walk except for Y.

THEOREM 2. The procedure above will correctly find all the elements of SET (q) in
worst-case locate time O(log N) when it searches a 2-fold tree Te(2). This k-fold tree
will occupy O(N log N) space.

Proof The memory space O(N log N) of Te(2) follows because a 2-fold tree of
height O(log N) will have no more than O(log N) entries per record. The correctness
of the search above follows because each record belonging to SET (q) will lie in
precisely one of the auxiliary fields visited. This algorithm has a locate-and-copy time

O(log N+COUNT (q)) because Theorem implies that the first step consumes time
O(log N) and because step 2 consumes time XCES(al,a2,b2) COUNT (X, al, b)
COUNT(q). Therefore, the locate-component of its time complexity is
O(log N). Q.E.D.

Now, we will define a new data structure Ta(2) that will produce the analogues
of Theorem 2 for aggregate queries of the type SUM (q) and COUNT (q). This data
structure will be defined to be the same as Te(2) except that its entries will contain
two additional fields about aggregates. These will store in each entry X a quantity
COUNT* (X), which indicates how many records lie to the left of X in its auxiliary
field, and a second quantity SUM* (X), indicating the sum ofsome specially designated
value stored in these entries. Our upper bound O(log N) is consistent with Fredman’s
lower bound (log2 N) because the former is over static groups while the latter concerns
aggregates over dynamic semigroups.

THEOREM 3. The data structure Ta(2) makes it possible to calculate the aggregates
SUM (q) and COUNT(q) in worst-case time 0 (log N), for any two-dimensional
orthogonal range query.

Proof. Since the algorithms for evaluating COUNT (q) and SUM (q) are quite
similar, we will present only the former. For simplicity, we restrict our attention to an

orthogonal range query of the precise form: q {a < KEY. -< b and a2 < KEY. 2 <
b}. Note that the subset of S satisfying q has cardinality equal to:

(2) E COUNT* (X)- Y COUNT* (Y).
XCES bt,a2,b2) YCES al,a2,b2)

Since Lemma indicates that any critical entry set can be walked in time O(log N),
it follows that this time as sufficient to visit the sets CES (b, a, b) and CES (a, a2, b),
and to gather the information necessary to evaluate the expression above. Q.E.D.

Remark 1. Theorems 2 and 3 are significant because they offer a better combination
of time and space than their predecessors. Thus, the first-generation trees T(2) will
have a log N more expensive time with no compensating advantages in memory space,
and the two-dimensional version of overlapping k-ranges [BeMaS0] will do no better
than matching the time of Te(2) while requiring substantially more space. We should
also point out that while the trees T and Te are unambiguous improvements over
overlapping k-ranges for the case of dimension k=2, comparisons for higher
dimensions are more difficult because overlapping k-ranges have the better time
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complexities, and Ta and Te have the better space complexity for these higher
dimensions (as we will discuss in 8).

4. Review of the Wiilard-Lueker dynamic transformation. Sections 5 and 6 of this
article discuss several dynamic data structures which each support the same expected
complexity O(log N) simultaneously for insertion, deletion, and two-dimensional
locate-retrievals; these data structures will differ only with respect to worst-case
complexity. Some parts of our worst-case analysis will rely on dynamic transformation
techniques developed independently by Lueker and Willard [Lu78], [Lu79], [Wi78a],
[Wi79], [LuWi82] and [WiLu84]. In this section, we will offer a brief review.

The notation used here will be that of Willard and Lueker [WiLu84]. Let n denote
the length of a sequence of insertion and deletion commands, which manipulate a set
that is initially empty and whose size never exceeds N. Also, let Tn.N denote the largest
amount of time needed by a particular algorithm to execute such a sequence of
commands. Then the worst-case sequence-average complexity for this insertion-deletion
algorithm will be defined as MAX (Tn,N/nln, NO). The cited papers on dynamic
augmented trees studied essentially how to manipulate these trees to assure that their
base sections retain a height O(log N). Our general approach to retaining height
O(log N) was similar to the conventional AVL and bounded balance methods [Kn73],
[NiRe73] insofar as it also relied on the single and double rotations to maintain a
good balance for the trees. The differences between our approach and those earlier
articles arose because they considered an environment where a rotation had a cost
O(1) while we faced a much more stringent setting where the auxiliary fields of the
involved nodes require costly readjustment after each rotation. [Wi78a], [Wi79] and
[WiLu84] proved that the AVL method [Kn73], the 2-3 tree method [AhHoU174], the
B-tree [Kn73] method, and the usual bounded balance method [NiRe73] are inefficient
when applied to augmented trees, with respect to both the worst-case cost criterion
and the worst-case sequence-average cost criterion. All six of the papers on dynamic
transformations showed that these costs can be reduced significantly with any one of
several closely related types of modified bounded balance algorithms.

More precisely, let r(N) designate a positive-valued monotonically increasing
function of N, and Nv the number of leaves descending from the internal node v in
the base-tree B. We will call Nv the rank of the node v. Assume that no more than
time O(r(N)" N) is required to adjust the involved auxiliary fields when one of the
single or double rotations from Fig. 3 is applied to the node v. Then the weak theorems
from [Lu78], [Lu79], [LuWi82], [Wi78a], [Wi79] and [WiLu84] state that augmented
trees have a worst-case sequence-average insertion-deletion complexity
O(r(N) log (N)); and the strong theorems [Lu79], [Wi78a], [Wi79] and [WiLu84]
indicate that several essentially equivalent data structures support the same time
complexity in the strictly worst case.

We will only outline the ideas behind the proof of the weak theorem in this paper;
this discussion will provide the reader with sufficient intuition to understand how these
methods may be usefully applied to the new data structures introduced in this paper.

Let vt denote the left son of internal node v and p(v) the ratio N,/Nv (following
the notation of Nievergelt and Reingold [NiRe73]). For any fixed positive constant
a 1/2 a binary tree is said to satisfy the "bounded balance" condition BB(a) iff its
every internal node satisfies the condition p(v)-1- a. Nievergelt and Reingold
showed that these trees have height O(log N) and support worst-case insertion-deletion
complexities O(log N) when one chooses a constant a 1-x//2. The algorithms in
[Lu79], [Wi78a], [Wi79] and [WiLu84] are, for the most part, natural generalizations
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FIG. 2. Rebalance operations for trees of bounded balance.
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AUX(b).
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AUX(e) AUX(f) AUX(g)

FIG. 3. A tree Td(2) which represents the same set {(1, 4), (2, 1), (3, 3), (4, 2)} as its analogue Te(2) in

Fig. 1.
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of the Nievergelt-Reingold method for augmented trees; one significant difference
between the two methods is that the timing of rotations under the Willard-Lueker
approach is different for reasons of efficiency. Given any constant a <- 1/6, one example
of our method would consist of an algorithm that first inserts or deletes the relevant
leaf-record (in both the base and auxiliary fields), next checks the ancestors of this
leaf to determine which one of them now temporarily violate the condition BB(a as
a result of the first step, and finally rebalances these nodes in a bottom-up order using
the following rules:

I) In the essentially uninteresting special case where No <-- / O 2, use a brute-force
procedure to build an essentially perfectly balanced sub-tree descending from v where
the numbers of leaves descending from any two brothers differ by no more than one.

II) If No> 1/a - and p(v)<a then apply the single rotation of Fig. 2 when at
least 2aNo leaves belong to the subtree of that figure; otherwise apply its double
rotation. Apply the mirror image of these rotation rules in the alternate case where
No> 1/a 2 and p(v)> l-a. In both cases, adjust the auxiliary fields to reflect the
changes.

This algorithm is a good example of the general methods from [Lu78], [Lu79],
[LuWiS1], [Wi78a], [Wi79] and [WiLuS1] because its correctness and efficiency are
very easy to verify. First note that the bounded balance condition BB(a) is clearly
maintained after each insertion and deletion operation, by inspection of rebalance
rules I and II and the fact that c _-< 1/6. Next note that since rebalance step I is applied
only to a node whose rank No is less than a constant, the cost of this step has an
inconsequential magnitude. Also inconsequential are all the other costs ofthis algorithm
except for reconfiguring the auxiliary field after a rotation by step II. Because this last
step is potentially expensive, we will examine it very carefully.

Define the total rank of a bounded balance tree to be equal to the sum of the
ranks of all its internal nodes. We will use an accounting argument, similar to the
paradigm of Willard and Lueker (references just cited) based on the following two
lemmas.

LEMMA 1. No individual insertion can change the total rank by more than O(log N)
before the rebalancing. The sum of all the increases during n operations is therefore
bounded by O( n log N).

Proof. Easy: the first statement follows because the trees have height O(log N);
and the second is an immediate consequence of the first. Q.E.D.

LEMMA 2. Let w denote the amount of time some invocation of step ii) needs to
adjust the auxiliary fields. This step will cause the total rank to decrease by at least
a[w/(S)].

Proof. Using reasoning similar to [WiLu84] in the context of-a < 1/6, one may
verify that: i) an invocation of step II must produce a decrease in total rank of at least
aNo; and ii) the time of w of the same invocation is bounded above by O(Tr(No). No),
by the definitions of w and 7r. These observations imply that the ratio of work to
decrease in rank must satisfy Lemma 2, with the coefficient inside the f-notation
depending on the constant a. Q.E.D.

Now we will sketch how results similar to Lemmas and 2 enable Willard and
Lueker to prove their first theorem. Note that since the total rank is initially zero and
cannot go negative, Lemma 2 implies that the aggregate time for all the adjustments
in auxiliary fields is bounded by the product of 7r(N) with the sum of all the increases
in total rank. By Lemma l, the aggregate cost of these adjustments is

This inspection follows by reasoning similar to that in [NiRe73].



242 DAN E. WILLARD

<= O(n. 7r(N) log N). [WiLu84] observes that all other steps of their algorithm satisfy
this cost-bound by a trivial argument, thereby verifying the next theorem.

THEOREM 4 [Lu79], [Wi78a], [Wi79], [WiLu84]. It is possible to devise insertion-
deletion algorithmsfor any augmented tree with worst-case sequence-average complexities
O(r(N). log N).

See [WiLu84] for a stronger version of Theorem 4 that also guarantees strict
worst-case costs. Most of the rest of this paper will explain how to apply Theorem 4
to obtain new complexities with the special data structures introduced in this article.
Although it is not chiefly germane, it should be pointed out that the proof of sequence-
average complexity in [Lu78], [Lu79], [LuWi82], [Wi78a], [Wi79] and [WiLu84] is
stronger than the results above because the former also applied to values of a greater
than 1/6. These refinements will improve substantially the coefficient associated with
the height O(log N) of BB(a) trees. [Lu78] and [LuWi82] illustrated a noteworthy
special case of Theorem 4, whose advantage is that it is applicable for especially large
a, and whose disadvantage is that it does not generalize to all augmented trees.

5. Two-dimensional dynamic data structures with either downpointers or down-
trees. During our discussion of probability models and expected complexities, {’i}
will denote a sequence of n distinct integer-values, chosen from {-1,0, 1} subject to
the constraint Yi-- yi >- for every positive m _<-n. We will say { yi} is a random control
sequence over a set S of ordered pairs in the xy-plane itt the set S is initially empty
and the ith command manipulating this set consists of:

a) inserting a new record when , (the ordered pair inserted in $ will be drawn
from the uniform distribution over the unit square);

b) deleting one of the elements from $ when =-1 (where the record chosen
for deletion is selected at random); and

c) processing the orthogonal range query a -< KEY. _<-- b ^ a2 =< KEY. 2-<_ b_
when 3’t 0 (where the values ai and b are chosen by the uniform probability
distribution subject to the constraints 0-< a---b---I).

The particular goal of this section is to develop two algorithms which satisfy some
type of constraint on worst-case complexity, and which assure that every insertion,
deletion, and two-dimensional locate-retrieval command during any random control
sequence has expected complexity O(log N). These algorithms will differ primarily
according to the type of worst-case constraint they satisfy.

In our discussion, X will again denote an entry in the field AUX (v) of a 2-fold
tree and f the father of the node v from the tree’s base. Also, DOWNSET (X) will
denote the set of entries Y in AUX (f) such that X is one of Y’s down-sons. Several
of our algorithm descriptions will employ steps whose time-complexity is either propor-
tional to the cardinality of some downset, or at least to the logarithm of this cardinality.
The efficiency of these algorithms will follow from the observation that the involved
downsets, under a random control sequence, will have expected sizes lying in O(1).

THEOREM 5. The 2-fold tree data structure Te(2) (defined in 3) makes it possible
to achieve simultaneously worst-case locate-time O(log N) and expected complexity
O(log N) for each insertion and deletion command in any random control sequence.

Proof. Note that Theorem 2 states that the data structure Te(2) supportsworst-case
locate-time O(log N). Therefore, only the second half of Theorem 5, involving the
complexity of insertions and deletions, remains to be proven.

Let a designate any positive constant =< !6. Recall that the definition of second-
generation trees Te(2) requires that their base sections have heights lying in O(log N).
We will guarantee this height by assuring that the balance condition BB(a) is
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maintained after each insertion and deletion operation. Our algorithm for insertions
consists of the following seven-step procedure:

1) Find the location where the new record should be inserted in the base-tree and
insert it in the obvious manner.2 This record will be denoted by R.

2) Search the dictionary D to find the entry Z in AUX (root) with the smallest
Z. value satisfying Z. >= R. 1.

3) Let s denote the set of ancestors of the leaf-record R in the base-tree B, and
s’ the isomorphic image of s in the entry-tree t(Z). Find all the entries in s’ by using
the subtree s and the downpointers in the obvious manner.

.4) For each entry X in s’, insert an entry for the record. R to X’s immediate left
in its auxiliary field. Make the downpointers of this new entry initially point to the
same two addresses as the entry X.

5) Now take each entry X in s’ and check all the entries Y in DOWNSET (X)
for whether they satisfy Y. <_-R. 1. Those which do should have their downpointers
changed so that they point to R’s new entry rather than to X.

6) If step caused the base-tree B to violate the bounded balance condition
BB(a), then correct all the unbalanced nodes by using the Willard-Lueker algorithm
(outlined in the last section) to rebalance this tree and adjust the auxiliary fields
accordingly.

7) Insert a representative ofthe record R in the dictionary D by using any balanced
tree method running in time O(log N).

Now we will examine the runtime of this procedure. Since the base-tree B and
the dictionary D have heights in O(log N), steps through 4 and 7 clearly must run
in a worst-case time O(log N). Also, it is easy to see that whenever step 6 applies a
rotation to a node v, the time needed to adjust its auxiliary fields is O(No); this
observation, in conjunction with Theorem 4, implies that step 6 has a worst-case
sequence-average complexity O(log N). Thus, except for step 5, all the components
of our insertion algorithm have a complexity O(log N) either by inspection of the
procedure or from previous reasoning.

The time spent by step 5 on each entry X is easily seen to be proportional to the
size of DOWNSET (X). Appendix ,4 outlines a tedious but otherwise straightforward
proof that the downsets processed by step 5 always have expected cardinalities O(1)
during random control sequences. Since step 5 manipulates O(log N) distinct downsets,
this result implies that it runs in expected time O(log N). Hence our full seven-step
insertion algorithm has this asymptotic time; and by similar reasoning, deletions have
an expected complexity O(log N) under the natural inverse of the procedure
above. Q.E.D.

Note that the procedure outlined in step 5 had a very inefficient worst-case
complexity lying in f(N). This problem extends to worst-case sequence-average
complexity, which also lies in f/(N). The remainder of this section will explain how
to reduce the worst-case cost of step 5 to O(log2 N), thereby producing insertion-
deletion algorithms with expected complexities O(log N) and worst-case sequence-
average complexities O(log2 N). This method will have one disadvantage: It will
increase worst-case locate-retrieval complexity to O(log2 N). However, since expected
locate-complexity will remain O(log N), this rise in worst-case costs will often be
acceptable.

Since records are stored at the leaf level in base trees, our algorithm for inserting a new record R will
also create a new internal node whose sons are R and one of its brothers. Also, to remain consistent with
the other steps, step will initialize the auxiliary field of this new node so that it describes only R’s brother
at the end of this step.
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This alternate method will rely on a further modified 2-fold tree data structure,
called Td(2). This data structure will be defined to be the same as Te(2) except that
entries in auxiliary fields will no longer contain pointers to the addresses of their two
down-sons. Instead, all entries X belonging to the same downset will form the leaves
of a special 2-3 tree whose root points to their common down-son and each of whose
other nodes contains a pointer to its father; this 2-3 tree will be called a downtree. An
example of a data structure Td(2) is illustrated in Fig. 3; this data structure differs
from the tree Te(2), illustrated in Fig. l, only by having downpointers replaced by
downtrees.

The algorithms for performing insertions, deletions, and retrievals under the data
structure Td(2) are essentially the natural modifications, required by the concept of
downtree, of the algorithm for the tree Te(2). That is, the insertion, deletion, and
retrieval algorithms for the tree Td(2) will differ from their counterparts under Te(2)
only in the following two respects:

i) On each occasion when an algorithm for Te(2) would use a downpointer to
find a down-son, the counterpart under Td(2) will begin at the same entry X, find the
root of its analogous downtree by traversing the bottom-up path of its ancestors, and
then advance to this down-son by using the pointer stored in the root.

ii) Step 5 of the procedure for insertions into Td(2) trees will differ from its
counterpart for Te(2) by consisting of an operation that simply splits X’s downtree
so that all the leaves Y satisfying Y. _-< R. form the basis of a new downtree pointing
to R’s recently added entry; similarly, the counterpart of step 5 for deletions will
consist of an operation merging two downtrees. The general algorithms from
[AhHoU174] will be used to perform these split and merge operations on downtrees.
Note that [AhHoU174] has shown that all 2-3 trees have logarithmic height and permit
the operations of split and merge to run in logarithmic time. Now, the worst-case
number of leaves in any downtree is clearly O(N); furthermore, the downsets (and
therefore also downtrees) encountered by our insertion, deletion, and retrieval
algorithms will have expected sizes O(1) under any random control sequences, by
Appendix A. It therefore follows that operations i) and ii) above will both have expected
time-complexities O(1) and worst-case times O(log N).

Using the observations from the paragraph above to modify the proofs ofTheorems
l, 2, and 5, we see that the data structure Td(2) will have the same expected complexities
as Te(2), a worst-case locate complexity which is less efficient than Te(2) by a factor
of log N, and a better worst-case sequence-average insertion-deletion complexity, which
is bounded by O(log2 N). All these changes are due to the use of downtrees. On the
whole, the data structure Td(2) is probably slightly more useful than T(2). In a
dynamic environment, the following theorem formally summarizes its properties.

THEOREM 6. The 2-fold-tree data structure Td(2) makes possible achieving simul-
taneously:

l) an expected complexity O(log N) for insertions, deletions, and locate-retrievals
under the probability model of a random control sequence, and

2) a worst-case locate-retrieval complexity 0 (log2 N) and a worst-case sequence-
average insertion-deletion complexity O(log2 N).

Remark 2. One can apply dynamic methods similar to [Lu79], [Wi78a], [Wi79]
and [WiLu84] to convert Theorem 6’s O(log2 N) sequence-average update complexity
into a strict worst-case result. Although all the expected time complexities in this
section and the accompanying Appendix A were predicated on a uniform distribution
generating the records to be inserted, they can be generalized to any distribution where
all permutations of input occur with equal probability, as well as many measurable
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nonuniform distributions where the probability density respects well defined upper
and lower bounds. Appendix B illustrates another new data structure, called Tf(2),
which is a modification of Te(2) for applications which have insertions but no deletions.
This data structure satisfies all the constraints of Theorem 5 and additionally guarantees
a worst-case sequence-average complexity O(log2 N) for insert-operations. Tf(2) is an
extremely useful data structure when deletions are either absent or infrequent.

6. Backward indexing and its implications for multidimensional retrieval. Let S
denote a time.varying set of records whose cardinality never exceeds N, and KEY (R)
the key of a typical member of this set. A backward index governed by the constant A
will be defined as a data structure that enables one to calculate a nonnegative integer
(R), in worst-case time O(log N) for any record R in S, satisfying the constraints:

i) O(R) -<_ S,
ii) if KEY (R) < KEY (RE) then O(R) < O(R2).

Suppose the cost to change the backward index value of j records from the set S
is bounded by r(N) .j, for some well-defined function r which monotonically increases
with the size N of the set S. Then Dietz [Di84] has shown how to build a data structure
which guarantees worst-case sequence-average complexity O[r(N)+log N] for any
sequence of insert-delete operations. (See also [Di82] for a slightly weaker version of
this result.)

This section will explain how the combination of Dietz’s theorem, the bounded
balance method of [WiLu84] and Willard’s q-fast tries [WiS1], [Wi84c] lead to an
alternate structure whose worst-case insertion-deletion complexity is better than Td (2),
Te(2) and Tf(2) but whose retrieval time is worse. The q-fast tries of [WiS1], [Wi84c]
occupy memory O(N) and have worst-case time O(x/log M) for insertion, deletion,
and (one-dimensional) locate-retrieval, when all the keys are nonnegative integers less
than some upper bound M. Consider now a two-dimensional set S which also contains
nonnegative integer keys less than some upper bound M in their first components.
Then if every auxiliary field of a 2-fold tree contains a q-fast trie, the resulting data
structure will provide a combination of space O(N log N) and of time-measurement
O(x/log M log N) for both worst-case locate-retrieval and for worst-case sequence-
average insertion-deletion complexity, by an easy application of Theorem 4 and the
general methods from 2. This data structure will be denoted as T(2).

Now, we will explain how to combine the concepts of backward indexing and
the trees described above to produce a new data structure which generalizes the result
above even when the keys are real numbers. Consider a two-part data structure:

i) whose first section is backward index on the KEY. values of set S which
is governed by some constant A;

ii) and whose second section is a data structure of type T(2), where the first
component of each record is O(KEY. l) rather than the usual KEY. and
where the constant M is chosen to equal N.

This data structure will be denoted Tb(2). For any real number x, define O(x) as
[(R+)+(R-)]/2, where R+ and R- are the members of the set S with the least and
greatest KEY. values satisfying respectively R/. >_- x and R-. -<_ x. Then the records
satisfying

(3) a < KEY. < b ^ a2 < KEY. 2 < b2

also obviously satisfy

(4) (a) < (R) < (b,) ^ a2 < KEY. 2 < b2.
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Therefore, one algorithm for performing the query (3) in Tb(2) consists of a two-part
procedure which first uses the backward index to calculate the specific function-values

(at) and (b) and then searches the second part of Tb(2) with the modified query
(4). This retrieval algorithm will clearly run in time O(x/10g M log N); since M N,
this locate-time reduces to O(log3/2 N). Also, it is easy to see that time O(log3/2 N)
is sufficient to adjust all the parts of the data structure Tb(2) when the backward
function value (R) of any record R changes; this observation implies that Tb(2) has
a worst-case sequence-average insertion-deletion .complexity O(log3/2 N), by Dietz’s
theorem and the complexity of T(2). If the data structure Th(2) is slightly modified
so that the entry for every record R in the backward index contains a pointer to all
R’s other entries in Tb(2), then the expected cost of insertions and deletions can be
reduced to O(log N) under the probability model of random control sequences.

Remark 4. Although the backward indexing k-fold tree Tb(2) is very different
from the downpointer variants of this concept, Ta(2), Td(2), and Te(2), there is
nevertheless one common intuition which motivated all these approaches. This is that
the large number of auxiliary fields needing inspection in 2-fold trees makes it cost-
effective to develop certain special data structures which reduce the costs of these
searches. No analogues of this phenomenon arise in dimension one because the
overhead of these new components is typically larger than the time log N needed to
perform the straightforward search. Research on queries of higher dimensions is
interesting largely because a great number of new algorithmic techniques are then
cost-effective.

Remark 5. It is feasible to combine the data structures Tb(2) and Ta(2) into a
hybrid data structure, Th(2), which essentially consists of the union of their individual
components. The advantage of this hybrid is that it combines the best asymptotic
aspects of the retrieval times of Tb(2) and Td(2). It would therefore have expected
complexity O(log N) and worst-case time O(log3/2 N) for locate-retrieval. However,
the worst-case insertion-deletion complexity of this hybrid is O(log2 N), which is less
efficient asymptotically than Tb(2). The coefficients of its memory space and insertion-
deletion complexities would also be larger than those of both Tb(2) and Td(2). This
hybrid therefore has both advantages and disadvantages. Its expected insertion-deletion
complexity is O(log N), similar to both Tb(2) and Td(2) with a slightly larger coefficient.

7. Further results. Recall that 3 indicated we would assume until further notice
that no two elements of the set S have the same values stored in either their fields
KEY. or KEY.2. We now show our retrieval times will also hold without this
constraint. Our generalization is proven in a context sufficiently broad to apply to
literally any data structure supporting orthogonal range queries.

THEOREM 7. Suppose S* is a set of k-tuples where no two elements have the same
value stored in any component KEY. and that the data structure D guarantees a
worst-case retrieval time O(f) for orthogonal queries on this set. Then there must exist
data structures D’ with the same worst-case complexity for orthogonal range queries on
any arbitrary set S.

Proof Let (u, u2) and (v, v2) denote two ordered pairs. Define (u, u)< (v, v2)
iff either

i) u < v or
ii) u v and u < v.

As usual we assume the set S is initially empty, and each record R is inserted at some
unique time T(R). Let KEY*. denote the ordered pair (KEY. i, T(R)). Also let a-
and a/ be abbreviations for the respective ordered pairs (a,-) and (a, +). Then
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by definition the same set of records will satisfy (5) and (6):

(5) al < KEY1 < b ^ a2 < KEY. 2 < bE A" A ak < KEY. k < bk,

(6) a- < KEY*. < b- ^ a < KEY*. 2 < b- ^. ^ a < KEY*. k < b.
As each record R contains a unique value T(R), no two elements of S contain the
same values in KEY*. i; the hypothesis of Theorem 7 thus implies that some data
structure, call it D’, will answer any query of the form (6) in time O(f). As equations
(5) and (6) are equivalent, we can answer (5) in a time exceeding O(f) by an
inconsequential additive constant simply by translating (5) into an equivalent rep-
resentation in (6) and using the latter to search D’. Q.E.D.

Remark 6. Although the proof of Theorem 7 is trivial, the proposition is worth
remembering because its analogue does not hold for partial match queries. The
worst-case retrieval time for the latter operations changes dramatically for some data
structures if the elements of S are permitted to contain repeating values in some of
their fields. (k-d trees [Be75] are an example of a data structure whose worst-case
partial match time changes with this assumption.) (I thank the referee for noting the
distinction between partial match and range queries, and for suggesting it would
therefore be useful to prove Theorem 7.) This theorem also holds in a strengthened
version without the constructs of T(R) and KEY*. i, but the latter are greatly useful
in shortening the proof.

In one type of application, it may be desirable to apply the binary static-to-dynamic
transformation [BeSaS0], [OvLeS1] to k-fold trees. Given any initial (usually static)
data structure which can be built in time P(N) and which has a retrieval time R(N),
this transformation will produce a dynamic data structure with retrieval time
O(R(N). log N) and insertion-deletion complexity O[P(N)(log N)/N].

The static-to-dynamic transformation has many uses in multidimensional retrieval;
for instance, Willard [Wi78c], [WiS0] independently developed a special version of
this concept for k-d trees and proved it has the best possible retrieval time on k-d
trees. In the context of k-fold trees, the static-to-dynamic transformation will usually
be undesirable because its retrieval time is typically more expensive than the transforma-
tion of [Lu78], [Lu79], [LuWi82], [Wi78a], [Wi79] and [WiLu84] by an extra factor of
log N; however, an important exception to this rule is the 2-fold-tree data structure
Ta(2). This data structure is too rigid for any other dynamic method to manipulate
it. When the binary-static-to-dynamic transformation is applied to Ta(2), a new data
structure results with complexities O(log2 N) for insertion, deletion, and two-
dimensional aggregate retrieval over groups.

We will denote this data structure by T(2). Note that its complexity for the
dynamic aggregate-retrieval problem is similar to the results for this particular problem
which [Lu78], [Lu79], [LuWi82], [Wi78a], [Wi79] and [WiLu84] obtained with an
entirely different method. One difference is that the data structure T(2) does not
support aggregates under semi-group operators. However, a dynamic aggregate-retrieval
complexity O(log N) on group operators follows by applying either the static-to-
dynamic transformation to T(2) or the bounded balance method to T(2). These upper
bounds on complexity match Fredman’s lower bound [FrSla] for the semi-group
version of the dynamic orthogonal range query problem. Aggregate orthogonal range
queries in a dynamic environment are thus more expensive than locate-retrievals by
at least the semi-group measurement of complexity.

The cost of inserting or deleting even a single record in Ta(2) is prohibitive because a large number
of aggregate fields, SUM* (X) and COUNT* (X), will then need updating.
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8. Generalizations. As we mentioned in 4, Willard and Lueker [WiLu84]
developed a more elaborate version of Theorem 4 which guarantees the worst-case
time of individual commands as well as sequences. Using this result in the place of
Theorem 4, the update complexities of Tb(2), T(2) and Th(2) become results which
are worst-case estimates over both individual and sequences of commands.

One can also convert the sequence-average update upper bound O(log2 N) of
Td(2) into a worst-case quantity. In this case, the precise methods of [WiLu84] are
inapplicable, but one can readily develop a suitable modification.

The generalizations of the preceding results to dimensions k >_- 3 follow from our
two-dimensional results and the methods of [BeS0], [Lu79], [Wi78a], [Wi79] and
[WiLu84]. In particular, [BeS0] showed that given any k-dimensional data structure,
it is possible to develop a (k / 1)-dimensional data structure with factor log N greater
retrieval time and memory space; and [Lu79], [Wi78a], [Wi79] and [WiLu84] illustrated
another version of this same transformation which also guarantees that insertion-
deletion complexity will increase by no more than log N. The final results for the eight
different versions of k-fold trees are illustrated in Table 1. Each data structure in this
table differs by at least some measure of complexity.

TABLE
Various complexities of different types of k-fold trees for dimension k >-2.

Expected Worst-case Expected Worst-case
locate-retrieval locate-retrieval insertion-deletion insertion-deletion

Aggregate-
retrieval
in all
cases

T (k) log N log N log N log N log Nf

Ta(k logk-1 N logk- N * * logk-I N

T(k) log N log N log N log N log N

Tb(k) logk-/2 N logk-1/2 N logk-1 N logk-l/2 N *

T(k) (logk-I N)x/log M (logk- N)v/log M (logk- N)x/log M (logk-I N)x/log M

Td(k) logk-1 N log N logk-1 N log N *

T (k) logk- N logk- N logk- N or * *

Th(k) logk-l N logk-l/2 N logk- N log N *

The cited complexity, not optimized under this k-fold tree, is typically f(N) or worse.
t This data structure differs from all the others by supporting the added capability to calculate aggregates

over semi-group operators.
Normally this complexity is unoptimized, but it respects a sequence-average bound O(log N) when

only insertions are present (see Appendix B).

The subscripts a through h in the names of the eight data structures were chosen
as mnenomic devices. Thus "a" stands for supports _aggregate-retrievals (with super-
script "t" indicating the presence of the static-to-dynamic transformation), "b" for
b_ackward indexing, "c" for integer key-space bounded by the _constant M (appearing
in superscript), "d" for the most efficient _dynamic data structure, "e" for optimizes
only _expected insertion-deletion complexity, and "h" for _hybrid. First-generation
k-fold trees were naturally given the subscript "l".
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All the data structures in Table occupy memory space O(N logk- M). The data
structure Td(k) is clearly less desirable than Th(k) asymptotically. No other data
structure is asymptotically worse than another by all measures of comparison. Even
the comparison between Td(k) and Th(k) is difficult because the former has a much
better coefficient associated with its memory space and insertion-deletion complexities.

Since the time [Wi78b] proposed the seven data structures in Table 1, McCreight
[Mc81] noticed that a factor log N savings in memory was possible for locate queries
of the special fractional dimension 1.5, Edelsbrunner [Ed81] developed an initial
application of [Mc81 ]’s result to integer dimensions using log N more space and [Ch83]
refined this idea to prove that O(NlogK- N/log log N) space made possible
O(logK- N) locate time in a complexity model where the copy component increases
by a factor of 2. The practical applications of Chazell’s proposal are unclear since it
is inapplicable to aggregates retrievals, its update time is not as good as Tb(K) and
most of its log log N improvement in space is offset by either the increased value of
the memory coefficient or the weaker complexity model. However, [Ch83] is a very
eloquent paper, and we recommend both it and the earlier work to the reader.

Extensions of Fredman’s formalism [Fr8 a], [Fr81 b] can probably produce a lower
bound fl(logk-1 N) on the sum of any data structure’s expected insertion, deletion,
and k-dimensional locate-retrieval complexities. An open question is whether or not
a simultaneous matching upper bound for worst-case insertions and deletions is
possible.

Articles relevant to this open question include [Ch83], [Ed81], [Fr81a], [Fr81b],
[Mc81], [WiLu84], [Ya82]. Edelsbrunner and Overmars have recently noted that the
memory space of all augmented trees can be reduced to O(N) for the special case of
batch environments [EdOv83]. [Wi83a], [Wi83b], [Wi84a], [Wi84b] have recently
developed some extremely practical ideas about how to apply range query theory to
typical commercial data base problems, and we recommend these articles in the
strongest terms to the reader.

Appendix A. Recall that Step 5 of our algorithm for insertions and deletions in
Te(2) consumed time proportional to the cardinalities of the involved downsets, and
that several steps of our algorithm for Td(2) consumed time proportional to the
logarithms of these cardinalities. This appendix will prove that the downsets in these
steps have expected cardinality O(1) under any random control sequence, thus showing
these steps are highly efficient. The following lemma is a useful preliminary proposition;
it is also helpful in explaining the intuition behind much of our analysis.

LEMMA 3. The average size of a downset in any tree Te(2) or Td (2) will always be
slightly less than 2.

Proof. Let Vl and vr denote the left and right sons of an internal node v, belonging
to the base of any 2-fold tree. Note that the sum of the cardinalities of AUX (Vl) and
AUX (vr) will exceed by precisely one the cardinality of their father auxiliary field
AUX (v). (This slight difference in size arises because the pseudo-entry infinity is
present in each of the three auxiliary fields.) This observation implies that the average
size of a DOWNSET, taken over the union of these two sibling auxiliary fields, must
be slightly less than two. Since the same statement can be made about any pair of
brothers, the average downset-size over the whole base-tree must also be slightly less
than 2. Q.E.D.

Although Lemma 3 provides some useful intuition about the average size of the
downsets, it does not provide the precise information needed to calculate the expected
cardinality for many ofthe probability distributions needed in this section. The difficulty
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is that Lemma 3 calculates an average based on an assignment of equal weight to every
downset, while our analysis will also need a calculation where the weight of a downset
is proportional to its cardinality. The expected size O(1) under the latter average is
proven below.

LEMMA 4. Consider either a Te(2) or Td(2) tree that is built by the algorithmsfrom
5 in response to some random control sequence. Let v denote any internal node in the

base of this tree other than the root (which is not interesting because it is associated with
no downsets). Then the expected value of the cardinality of DOWNSET (X) will be
O( ), under any random process which selects entries Xfrom AUX (v) with a probability
proportional to the cardinality of DOWNSET (X).

Proof sketch. Let f denote the father of v and Nf and Nv the ranks of these two
nodes. Then Nv _-> aNf because all trees manipulated in 5 are BB(a). The expected
size of the downsets will be greatest when the preceding inequality degenerates to an
equality; therefore, the rest of this proof can make the conservative assumption
N-aNf.

Lt e(j, ) denote the expected fraction of entries in AUX () whose downsets
have cardinality precisely equal to j. Since random control sequences generate ordered
pairs whose two components are stochastically independent, the value of e(j, v) can
be calculated using standard probability models where all permutations occur with
equal probabilities. Under our declared assumption N aNs,, the fraction e(j, v) will
respect the following limit for any j 1:

(A.1) lim e(j, v)=a(1-a)-.
A more detailed analysis of this limit will show that e(j, v) converges quickly enough
to assure the existence of a constant c > 0 such that all j and v satisfy the inequality:

(A.2) e(j, v) <= c. a )s.
j2It is also apparent that the sum .=1 e(j, v) bounds the expected cardinality of the

downsets under any random variables satisfying the hypothesis of Lemma 4. In view
of equation (A.2), this expected value is bounded by =1 cj2(1-a), which is finite
since 0 < a < 1. Hence, we have proven the existence of a constant that always bounds
the expected sizes of the downsets under the assumptions of Lemma 4. Q.E.D.

Lemmas 3 and 4 are relevant to the algorithms of 5 because all the downsets
which these algorithms process respect probability distributions described by one of
these two lemmas, by a fairly trivial inspection of their different steps. Thus, the relevant
downsets have the expected sizes O(1), which was needed in the proofs in 5.

Appendix B. One disadvantage of the tree Te(k) is that it does not guarantee the
worst-case of insertion and deletion. This section will describe a modified k-fold tree,
called T(k), which satisfies the same retrieval-time and memory-occupancy com-
plexities as Te(k), and also guarantees a worst-case sequence-average complexity
O(logk N) for insertions. The surprising characteristic of T(k) is that it controls
insertion time only when deletions are absent.

For simplicity, we again focus on the case k 2. Then Tf(2) will be defined to be
a data structure identical to Te(2), except that each entry X in an auxiliary field will
contain two additional pointers, LEAST (X) and GREATEST (X), to the elements in
DOWNSET (X) with the smallest and largest KEY. values.

Consider the insertion algorithm outlined, in the proof of Theorem 5. Let Ix denote
the size of DOWNSET (X) before the execution of step 5 of that algorithm, and I*x
its size after step 5. Step 5 has a worst-case cost O(Ix) in the context of Theorem 5,
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but the following lemma shows its cost can be reduced under the new data structure

LEPTA 5. The tree Ty(2) makes it possible to revise steps 4 and 5 of Theorem 5’s
insertion algorithm so that the worst-case time of these steps is proportional to MIN (Ix-
I’x, I’x).

Proofi Since the elements of Tz(2)’s auxiliary fields are doubly linked lists ordered
by KEY. and since entry X has pointers to LEAST (X) and GREATEST (X), a
revised algorithm can certainly determine in time MIN (Ix- I’x, I’x) whether the
inequality I*x > Ix I*x holds or not.

The first part of our revised algorithm will test this inequality. If it holds, the
second part will apply steps 4 and 5 of Theorem 5’s algorithm to the record R and
the entry X, just as before. Otherwise, steps 4 and 5 of the old algorithm will be
replaced by a procedure which

a) places the record R in the position previously used by X,
b) places X’s information in a new entry immediately to the right of R, and
c) updates the rightmost I*x elements in DOWNSET (X) so that their downpoin-

ters reflect X’s movement.
It is desirable to replace steps 4 and 5 with the procedure above when I*x <- Ix- I*x
because the latter alternative is less expensive when this inequality holds. That is, the
quantities Ix- I*x and I*x represent the numbers of downpointers needing modifica-
tions under our two methods; the suggested algorithm executes whichever method is
cheaper. Its cost is therefore MIN (I’x, Ix- I’x). Q.E.D.

THEOREM 8. If the tree Tf(2) is initially empty, if absolutely no deletion commands
occur, and ifinsertions are executed by Lemma 5’ s modification ofTheorem 5’ s procedure,
then these operations will have a worst-case sequence-average complexity O(log2 N).

Proof. We will apply the principles of [WiLu84] and Lemma 5 to prove Theorem
8. Let denote the total rank of the base our k-fold tree. The proof-sketch of Theorem
4 indicated that

i) increases by no more than O(log N) after the insertion of a record; and
ii) a rotation by the bounded-balance algorithm taking time M will decrease

by at least
Let E denote the set of entries stored in the k-fold tree’s auxiliary fields, and Ac the
accounting function

Ac ct. log N+ , (Ix.log Ix),
XeE

for some constant c. Lemma 5 combined with observations (i) and (ii) implies that if
we assign c a sufficiently large constant value then A will satisfy the following three
conditions:

A) Each insertion of a record R by step of the Theorem 5 algorithm will increase
A by no more than O(log2 N).

B) An adjustment of the k-fold tree taking time O(M) by either a bounded
balance rotation (i.e., step 6) or an application of the procedure from Lemma will
decrease A by at least I)(M).

C) No other aspect of Theorem 5’s procedure (steps 2, 3, or 7) will increase A.
Clearly Ac initially equals zero, since Tr(2) is initially empty. Since Ac cannot go

negative, observations (A) through (C) imply that the aggregate time consumed by all
executions of step 6 and the Lemma 5 procedure during a sequence of n commands
is O(n log2 N). These aspects of the insertion algorithm therefore satisfy the sequence-
average constraint O(log2 N), and the other aspects satisfy an even tighter constraint
O(log S), by 5. Q.E.D.
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Remark 7. The result above, combined with 5 and [WiLu84], implies Ty(k)
meets all the complexities of Te(k), and additionally has a worst-case sequence-average
insertion complexity O(logk N) when deletions are absent. Ty(k)’s memory space is
greater than Te(k)’s by a small constant factor because of its two new pointers.

Acknowledgments. I would like to thank Eric Wolman and both referees for their
suggestions on presentation.
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ADDENDUM:
SIMPLE LINEAR-TIME ALGORITHMS TO TEST CHORDALITY OF

GRAPHS, TEST ACYCLICITY OF HYPERGRAPHS, AND SELECTIVELY
REDUCE ACYCLIC HYPERGRAPHS*

ROBERT E. TARJANf AND MIHALIS YANNAKAKIS"

Jack Edmonds (private communication) has raised the question of efficiently
finding an unchorded cycle irr a nonchordal graph. We can find such a cycle in O(n + rn)
time with the help of the chordality-testing algorithm of 2. We need a variant of
Lemma 4. Let G- (V, E) be a graph with vertices numbered from to n so that
property P holds (see Lemma 4). A violating triple is a triple of vertices u, v, w such
that u < v < w, { u, v} E, { u, w} E, and { v, w} E. A maximum violating triple is a
violating triple u, v, w that is lexicographically maximum with respect to the numbers
of u, v, and w. (Vertex u is chosen to be of maximum number, with a tie broken by
choosing v ofmaximum number, and a secondary tie broken by choosing w ofmaximum
number.)

LEMMA 6. Let G (V, E) be a graph, let a be an ordering of G with property P,
and let u, v, w be a maximum violating triple. Then there is a path from v to w containing
neither u nor any vertex adjacent to u except v and.w.

Proof. An ascending path is a path Xo, x, , Xk such that xi < xi+ for 0_-< < k.
Let X be the set of vertices containing u and all its adjacent vertices except v and w.
Let Y be the set of vertices reachable from v by an ascending pth containing no
vertices of X. Let Z be the set of vertices reachable from w by an ascending path
containing no vertices of X. If Y and Z contain a common vertex, the lemma is true.
Thus suppose Y t’) Z .

There can be no pair of vertices y Y, z Z such that {y, z} E, for y < z implies
z Y and y > z implies y Z. Let z be the maximum-numbered vertex in Y U Z.
Suppose z Z. (The case z Y is similar.) Let y be the maximum-numbered vertex in
Y, let Zo u, and let z w, z2," ", Zk Z be an ascending path from w to z containing
no vertices in U. For _<- -< k, z Z.

Let z, z+ be the pair such that z < y < zi+. Since {y, Z+l} E, Property P implies
the existence of a vertex x such that x > y, {x, y} E, and {x, z} E. If {x, u} E, then
x Y, contradicting the choice of y as the maximum-numbered vertex in Y. But if
{x, u} E, then since {x, z} E there must exist some j in the range 0<_-j < such that
{x, z} E and {x, z+} E. But then either z, x, z+ or z, Zj+l, x is a violating triple,
contradicting the choice of u, v, w as the maximum violating triple. We conclude that
Y f3 Z , i.e. the lemma is true. r

We can use Lemma 6 in the following way to find an unchorded cycle in a
nonchordal graph G. We number the vertices of G so as to satisfy P, e.g. by performing
a maximum cardinality search and numbering the vertices from n to 1. For each vertex
v we compute the follower f(v) of v. Applying the zero-fill-in test of 2, we find the
vertex u of maximum number such that, for some edge {u, w}, f(u)w and
{f(u), w}C:E. Then u, v=f(u), w is a violating triple; furthermore it is a violating
triple with u of maximum number, since the graph formed by deleting from G all
vertices numbered a(u) or lower must be chordal.

* This Journal, 13 (1984), pp. 566-579. Received by the editors May 29, 1984.

" AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
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Having found a violating triple with u of maximum number, we find the maximum
violating triple by finding all the edges {x,y} such that {u,x}E and {u,y}E,
lexicographically sorting them on the pair (min {a(x), a(y)}, max {a(x), a(y)}), and
scanning the sorted list to find the largest missing pair, i.e. the pair v, w such that
{u, v} E, {u, w} E, {v, w} E, v < w, and (a(v), a(w)) is lexicographically largest.
Then u, v, w is the maximum violating triple.

The last step is to extend the triple u, v, w to an unchorded cycle. To do this we
find a path of fewest edges from v to w that avoids u and vertices adjacent to u other
than v and w. Such a path exists by Lemma 6 and together with u, v, w forms an
unchorded cycle. The path can be found in O(n + m) time using breadth-first search.
Finding the maximum violating triple also takes O(n + m) time, giving a linear time
bound overall.
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PRIORITY SEARCH TREES*

EDWARD M. McCREIGHT"

Abstract. Let D be a dynamic set of ordered pairs [x, y] over the set 0, l, , k- of integers. Consider
the following operations applied to D:

(1) Insert (delete) a pair [x, y] into (from) D.
(2) Given test integers x0, xl, and yl, among all pairs Ix, y] in D such that xO<-x<-xl and y<-yl,

find a pair whose x is minimal (or maximal).
(3) Given test integers x0 and xl, among all pairs Ix, y] in D such that xO<-x<-xl, find a pair whose

y is minimal.
(4) Given test integers x0, x 1, and y l, enumerate those pairs Ix, y] in D such that x0 <_- x _<- x and y _-< y 1.
Using a new data structure that we call a priority search tree, of which two variants are introduced,

operations (1), (2), and (3) can be implemented in O(log n) time, where n is the cardinality of D. Operation
(4) is performed in at most O(log n+ s) time, where is the number of pairs enumerated. The priority
search tree occupies O(n) space.

Priority seach tree algorithms can be used effectively as subroutines in diverse applications. With them
one can answer questions of intersection or containment in a dynamic set of linear intervals. They can be
used in combination with a well-known plane-sweep technique, to implement off-line algorithms for
enumerating all intersecting pairs of rectangles. Priority search trees can also be used to implement
best-/first-fit storage allocation.

Key words, computational geometry, search trees, priority queues, intersection, intervals, rectangles,
storage allocation, concrete complexity

CR categories. 5.25, 3.74, 5.39

1. Introduction. Efficient multi-dimensional searching is one of the persistent
puzzles of computer science. Many lovely one-dimensional search structures with linear
space requirements and guaranteed logarithmic-time maintenance and search
algorithms have been discovered. But multi-dimensional structures with similar attrac-
tive properties continue to elude discovery.

We present here a new data structure, called a priority search tree, for representing
a dynamic set D of ordered pairs Ix, y] over the set 0, 1,. , k- of integers, and a
set of algorithms that operate on the priority search tree to implement the following
operations:

InsertPair (x, y): Insert a pair Ix, y] into D.
DeletePair (x, y): Delete a pair [x, y] from D.
MinXInRectangle (x0, xl, yl): Given test integers x0, x l, and y l, among all pairs

Ix, y] in D such that x0-< x <= x and y <_- y 1, find a pair whose x is minimal.
MaxXInRectangle (x0, xl, yl): Given test integers x0, x l, and y l, among all pairs

Ix, y] in D such that x0-< x _-< x and y <-y 1, find a pair whose x is maximal.
MinYInXRange (x0, xl): Given test integers x0 and x 1, among all pairs Ix, y] in

D such that x0-< x_-< x 1, find a pair whose y is minimal.
EnumerateRectangle (x0, xl, yl): Given test integers x0, x l, and y l, enumerate

those pairs Ix, y] in D such that x0 <_-x <_-x and y <_-yl.
This searching might fairly be described as 1.5-dimensional. The data has two

independent dimensions, but the priority search tree does not allow equally powerful
searching operations on both. There is a major dimension (x) permitting arbitrary
range queries, and a minor one (y) permitting only enumeration in increasing order.

* Received by the editors July 14, 1980, and in final revised form April 26, 1983.
t Xerox Corporation, Palo Alto Research Center, Palo Alto, California 94304.
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All the search rectangles have only three sides free; the fourth side is anchored at y0 0.
In 2 we present the simple radix priority search tree, and examine some of its

properties. In 3 we elaborate this to the balanced priority search tree. In 4 we
discuss a few of the applications to which these priority search trees can be put.

2. Radix priority search trees. First off, let us. simplify the problem somewhat. In
the following exposition we assume that the set D of pairs contains no duplicate x
values. A restriction like this might or might not occur naturally in a real application.
If not, we can work with a derived set D. consisting of a pair [F(x, y), y] for every
pair [x, y] in D. The function F is a/a invertible encoding function that maps pairs of
integers into single integers with the property that differences in x are more significant
than differences in y. For example, we might use the function F(x, y)-j*x / y, which
maps pairs of integers in the domain 0.. j- to single integers in the range 0.. j2_ _-<
k, 1. Other ways of implementing such a function F are left to the reader’s imagination.
If Ix, y] pairs are unduplicated in the original problem, then x values are unduplicated
in the derived problem. (Going even further, we could accommodate duplicated Ix, y]
pairs in the original problem by representing them as unduplicated pairs with associated
counts.)

The simple idea that underlies priority search trees is most easily seen from a
diagram. Suppose that you wanted to represent the set of pairs in Fig. so that
EnumerateRectangle could be executed efficiently on this representation. One good
way to do this is to select the pair Ix*, y*] with minimum y, write it at the root of a
binary data structure, divide the region in two with a line of constant x, and recursively
represent the remaining points in the two subregions in the two subtrees of the root
in the same manner.

If one divides the region along the line x x*, then the resulting data structure
is the Cartesian tree of Vuillemin [13]. This structure allows very good performance
in the average case, but its performance in the worst case is no better than a linear

T

0

FIG.

[x*,y*]
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list. For example, the set of pairs with x =y forces the data structure to degenerate to
a linear list.

Fortunately there is no compelling reason to divide the region along the line
x--x*. We define a radix priority search tree such that at each recursive level the
previous level’s x-interval is cut exactly in half (geographically). This is called a radix
bisection, and it has two important consequences.

The first is that after at most lg k levels of bisection in x, we encounter a stripe
in y that is one unit wide in x. By our nonduplication assumption, there can be at
most one pair in D within this stripe. Therefore, even though a radix priority search
tree might contain k pairs, it is at most lg k levels deep.

The other important consequence of radix bisection is that a node in a given
position in the radix search tree represents a fixed rectangle in x-y space. The only
way a pair enters or leaves one ofthese fixed rectangles is through an updating operation
involving that pair. Therefore no lateral data motion is ever required during updating
operations; an updating operation only moves down a single spine in the tree. This
fact enables a lg k time bound on updating operations.

2.1. Data structure. We can represent a radix priority search tree in Pascal as
follows:

CONST
k 30000;

(*Comfortable for a 16-bit 2’s complement machine*)
FirstKey 0;
LastKey k 1;
FirstNonKey LastKey+ 1;

TYPE
KeyRange FirstKey.. LastKey;
KeyBound FirstKey.. FirstNonKey;
Pair= RECORD x, y: KeyRange END;
RPSTPtr ’RPST;
RPST=RECORD

p: Pair;
left, right: RPSTPtr
END;

A radix priority search tree is characterized by a fidelity condition and two data
structural invariants. The fidelity condition asserts that if the tree is representing a set
D of pairs, then each pair of D will appear in the p field of exactly one node (or
RPST record) of the tree. Thus a tree representing a set of n pairs occupies O(n)
words of storage, where each word is O(log k) bits long. In conventional algorithm-
analytic terms, a radix priority search tree is a linear-space data structure.

The first invariant is a priority queue invariant on y-values. It asserts that for any
node t in a radix priority search tree, if t.left is not NIL then t.p.y <= t.left’.p.y, and if
t.right is not NIL then t.p.y<=t.right’.p.y. This first invariant constrains only direct
ancestor-descendant relations" it does not constrain sibling relations at all.

The second invariant is a radix search tree invariant on x-values. It asserts that
associated with each node t in a radix priority search tree is an x-interval [lower.. upper)
(this notation denotes all integers between lower and upper, including lower and
excluding upper) within which t.p.x lies. The x-interval associated with the root of
the radix search tree is the interval KeyBound. For any node t such that t.left is not
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NIL, the x-interval associated with the node t.left’ is [lower.. floor((lower+upper)/2)).
For any node t such that t.right is not NIL, the x-interval associated with the node
t.right’ is [floor((lower+upper)/2).. upper).

2.2. Algorithms. The complete radix search tree algorithms, represented in Pascal,
are presented in Appendix A, and the reader is encouraged to read the following in
parallel with Appendix A.

In all of these algorithms, two preconditions are assumed true, and their truth is
maintained in recursive calls. The first precondition is that the interval
|lowerX.. upperX) is nonempty; that is, that lowerX< upperX. To maintain the truth
of this first precondition in recursive calls, the algorithms depend upon our assumption
that no two pairs have the same x-value. The second precondition is that whenever a
procedure takes an |x0.. xl| argument range as a parameter, the procedure is only
called if the interval Ix0.. xl| shares at least one integer in common with the interval
[lowerX.. upperX).

First consider the InsertPair procedure. To insert a new pair, we begin at the root
of the priority search tree. First we discover whether the new pair "beats" the pair
already sitting at the root, in the sense that its y-value is smaller. If not, then the new
pair is inserted recursively into either the left or right subtree, determined by its x-value.
Otherwise, the new pair belongs at the root, so the pair that originally lay at the root
is saved, the new pair is put there instead, and the saved pair is inserted recursively
into the subtree determined by its x-value.

DeletePair operates in two distinct phases. The first phase locates the pair to be
deleted and it operates as a search in an ordered search tree. Once the pair to be
deleted has been located its deletion leaves a hole, which is filled by a priority queue
tree selection (or a "knock-out tournament") phase [1], in which a pair of brothers
compete for the vacated spot formerly occupied by their father, and then the sons of
the victor compete for his former spot, and so on. The second phase completes when
the vacant spot has fewer than two sons.

Consider MinXInRectangle applied to a subtree rooted at node t. If t.p.y lies above
the top of the constraint rectangle, then because a priority search tree is a priority
queue in y, no pair in the subtree rooted at t lies within the constraint rectangle.
Otherwise, the solution might be found in the left subtree. If no pair in the left subtree
lies within the constraint rectangle, then (and only then) the solution might be found
in the right subtree. This is because every constrained pair in the left subtree is better
than any constrained pair in the right subtree. Finally, if t.p lies within the constraint
rectangle, then it might or might not be the correct solution, depending on whether it
is better than the best constrained pair found in a subtree. MaxXInRectangle is entirely
symmetric in x.

Next consider MinYInXRange applied to a subtree rooted at node t. If t.p lies
within the constraint x-interval, then because a priority search tree is a priority queue
in y, t.p is the correct solution. Otherwise, the solution, if it exists, is the better of the
solutions of the two subtrees. The tests of middleX against x0 and xl simply guarantee
that subtrees that are certain to be fruitless are not explored. These tests also maintain
the truth of the second precondition in recursive calls.

Finally, EnumerateRectangle is a depth-first enumeration that calls the function
Report whenever a pair is found within the constraint rectangle. Report returns TRUE
if the enumeration should continue, and FALSE if it should terminate.

Each of these procedures is called at the top level with t’ being the root of a radix
priority search tree, and with lower being FirstKey and upper being FirstNonKey.



PRIORITY SEARCH TREES 261

2.3. Execution time analysis. The logarithmic time bounds can be seen from the
recursive structure of the algorithms. Each recursive level of InsertPair is called on a
node with a [lower.. upper) interval, and makes at most one recursive call on InsertPair,
handing it a son node with a [lower.. upper) interval at most half as large. The recursion
must stop before the size of this [lower.. upper) interval shrinks to zero. This implies
a bound of lg k on the depth of recursion and the number of nodes visited, and the
same order found on running time. An identical analysis applies to DeletePair.

The analyses of MinXInRectangle (and, symmetrically, MaxXInRectangle),
MinYInXRange, and EnumerateRectangle are more complicated because each some-
times calls itself recursively on both sons of a tree node. How many nodes can these
procedures visit? We begin to answer this question by classifying tree nodes according
to how their [lower..upper) intervals, denoted by (), compared with the interval
Ix0.. xll, denoted by {}. There are six such classes:

1: (){}, 2: {}(), 3: ({}), 4: ({)}, 5: {(}), and 6: {()}.

Neither MinXlnRectangle nor MinYlnXRange ever visits nodes in classes or 2;
this is prevented by the second precondition. The second data structure invariant
guarantees at most lg k nodes in each of classes 3, 4, and 5, so every one of these
nodes could be visited without violating a logarithmic time bound. Finally, there can
be a very large number of nodes in class 6, but these nodes can be grouped into
maximal subtrees that are sons of nodes in classes 4 or 5, at most one such son each,
so there are at most 2 lg k of these maximal subtrees. Within each of these class-6
subtrees, any t.p.x lies within the interval Ix0.. xl], so MinYlnXRange will be prevented
by its second IF statement from exploring beyond the roots of these maximal subtrees.
This shows a time bound for MinYlnXRange that is logarithmic in k.

An identical argument applies to EnumerateRectangle on all node classes except
6. In each of the class-6 maximal subtrees, beyond that subtree’s root level
EnumerateRectangle can visit a node only if the pair in the node’s father was Report’ed.
It follows that if EnumerateRectangle in fact enumerates s pairs, it runs in a time bound
of lg k+ s. This is true whether or not the enumeration is terminated by the Report
function.

The operation of MinXlnRectangle is more subtle, because MinXInRectangle
might find its answer deep in a subtree of class-6 nodes. The key observation is
that once a single recursive instance of MinXlnRectangle succeeds (in the sense that
it returns a valid CondPair), there will be no further recursive calls of MinXInRectangle,
and all currently active recursive invocations (of which there can be at most lg k, the
length of the longest path in the tree) will succeed. In other words, a top-level call to
MinXInRectangle will generate some number of recursive invocations applied to various
nodes of the tree that will fail, plus at most lg k invocations applied to other nodes
that will succeed. Now how many recursive invocations might fail? We observe that
whenever MinXlnRectangle will fail when applied to a class-6 node, then it will fail
on its second IF statement, in constant time and without making any further recursive
calls. Thus a loose count concludes that MinXlnRectangle can encounter at most 3 lg k
nodes of classes 3, 4, and 5, and at most lg k successful nodes, and therefore at most
4 lg k other (failed) class-6 nodes. This confirms a time bound for MinYInXRange that
is logarithmic in k. Closer reasoning tightens the constants considerably.

I have tried to code the procedures in Appendix A for clarity. There are several
straightforward program transformations that would improve execution time by sig-
nificant constant factors. The most important of these replace recursion with iteration
and division by 2 with a binary shift.
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Another important optimization reduces the number of unary (nonbinary) nodes
within the tree in many applications. One way of thinking about the algorithms in this
section is that a search for x is steered left or right through the tree by the sequence
of bits in the binary representation of x, one bit per left/right decision. The definition
of RPST can be augmented with a bit count field to allow a single left/right decision
to consume several bits of the binary representation of x, thereby eliminating unary
nodes for the intermediate bits. Depending on the application, this optimization can
result in large reductions of average path length,, with attendant improvements in speed.

3. Balanced priority search trees. Careful consideration of the literature on search
structures suggests that when a radix structure permits certain opeations to be per-
formed in certain asymptotic time bounds, there almost always exists a parallel balanced
comparative structure (that is, a structure within which order may be inferred only by
comparing with keys that are present in the structure) that permits the same operations
to be performed in the same asymptotic time bounds. It would be a surprise and a
disappointment if this observation did not also hold true for priority search trees.

Fortunately, it does hold true. The structure of a balanced priority search tree
node can be expressed in Pascal as follows:

TYPE
BPSTPtr ’BPST;BPST RECORD

p, q: Pair;
p, q: Pair;
validP, duplQ: BOOLEAN;
left, right: BPSTPtr;
balance: BalanceInfo (*appropriate to the

underlying tree form chosen*)
END;

A balanced priority search tree is characterized by a fidelity condition and four
data structural invariants. The fidelity condition asserts that if the tree is representing
a set D of pairs, then each pair of D will appear in the q field of exactly one node of
the tree. Thus a balanced priority search tree is also a linear-space data structure.

In a BPST node, unlike a RPST node, two pairs can be recorded" the pair q is
chosen for its near-median x-value, while the pair p is chosen for its minimal y-value.
Two pairs are necessary because, as we saw in 2, for some sets of pairs it is impossible
to satisfy both criteria with the same pair. Any pair Ix, y] in D appears as the q field
of exactly one node t, and may also appear as the p field of at most one ancestor.node
of t.

The first structural invariant is a standard search tree invariant on q.x. It asserts
that with each node t in a balanced priority search tree is associated a. search key
interval Ix0.. xl) containing t.q.x, and also containing t.p.x" if t.validP is true. The
x-interval associated with the root of the search tree is KeyBound. For any node t, if
t.left is not NIL, then the x-interval associated with the node t.left’ is Ix0..-t.q.x).
Similarly, if t.right is not NIL, then the x-interval associated with the. node t.right’ is
|t.q.x.. xl).

The second structural invariant is a priority queue invariant on p.y. Let t be any
node in a balanced priority search tree, and let a be a proper ancestor of t, and d a
proper descendant of t. If {a.p}_{d.q} then t.validP is FALSE. Otherwise t.validP is
TRUE, and t.p is a pair chosen from {d.q}-{a.p} so that t.p.y is minimal. In other words,
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t.l. is a pair with minimal y that appears as the 1 field of one of t’s descendants and
does not appear as the p field of any of t’s ancestors. If no such pair exists, t.valitIP
is FALSE. It is easy to show that if valitIP is FALSE at t, it is FALSE at all of t’s
descendants as well. Conversely, if valilP is TRUE at t, it is TRUE at all of t’s ancestors
as well.

The third structural invariant specifies the tlullQ field. It asserts that the field
tAuplQ is TRUE if and only if there is some proper ancestor node a of t such that
a.valitlP TRUE and a.l t.l. This field allows our algorithms easily to avoid duplicate
enumeration of pairs.

The fourth and final structural invariant is a balance invariant inherited from
whatever underlying form of balanced tree is chosen. This invariant is usually a relation
between weights or path lengths in the left and right subtrees of a node, or on the
sequence of "colors" on arcs leading to the node.

The operation necessary for maintaining balance in all known forms of balanced
comparative tree is some form of "rotation." [1, p. 454] This is a way of moving some
"weight" from the "heavier" subtree of a node to the "lighter" one, thereby preserving
the balance invariant that guarantees a maximal path length at most logarithmic in
the number ofnodes. The BalaneeInfo field in the type of definition allows determination
of when and where to do these rotations.

Figure 2 shows the standard picture of a single rotation. Lower-case letters indicate
points along the x-value line, and also tree nodes whose q.x fields contain those points.
Upper-case letters indicate intervals on this line, and also subtrees containing nodes
whose l.X and tl.x fields lie within those intervals. All intervals are assumed to include
their lower endpoint, and exclude their upper one.

During the priority search tree rotation, the q fields remain unchanged, just as
they would in an ordinary balanced tree rotation. The interesting question is, what
happens to the l fields? First of all, it is clear that node c can use node e’s original p
field, because it represents the "best" pair in the |a.. g) interval that is not represented
higher in the tree. Now, what happens to node c’s original i field, and where does the

FIG. 2
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new p field for node e come from? As luck might have it, c’s original p field might lie
in the interval D, and if so it would be a candidate for e’s new p field. But in the
general case we need to dispose of c’s old p field in one of c’s old subtrees, and to
extract a new p field for node e from one of its new subtrees.

Appendix B contains Pascal procedures for doing just that, along with skeleton
procedures for the balanced forms of InsertPair and DeletePair that manipulate the
p, q, validP and duplQ fields correctly but ignore re-balancing. The balanced forms of
the other algorithms are left as exercises for the interested reader.

The DisposeP and ExtractP procedures are each recursive down at most one path
in the tree, so their execution time is at most linear in the length of the longest path
in the tree. In a balanced tree, this longest path length is at most logarithmic in the
number of nodes in the tree. This means that in a balanced priority search tree
BalancedlnsertPair and BalancedDeletePair each run in logarithmic time, except for
rotations, and that at most logarithmic extra time is needed for a single rotation.

To attain an overall logarithmic time bound, the number of rotations per updating
operation must be bounded by a constant. The usual families of balanced tree, such
as AVL [1, pp. 451-458], weight-balanced [1, p. 468], and B-tree [1, pp. 471-479], do
not guarantee such a bound. Fortunately there are at least two families that do guarantee
at most a constant (in fact, three) rotations per updating operation: 2-3-4 trees [14],
[15], [16], and the half-balanced binary trees of Olivie [2].

4. Applications. There are many real computer applications involving a large
number of data items where the size of the computer to be used mandates a linear-space
data structure. All of the applications below require space only linear in the number
of data items. In several cases algorithms are known with smaller asymptotic time
bounds (generally by a factor of log n) but larger space requirements (generally by
the same factor) 10].

In all of the two-dimensional applications below, line segments are taken to be
parallel to the x- or y-axis. In my own applications this restriction is not a serious
one. But for others it may be, and it is not known in general how essential this restriction
is for the existence of fast algorithms.

4.1. On-line intersections in a dynamic set of linear intervals. We can use a priority
search tree to represent a dynamic set of linear intervals, letting the x-value of the pair
represent the upper endpoint of an interval, and letting its y-value represent the lower
endpoint. To enumerate all intervals that share at least one point with a test interval
[u.. v|, we use the EnumerateRectangle algorithm to enumerate all pairs whose x-value
lies in the interval |u.. LastKey] and whose y-value lies in the interval [FirstKey.. vl.
If the set contains n intervals, then the structure to represent it requires O(n) space,
a new interval can be added or an old one deleted in O(log n) time, and all s intervals
in the set that intersect a test interval can be enumerated in O(log n + s) time. Results
almost as good as this have been discovered previously by McCreight [3] and Guibas
and Saxe [4], and independently by Edelsbrunner [5], [6]. The improvement over [3]
and [5] is that here the parameter k can be ignored because balanced priority search
trees are used. The improvement over [4] and [6] is that here the time bound applies
to each operation individually, rather than to an average taken over a sequence of
operations.

4.2. On-line containments in a dynamic set of linear intervals. With exactly the
same data structure we can enumerate all intervals that completely contain a test
interval [u.. v] by using the EnumerateRectangle algorithm to enumerate all pairs whose
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x-value lies in the interval Iv.. LastKey] and whose y-value lies in the interval [First-
Key.. u]. If the set contains n intervals, then all s intervals in the set that contain a
test interval can be enumerated in O(log n + s) time. This is thought to be a new insult.

4.3. On-line visibility in a dynamic set of semi-infinite line segments. Suppose one
has a dynamic set of semi-infinite line segments beginning at points Ix, y] and extending
upward in y. From a given point Ix’, y’], which of these line segments would be visible
along a line of increasing x? To solve this problem one can represent the endpoints
of the semi-infinite lines as Ix, y] pairs in a priority search tree. One could either think
of the line segments as being translucent or opaque. In the former case, the solution
is all pairs in the rectangle bounded on the left by x x’ and above by y y’, which
can be enumerated by EnumerateRectangle in O(log n + s) time. In the latter case, the
solution is the single pair within th/t rectangle whose x is minimal, which can be
produced by MinXlnRectangle in O(log n) time.

4.4. On-line visibility in a dynamic set of line segments. Relaxing the restriction in
the previous problem that the line segments be semi-infinite gives the problem an
additional degree of freedom. To deal with this extra degree of freedom we adapt a
previous technique [3], [5] that recursively bisects the y-space, dividing the line segments
at each level into three classes" segments that lie entirely above the bisector, segments
that lie entirely below it, and segments that are cut by it. Segments that are not cut by
the bisector are represented in deeper recursive levels. Segments that are cut by the
bisector are represented in two priority search trees" one representing the pieces of
the cut segments below the bisector, and one representing those above. In each of
these two priority search trees the line segments are now semi-infinite, because they
extend to the limit of the (reduced) y space. Therefore the solution from 4.3 carries
over for each recursive level, and there are log k such levels, so the translucent (opaque)
problem can be solved in O(log n log k(+ s)) time. This is also thought to be a new
result.

4.5. On-line point containment in a dynamic set of rectangles. We apply recursive
bisection one more time, this time in x. For those rectangles cut by the bisector, we
now consider their left and right bisected pieces. These are symmetric, so we describe
only how to deal with the right-hand pieces. Each of these rectangular pieces is
completely described by the line segment of constant x that is its right-hand side,
because its left-hand side is the bisector. The set of these right-hand sides can be
handled as in 4.4 above. A point is in one of these rectangular pieces whenever the
right-hand side of the piece is visible along a line of increasing x from the point.
Therefore the solution is simply log k iterations of the solution of 4.4 above, and
one can enumerate the set of all rectangles in a dynamic set of rectangles that contain
a test point in O(log n log2 k+ s) time, a further new result. By now the reader can
see how to extend this indefinitely, so we shall next consider a different class of
applications.

4.6. Off-line intersections among a set of rectangles. We can enumerate all intersect-
ing pairs among a set of axis-aligned rectangles (rectangles with sides parallel to the
axes) by using the plane sweep technique first proposed by Shamos and Hoey [7]. This
technique simulates the motion of a horizontal line across a plane from bottom to top,
and considers the sequence of cross-sectional slices induced by this line.

For aligned rectangles a cross-sectional slice is a set of horizontal intervals. As
the sweep line moves upward onto a new rectangle, that rectangle’s horizontal interval
is added to the set. As the sweep line moves upward off a rectangle, that rectangle’s
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horizontal interval is removed from the set. Every time a new horizontal interval is
added to the set, an enumeration is made of all other intervals in the set that touch
the new interval.

We now analyze the performance of the rectangle intersection algorithm somewhat
more carefully. The sweep technique requires that the rectangles be sorted by their
bottom edges, and that their top edges be maintained in a priority queue. For n
rectangles this takes O(n) space and O(n log n) time. The priority search tree operations
can be done in O(n) space and O(log n+ s) time apiece. Each rectangle causes one
InsertPair, one DeletePair, and one EnumerateRectangle operation. Moreover each
rectangle intersection is discovered by exactly one EnumerateRectangle operation, and
therefore contributes to the s of that operation. Thus the overall time performance is
O(n log n + s). This performance, which has been achieved before with more complex
data structures [5], [10], is within a constant factor of the best possible worst-case
performance.

An application like circuit extraction from IC masks might involve rectangles of
several colors, and be concerned only with intersections between.rectangles of different
colors. For this purpose one could have a different priority search tree for each color.
As the sweep line passes the bottom edge of a red rectangle, for example, the correspond-
ing red horizontal interval would be inserted into the red priority search tree, while
the same interval would be used in a EnumerateRectangle operation on every nonred
priority search tree. Now arbitrary intersection patterns of red with red rectangles do
not increase the time beyond O(n log n). The s term counts only the number of
inter-color intersections.

4.7. Memory allocation. Many computer operating systems satisfy dynamic
requests for memory according to a first-fit (use the free block of adequate size at the
smallest address) or a best-fit (use the smallest free block of adequate size) policy.
One might imagine that a synthesis of these two policies could perform better than
either one separately, but at first glance it is not apparent how to organize the free
blocks into a single space-efficient structure that will allow the time-efficient
implementation of either policy.

Now consider a priority search tree (of either kind, but one would probably want
to use the radix kind), where the x dimension is an encoding of [free block length,
free block address] for uniqueness (see 2) and the y dimension is the free block
address. Best-fit can be implemented using only the search tree part of the radix search
tree in the obvious way. A first-fit implementation uses MinYlnXRange on an x. range
of [neededBlockSize.. largestPossibleBlockSize]. Each of these operations, as well as
insertion or removal of free blocks in the structure requires at most logarithmic time.
The extra space requirements are minimal: a radix priority search tree for this purpose
requires that each free block contain two pointers and a field to hold the length of the
free block.

A result similar to this is attributed to McCreight in [2], and that earlier data
structure bears a striking resemblance to a priority search tree. The difference between
them is that in the earlier structure, the pair whose y-value is minimal in a subtree not
only appears at the root of the subtree, but might also be repeated on a spine all the
way down to a leaf of the subtree. In a priority search tree, as in a proper priority
queue, pairs are not repeated. The effect of this is that the earlier structure and the
priority search tree perform equally well (within constant factors) for all operations
except EnumerateRectangle, but the O(long n + s) time bound for EnumerateRectangle
cannot be attained with the earlier structure. This is because in the earlier structure
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enumerations can encounter the same pairs over and over again, often enough.to ruin
linearity in s.

5. Open questions. The question that led me from tile trees [3] to priority search
trees remains unanswered. I still do not know whether it is possible, for an arbitrary
set of n aligned rectangles, to enumerate all s pairs that totally contain one another
in linear space and time O(n log n+s). The methods in this paper allow one to
determine containment on three edges, but alas, three edges do nota rectangle make.

Priority search trees are one small step closer to the. ultimate goal of general
two-dimensional range searching in linear space and logarithmic worst-case time. Is
that ultimate goal attainable? If not, or if we cannot discover how, are there further
small but useful steps?

Priority search trees are an interesting case of two data structures (a search tree
and a priority queue) in symbiosis, defined as "the living together of two dissimilar
organisms, especially when this association is mutually beneficial." Are there other
pairs of data structures that also benefit from symbiosis?
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Appendix A. Pascal procedures for radix priority search trees.

PROCEDURE InsertPair(VAR t: RPSTPtr; newPr: Pair;
lowerX: KeyRange; upperX: KeyBound);
VAR

p: Pair;
middleX: KeyRange

BEGIN
IF t NIL THEN

BEGIN
NEW(t); (" add a new leaf node ")
t.p := newPr;
t.left := NIL;
t.right := NIL;
END

ELSE IF t.p.x <> newPr.x (* assumes unique x values ")
THEN
BEGIN
IF newPr.y < t.p.y THEN (* new pair beats existing one ")

BEGIN p := t.p; t.p := newPr END
(* exchange new/existing ")

ELSE p := newPr;
middleX := (lowerX+upperX) DIV 2;
IF p.x < middleX

THEN InsertPair(tt.left, p, lowerX, middleX)
ELSE InsertPai r( t*, right, p, middleX, upperX);

END;
(* ELSE this pair already present, so don’t insert it *)
END; (* of InsertPair ")
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PROCEDURE DeletePair(VAR t: RPSTPtr; oldPr: Pair;
lowerX: KeyRange; upperX: KeyBound);
VAR

middleX: KeyRange
BEGIN
IF t <> NIL THEN

BEGIN
IF tt.p.x oldPr.x (* assumes unique x values *)

THEN
BEGIN (" have located pair to delete ")
IF tt.left <> NIL THEN

BEGIN
IF t.right <> NIL THEN

BEGIN (" node has both left and right subtrees ")
IF t,.left.p.y < t.rightt.p.y THEN

BEGIN (" left beats right ")
t.p := t.lefte.p;
DeletePai r( t, left, tt.p, lowerX, upperX);
END

ELSE
BEGIN (" right beats left ")
ts.p := t,.right,.p;
DeletePair(t.right, tt.p, lowerX, upperX);
END;

END
ELSE

BEGIN (" node has only left subtree ")
t,.p := t,.left,.p;
DeletePair(t,.left, tt.p, lowerX, upperX);
END;

END
ELSE

BEGIN
IF t.right <> NIL THEN

BEGIN (* node has only right subtree *)
te.p := t.righte.p;
DeletePair(tt.right, te.p, lowerX, upperX);
END

ELSE
BEGIN (" node has no subtrees ")
DISPOSE(t);
t := NIL;
END;

END;
END

ELSE
BEGIN (" pair to delete is in a subtree *)
middleX := (lowerX+upperX) DIV 2;
IF oldPr.x < middleX

THEN DeletePair(t.left, oldPr, lowerX, middleX)
ELSE DeletePair(t,.right, oldPr, middleX, upperX);

END;
END;

(* ELSE this pair wasn’t in the tree so it can’t be deleted ")
END; (* of DeletePair ")
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TYPE CondPair RECORD
valid: BOOLEAN;
p: Pair;
END;

FUNCTION MinXInRectangle(t: RPSTPtr; xO, xl, yl: KeyRange;
lowerX: KeyRange; upperX: KeyBound): CondPair;
VAR

c: CondPai r"
middleX: KeyRange

BEGIN
IF t <> NIL THEN

BEGIN
IF t.p.y > yl THEN

(* No nodes in this subtree lie in the search
rectangle, because they all have y-values that are
too large. ")
c.valid := FALSE

ELSE
BEGIN
middleX := (lowerX+upperX) DIV 2;

IF xO < middleX THEN
(* The answer can only lie in the left subtree
if some point in the search rectangle
could lie in the left subtree. *)
c := MinXInRectangle(t.left, xO, xl, yl,

lowerX, middleX)
ELSE c.valid := FALSE;

IF (NOT c.valid) AND (middleX <= xl) THEN
(* The answer can only lie in the right subtree
if no point in the left subtree lies in the search
rectangle, but some point in the search rectangle
could lie in the right subtree. *)
c := MinXInRectangle(t.right, xO, xl, yl,

middleX, upperX);

IF (xO <= t.p.x) AND (t.p.x <= xl) AND
((NOT c.valid) OR (t.p.x < c.p.x)) THEN
(* t.p is best of all in the search rectangle ")
BEGIN
c.valid := TRUE;
c.p := t.p;
END;

END
END

ELSE c.valid := FALSE; (" empty subtree ")
MinXInRectangle := c;
END; (* of MinXInRectangle ")
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FUNCTION MaxXlnRectangle(t: RPSTPtr; xO, xl, yl: KeyRange;
lowerX: KeyRange; upperX: KeyBound): CondPair;
VAR

c: CondPai r;
middleX: KeyRange

BEGIN
IF t <> NIL THEN

BEGIN
IF t.p.y > yl THEN

(* No nodes in this subtree lie in the search
rectangle, because they all have y-values that are
too large. ")
c.valid := FALSE

ELSE
BEGIN
middleX := (lowerX+upperX) DIV 2;

IF middleX < xl THEN
(* The answer can only lie in the right subtree
if some point in the search rectangle
could lie in the right subtree. *)
c := MaxXInRectangle(t.right, xO, xl, yl,

middleX, upperX)
ELSE c.valid := FALSE;

IF (NOT c.valid) AND (xO <= middleX) THEN
(* The answer can only lie in the left subtree
if no point in the right subtree lies in the search
rectangle, but some point in the search rectangle
could lie in the left subtree. *)
c := MaxXlnRectangle(t.left, xO, xl, yl,

lowerX, middleX);

IF (xO <= t.p.x) AND (t.p.x <= xl) AND
((NOT c.valid) OR (c.p.x < t.p.x)) THEN
(* t.p is best of all in the search rectangle *)
BEGIN
c.valid := TRUE;
c.p := t,.p;
END;

END
END

ELSE c.valid := FALSE; (* empty subtree *)
MaxXInRectangle := c;
END; (* of MaxXInRectangle *)
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FUNCTION MinYlnXRange(t: RPSTPtr; xO, xl: KeyRange;
lowerX: KeyRange; upperX: KeyBound): CondPair;
VAR

c, cRight: CondPair;
middleX: KeyRange

BEGIN
IF t <> NIL THEN

IF (xO <= t.p.x) AND (tt.p.x <= xl) THEN
(" This node’s p pair lies in the x range, and it must
be the min y in its subtree because of the priority
queue invariant on y. ")
BEGIN
c.valid := TRUE;
c.p := t.p;
END

ELSE
BEGIN
middleX := (lowerX+upperX) DIV 2;

IF xO < middleX THEN c :=
MinYlnXRange(t.left, xO, xl, lowerX, middleX)

ELSE c.valid := FALSE;

IF middleX <= xl THEN cRight ::
MinYlnXRange(t.right, xO, xl, middleX, upperX)

ELSE cRight.valid := FALSE;

IF NOT c.valid OR
(cRight.valid AND (cRight.p.y < c.p.y)) THEN

c := cRight;
END

ELSE c.valid := FALSE; (" empty subtree ")
MinYInXRange := c;
END: (" of MinYInXRange ")

FUNCTION EnumerateRectangle(t: RPSTPtr; xO, xl, yl: KeyRange;
FUNCTION Report(Pair): BOOLEAN;
lowerX: KeyRange; upperX: KeyBound): BOOLEAN;
VAR

continue: BOOLEAN;
middleX: KeyRange;

BEGIN
IF t <.> NIL. THEN

IF t.p.y <= yl THEN
BEGIN (" node passes y test ")
IF (xO <= t.p.x) AND (t.p.x <= xl) THEN

continue := Report(t.p)
ELSE continue := TRUE;
middleX := (lowerX+upperX) DIV 2;
IF continue AND (xO < middleX)

THEN
continue := EnumerateRectangle(t:.left, xO, xl, yl,

Report, lowerX, middle.X);
IF continue AND (middleX <= xl)

THEN
continue := EnumerateRectangle(t.right, xO, xl, yl,

Report, middleX, upperX);
EnumerateRectangle continue"
END

ELSE EnumerateRectangle := TRUE (" node fails y test ")
ELSE EnumerateRectangle := TRUE; (" empty subtree ")
END; (* of EnumerateRectangle *)
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Appendix B. Pascal procedures for balanced priority search trees.

PROCEDURE BalancedInsertPair(VAR t: BPSTPtr; newPr: Pair;
useAsP: BOOLEAN);
BEGIN (" Top-level call has useAsP TRUE ")
IF t

B
N
t
t
t
t
t
t

E
ELSE

BEGI
IF u

B
D
t
t

IF

Adj

END
END;

NIL THEN
EGIN (" put newPr iB the q field of a new leaf node ")
EW(t);
t.q := newPr;
t.left := NIL;
t.right := NIL;
.validP := FALSE;
.dupIQ := NOT useAsP;
.balance := leafBalance

(" depends on tree family ")
ND

N
seAsP AND ((NOT t.validP) OR (newPr.y < tt.p.y)) THEN
EGIN (" newPr belongs in t.p ")
isposeP(t)
.p := newPr;
.validP := TRUE;

useAsP := FALSE;
END;
newPr.x < tt.q.x
THEN BalancedInsertPair(t.left, newPr, useAsP)
ELSE BalancedInsertPair(t.right, newPr, useAsP);
ustBalanceForInsert(t)
(* implementation varies by tree family ")

(" of BalancedInsertPair ")

PROCEDURE BalancedDeletePair(VAR t- BPSTPtr" oldPr" Pair).

TYPE
ExtractedPair RECORD

q: Pair;
duplAsP. BOOLEAN (" q appears as p field higher in tree *)
END;

VAR
n" ExtractedPair"
d: BPSTPtr;

FUNCTION ExtractMaxQX(VAR t: BPSTPtr): ExtractedPair;
VAR

d: BPSTPtr;
BEGIN (" extract the pair with maximal q.x in t ")
IF tt.right NIL THEN

BEGIN
ExtractMaxQX.q := tt.q;
ExtractMaxQX.dupIAsP := t.dupIQ;
DisposeP(tt)
d t"
t := t.left;
DISPOSE(d)
END

ELSE
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BEGIN
ExtractMaxQX := ExtractMaxQX(tt.right);
IF ExtractMaxQX.dupIAsP AND tt.validP

AND (t.p ExtractMaxQX.q) THEN
BEGIN
ExtractMaxQX.dupIAsP := FALSE;
ExtractP(t)

(* re-fill invalidated p field if possible ")
END;

AdjustBalanceForNeighborExtract(t)
(* implementation varies by tree family ")

END
END; (* of ExtractMaxQX ")

BEGIN
IF t <> NIL THEN

BEGIN
IF te.q oldPr THEN

(* have located node whose .q field is oldPr ")
BEGIN
DisposeP(te)
IF (t.left NIL) OR (tt.right NIL) THEN

(* t has at most one subtree and can
be bypassed *)

BEGIN
d "=t"
IF t.left NIL

THEN t := t.right
ELSE t := t.left;

DISPOSE(d);
END

ELSE

(* tt has both subtrees. We must find
a neighboring pair n.q that can
replace tt.q without violating x-order. ")
BEGIN
n := ExtractMaxQX(tt.left);
tt.q := n.q;
t.dupIQ := n.dupIAsP;
ExtractP(tt)

(* re-fill invalidated p field if possible *)
END;

END
ELSE

BEGIN (* oldPr must be a .q field in a subtree ")
IF oldPr.x < tt.q.x

THEN BalancedDeletePair(t.left, oldPr)
ELSE BalancedDeletePair(tt.right, oldPr);

IF te.validP AND (t.p oldPr) THEN
ExtractP(t)

(* re-fill invalidated p field if possible ")
END;

AdjustBalanceForDelete(tt)
(* implementation varies by tree family *)
END

(" ELSE this pair wasn’t in the tree so it can’t be deleted
END; (* of BalancedDeletePair *)
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PROCEDURE RotateRight(VAR t: BPSTPtr);
VAR

e, c: BPSTPtr;
BEGIN (* implements the rotation in Figure 2 *)
e :: t;
DisposeP(et)
c := et.left;
DisposeP(ct)
e.left c,.right"
ExtractP(e,)
ct.right := e;
ExtractP(c,)
AdjustBal anceForRotateRight(c)

(* implementation varies by tree family ")
t :: c;
END; (* of RotateRight ")

PROCEDURE DisposeP(VAR t: BPST);
BEGIN (* DisposeP can cause a temporary violation of the second

structural invariant, leaving a node in the middl.e of the tree
with an invalid p field while one of its children has a
valid p field. This violation is usually repaired by a
subsequent invocation of, ExtractP *)

IF t.validP THEN
BEGIN
IF t.p.x < t.q.x THEN

BEGIN (* dispose into left subtree *)
IF t.p t.left.q THEN

(* maintains third invariant, depends on
uniqueness of pairs in t ")
t.left,.dupl(} := FALSE

ELSE
BEGIN
DisposeP(t. left)
t.leftt.p := t.p;
t.left,.validP := TRUE;
END

END
ELSE

BEGIN (* dispose into right subtree ")
IF t.p t.right,.q THEN

(* maintains third invariant, depends on
uniqueness of pairs in t ")
t.right.dupIQ := FALSE

ELSE
BEGIN
DisposeP(t. right)
t.right.p := t.p;
t.right.validP := TRUE;
END

END;
t.validP := FALSE;
END

(" ELSE no p field to dispose ");
END; (" of DisposeP ")
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PROCEDURE ExtractP(VAR t: BPST);
CONST Worst LastKey+l;
VAR

leftY, rightY: FirstKey..Worst;
BEGIN
leftY := Worst;
IF t.left <> NIL THEN

BEGIN
IF t.leftt.validP THEN leftY := t.leftt.p.y;
IF NOT t.leftt.dupIQ THEN leftY := MIN(leftY, t.leftt.q.y);
END;

rightY := Worst;
IF t.right <> NIL THEN

BEGIN
IF t.rightt.validP THEN rightY := t.rightt.p.y;
IF NOT t.right.dupIQ THEN rightY := MIN(rightY, t.right.q.y);
END;

IF leftY < rightY THEN
BEGIN (* best is left *)
IF t.left.validP AND (leftY t.left.p.y) THEN

BEGIN (* steal his p field *)
t.p t.left.p;
ExtractP(t. lefte)
END

ELSE
BEGIN (* his q field is unduplicated and better,

so duplicate it *)
t.p := t.left.q;
t.left.dupIQ := TRUE;
END;

t.validP := TRUE;
END

ELSE IF rightY <> Worst THEN
BEGIN (" best is right ")
IF t.right.validP AND (rightY t.rightt.p.y) THEN

BEGIN (* steal his p field *)
t.p := t.right.p;
ExtractP(t. rightt);
END

ELSE
BEGIN (* his q field is unduplicated and better,

so duplicate it *)
t.p t.rightt.q;
t.rightt.dupIQ := TRUE;
END;

t.validP TRUE"
END

ELSE t.validP := FALSE; (* no candidates *)
END; (* of ExtractP *)
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ON THE COMPLEXITY OF MAINTAINING PARTIAL SUMS*

ANDREW C. YAO"

Abstract. Let F={(ri, si)lO<=i<n} be a file of n recordS, where ri are d-dimensional vectors and s
are elements of a commutative semigroup S. We are interested in the partial sum problem, in which queries
of the form "Y,r,a. s=?" are to be answered. A space-time tradeott t=f(logn/log(mlogn/n)) is
established for storing a static two-dimensional file. It will also be shown that, for the one-dimensional
problem, any dynamic algorithm must have a worst-case time f(n log n/log log n) in processing a sequence
O(n) INSERT and QUERY instructions.

Key words, complexity, lower bound, partial sum, range query, semigroup, space-time tradeott

1. Introduction. Consider a database that contains a collection of records, each
with a key and a number of data fields. Given a range query, which is specified by a
set of constraints on keys, the database system is expected to return the set of records,
or a certain function of the set of records, whose keys satisfy all the constraints. For
example, consider a geographic database in which the record for a city contains among
other items its location (as the key) and its population (as a data field). A range query
may ask for the total population of cities whose locations are within r miles of a certain
point; another possible range query may ask for the number of cities in a certain
region. There is an extensive literature on efficient algorithms for handling various
types of range queries (see, e.g., Bentley and Mauer [1 ], Lueker [8], Rivest [9], Willard
[10], [11]). As in all data structure problems, the optimality question (i.e., whether
one has found the best possible solution) is much harder to answer. Recently, an
interesting model was developed by Fredman [3]-[6] to discuss the inherent complexity
of some range query problems. Several elegant results were obtained which offered
insight into questions such as "why circular range queries seem more difficult to handle
than orthogonal range queries," and "why a sequence of O(n) instructions for d-
dimensional orthogonal range queries takes O(n(log n)u) time to process."

In this paper we consider range queries of a special type, the d-dimensional partial
sum queries, in the framework of Fredman’s. The keys are d-dimensional vectors, and
a query selects records whose keys are dominated componentwise by a certain vector.
We will establish, for d=2, a (storage) space-(retrieval) time tradeoff t=
l(log n/log (m log n/n)) for a static collection of n records. It will also be shown
that, for the one-dimensional case, any dynamic algorithm must use l(n log n!
log log n) time to process a sequence of O(n) insertions and queries in the worst case.

We remark that the space and time requirements for range queries have received
much attention [1], [2], [8], [9], [10], [11]. A discussion of space-time tradeoff
constraints for other types of range queries within the present framework can be found
in Yao [12]. We also mention that the complexity of the one-dimensional dynamic
partial sum query was also studied by Fredman [5] in a somewhat different model; his
results are incomparable to ours. Bentley and Shamos [2] discussed some algorithms
for partial sum queries, where the problem was called the ECDF problem (for Empirical
Cumulative Distribution Function).

* Received by the editors March 11, 1982, and in revised form October 11, 1983. This research was
done while the author was visiting the Computer Science Department, IBM San Jose Research Center,
5600 Cottle Road, San Jose, California 95193. This work was supported in part by the National Science
Foundation under grant MCS-77-05313-A01.

f Computer Science Department, Stanford University, Stanford, California 94305.

277



278 ANDREW C. YAO

2. Model and results. Let S be a commutative semigroup with an addition
operation "+". Let d _>- 1 be an integer, and let Za be the set of all d-tuples of integers.
A record (r, s) is a pair of key r Z and datum s S. A file F is a finite collection of
records. A partial sum query QUERY (a) is specified by a vector a Za. For a file
F {(ri, si)lO -< < n}, the response to QUERY (a) is defined to be resp (a; F) ,,__< s,
where r -< a means componentwise inequalities; we agree that resp (a; F) if there
exists no r =< a.

We are interested in the question "how efficiently can one implement partial sum
queries?". Two types of problems will be considered: the static problem in which the
file F is fixed, and the dynamic problem in which insertions of new records may take
place.

The static problem. Let F--{(ri, Si)lO<=i< tl} be a given file. We wish to store
the information in a way that partial sum queries can be answered quickly. Call an
expression Yi As a positive linear function if Ai are nonnegative integers. A storage
scheme 6f for F is a family of positive linear functions {Zl, ze,..., z,,} such that, for
any a Za, there exists an identity

(1) resp (a; F) Y
yv

valid for all values of si S, for some integers/x => 0 and V c__ {1, 2,..., m}. We will
interpret the right-hand side of (1) as if V . Let tF(a; 5) be the minimum IV]
for which resp (a; F) can be written in the form of (1); let tF(6e) =max tF(a; b). We
will omit the subscripts F in tF(a; 5) and te(5) when there is no danger of ambiguity.
We say that uses space m and time t(Se).

We emphasize that the keys ri in F are considered fixed, and identity (1) need
only be valid for this set of keys. However, the identity must be true for all possible
values of S - S.

All the above discussions are dependent on the semigroup S under consideration.
A storage scheme 5 for F {(ri, si[O<=i< n} with si S may not be a storage scheme
for F’ {(ri, sll0-<_ i< n} with sl S’, as will be clear from the next two examples.

Example 1. Let d 1, and S be the set of real numbers under the ordinary
addition "+". Assume f {(i, si)lO =< < n}. Then the collection
with zi o<_-j<i sj is a storage scheme. It is easy to verify that both the space m n
and time t(5)= 1 are minimum for any storage scheme.

Example 2. Let d => 1 be arbitrary, and S { b} with an addition operation defined
by b+ b b. For any file F {(ri, si)10=< < n} with sic S, the collection 5={z} with
z So is always a storage scheme.

The dynamic problem. Initially, the file F is empty. We wish to process a sequence
tr of instructions al, a2, , ap, where each ai is either of the two types: INSERT (r, s),
QUERY (a). The instruction INSERT (r, s) requires that F <- F k {(r, s)}, and
QUERY (a) asks that resp (a; F) be returned for the current F.

In the model we are considering, there is an infinite array of variables Zl, z2,....
An algorithm specifies how the instructions are to be implemented using these
variables. To process an instruction ai INSERT (r, s), one carries out a sequence of
operations fll, fl.,’",/l, where each /u is either of the form zy<-s or z<-
AZk + A’ Zk’(A, A’ >= 0 integers). To process an instruction ai QUERY (a), one carries
out fll, fl:,’",fl, where flu is of the form z-Azk+A’Zk,(A,A’>--O integers),
return (zy), or return (). The algorithms are fully adaptive: the number of operations
and the choice of the operations used to process an instruction can depend on the key
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values of the queries that have been processed so far. Note that QUERY (a) takes at
least tF(a; 5) operations to process, where F is the current file and is the collection
of contents of the variables used (one operation for return (zj), and tF(a; 5e)-1 to
get zj). The cost C(; ) is the total number of operations used to process the
sequence r.

As we discussed in Example 2, the problems may become trivial due to the trivial
nature of the semigroup S. We now define a class of semigroups for which the problem
is nontrivial. A commutative semigroup S is said to be faithful if, for every T1, T2
{1, 2," , n} and every integer , 6> 0,

i Ta j T2

cannot be an identity for all Sl, s2,’"’, sn S unless Ta T2. It is easy to verify that
the set of real numbers under the ordinary addition is faithful; so is the set of real
numbers under max {x, y} as the "addition" operation; so is the set S {0, 1} under
the logical "OR" as its addition.

On the other hand the semigroup {0, 1} with modulo 2 addition is not faithful.
We summarize below the main results of this paper. (All the logarithms will be

in base 2 unless explicitly indicated otherwise.)
THFORFM 1. There exists a constant y > 0 such that the following is true. Consider

the static partial sum problem for d 2 and a faithful commutative semigroup S. For
each n > 2, there exists a file F of n records such that any storage scheme using space
m >-_ n must have a time t_> y. log n/log (m log n/n).

TI-IZORFM 2. There exists a constant y’ > 0 such that the following is true. Consider
the dynamic partial sum problem for d 1 and a faithful commutative semigroup S. For
any algorithm s, there exists for each n a sequence r of 2n INSERT and QUERY
instructions such that C(o-; s/)_-> y’. n log n/log log n.

THFOZM 3. Let d > 1 be fixed. Suppose there is an algorithm for the dynamic
d 1)-dimensional partial sum problem, with an O( u(n)) processing time per instruction
(INSERT Or QUERY) when the current file contains n records. Then, for any given file
of n records with d-dimensional keys, there exists a storage scheme that uses space
O(nu(n)) and time O(u(n)).

We remark that Theorem 3 is valid without the faithfulness assumption. Also we
wish to point out that, when S is a group and the subtraction operation is allowed in
the implementation, the response to an orthogonal query ,<,,__<u s can be expressed
as a linear combination of partial sums (see Bentley and Shamos [2] for this observa-
tion). For example, when d 2,

E Si Si’- E Si-- E Si-- E Si,
a<ri--<b ri<=b riga ri<=(bl,a2) ri(al,b2)

where a (al, a2) and b (ba, b2). Theorem 3 is then also true for orthogonal queries
in this case.

3. Two-dimensional static-partial sums. Let n 2k be a power of 2. For each
integer 0 <-] < n, let jR be the integer with binary representation oflafl2"’" fig-a,
where flk-lflg-z’’" fllflO is the k-bit binary representation of j. Let B, denote the set
{b[0<_-] < n}, where b (], jR). Consider the file Fn {(b, si)lb B,}, where sj are
elements of a faithful commutative semigroup S. The aim of this section is to prove
the following theorem.

THEOREM 4. There exists a positive constant 3/ (independent of S) such that the
following is true. Let n 2k where k > 3 is an integer. Let.Sf be any storage scheme using
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space rn for file Fn, where m >= n. Then there exist at least n/4 {0, 1, 2,. , n- 1 }
with the property that, for some at (/, h(/)),

log n.t(a/; oq) )’"

log
rn

log n
n

It is perhaps curious to note that the set B,, when viewed as a permutation, arose
in another context of space-time tradeott [7].

Theorem 4 implies Theorem 1 for the case when n is a power of 2. Clearly, this
then implies Theorem 1 for all n. We will also use Theorem 4 in 4 in the proof of
Theorem 2.

3.1. Reductians. We prove Theorem 4 in a slightly different form. For each
aZ2, let A(a)=Bfq{blb-<a}. A structure for B,, is a family of subsets
{ T1, T2," , T,}, where T Bn, such that every A(a) can be written as LI i v. T for
some V(a)_ {1, 2,..., m}; let t’(a; -) be the minimum for which V(a) of size
exists. In particular, t’(a; -)=0 if A(a) =.

THEOREM 4’. There exists a positive constant 3’ such that the following is true. Let
rn >- n 2k where k > 3 is an integer. Let - be a structure for B,, with I -I m. Then
there exist at least n/4 {0, 1, 2,. , n- 1} such that there exist h(l) with

log n
t’((l, h(/)); -)>_- y."

log (-log n)"
We first show that Theorem 4’ implies Theorem 4. Given any storage scheme

for F,, we will construct a structure ff for B, such that [5r] [Y’I, and t’ (a; -) -<_ t(a;
for any a Z2. This clearly will demonstrate that Theorem 4’ implies Theorem 4.

For any positive linear function z Y.j hjsi, let W(z) {(j, jR)[Aj > 0} Bn. For a
given-.storage scheme 6e= {zl, z2,""", Zm}, define -= {W(z)ll _-< i=< m}. For any a
Z2, write

resp(a;F,)= 8izi
i V(z)

where 8i > 0 and v(a)l t(a; b). Using the definition of resp (a, F), we can write the
above equation as

E Sj E iZi-" E IjSj,
(j,jR)A(a) i V(a)

for some Aj, where Aj > 0 iff j W(zi) for some i V(a). This means

A(a)= LI W(z)
i V(a)

because of the faithfulness of S. It follows that t’(a; )<_-t(a;
The remainder of 3 is devoted to the proof of Theorem 4’. We will use the

symbol ft to stand for m/n, and, without loss of generality, assume that ft->_ 2. This
latter assumption will be used in the proof of Lemma 3 below. We organize our proof
into three lemmas.

Note that the density of the points of B, in the n n square is 1/n. The first
lemma asserts that these points are uniformly distributed in a certain sense.

LEMMA 1. Let [a, b) (c, d)
_

[0, n] [0, hi, where a < b, c < d are real numbers.
If b a)(d c) >- 8 n, then there exists at least one point ofB in [a, b) c, d).
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Proof. Clearly, b-a>=4. Let r be the unique integer satisfying (b-a)/4<=2r<
(b-a)/2. If we partition the set {0, 1, 2,..., n-l} into 2k-r consecutive equal parts,
one of them must be entirely contained in [a, b); suppose it is Y {j2 + il0 =< <
Let yR= (yly Y}; then the integers in yR all have binary representations of the
form aOal Ofr--lr[r+l [k--1, where aOal Olr-1 is arbitrary and [k-l[k-2
is the (k- r)-bit binary representation of ]. Thus, the integers in yR are equally spaced
at 2-r distance apart. As 2-r<=n/((b-a)/4)<=1/2(d-c), there exists ye Y such that
yRe(c,d),i.e., (y, yR)eBnf’l([a,b)x(c,d)). [3

Define a special class of subsets of Bn by Dj ([0, i] x [0, j])fl B,, where and
are nonnegative integers. We call a pair (i, j) canonical pair if (i, R) e Dj and
D0. In other words, (i, j) is canonical if every (i’, j’) with Drd, Dij satisfies ’>- and
]’-> ]. Clearly, for every Dij, there is a unique canonical pair (i’, ]’) such that
From now on, when we mention D, it is understood that (i, ]) is always a canonical pair.

To prove Theorem 4’, let be a structure for B, with Iffl m. Without loss of
generality, we assume that every member T of ff is of the form D. (For otherwise,
we can replace T by the smallest Dj containing T, and obtain a structure if’ with
t’(a; T’) <= t’(a; ).)

For integers r < s, let Nr, denote the number of Dj ff such that i Jr, s]. Let
r/=> 0. Consider integral positions n/2J <= < n. We say that a position is -favorable
if, for each integer 6->0, one has Nl_.l<=q(6+ 1).

LEMMA 2. There exist at least n/4 (4tz)-favorable positions with [n/2J -< < n.

Proof. Construct a sequence of disjoint intervals [il, jl], [i2, j2]," in the following
way: Let jl < n be the largest integer that is not (4/x)-favorable, and il be an integer
such that Nildl > 4/z (j il + 1); inductively, for integer p > 1, let jp be the maximum
integer q, [n/2J <=q < ip-1, that is not (4/x)-favorable, and let ip be an integer such
that Nipdp>41,(jp-ip+l); do this until no such jp can be found. Let [il, jl],
[i2, j:z], [iu, ju] be the sequence constructed. Then

1 1 nJ {ip, ip+,, jp} <- pl Nip’jp <=-m =-.p=l

It follows that there are at least n/4 integers (In/2]-<_ l<n) not contained in

(-J,=l lip, jp]. These must all be (4tz)-favorable; otherwise some of them should have
been selected as jz The lemma follows.

LEMMA 3. Let (In/2] <=l < n) be a (41x)-favorable position. Then there exists
an integer O<-q < n such that, for a=(/, q), A(a) cannot be the union of less than
[log n64(log (/x log n))J of the members of -.

Theorem 4’ follows immediately from Lemmas 2 and 3. A proof of Lemma 3 will
be given in 3.3. To give an illustration of the intuitive idea of the proof, we will first
prove a weaker version of Lemma 3.

3.2. A weaker version. In this subsection we prove a weaker form of Lemma 3.
Let/x m/n be fixed. We shall exhibit a vector a (l, y), which will be called a query
vector, such that A(a) cannot be the union of less than fl(log log n) of the members
of ft. (It is easy to make y an integer in addition, but we will not insist on that here.)
This is a weaker form, as Lemma 3 states an fl(log n/log log n) lower bound in this
situation.

Let us imagine Alice is playing a game against Bob, who knows what - consists
of. Alice wants to exhibit a query vector a for which Bob cannot find a less than
size-fl(log log n) subcollection of - whose union gives A(a). Initially, Alice does not
know anything about , and Bob knows nothing about the value of a. As the game
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proceeds, Bob will gradually reveal the identity of the members of 3-, and Alice will
successively narrow down and announce her range of the query vector a. Each time
Alice narrows down her range further, the query A(a) becomes a little harder to
answer; Alice will make sure that for Bob to answer any query in this range, namely
to give a subcollection of 3- whose union is A(a), he has to include at least a certain
minimum number of members in 3- that have already been revealed, independent of
what the rest of 3- are. We now describe the rules of the game. The game can be
visualized as being played on the two-dimensional x-y board [0, n] x [0, n], with the
points of B, scattered on it. We will use the notation 3-(x, x’) to stand for the
subcollection of Ds 3- with x<=i<x’. (Note that ]3-(r,s+l)l=N,s for integers r, s,
where N, was as defined in 3.1.)

Let /0 l+ 1 and I0 be the open interval (0, n). The game preceeds in stages
j 1, 2,.. . In stage j, Alice picks a point b() (l, y) B where y I_ and 0 -< l <
li_a. (Clearly, l _-< for all j>- 1.) Bob then reveals the collection 3-(li, li_a). Alice now
picks an open interval I c__/_ such that yi < y for all y e Ii and that no Ds 3-(I, lo)
satisfies s e I, and announces the choice of/ to Bob. One way to think about this is
to say that, along the vertical line x li, the point b(i) (li, yi) will lie below the vertical
segment { l} x I, and that for any Ds 3-(1, lo), the horizontal line y s will not pass
through the vertical segment {/} x/. The game stops when Alice is unable to find a
next b().satisfying the requirements.

The goal of Alice is to prolong the game as much as possible, and Bob’s is the
opposite. If we can prescribe a strategy for Alice that guarantees that the game will
not stop before J stages, then we will have proved a lower bound J as implied
immediately by the following statement: If during a particular session, the game stops
after J stages, then for any a (l, y) with y Ij, the set A(a) cannot be represented
by the union of less than J of the members of 3-. We will now prove the above statement.

Without loss of generality, assume that J => 1. The intuitive idea is that, among
the points in A(a), each of the J points b(= (l, y) has to be covered by a distinct
Disc 3-(lj,/j-l). Formally, we prove by induction on ]= 1,2,... ,J the following
statement: For any a= (l, y) where y Ij, if A(a) is the union of the members of a
subcollection 3-’

_
3-, then at least ] of the members of 3-’ must be in 3-(1, 10). Noting

that any Dis contains the point (i, iR), one can easily verify the case j 1. For the
inductive step, let j > 1 and assume that we have proved the cases for all smaller values.
Let a-(l, y) with y Ij, and suppose 3-’ is a collection whose union is A(a). As
y e

_
Ij-l, there are at least ]- 1 members of 3-’ that are in 3-(lj_l, 10). We will show

that there is at least one Dis from 3-’ that is in 3-(1,/j-l). This clearly will complete
the induction proof. Let Dis 3-’ be a member that contains the point b(j. It is obvious
that i>_- lj. Also </0; otherwise Dis will contain the point (i, R) which is not in A(a).
We have thus either Dis 3-(lj_, lo) or Dis 3-(1,/j-l). In the former case we have
s > y’ for any y’ e/j-1 by the construction of Ij-1. It follows that s > y, and hence the
point (sR, s) Dis will not be contained in A(a); this contradicts the fact Dis e 3-’. We
must conclude that Dis 3-(lj,/j-l). This completes the inductive step.

We will. now describe a strategy for Alice to play the game. For each j let us write

/ as (w(j, v(J), and the I} and I}’ denote the open intervals that are the lower half
and the upper half of It. That is, let I=(w(J,(w(J)+v(J))/2), and I"=
((w(J) + v(J)/2, v(J). In stage j-> 1, Alice considers the motion of the vertical segment
{/} I}-1 as / ranges from /j_1-0.1 towards 0, and jots down the first point of B,
that the segment encounters; call this point (l, y), and announce it to Bob. After Bob
reveals the collection 3-(lj,/j-l), Alice makes a list of the members of 3(lj, 10) as Di,,
Di,," , Di,,s,. Let V c_ {sa, s2," , sg} be the subset of numbers that fall into the
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interval Ij_ 1. Then V divide Ij-1 into disjoint open intervals. Alice now picks.a longest
such open interval, calls it/ and announces it to Bob. Alice stops the game after J
stages when she finds [0, Ij) I) contains no point of BN.

So far we have not used Lemma 1 and Lemma 2. We will now, with the help of
the lemmas, show that by using the above strategy, Alice can be guaranteed that the
game will last at least fl(log log n) stages. This of course then implies the existence of
a (l, y) such that A(a) cannot be the union of less than 12(log log n) of the members
of 3-.

Let us use the notation IlK for the total length of K, if K is the union of a finite
set of disjoint intervals. Suppose that the game stops after J stages. Let dj lo-l.
Clearly, do=O and II oll--n. By Lemma 1, we have (ly_l-ly). I[I-11[ =<8n. Using the
fact that II A- il- 11  -l[I/2, we obtain that, for all 1-<_ j =< J,

16n
(2) di-dj_l lllj_lll.

Now, notice that the size of V is at most 4/x. dj. It follows that IIzll_->
WUus, for all 1 <-j<=J,

(3) II/ 11 I]/-ll_______l
8 .4

Furthermore, we claim that

(4) /j<
16n

Otherwise, by Lemma 1, Alice should have been. able to locate apoint in the rectangle
[0, lj) I, and to. start stage J + 1.

We shall now prove that, for sufficiently large n, J -> logo logo n 2, where c 20
Let no c1, and n > no be any large integer of the form 2k. Let us assume that
J <log log n-2, and will derive a contradiction. It is straightforward to use (2), (3)
to verify by induction that, for 1 -< j -< J, one has d < ccj-1, II/,. > n/c For j J, this
leads to d < n/4, Ilbll > 64. Thus, b- lo-d > n/2-n/4= n/4 >- 16n/llI ll, which is
a contradiction to (4). This completes the proof of the weak form of Lemma 3.

To prove Lemma 3 in its full strength, we have to refine the above arguments in
two ways. Firstly, the division of I-1 into intervals I_ and I"-1 of the same size is
somewhat arbitrary. The benefit of having a larger i-1 would be that a point b() can

Ij-1be found with smaller lj-1 li, but this has to be balanced by the fact that a larger
(and hence a smaller Ii"_) may narrow down the range of query vector more in the
next stage of the game and cause a larger l-li/l. Thus there is some freedom on the
choice of the ratio of [lI-lll to [[I"-lll, but in order to be beneficial, it has to be carefully
chosen dependent on the modification of the proof in. other parts. Secondly, in the
above proof Alice has perhaps given away too much information about the range of
her query vector; Bob may concentrate on putting all his Dis 3-(1,/-1) with s Ijrl
If we change the rules of the game a little, in such a way that Alice can hold on to
more intervals, and reserve the right to choose query vector in any interval, then Bob
may have to divide his Dis 3-(I,/-1) with s among more intervals. In this fashion,
the decrease of the size of intervals/ as a function of j will be much slower, which
would prolong the game.

In the next subsection we will give a proof of Lemma 3, utilizing the above ideas.
At each stage j, we will have a family of intervals , and the construction of intervals
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in ‘9i will involve splitting intervals into unequal sizes. The proof contains many
numerical quantities, and will be presented in a more direct fashion than the above
arguments, so as to facilitate the verification of the proof. We remark that the symbols
used in the following proof may not denote exactly the same quantity as in the preceding
proof; the notations will be defined anew.

3.3. A proof of Lemma 3.
Proof. Let r= [log n/64(log (/ log n))J. Without loss of generality, we assume

that r_-> 1. This means in particular n _-> 104. Also recall that we have assumed that
/=re

For 0 _-< j <- r, define k/= n/((lO,OOO/)/(j!)4)J. Let do 0 and
for 1-<_ j-<_ r. The following inequalities are straightforward to verify (see Appendix)"

(5) k/>lO for O<=j<= r,

n
(6) 8tzd/k/=<.._2 for 1 < ] r,<

]

(7) - dj-1) kj-1 > 8n for 1 < ] < r.8]2

Let l/=l+l-d/ for O<=]<-r. We are going to construct a sequence
‘90, ‘91, ‘92," , ‘9, where each ‘9/is a finite family of disjoint open intervals. They will
be shown to possess the following properties:

P1. For 0 =< ] <= r, ‘9i is nonempty; furthermore, each ! e ‘9/has length > 1;
P2. Let y e I e ./, where 1 _-< j_-< r and y is an integer. If A(a) T U T2 LJ. LJ T,

where a (/,.y) and T e g-, then there are at least j T of the form D with e [l/, l].
This will prove the lemma, since one can pick by P1 an integer y e I e ‘9r, and one

knows by P2 t’(a; g-)>_-r where a (l, y).
We construct ‘9/ inductively. Define ‘9o={(0, n)}. Let O<j<-_r, and suppose

‘90, .91," , ‘9i-1 have been constructed; we will construct ‘9i. We first introduce some
notation. For an open interval I=(a,b), define two open intervals /j-bottom=
(a, a+(b-a)/8j2), and I-tp=(a+(b-a)/8j2, b). Let

{s[::ID g- with e [//,/]}.

For each I e ‘9i-1, consider the points of V that divide the interval //-top into
disjoint open intervals; let fie be the set of such intervals that have length >_-k/. Define

It may help one understand the above construction and the discussions to come,
if one visualizes ‘9i as a collection of intervals on the vertical line x- l/ in the
two-dimensional x-y key space.

It remains to verify that properties P1 and P2 are satisfied. We will use the notation
IIKII to denote the measure (or, length) of K, if K is the union of a finite number of
disjoint intervals. P1 is obviously true for j 0. To show P1 for j > 0, it suffices to prove

as it implies that ‘9i is nonempty; the other part of P1 follows from inequality (5) and
the fact that each I e ‘9i has length ->_k/ by construction. To prove (8), define M
Uz,_, I-Uy, I. Observe that UI differs from [0 n]- U{= M by at most a finite
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number of points. Thus

(9) I >_- n-
i=1

Now note that Mi is the union of a finite number of points plus two types of intervals"
those that are //-bottom for some ! #i-1, and those that have length <k, and are
contained in//-top with at least one endpoint in V. It follows that

(10) IIM, II-<_- ; I +2lV, lk,.
i--1

Since position is (4)-favorable, we have

(l) w, 4md,.

From (10), (11) and (6), we obtain for i 1

1 1 1 n2) M,

From (9) and (12), we obtain

I] ( 1 1) (1) 1
I en 1- i=1

This proves (8), and hence property P1.
To prove P2, we proceed by induction. It is obviously true for ] 1. Let ]> 1,

and assume that we have proved P2 for ]-1; we will prove it for ]. Let y e I e N be
an integer, and let (l, y). Assume that A() T U TU. U T where T e . We
will prove that there are at least ] T of the form Ds with e [l, l].

By the construction of N, there exists an I’ e I_ such that I I’. By the induction
hypothesis, there must be at least ]-1 T of the form D with e [/_, l]. Therefore,
we need only to show that there exists a T of the form D with e [l,/_).

Consider the square [l, l_)x/,]-bottom. Note that, by (7),

k_

It follows by Lemma 1 that there exists a point

(X, y’} e B ([1], b-l} x/,]-bottom}.

As (x, y’) e A(), there must be a T D containing the point (x, y’). Clearly
and s y’. We want to show that
i> l, then D will contain a point not in A(), namely, (i, i), which is not allowed.
If e [l_, l], then by the construction of _, either s u’ or s N u, where I’ (u, u’).
As s y’> u, this means we must have s u’ and hence s > y. This last inequality
implies that the point (s, s) A(), which contradicts the fact that (s, s) e D A().
We have thus proved that e [l,/_t). This completes the induction proof or Property
2. We have proved Lemma 3.

We have completed the proof of Theorem 4. As mentioned earlier, this also proves
Theorem 1.

4. Oe-elye!. In this section we will prove Theorem
2. Without loss of generality, we will assume n 16 and is a power of 2. Let be an
algorithm for the one-dimensional dynamic partial sum problem. Consider the following
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sequence r of instructions:

INSERT (OR, So), QUERY (go), INSERT (1 R, sl), QUERY (gl),

.., INSERT (jR, Sj), QUERY (gj), ., INSERT ((n- 1)R, sn-1), QUERY (gn-1),

where 0 -< gi < n is chosen such that QUERY (g) requires the maximum number of
operations to process at that time. We will show that the time used by to process
this sequence is 12(n log n/log log n).

Consider the two-dimensional static partial sum problem for the file F,
{(b, s)10 =< j < n} where bj (j, jR). Let us construct a storage scheme 5 from the way
M processes r. Let z, z2,""", z, be the family of all positive linear functions (of s)
that have been computed during the processing of r. Then 5={zl, z2,""", Zm} is a
storage scheme. If m => n log n, then the time used by M on cr is fl(n log n), and we
have proved the theorem. Thus we can assume m < n log n. By Theorem 4, there exists
at least [n/4Jl such that t((l,h(l)); 5)=12(log n/loglog n) for some h(l). Now,
consider the current set 51 of the contents of variables just after the instruction
INSERT (ln, st) has been processed. The response to QUERY (h(l)) at that time
should be exactly resp ((l, h(l)); F,) in the two-dimensional static problem. Since

51 5, the time needed by M to process QUERY (h(1)) is at least t((l, h(/)); 6)=
12(log n/log log n). This means QUERY (gl) takes time 12(log n/log log n) to process,
as QUERY (gl) is chosen to be the hardest query to process at that time. It follows
that the time used by M to process cr is at least [n/4]. f(logn/loglogn)=
(n log n/log log n).

We have proved Theorem 2.

5. Relations between static and dynamic problems. We will prove Theorem 3.
Let F {(r, s)10-<_ i< n} be a file with r Za and s S. We will construct a storage
scheme 5 using space m O(nu(n)) and time O(u(n)).

Write r (x, ) where x is the first component of r, and i Za-i is the vector
of the other components. Without loss of generality, we can assume x0 =< Xl <-- x2 <-" --<
x,_. Consider the processing of the following sequence r for the (d- 1)-dimensional
dynamic problem using algorithm M: INSERT (f0, So), INSERT (fl, sa),...,
INSERT (-1, sn_). Let 5={zl, z2,’" ,z,} be the family of all positive linear
functions of si that have been computed during this process. Then m=O(nu(n))
because the total number of operations used by is O(nu(n)). It remains to prove
that tv(Se)= O(u(n)).

Let a (l, h) be any element in Zd. Find such that xi-<l< x,/ (we agree that
x_a =- and x +). Consider the processing of the (d- 1)-dimension sequence r
using again. If one asks QUERY () immediately after INSERT (i, s), the answer
at that time should be resp (a; F). Since QUERY () can be answered in O(u(n))
operations, resp (a; F) must be a positive combination of no more than O(u(n)) z 9.
This proves tF(a; )= O(u(n)) and hence tF()= O(u(n)).

We have finished the proof of Theorem 3.

6. Open problems We list below a few open problems that seem to deserve
further study.

(A) It is easy to see that O(n log n) time is sufficient to process O(n) instructions
for the dynamic one-dimensional partial sum problem. Can one close the gap between
this upper bound and the lower bound O(n log n/log log n) given by Theorem 2?
Similarly, what is the true tradeoff for the static two-dimensional partial sum problem?
Is it possible to achieve m O(n), t= O(log n/log log n)?
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(B) What is the space-time tradeoff for static partial sum queries when d > 2? It
is known [11] that m O(n(log n)d-1), t= O((log n)d-l) can be achieved. Can one
prove that, if rn O(n), then fi((log n)e-1)?

(C) What can be said when S is a group instead of a semigroup (i.e., subtraction
allowed)? Some results in this direction can be found in Fredman [5], but we know
much less about range queries in the group model.

Appendix. Proof of inequalities (5)-(7). Let c 104. Recall n >- 104, /d, 2, and

log n Jr
.64(log (/x log n))

k
(ClJt,)j(j!)4

for j-->O,

80jzn] for j>l.do=0, ai=[ k_ |

We now prove inequalities (5), (6), and (7) in 3.
Inequality (5). k) > 10 for all 0 <= j <- r.

Proof. As k is nonincreasing in j, it suffices to prove kr> 10. By elementary
manipulation

This proves

Hence

log ((p,)r(r!)4) < r log (cz) +4r log r

_<- log______n (log/x + 16)+ 4
log n

log log n
64 log 64 log log n

=< +-+ log n
4

)r( r!)4 <-- x/-.

kr L4 J > 10.

Inequality (6). 8tzdkl <= n 8j2 for 1 <= j <- r.

Proof. Using inequality (5), we obtain

80nj2

<_90j2(cp,)j-l((j_l)l)4.
’n/((clx)i-l((j-111)’)4).

This leads to

___L_n <____n8txk)d.i <= 8tx 90j2
clz )j4 8j2"

Inequality (7). (dl-dj_l)kj_l/8j2>-8n for l<=]<=r.
Proof. For j 1, it is trivial to verify it. Let 1 < j <-r, then

4 > ,kj-2 > 1__.
d-l=2k-i 4

(j 1)4(cP’) > 10.
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Thus,

9 9 80]2n
(di-dj-1)kj-l>-- d]k]-l- 10 ki_

Inequality (7) follows.

k.i_1>- 64j2n.
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AN EFFICIENT ALGORITHM FOR FINDING
MULTICOMMODITY FLOWS IN PLANAR NETWORKS*

KAZUHIKO MATSUMOTO’, TAKAO NISHIZEKI AND NOB’UJI SAITO"

Abstract. This paper presents an efficient algorithm for finding multicommodity flows in planar graphs.
Suppose that G is an undirected planar graph with all sources and sinks on the boundary of the outer face
and that a real-valued demand is given for each source-sink pair. The algorithm decides whether G has
multicommodity flows, each from a source to a sink and of a given demand, and actually finds them if G
has. It spends O(kn + n2(log n) 1/2) time and O(kn) space if G has n vertices and k source-sink pairs.

Key words, algorithm, cut-condition, planar graph, polynomial time, max flow-min cut theorem,
multicommodity flows, network

1. Introduction. The network flow problem and its variants have been extensively
studied. The original and most basic problem is that of finding the maximum flow of
a single commodity in an arbitrary directed graph. The most basic theorem of flow
theory is the max flow-min cut theorem of Ford and Fulkerson [4] which holds for
single-commodity and two-commodity flows. There are efficient algorithms for finding
a maximum single-commodity flow; the O(IEIIVI log VI) time algorithm of Sleator
and Tarjan [13], [14] is the theoretically best known one for sparse graphs. (V is the
set of vertices and E is the set of edges.) Two-commodity flows in undirected graphs
can be found by solving two single-commodity flow problems, so it can be done in
O(IEI [Vl log Vl) time [7], [12].

The situation is different with regard to flows of more than two commodities. No
true polynomial time algorithm is known for the multicommodity flow problem on
general graphs. Like all network flow problems, the multicommodity flow problem
(planar or nonplanar) can be formulated as a linear program. Thus it can be solved
in pseudo-polynomial time by the ellipsoid method of Khachiyan [9]. Unfortunately
this method seems to be inefficient in practice. The simplex method is more practical,
but experience has shown that for many specific problems special purpose algorithms
can be devised which work better than the simplex method.

A specific case of the multicommodity flow problem in which the network is planar
has a number of important applications, such as the control of communication or traffic
in networks, and routing in VLSI. Several papers have been published on this problem
[23, [11], [15].

In this paper we concentrate on planar undirected graphs which arise in many
applications, and give an efficient algorithm for finding multicommodity flows in these
graphs. Suppose that G is an undirected planar graph with all sources and sinks on
the boundary of the outer face and that a real-valued demand is given for each
source-sink pair. If G has n vertices and k source-sink pairs, the algorithm decides
in O(tl2) time whether G has multicommodity flows, each from a source to a sink
satisfying a given demand, and actually finds them in O(kn+ hi(log n) /2) time using
O(kn) space. In this paper we use the Unit Cost RAM [1] as the machine model,
assuming that each arithmetic operation costs one unit of time.

In our algorithm we apply a shortest path algorithm to the dual of a given planar
graph [1], [3], [5]. In this sense our algorithm is similar to those in [2], [6], [8], [11].
However the well-known algorithm of "topmost" augmenting path [4], [6], [8], which

* Received by the editors April 1, 1982, and in final revised form October 15, 1983.

" Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980,
Japan.
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finds efficiently a single-commodity flow in a planar graph, cannot be adapted directly
to our multicommodity flow problem. Recently Okamura and Seymour have shown
that the max flow-min cut theorem holds true also for the case of multicommodity
flows in the same planar graphs as ours [10]. Indeed we employ their proof technique
in our algorithm, modifying it in many points in order to guarantee the time and space
complexity.

2. Preliminaries. A flow network N=(G,P, c) is a triplet, where:
(i) G (V, E) is a finite undirected simple graph with vertex set V and edge

set E;
(ii) P is the set of source-sink pairs (si, ti), where source s and sink ti are

distinguished vertices in G.
(iii) c:E R/ is the capacity function. (R (or R /) denotes the set of (positive)

real numbers.)
A network N (G, P, c) is planar if G is planar, and is a k-network if N has k

source-sink pairs, that is, IPI- k. Fig. 1 illustrates two planar 3- and 4-networks.

m=8-0=8 m=8-4=4,, v_ ,’ q 2 .s3 ,,’

$1 2 t]

t -t

m=I0-4-2=4

demands

=3

d2--4
d3=2

(a)

S _$2 2 ,S3

S demands
t

dl=l
d2=4
d3=2
d4=2

(b)

FIG. 1. Two planar networks. (Numbers next to edges are capacities.)

Each source-sink pair (si, t) of N is given a nonnegative demand di >= O. Although
G is undirected, we orient the edges of G arbitrarily so that the sign of a value of a
flow function can indicate the real direction of the flow in an edge. A set of functions
{fl, f2, ",fk} with each f E R is k-commodity flows of demands dl, d2," , dk if
it satisfies:
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and

(a) the capacity rule" for each e e E
k

E Ifi(e)l <= c(e);
i=1

(b) the conservation rule" each ]] satisfies

IN (fi, v) OUT (fi, v) for each v V-{si, ti},

OUT f, s) IN f, s,) IN f, h) 0UT f, h)

where IN (fi, v) is the total amount of the flow fi of commodity entering v, that is,
IN (fi, v)=Yfi(e)-f(e’), the first sum being over all the edges e entering v and
with f(e) > 0, and the second over all the edges e’ emanating from v and with f(e’) < 0;
OUT (], v), similarly defined, is the total amount of the flow of commodity emanating
from v.

Figure 2 illustrates three-commodity flows satisfying the given demands dl= 3,
d2 4 and d3 2 in the network of Fig. 1 (a). Arrows indicate actual directions of flows
through edges. Numbers next to arrows are amounts of flows.

---> f
i

---> f2

-> f3

FXG. 2. Three-commodity flows in the network of Fig. l(a).

Although a planar graph G may be altered during the execution of our algorithm,
we generically denote by B the boundary of the outer face of G. We use B also for
the set of edges on B when there is no possibility of confusion. The boundary B is a
(simple) cycle if G is 2-connected, but is a closed walk in general. A bridge, i.e. an
edge whose deletion disconnects a connected graph, may appear twice in B. We also
assume that the vertices on B are Vo, Vl,’", Vb, taken in clockwise order.

We denote by E(X, Y) the set of edges with one end in X c V and the other in
y c V. If X c V, then E(X)= E(X, V-X) is called a cut. Define:

c(X, Y)--’-’eeE(X,y)C(e); and
c(X) c(X, V-X) (the capacity of a cut).

We denote by d(X, Y) the sum of the demands of all source-sink pairs with a source
or sink in X and the other in Y. Define d(X) d(X, V- X). Clearly E(X)
E V-X), c(X) c( V- X), and d(X) d( V X).

We say that a network N satisfies the cut condition for the given demands if
c(X) >-d(X) for every X c V. The cut condition is necessary for the existence of
k-commodity flows satisfying given demands in a k-network, but not always sufficient.
However Okamura and Seymour have proved the following theorem.
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THEOREM 1110]. Let N G, P, c) be a planar k-network, and let all the sources
and sinks be on the boundary B of the outer face of a planar graph G. Then N has
k-commodity flows satisfying the demands if and only if N satisfies the cut condition.

We denote by GIX the graph obtained from G by deleting the vertices in V-X
together with the edges adjacent to the vertices in V-X. Since the following two
lemmas are easy to prove, we omit the proofs. (These lemmas hold even if G is not
planar.)

LEMMA 1110]. Let G (V, E) be a connected graph. A network N (G, P, c)
satisfies the cut condition if and only if c(X)>-d(X) for each X such that both G[X
and G[(V-X) are connected.

LEMMA 2110]. If G V, E) is a graph and X, Y c V, then

c(X fl Y) + c(X (.J Y) c(X) + c(Y) 2c(X- Y, Y- X), and

d(X fq Y) + d(X 13 Y) d(X) + d( Y)- 2d(X- Y, Y- X).

3. Test of feasibility. In this section we present an algorithm for deciding whether
network N has multicommodity flows satisfying given demands, i.e., for testing feasibil-
ity. In what follows, we assume that N (G, P, c) is a planar network, G is a planar
connected graph with n vertices, and all the sources and sinks are on the boundary B
of the outer face of G.

First we define some terms. For X c V, define the margin m(X) of a cut E(X)
as m(X)= c(X)-d(X). For e, e’ B, define re(e, e’) as follows:

re(e, e’) min {m(X)lXc V, E(X)f’lB={e, e’}},

where m(e,e’)=oe if there exists no Xc V such that E(X)f?B={e,e’}. That is,
re(e, e’) is the minimum margin of cuts containing edges e and e’ of B. It should be
noted that e and e’ are not always distinct in the definition above, and that re(e, e) oe

unless e is a bridge.
Consider the planar network N depicted in Fig. 1 (a) to illustrate the terms above.

If X {u, v, w, sz} then c(X) 10, d(X) 4 and re(X) 6. If X {Sl, t2) then re(X)
0. If e (Sl, v) and e’ (s2, s3), then m(e, e’) m({ v, s2}) 4.

Combining Theorem 1 and Lemma 1, we obtain the following lemma.
LEMMA 3. A planar k-network N G, P, ) has k-commodity flows satisfying the

demands if and only if m(e, e’)>= 0 for every e, e’ e B.
Proof. We have to prove the implication in both directions. First assume that the

network has k-commodity flows satisfying the demands. Then by Theorem 1, the
network satisfies the cut condition. The cut condition says that c(X)>-_ d(X) for all
X, so rn(X)>=0 for all X, so re(e, e’)>-0 for any e and e’.

To prove the converse assume that re(e, e’)>= 0 for all e and e’ in B. This implies
immediately that the cut condition is satisfied for any set X such that !E(X)f’)BI 1
or 2. The cut condition is also satisfied for any set X such that IE (X) f’l BI- 0, because
then the vertices of B are contained in X or V-X. Since all sources and sinks are
on the boundary B, we have d(X)=0, which implies the cut condition for these sets.
Because of planarity, any set X that has the property that both GlX and GI(V-X)
are connected satisfies IE(X)fqBI=O, 1, or 2. Therefore by Lemma 1 the network
satisfies the cut condition for all X, and so by Theorem 1 there are k-commodity flows
satisfying the demands. O.E.D.

To test the feasibility, one must check whether every e, e’ e B satisfies re(e, e’) -> 0.
For the purpose one must compute c(X) and d(X) for all X c V with IE(X)(’1BI
1, 2. Since there may exist an exponential number of these X’s, the straightforward
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method cannot guarantee the polynomial.time boundedness. However we can test the
feasibility in O(n2 log* n) time as follows.

Since all the sources and sinks are on the boundary of the outer face, clearly
d(X) d(Y) whenever E(X) B E(Y) f’l B. Hence if e, e’ B are fixed then d(X)
is constant for all X with E(X)f’l B {e, e’}. Denote the constant by d(e,e’), and let

c(e, e’) min {c(X)lXc V and E(X)fqB={e, e’}},

then

m(e,e’)=c(e,e’)-d(e,e’).

Thus we shall show that c(e, e’) and d(e, e’) can be computed in the claimed time.
One can compute d(e, e’) for a fixed eB and all e’B in O(k+b) time.

Remember that IPI- k and IBI- b + 1. These values can be easily updated for the new
e next to the current e on B. Thus we can compute d(e, e’) for all e, e’ B in O(k + be)
time.

We now show how to compute c(e, e’). Construct a dual graph G* V*, E) of
G V, E), and consider the capacity function c as a length function of G*. Then the
minimum value c(e, e’) of cuts containing e and e’ is equal to the length of a shortest
nontrivial path joining e and e’ in G*. The famous Dijkstra’s algorithm finds the
shortest paths in G* from a particular vertex to all other vertices in O([E[ log V*[)
time [1], [3]. Thus we can compute c(e, e’) in O(n log n) time for a fixed e B and
all e’ B by applying the algorithm to G* with a simple modification. Note that
IEI-O(n) and W*l-O(n) since G is planar. Thus all c(e, e’) can be computed in
O(bn log n) time. Recently Frederickson gave two shortest path algorithms for planar
graphs [5]: one finds in O(n(log) 1/2) time the shortest paths from a particular vertex
to all other vertices; the other finds in O(n2 log* n) time the shortest paths between
all pairs of vertices. Using these algorithms, one can improve the bound above: one
can compute all c(e, e’) in O(min {n2 log* n, bn(log n)1/2}) time.

Hence we have shown that the feasibility can be tested in O(min {n2 log* n,
bn(log n)1/2}) time.

Remark. R. Hassin of Tel-Aviv University and an anonymous referee have
pointed out that the bound above can be improved by the simple expedient of adding
new, exterior edges of capacity zero as follows. Let the vertices on B that are source
or sink be vl, /)i2, /-)i# taken in clockwise order on B. The new edges are (/)il, /)i2),
(v2, vi3),’", (v, vii). Clearly ]B’I =] if B’ is the new outer boundary. Since _-<
min {2k, n}, the feasibility can be tested in O(min {n2 log* n, kn(log n)/2}) time, an
advantage whenever k o(n log* n/(log n)l/e).

4. Algorithm DELTAFLOW. The details of our algorithm MULTIFLOW will
be given in the next section. In order to explain the core of MULTIFLOW we present,
in this section, an "algorithm" DELTAFLOW which finds k-commodity flows in a
planar network N, but does not run necessarily in polynomial time.

procedure DELTAFLOW (N);
begin
1. select an appropriate edge e0 on the boundary B incident with a source or a

sink (assume w.l.o.g, that e0 (si, v));
2. determine an amount D as an appropriate positive number =< c(e0);
3. push D units of flow fi through e0;

We are grateful to them for this.
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4. let N’ (G’, P’, c’) be a new (k+ 1)-network such that P’ P(-J {(Sk+l, tk+l)},
where Sk+l= V and tk+a=ti; c’(e)=c(e) if eE-eo, and c’(eo)=C(eo)-D;
and G’ V, E’) where E’ E if c’(eo) > 0, or E’ E- eo otherwise;

5. define the new demands d (1 <_-j-<_ k + 1) as follows: d= di-D, d’+a D, and

d d if l <- j <- k and j i;
6. apply DELTAFLOW recursively to the new network N’ to find (k+

1)-commodity flows fa, f2," ",fk/a of demands d,. , d/1 in N’;
7. superimpose three flows, f, fk/a and the D units of fi pushed through edge eo,

into a new single flow f, that is, define f’E- R as follows"

fi(e):= fi(e)+ fk/l(e) if eE-eo,

fi(eo):=fi(eo)+fk+l(eo)+D ifeo6 E’,

fi (eo):= + D if eo E’,

where the sign +/- depends on the orientation of eo;
8. output fa, f2,""", fk as the k-commodity flows in N;
end.

See Fig. 1 for an illustration. If two units of flow fa are pushed through eo, then
the 3-network in Fig. 1 (a) results in a new 4-network in Fig. l(b).

The new planar network N’ needs to satisfy the cut condition for the new demands
d,. , d,+a so that algorithm DELTAFLOW works well. The next lemma gives the
requirement for value D, where we define m(e0; Q) for a path O on B as follows:
m(eo; Q)=min {m(eo, e)le Q} if O is not empty; m(eo; Q)=oo otherwise.

LEMMA 4. (a) Let N be a planar network satisfying the cut condition, and let edge
eo s, v) B be incident with a source s of demand d. Let Q be the path on B joining
v and ti and not containing edge eo (v, s). If

D=min {c(eo), di, m(eo; Q)/2},

then network N’ satisfies the cut condition for demands d,..., d+l. (For N in Fig.
l(a) D=min {3, 3, )}= 2.)

(b) For every X V the margin re(X) does not increase during the execution

of DELTAFLOW(N). In particular, once re(X) becomes O, it remains unchanged
thereafter.

Proof. Assume that eo is not deleted, that is, E’= E. (The proof for the other
case is similar.) We show that m(X)= c(X)-d(X) remains nonnegative for every
X c V such that IE(X)tqBI 1, 2. Clearly c(X) or d(X) changes the value only if

eo E(X). We can assume without loss of generality that ti X; otherwise consider
m(V-X). Denote by m’(X) the margin in the new network N’. If s X and v X,

m’(X) (c(X)- D)-(d(X) + D) m(X)- 2D.

If seX and

m’(X) (c(X)- D)-(d(X)- D) re(X).

Thus re(X) never increases. It decreases (exactly by 2D) only if there exists an edge
ee Q such that E(X)CIB={eo, e}. Hence we have m’(X)>-O since m(X)>-O and

D min {c(eo), di, m eo; Q)/ 2}.

The first two terms of the right-hand side above are necessary to guarantee that c’(eo)
and dl are nonnegative. Q.E.D.
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Although we can show that there exists eo=(Vj, /)j+I)E B such that D>0 and
vj si or ti for some and ], we do not prove it here. Instead we will prove a stronger
result, Lemma 6, in 6.

If the first two lines of DELTAFLOW are refined as above, the obtained multicom-
modity flows satisfy the capacity and conservation rules and have the given demands
whenever the algorithm terminates. The sum of capacities over all the edges in G’
decreases by D units compared with that in G. However this fact does not immediately
imply that DELTAFLOW terminates finitely or within polynomial time. Thus there
are three obstructions to the correctness or polynomial boundedness of DELTAFLOW:

(1) If edge eo is selected arbitrarily, DELTAFLOW does not always terminate
in polynomial time" when there exists an edge e of infinite capacity on the boundary
B, DELTAFLOW possibly lets a flow go and return infinitely many times through e.

(2) The number of source-sink pairs increases, and the representation of flow
functions would require much space.

(3) The new graph G’ may be disconnected even if G is connected.

5. Algorithm MULTIFLOW. In this section we give an algorithm MULTIFLOW
for finding multcommodity flows in planar networks, which spends O(kn + n2(log n)1/2)
time and O(kn) space. MULTIFLOW uses the operation of DELTAFLOW, but is
improved on the three obstructions mentioned at the end of the preceding section in
the following way.

Obstruction (1). In order to make the algorithm run in polynomial time, we select
both edge eo and flow fi which is pushed through Co, as follows. First select an arbitrary
edge, say eo (Vo, Vl), on B; apply the operation of DELTAFLOW for eo with respect
to each flow having Vo as a source (or sink), in the order that the corresponding sink
(or source) appears on B in clockwise order. For details, see procedure PUSH (N, eo)
given later in this section. Next select the edge clockwise next to e0 on B as the new
e0, and apply the same procedure as above for the new e0. Repeat this procedure until
there exists no source-sink pair. We will show later in 6 that MULTIFLOW terminates
before e0 traverses all the edges once in each of its two directions. Thus we can

guarantee the polynomial time boundedness of MULTIFLOW.
Obstruction (2). Although MULTIFLOW also makes a new source-sink pair

(Sk/l, tk/l), it does not introduce the new flow function fk/, but simply attaches to
the pair a number indicating the kind of commodity between Sk/l and tk/l. As shown
later in the succeeding section, the number of source-sink pairs is at most O(k + n)
throughout the execution of MULTIFLOW.

Obstruction (3). If graph G’ is disconnected by the deletion of edge eo, then we
find multicommodity flows in each connected component of G’. Note that G’ consists
of two components.

We are now ready to present algorithm MULTIFLOW which improves on the
three obstructions.

procedure MULTIFLOW (N);
begin

if there exist e, e’ E B with m(e, e’) < 0
then print "No multiflows of demands" and stop;

for each e E and i(1 _-< =< k) do fi(e):= 0; {initialization}
p := k; {the number of source-sink pairs}
eo := an arbitrary edge (Vo, v) on B;
ROTATE (N, Co)

end.
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procedure ROTATE (N, eo);
begin

{this procedure rotates edge e0 around B in clockwise order}
delete all source-sink pairs (si, ti) such that s t or d =0;
if network N has a source-sink pair then

begin
PUSH (N, eo);
{procedure PUSH (N, eo) pushes flows through eo (Vo, vl) by applying
the operation of DELTAFLOW to each flow having Vo as a source, in the
order that the corresponding sink appears on B in clockwise order. Note
that C(eo) may decrease when the procedure terminates.}
if c (Co) > 0 then

begin
eo := the edge clockwise next to eo on B;
ROTATE (N, Co)

end
else {eo is saturated, i.e., c(eo)= 0.}

begin
G := G- eo; {delete eo from G}
if G is connected then

begin
let eo be the edge on the new boundary B of G, joining Vo and
the clockwise next vertex on B;
ROTATE (N, eo)

end
else for each connected component Gj (j= 1, 2)

of G do
begin

let N be the subnetwork of N with graph
let eo be the edge on the boundary of the outer face Bj of Gj,
joining Vo or vl and the clockwise next vertex on B.;
ROTATE (N, eo)

end
end

end

end;

Before presenting procedure PUSH (N, eo), consider how to decide which flows
and what amounts can be pushed through eo. Let eo (Vo, vl). Suppose that sources
(or sinks) s, s2," , Sl are assigned to Vo, and that the corresponding sinks (or sources)
are tl, t2,. , t, taken in clockwise order from v. Let be the path on B clockwise
going from v to t, and O the path from ti_l to t (2-< =< l). (See Fig. 3.) Note that
Q is possibly empty. Given m(eo, e’) for all e’ B, one can compute m(eo; Q1), and
so decide amount D1 of the flow between Sl and tl to be pushed through e0, in
O(IQII+ 1) time (See Lemma 4(a)). When D1 units of the flow are pushed through
eo, m(eo, e’) decreases by 2Dx if e’ Q, and remains unchanged if e’ Q t3 t_J Q.
(See the proof of Lemma 4.) In order to decide amount D of the flow between s
and te to be pushed through e0, a trivial algorithm alters the values m(eo, e’) for e’ Q1
and finds the minimum of m(eo, e’) over all e’ Q t,J Q2, so it spends O(IQI+IQ=I+ 1)
time. Thus a straightforward algorithm, repeating this procedure, would require O(n2)
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Q1

e

Vo=SI,S S

FIG. 3. Illustration for Q1, Q2," ", Ql.

time to decide all Di. However, by updating the value x(i) =min {c(eo), m(eo, e’)/2le’
Oa U U Oi} from x(i-1), one can decide each Di, 1 =<i=< l, in only o(IO,1/ 1)
time as shown in PUSH (N, eo) below. Thus, given m(eo, e’) for all e’ B, one can
decide all Di, 1 -< <- l, in O(n + l) time, since

E (10,1 + 1) <= IBI + l= O(n + l).
i=1,’’’ ,l

procedure PUSH (N, eo);
begin

{this procedure pushes flows through edge eo (Vo, Vl)}
x := min {c(eo), m(eo; O1)/2}; {x x(1)}
i:=1
while (x > 0) and (i <-I) do

if d =< x then {the flow between s and t can be entirely pushed through eo}
begin
D:= d;
s := Vl; {surrogate source}
c(eo) := c(eo) D; {residual capacity}
{update x(i+ 1) from x(i)}
it i= then x:=0

else x := min {x d, m eo; Qi/1) / 2};
i:= + 1 {clockwise next pair}

end;
else {the flow between si and t can be partly pushed through eo}

begin
Di := x;
d := di- D; {residual demand}
c(eo) := c(eo) Di;
create a new source-sink pair (sp/l, tp/l) of the same commodity as that
between si and t where sp+l vl and tp+ --t;
dp/l := Di; {demand of new pair}
p := p+ 1; {the number of pairs increases by one}
x:=0;
i:=i+1

end;
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j := i-1; {the first j flows can be pushed through edge eo}
tor i:= 1 to j do

begin
let (s, h) be a source-sink pair for commodity r, where 1 -r <- k;
fi( eo) := fi( eo) +/- Vi;
{the sign + depends on both the orientation of edge e0 and whether v0 is
source s or sink h}

end;
end;

6. Time and space of MULTIFLOW. In this section we first establish our claim
on the time and space complexity of algorithm MULTIFLOW. Then the correctness
of MULTIFLOW immediately follows from Lemma 4(a).

6.1 Some lemmas. When procedure PUSH (N, eo) is executed with eo (v0, v),
one of the following three cases occurs depending on which term attains the minimum
in the equation D=min {c(eo), d, m(eo; Q)/2} (see Lemma 4(a)). Either (1) edge e0
becomes saturated and will be deleted by ROTATE, or (2) the s-h flow of demand
d is entirely pushed through e0, so source si disappears from Vo and a "surrogate
source" s is constructed at v, or (3) a "bottleneck" edge e is known to exist on B
somewhere between )1 and t, that is, there exists X V such that re(X)-0, /)1 X
and E(X) fq B {eo, e}.

LEMMA 5. Suppose that there exists X V such that re(X)=0, Vo X, and
E(X)f’lB={(Vb, Vo), (vi, Vi+l)} (i< b). Denote by R the path on B going from Vo to

1.)i+ in clockwise order. If procedure MULTIFLOW (N) is executed with first assigning
edge Vo, Vl) to variable eo, then at least one edge on R is deleted on a first traversal
of R.

Proof. Assume that there is network N for which the lemma is not true for some
X c V, that is, case (1) never occurs on a first traversal of R. Moreover assume that
X is minimum in cardinality among all these X’s. Suppose that case (3) never occurs.
Then there would be no source or sink of a postive demand in X, so d(X)- 0 when
PUSH (N, (v, V+l)) terminates. By Lemma 4(b) re(X) 0 at that time since re(X) 0
when procedure MULTIFLOW (N) started. However c(X)> 0 since no edge on R
is deleted. This is a contradiction. Thus we have shown that case (3) occurs for an
edge on R.

Assume that e (v, v+1) is the first one of such edges on R, where 0 _-< j _-< i. Then
all the vertices v0,""", vi-1 are not sources or sinks of positive demands, and there
exists Yc V such that m(Y)-0, V+le Y and E(Y)f’IB={e,e’} for some e’=
(Vl, V/+l)e B with < b. Furthermore we may assume that Y contains no sources or
sinks corresponding to sinks or sources assigned to vi. Therefore d(X- Y, Y-X) -0.
Combining the equation with re(X)= m(Y) 0 through Lemma 2, we have

m(X Y) + m(X U Y) -2c(X- Y, Y-X) <-_ O.

On the other hand Lemma 4(a) implies that the current network N satisfies the cut
condition, and hence m(X f-1Y), m(XU Y)>=O. If ]= i, then c(X- Y, Y-X)>= c((v,
V+l)) >0, contradicting the equation above. Thus ]< i. Then X Yc X-{xi}
and m(X Y)= 0. Therefore the assumption on the minimality of X implies that at
least one edge is deleted on the first traversal of the path on B clockwise going from

V/l to the first vertex not in X f’l Y. Clearly this edge is on R, a contradiction. Q.E.D.
LEMMA 6. Algorithm MULTIFLOW (N) assigns no single edge to the variable

eo more than once for each of its two orientations.



MULTICOMMODITY FLOWS IN PLANAR NETWORKS 299

Proof. Assume that N (G, P, c) is a network for which the lemma is not true,
and that G has a minimum number of edges among such networks; clearly the number
is positive. We may assume without loss of generality that edge (v0, Vl) is first assigned
to eo.

We now show that at least one edge, other than the last edge (Vb, Vo), is deleted
on a first traversal of B. Suppose to the contrary that no edge is deleted. If case (3)
never happens for any edge in B--{(Vb, Vo)}, then MULTIFLOW (N) would terminate
before the first traversal of B- {(Vb, V0)} has been completed, contrary to the assump-
tion. Thus case (3) occurs for an edge e=(v, V/l) on B--{(Vb, Vo)}. Then there exists
Xc V such that m(X)=0, v+lX and E(X)fqB={(v, V+l), (v, v+l)} (/<b).
Denote by R the path on B going from v/l to v/l in clockwise order. By Lemma 5
at least one edge must be deleted on the first traversal of path R. This contradicts the
supposition.

Let e (vi, vi/) B be the first edge deleted from the graph, where i< b. Note
that MULT!FLOW (N) has assigned to eo each of edges (Vo, v),. , (vi, vi+) once
so far. Assume that network N results in N’ =(G’, P’, c’) when procedure PUSH
(N, e) finishes, where G’ G-e. Then the following two cases happen.

Case 1. G’ is connected. Reapply procedure MULTIFLOW to the new network
M N’ by first assigning (Vo, v) to e0, and consider the behavior by dividing the time
period into two parts: (a) while eo is (v0, v),. , or (v_, v); (b) after e0 becomes
(v, u), where u is the vertex clockwise next to v on the new outer boundary of G’.

Consider the period (a). By Lemma 4(b) margins have never increased in MULTI-
FLOW (N). Since e # (vb, v0), no "surrogate" source or sink has been constructed at

v0 in MULTIFLOW (N). Therefore no flow can be pushed through edges (v0, v),. ,
(v_, v) in MULTIFLOW (M). Therefore the network M is not altered at all during
the period (a), that is, M N’ when e0 becomes (v, u).

Thus during (b) the behavior of MULTIFLOW (M) is identical with that of
MULTIFLOW (N). Since the number of edges of G’ is one less than that of G, the
assumption of the minimality of G implies that MULTIFLOW (M) assigns no single
edge of G’ to e0 more than once for each of its orientations. Hence MULTIFLOW (N)
assigns no single edge of G to variable eo more than once for each of its orientations,
contrary to the assumption.

Case 2. G’ is disconnected. Let G1 and G2 be the two connected components in
G’. We may assume that G contains v, and G2 vi/. Let Ni (Gi, P, c) be the resulting
networks (i 1, 2). The behaviour of procedure MULTIFLOW (N) is identical with
a combination of two behaviors: the behavior of MULTIFLOW (N1) beginning at
(Vo, Vl); and the behavior of MULTIFLOW (N2) beginning at (v/, v+). Since both
G and G2 have fewer edges than G, MULTIFLOW (N) and MULTIFLOW (N2)
assign no single edge of G or G2 to eo more than once for each of its orientations,
contrary to the assumption. Q.E.D.

Lemma 6 guarantees the polynomial boundedness and so termination of
MULTIFLOW.

Figure 4 illustrates a partial traversal of variable e0 in the network N of Fig. 1 (a).
The deleted edges are drawn in dashed lines. Number and an arrow next to an edge
indicate that MULTIFLOW (N) assigns the edge to eo for the orientation of the arrow
in the ith execution of ROTATE (and PUSH). An edge has been assigned to eo once
for each of the two orientations.

6.2 Data structure and space. A graph G is represented by the adjacency lists,
in each of which the edges adjacent to a vertex are stored in the order of the planar
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1

FIG. 4. A network after the first six executions of PUSH.

embedding, clockwise around the vertex. Thus, given an edge e, the edge clockwise
next to e around an end of e can be directly accessed. Since G is planar, IE[ O(n).
Therefore G can be represented in O(n) space.

Each of the k flow functions fl, f2,""", fk is represented by an array of size IEI.
Thus the representation of k-commodity flows uses O(kn) space.

The set P of source-sink pairs is represented by a multigraph Ge (V(B),P),
each edge of which corresponds to a source-sink pair. Two numbers are associated
with each pair (si, ti): a real-valued demand di, and an integer r(i) (l<=r(i)<=k)
indicating the kind of commodity between s and t. As shown in Lemma 7 below, the
number of source-sink pairs is at most O(k + n) throughout the execution of MULTI-
FLOW. Thus Ge is represented in O(k + n) space. Hence MULTIFLOW uses O(kn)
space in total.

LEMMA 7. The number of source-sink pairs is at most O(lc + n) throughout the
execution of MULTIFLOW.

Proof. Consider procedure PUSH (N, eo). Let j be the integer decided in
PUSH (N, eo). For every i, l<-i<=j-1, s is moved to Vl. Only for j may a new
source-sink pair be created. Therefore one execution of PUSH (N, e0) increases the
number of source-sink pairs at most one. Lemma 6 implies that MULTIFLOW calls
PUSH (N, eo) at most 21El times in total. Thus we have established the claim. Q.E.D.

6.3 Computation time. Consider the computation time for one execution of
procedure PUSH (N, eo). We must compute m(eo, e’) for all e’ B. As shown in 3,
one can compute them in O(k + n(log n) 1/) time by applying one of Frederickson’s
shortest path algorithms to the dual of G. We have shown in the preceding section
that, given m (eo, e’) for all e’ B, one can decide all Di, 1 -<_ -<_ j, in O(n + l) time. By
Lemma 7 is at most O(k+n). Clearly, PUSH (N, eo) updates c(eo) and fr(eo) in
O(1) O(k + n) time. Hence we have shown that one execution of PUSH (N, eo) can
be done in O(k + n(log n)/) time.

Since MULTIFLOW calls PUSH (N, eo) O(n) times by Lemma 6, PUSH (N, eo)
spends O(kn+ ha(log n) /2) time in total. MULTIFLOW (N) decides the feasibility
in O(n log* n) time as shown in 3, and the for statement in MULTIFLOW spends
O(kn) time. The remaining time is for procedure ROTATE (N, eo). One execution
of ROTATE (N, eo) can be done in at most O(n) time, exclusive of the time spent by
PUSH (N, eo) called there. Since ROTATE (N, eo) is called O(n) times by Lemma 6,
it spends O(n:z) time in total. Thus we have shown that Algorithm MULTIFLOW
spends O(kn+ n2(log/,/)1/2) time in total.
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We now have the following theorem.
THEOREM 2. Algorithm MULTIFLOW correctly finds multicommodity flows of

given demands in a planar network N G, P, c) if all the sources and sinks are on the
boundary of the outer face of a planar graph G. B spends O(kn + n(log n) l/a) time
and O( kn) space if there are n vertices and k source-sink pairs.

7. Conclusion. We have presented an efficient algorithm for finding multicom-
modity flows in a planar undirected graph, which spends O(kn+ n2(log n) 1/2) time
and O(kn) space if a graph has n vertices and k source-sink pairs. It is interesting
that the values of the obtained flows are half integers if the capacities and demands
are all integers. Using our algorithm, one can design a heuristic algorithm for finding
multicommodity flows in a general planar graph in which not all sources and sinks are
on the boundary of the outer face. We expect to examine the practicality of the
heuristics. Finally we remark: neither a claim similar to Theorem 1 holds for planar
directed graphs, nor our algorithm correctly works for them, even in the case of
two-commodity flows. Figure 5 depicts a planar directed graph in which all sources
and sinks lie on the outer boundary. Although the graph satisfies the cut condition of
the directed version, it has no two-commodity flows realizing the given demands.

t

dl=l, d2=2
FIG. 5. A planar directed graph. The number associated with each edge represents the capacity ofthe edge.)
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TRADE-OFFS BETWEEN DEPTH AND WIDTH IN
PARALLEL COMPUTATION*

UZI VISHKINf AND AVI WIGDERSON*

Abstract. A new technique for proving lower bounds for parallel computation is introduced. This
technique enables us to obtain, for the first time, nontrivial tight lower bounds for shared-memory models
of parallel computation that allow several processors to have simultaneous access to the same memory
location. Specifically, we use a concurrent-read concurrent-write model of parallel computation. It has p
processors, each has access to a common memory of size m (also called communication width or width in
short). The input to the problem is located in an additional read-only portion of the common memory.

For a wide variety of problems (including parity, majority and summation) we show that the time
complexity T (depth) and the communication width m are related by the trade-off curve mTZ=f(n),
(where n is the size of the input), regardless of the number of processors. Moreover, for every point on
this curve with m O(n/log n) we give a matching upper bound with the optimal number of processors.

We extend our technique to prove mT3= f(n) trade-off for a class of "simpler" functions (including
Boolean OR) on a weaker model that forbids simultaneous write access. We also state and give a proof of
a new result by Beame [B-83] that achieves a tight lower bound for the OR in this model, namely mT f(n).
These results improve the lower bound of Cook and Dwork [CD-82] when communication is limited.

Key words, synchronous parallelism, parallel time complexity, communication width, trade-offs between
complexity measures, lower bounds

1. Introduction. Consider the following informal problem: there are a large
number of people (or processing units), each knows n numbers al, a2,’’’, an. They
all wish to compute the sum of these numbers. If they cannot communicate, there is
no way to avoid sequential (12(n) time) summation by each person separately. On the
other hand, it is shown in the paper that with only one communication channel (one
cell of shared memory) this time can be reduced to O(/). With n (resp. 2n) shared
memory cells the time can be reduced further to O(log n) (resp. O(1)). This exemplifies
that a communication facility is essential for any utilization of parallelism, and that its
size directly affects the performance of the algorithm.

The size of the common memory required by a given parallel algorithm will be
determined by two principal factors.

(a) Input availability. The size of the input, in the case that the input is placed
in the common memory, or the need to transfer input data in the case that the input
is initially distributed among the local memories.

(b) Cooperation between processors. The transmission of intermediate results
between processors, utilized to obtain fast processing time.

Here we propose to concentrate on point (b). For this reason we put the input
in a "read only" common memory.

In this paper we will concentrate on parallel RAMs (PRAMs), in particular, the
Concurrent-Read Concurrent-Write PRAM (CRCW PRAM) and the Concurrent’
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pp. 146-153. (C) 1983 IEEE.
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Read Exclusive-Write PRAM (CREW PRAM). Both models are precisely defined in
2. In the above models processors communicate via a shared memory. Therefore the

size of the communication facility of the machine, here called communication width
(or width in short) is simply the number of shared memory cells. We consider the
width m a resource, together with the size p (the number of processors) and the depth
T (the running time), and we seek trade-otis between the three.

One of the subtleties in proving lower bounds for these models, is that information
may be communicated by the fact that no processor writes into a common memory
cell. We introduce a novel technique to deal with this difficulty.

For a large class of functions, which includes Parity and Majority, we prove
T=l)((n/m) 1/2) on the CRCW PRAM, where n is the size of the input. This lower
bound is tight for all values of width m O(n/log2 n). This is the first time nontrivial
tight lower bounds are achieved for a model that allows concurrent write access. The
only known lower bound on the CRCW PRAM model is given in Stockmeyer and
Vishkin [SV-82]. They show, using a result of Furst, Saxe, and Sipser [FSS-81], that
it is impossible to compute parity in this model in constant time using a polynomial
number of processors. There is, however, a large gap between this lower bound and
the best upper bound known for a polynomial number of processors, which is
O(log n/log log n). (See [CSV-82]).

For another class of functions, which includes the functions AND and OR, we
prove a lower bound of T =f((n/m) 1/3) on the CREW PRAM. This lower bound
extends the f(log n) of Cook and Dwork for small values of m, and further discerns
the power of CRCW PRAM from the CREW PRAM. At this point we state, and give
a proof, of a new result by Beame that achieves a tight lower bound for computing
the OR in this model. For a different class of functions (that include OR) he proves
T=f((n/m)I/2).

Both our lower bounds hold regardless of the number of processors, while the
upper bounds are achieved with the smallest possible number of processors.

Our study of values of m which are smaller than input size requires us to add a
read only input tape to the model, as is done in the study of space bounded Turing
machines. The interest in those values is not solely theoretical--it is well founded
in practice. For example the "Ethernet" can be considered as a PRAM with only
one shared memory cell. Also, the papers Gottlieb et al. [GGKMRS-82], Kuck
[K-77] and Vishkin [V-82] imply that minimizing the size of shared memory
(that can be accessed in parallel) may amount to hardware feasibility of the parallel
machine.

The paper is organized as follows: precise definitions and the lower bounds are
given in 2. Section 3 contains the upper bounds and 4 concludes the paper and
suggests further research directions. To improve the readability of 2, some of the
proofs were defered to the appendix.

2. Lower bounds. In the first subsection we give precise definitions of the models
of computation when the communication width m 1, and of the types of functions
we are interested in. Subsections 2.2 and 2.3 contain the lower bound proofs for the
concurrent-write and exclusive-write models respectively when m 1. In the last
subsection we show how to extend the lower bounds for arbitrary communication width.

2.1. Definitions.
DEFINITION 2.1. A CRCW PRAM (1) consists of a set II {Pl, P2,’" "} of pro-

cessors, a number n of inputs, n read-only input cells X(1),X(2),... ,X(n), one
common memory cell C, an alphabet E and an execution time T.
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Each processor Pi has a set of states Qi and functions

Oi: Qi {1, 2,. , n}-the next input cell to be read,
r: Q- E-the symbol to be written into C, and

" Qi x E x E Q-the state transition function.
At each time period 0, 1,. , T each processor pi is in a state q e Qi, and the

cell C contains a symbol st e 51. At time =0 the input cell X(i) contains the input
x(eE)(1 _-< iN n), the cell C contains a designated symbol b0e 51, and every processor
p is in an initial state q Qi. In general

t+lq 6i(q, X(j), st), where j= p(q), and

t+l J" s if for every tri(qti+1) S (no one writes),
r(q+), is the smallest s.t. r(q+1) # s .

The value f(xl, X2,’’’, Xn) of the function f computed by the PRAM (1) is the
contents s 7" of C at time T.

DEFINITION 2.2. A CREW PRAM (1) is defined exactly like the CRCW PRAM
(1), with only one exceptionmat each time period there can be at most one processor
that writes, i.e. at most one s.t. ri(q+a) s t.

Remarks. These lower bound models allow II, 51 and Q to be infinite, and allow
the processors be nonuniform (i.e. have different programs for different values of n).
Also note that we use the convention that a processor writes if it tries to change the
contents of C, (and in the CRCW it must be the one with the smallest serial number
doing so).

DEFINITION 2.3. Let 51 be a set, I 51 and f:I-51 some function. An input
X=Xl, Xe,’",x,l is said to be k-sensitive w.r.t, f if for every subset J_
{1, 2,. , n}, [J[ k- 1 there exists another input y Ya, Ye," , Y I s.t. x y for
all j J, and f(x) f(y). If k is the largest integer s.t. every input (resp. some input)
x I is k-sensitive w.r.t, f, then f is said to be k-sensitive everywhere (resp. k-sensitive
somewhere).

Examples. Consider the functions Parity, Majority, OR" {0, 1} {0, 1}.
Parity is n-sensitive everywhere.
Majority is n/2 -sensitive everywhere.
OR is only 1-sensitive everywhere for all n, but it is n-sensitive somewhere (the

all zeros input is n-sensitive w.r.t. OR).

2.2. Lower bounds for CRCW PRAM (1).
THEOREM 2.1. Let M be a CRCWPRAM (1) that computes a k-sensitive

everywhere function f in time T. Then T
COROLLARY 2.1. LetM be a CRCW PRAM (1) that computes_the Parity, Majority

(Sum, Max) function on n bits (integers) in time T. Then T
Proof. Parity, sum and max are n-sensitive everywhere. Majority is In/2 ]-sensi-

tive everywhere.
Let us informally discuss the difficulties we are facing in trying to prove Theorem

2.1. Consider the behavior of the machine in time period t. There are two possible cases:
Case 1. No processor writes into C st= st-1.)
Case 2. Some processor (say pj) writes into C (st# st--i).
We have to analyze the information that is transferred in each case. Consider first

Case 1. As Cook and Dwork [CD-82] point out, information is transferred in this
case, namely the information that nobody wrote. They show how this information can
be used in an algorithm for the OR function, that is faster than the obvious one. The
way they keep track of this elusive information is heavily based on the fact that their
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model does not allow simultaneous write access to the same memory cell. (Indeed,
their lower bound does not hold for the CRCW PRAM). As our model allows simul-
taneous write access, we had to choose an approach which is different from theirs.

The information that is transferred in Case 2 seems even more slippery. We know
what was written into C, and in addition we know that no processor with serial number
smaller than j tried to write. (Note that as E may be infinite, the writer can encode
its serial number in the symbol it writes.) This case is much simpler in the exclusive
write model, since there, if someone writes, there can be no other processor that tries
to write!

At this point we need some notation. Let I denote the (nonempty) set of all
possible inputs (the domain). Fix a time period and let/3 ss st-1 be the string
of successive symbols in C in time periods 0, 1, , t- 1./3 is called the history through
time t. Denote by 18 I the subset of inputs that have history/3 through time t.

Our analysis will be based on the observation that Cases 1 and 2 consist each of
two subcases. Fix/3, a history through time t.

Case l a. There is no input in 18 for which some processor writes at time t.
Case lb. There is an input in 18 for which some processor writes at time t.
Case 2a. There is no input in I for which some processor with smaller serial

number than j writes at time t.
Case 2b. There is an input in 18 for which a processor with smaller serial number

than j writes at time t.
It turns out that Cases la and 2a are simple to analyze. Intuitively, in Case la no

new information is transferred as/3 itself contains the information that no one "will
write at time t. Similarly, in Case 2a, /3 contains the information that no processor
with a smaller serial number than the writer could have written, so the only new piece
of information is the new symbol in C, s t.

Now, rather than confronting the elusive information that is transferred in Cases
lb and 2b, we avoid (or circumvent) it, and hence coin the name circumvention for
this technique. Showing that we can restrict ourselves to the "easy to analyze" cases
is the heart of our argument.

Let I({il, Yl),""", (il, yl)})--{xGllxii--y, 1 <=j<= l} denote the set of all inputs
(n-tuples) whose projection on the/-tuple (il, i2,’", it) is (Yl, Y2,""", Yl).

Remark. We switch here from qualifying inputs by their history ("range" qualifica-
tion) to qualifying them by their values at given coordinates (domain qualification).
This yields a simpler and more intuitive proof than our original one which used range
qualification. However, we believe that range qualification is more powerful, and that
it may be used to prove lower bounds when domain qualification fails.

The following iterative definition will generate an "easy to analyze" set of inputs,
i.e. inputs for which Cases lb and 2b never occur. For every t, D will contain pairs
of "fixed" input .positions and their values, and E =I(Dt).

Let E I and DO . Consider time period and define E , D according to the
following:

Case 1. There is no processor p and no input x E t-1 such that p writes on x
at time t. Then

E ,_ E t-1 D ,.. Dt-1"

Case 2. There is a processor p and an input x E t-1 s.t. p writes on x at time
t. Let pt and y Et-1 be so that Pt writes on y at time t, and is the smallest serial
number of any processor that writes at time on any input in E t-1. Let il, i2," "’, i
and Yil, Yi," "", Yi, be the sets of input cells and their contents (respectively) that were
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read by Pl up to time t. (Clearly u <= t.) Then

E - Et-1 f’l I({(ii, Y,1),’’’, (i,, y,,)}),

D Dt-IU {(il, Y,,),’’’, (iu, Y,u)}.
It is easy to see that for every 0 <-t <- T
(1) ID’l<-ID’-l+t, IDl--O and hence ID’l<=t(t+l)/2.
(2) Et= l(Dt), Dr-l c__ Dt, Etc_ E t-1.
(3) E f.
In particular we have:
LrMM 2.1. E r and IDr]<=T(T+I)/2.
Remark. The definition above generates a set E r of "easy to analyze" inputs,

regardless of the function being computed. Therefore we believe that this technique
can be used to prove lower bounds for the computation of other functions in this model.

LrMM 2.2. Let M be an CRCWPRAM (1) computing a function f, and let E
be defined as above for M. Then for every x, y E, f(x) f(y).

A rigorous proof of this lemma is given in the appendix. The idea is to show
inductively on t, that any processor which writes at time on some input in E r, will
have exactly the same computation through time on every input in E

Proof of Theorem 2.1. Recall that M computes a k-sensitive everywhere function

f in time T. Suppose that T(T+I)/2<k. Then IDrl> k, and so by Definition 2.3,
there must be inputs x and y in E r s.t. f(x)f(y). This contradicts Lemma 2.2.
Therefore T( T+ 1)/2 >-

2.3. Lower bounds ior the CREW PRAM (1). Consider the OR function of n
bits. As mentioned earlier, the OR is just 1-sensitive everywhere, so the results in the
previous subsection imply only a constant time lower bound for it on the
CRCW PRAM (1). Indeed, there is a two step algorithm for the OR on this model as
follows. In the first step, the common memory cell C is initialized with "0." In the
second step, a processor p reads the ith input position and writes a "1" into C iff the
value it read was "1."

It is clear why this algorithm is not valid for a CREW PRAM. Note, however,
that if the domain consists only of inputs which have at most one position containing
a "1," a write conflict cannot occur, and the algorithm is valid for the CREW PRAM.
For this reason we will restrict ourselves here to functions with a full domain (i.e.
I "). The main result in this subsection is the following theorem.

THEOREM 2.2. Let N be a CREWPRAM (1), that computes a k-sensitive some-
where function g in time T. Then T (kl/3).

COrOLLAI 2.2. If g is the OR function on n bits, then T 1)(nl/3).
In a earlier version of this pap_er we conjectured that the lower bound of Corollary

2.2 can be improved to T= 1)(/). This was recently proved by Beame [B-83]. In
fact, he proved the following stronger theorem.

THEOREM 2.3. (Beame). Let N be a CREW PRAM (1) that computes a function
g:{0, 1}" {0, 1} in time T. If there exists an input eel s.t. [{xI: g(x)=g(e)}l<-II[/r,
then T a(,/iog 

It immediately follows that:
COlOLLArt 2.3 (Beame). If g is the OR function on n bits, then T 1)(/-).
The proof of Theorem 2.3 has the same structure as that of Theorem 2.2. However,

while we focus on the sensitivity of inputs in the lower bound argument, Beame focuses
on a different parameter, namely the number of inputs with the same image. His proof
is of independent interest, and we include it in the appendix,
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We return to the proof of Theorem 2.2. The idea is to use the framework of the
previous subsection, namely to construct a set of inputs E, and show that for the
computed function to be constant on E, T must be large. This task was relatively
easy for everywhere sensitive functions, since we did not have to worry about the
contents of E, as every input is sensitive. To use the sensitivity of inputs in a somewhere
sensitive function in a similar argument we must make sure that E " contains at least
one sensitive input. This motivates the following inductive definition of the sets Dt, E t.

Let g:lE be the function being computed and e= el, ez," "’, e,, I be a k-
sensitive input w.r.t.g. Set E I and DO . Consider time period and define E t, D
as follows:

Case 1. There is no processor p and no input x E-1 such that p writes on x
at time t. Then

E Et-l, D Dt-1.

Case 2. There is a (unique) processor p that writes on e Et- at time t. Let
il, i2, iu and e, e, , e be the sets of input cells and their contents (respectively)
that were read by p up to time t. (Clearly u-<_ t). Then

D - Dt-1 [,.J {(il, eq),..., (iu, ei,)},
E Et-l["] l({(ia, e),..., (i,, e,.)}).

Case 3. There exists x E t-l, x e s.t. some pi writes on x at time t, but no
processor writes on e at time t. Let R be a set of positions s.t. if y E t-1 and y e
for all R o, then no processor writes on y at time t. In this case we fix the positions
R with values of e:

D *- Dt-1 [.J {(i, e)li Rto},

E Et-1 fq I({(i, e)[i R}).

It is easy to see inductively that e E for all t, and so e E t. Our main problem
is to obtain an upper bound on [R[.

LZMMA 2.3. For every t, [R[ -<_ t(t + 1)/2.
This lemma is the heart of the lower b6und. Since the proof is long, it is deferred

to the appendix.
LZMMA 2.4. For every t, lDtJ<=t(t+ l)(t+2)/6 and eEt.
Proof. By simple induction on t.
LZMMA 2.5. For every x, y E , g(x) g(y).
Proof. Exactly the same as the proof of Lemma 2.2.
Proof of Theorem 2.2. Recall that N computes a k-sensitive somewhere function

g in time T. Suppose T(T+I)(T+2)/6<k. Then by Lemma 2.4 IDT"l>.k. Since
e E 7", be Definition 2.3 there must be a y E 7" s.t. g(y) g(e), which contradicts
Lemma 2.5.

2.4. Arbitrary communication width. What happens when the communication
width is larger than 1? The CRCWPRAM(m) is defined similarly to the
CRCW PRAM (1), only now there are m common memory cells
C(1), C(2), , C(m) to which the processors have concurrent read/write access. In
a similar fashion the CREW PRAM (m) can be defined. Our results are summarized
in the following theorem.

TI-IEORE 2.4. Let M be a CRCWPRAM (m) that computes a k-sensitive
everywhere function f: l(_E) - E in time T. Then T l(x/k/m). In particular, if
f {Parity, Majority, Sum, Max}, T=f(x/n/m). Let N be a CREW PRAM (m) that
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computes a k-sensitive somewherefunction g: E" --> E. Then T f( k/m )1/3). Inparticular,
ifg{AND, OR}, T=((n/m)i/3).

The only difficulty in extending our technique to prove Theorem 2.4 is in the
definition of the "easy to analyze" cases. For example, one can construct a machine
for which the following happens: There are inputs for which both C(1) and C(2) are
written into. However, if we choose an input for which the smallest numbered processor
writes into C(1), no one will write into C(2) and vice versa.

We overcome this difficulty by conceptually serializing the write access into
different cells as follows" Each time unit is sliced into m slices, so that in the ith slice
only cell C(i) may be written into. Then, at the ith slice of time period we can refer
not only to the contents of all cells at previous time periods, but also to the contents
of cells 1 to i-1 at time period t. (Note that the machine is not affected by this
conceptual slicing. Indeed, it shows that our results hold even in a stronger model that
allows the processors to access all common memory cells at each time unit.). As a
result we are able to define sets E t, and Dt’, 0 <= <= T, 1 <= <= m, inductively in a similar
fashion to the previous subsections for the CRCWPRAM (m) and the CREW
PRAM (m) respectively. The only refinement is that instead of defining E from E t-l,
we define E t from Et- when i> 1, and E tl from E (t-l)’.

The analysis of the previous subsections carries through in a straightforward
manner w.r.t the final sets, E 7"m and D. This includes the proof of the following two
lemmas and the conclusion of the theorem from them.

LEMMA 2.6. In the CRCW PRAM (m), ID[ =< m(T+ 1) T/2.
In the CREW PRAM (m), [DTI<=mT(T+ I)(T+2)/6.
LEMMA 2.7. In the CRCW PRAM (m), for every x, yE,f(x)=f(y).
In the CREWPRAM (m), for every x, y ET, g(x)=g(y).
We conclude this subsection with two observations"
(1) The ideas outlined above can be used to extend also Beame’s theorem

(Theorem 2.3) for arbitrary communication width, as follows.
THEOREM 2.5. LetNbe a CRCW PRAM (m) that computes a function g" {0, 1}"

{0, } in time T. If there exists an input e I s.t. ]{x I: g(x) g(e)}l <--III/r, then T
f(x/(log2 r)/ m). In particular, if g is the OR function, then T= f(x/n/ m).

(2) Two other concurrent-write models of parallel computation that appeared in
the literature ([SV-81], [ShV-82]). They differ from our CRCW PRAM in the way
they resolve write conflicts. In the first all processors that access the same memory
location should write the same value. In the second there is no such restriction, but
we do not know in advance which processor succeeds in writing. We conclude this
section by mentioning that those two models are weaker than ours, and therefore our
results for the CRCW PRAM hold for them as well.

3. Upper bounds. All upper bounds can be achieved in the weakest version of a
PRAM, namely the Exclusive-Read Exclusive-Write PRAM (EREW PRAM). It is
similar to the CREW PRAM, only that in this model any simultaneous access of a
shared memory cell is forbidden. The algorithms are simple and will be described
informally. They will be given only for the problem of summing n numbers. It is easy
to see that they hold for computing any associative function.

Consider first the EREW PRAM (1) model. The n numbers al, a2,""", an are
initially stored in the read-only input tape. Let Lj be a local memory cell of processor
pj, and C is the common memory cell. The algorithm is described in Fig. 1.

Clearly, only p=O(.,/n) processors are active in this algorithm, and the sum
is computed in O(/) time. Since sequential time for summation is lq(n), a
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Time Pl P2 P3 P4

1 L1 al L2 a2 L3 an L4 a7
C-L1

2 L2 L2 + a3 L3 L3 + a5 L4 L4+ a8
C-C+L

3 L 4- L + a L4 L4+ a9
C,t--C +L

FIG. 1. Summation with one common memory cell.

straightforward lower bound of iq(n/p) exists for any parallel machine with p pro-
cessors. Hence the number of processors is optimal up to a constant factor.

Consider now the same problem for the CRCWPRAM(m), where m=
O(n/log2 n).We show how to achieve O(x/n/m) time with O(x/nm) processors. The
algorithm has two phases:

(1) Partition the n inputs into m subsets of size roughly nm each. Assign to
each subset x/n/m processors and one common memory cell. For each subset the sum
is computed in the respective memory cell using the algorithm above in time O(x/n/m).

(2) Sum up the m values in the common memory using m(<=x/nm processors in
O(log m) time in the obvious way.

As before, the number of processors used is optimal up to a constant factor. This
upper bound establishes that our lower bound for Parity on the CRCW PRAM (m)
and Beame’s lower bound for the OR on the CREW PRAM (m) are tight.

We conclude by mentioning what is known when the communication width is
larger than the input size. If the input values are taken from a finite domain, the sum
can be computed in constant time using exponential width and number of processors.
If those two resources are bounded by a polynomial in n, the best upper bound known
is O(log n/log log n) [CSV-82].

4. Conclusions and open problems. Using communication based arguments to
prove lower bounds in computer science is an old idea. The crossing-sequence [HU-79]
technique in Turing machines essentially measures communication between work-tape
cells. This technique was extended to measure communication between two halves of
a VLSI circuit [Y-81], [LS-81], [PS-82] and obtain Time-Area trade-offs.

We consider this paper to be a first step towards understanding the central role
played by communication in efficient parallel computation. The view of communication
as a resource in parallel machines gives rise to many questions. We mention a few below.

(1) Our lower bound for the OR on the CREW PRAM, combined with that of
Cook and Dwork, covers the whole range of m. On the other hand, the lower bound
for the parity functions on the CRCW PRAM (m) becomes trivial when m->_ n. The
case where m is only boundedby a polynomial in n is of particular interest, since a
lower bound on the time here will give a lower bound on the depth of polynomial size
parity circuits.
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(2) Consider parallel RAMs in which processors are allowed to be probabilistic
or nondeterministic. In the deterministic version of the CRCW PRAM (1) which we
studied here, both the Parity and the Max functions have an f(x/) lower bound on
the time. If we allow nondeterminism, the maximum of n numbers can be computed
in constant time. However, we conjecture that the lower bound still holds for Parity
even in the nondeterministic model.

(3) Study Time-Width-Processors trade-otis for other [unctions.

Appendix.
LEMMA 2.2. For every x, y e E r, f x) f y).
Proof of Lemma 2.2. We use the following notation. For an input x e I,
ql(x) and s’(x) are respectively the state of p and the contents of C in time for
the input x.
R(x)={p(q(x))lO<= r<t} is the set of input cells read by p through time t. Set
Ro(x) .
(x) is the index of the processor that writes at time on input x. If there is no
such processor at time for x, (x)= O.
W’(x) t3’--1R(x) where j= w(x), is the set of input cells read by all writers
through time t.
FW’(x)--{wr(x)lt<= r<= T, w(x) 0} is the set of future writers from time period
on.

Let x and y be elements in E . It is sufficient to show that s(x)= s(y). We
prove by induction on t, that w’(x)= w’(y), W’(x)= W’(y), s’(x)= s’(y), and that
for every ] FW’(x), q(x) q(y) and R(x) R(y).

ot=0. For every processor , q(x)=q(y)=q, R(x)=R(y)=f. Also, s(x)
s(y) b0, W(x) W(y) and w(x) w(y) O.

> 0. Assume the claim holds for every r < t. Let ] FW’(x). Let i(x) &(q-l(x)),
i(y) p(q-l(y)). By the induction hypothesis i(x)= i(y) and hence R(x)= R}(y).
Since ] FW’(x), R(x)_ Wr(x) which using x, y e E r implies that X(x)= y(). From
this and the induction hypothesis we get q}(x)=q(y). Let (x)=tr(q}(x)) and
try(y) r(q(y)). Then r(x)= try(y). There are two cases to consider now,

Case 1. s’(x)= s’-l(x). By the construction of E and induction, s(y)= s’(x)=
s’-l(x), w’(x)= w’(y) =0 and W’(x) W’(y) w’-l(x).

Case 2. s(x) s-l(x). Let ] w(x). Again by construction of E , there can be
no l<] s.t. crl(q(y))#s’-l(y), and since tr(x)=r(y) we have w’(y)=]=w’(x),
st(y) st(x), and Wt(y)= W’(x). [q

LEMMA 2.3. For every t, IRol<=t(t+ l)/2.
Proof of Lemma 2.3. Denote by Z/ the set of nonnegative integers, and i, ], k,

denote only positive integers. Also, for a subset S {1, 2,..., n} and inputs x, y I,
x y(mod S) means xi Yi for all e S.
Ir(S {x l[x y(mod S)}.
Claim. Given an integer t, a set S_ {1,2,..., n}, a function h:le(S) Z+, and

sets S {1, 2,..., n} for every positive j h(Ie(S)) that satisfy
(1) S f’) S for all j.
(2) ISI <=t for all j.
(3) h(e) 0.
(4) h(x)=j and y= x(mod S) implies h(y)=.
(5) h(x) ], h(y) k and ] k implies that there exists an S f-) Sk s.t. x y.

Then there exists a set R {1,2,... ,n }s.t. IRl<=t(t+l)/2 and h(Ie(SLJR))=O.
Connection between the claim and the lemma. Recall that we wanted to prove the

existence of t(t+ 1)/2 input positions s.t. fixing them with values of e will ensure that
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no one writes at time in Case 3. Let R be defined as in the proof of Lemma 2.2.
Then let S be the set of fixed input positions through time t, (S D’-, le(S) E’-I),
Sj Rj-S for all j, and let the function h" le(S) Z+ be defined by h(x)= j if p is
the (unique) processor that writes on x at time t, and h(x)=0 if no one writes on x
at time t. Let us verify that properties (1)-(5) hold.

(1) By the definition of S.
(2) ISI IR;- Sl < IR,
(3) We deal here only with case 3, in which no processor writes on e.
(4) Since x, y le(S) and x y(mod $), x y(mod R). With an almost identical

proof to that of Lemma 2.2 we can prove that q;(x)=q(y), i.e. pj will arrive at the
same state at time for both inputs x and y. In particular, pj will write on x if and
only if it will write on y at time t.

(5) Suppose not. Then define an input z by zi xi if S, zi Yi if Sk Sj, and
zi ei for the remaining values of i. Clearly z le(S)- E t-1. Therefore both p and
Pk write at time on z, contradicting the definition of the CREW PRAM.

Now we can take R R, which completes the proof of the lemma. I-1

Proof of Claim. The proof is by induction on t.
t=0. In this case h(le(S)) =- {0}. Otherwise, for some x le(S) there exists j>0

s.t. h(x)=j, then (4) also h(e)=j, contradiction to (3).
t>0. If h(le(S))=-{O} we are done. Assume that for some xle(S), h(x)=/>0.

Set S’= SU St, and h’ be the restriction of h to ie(S’), and S= S-
h’(|e(S’)). Then we have the following:

(1’) S’VI S for all j. Clear.
(2’) ISl_-<t-1 for all jEh’(le(S’)). Since l, jeh(le(S)), by (5) S) f’lSt#, and

therefore Is l--IS - Sll IS l- 1 =< t- 1.
(3’) e e le (S’) and h’ (e) 0. Clear.
(4’) h’(x)=j, y= x(mod S) implies h’(y)=j. Since x, yele(S’), y=- x=-

e (mod St) and therefore y =- x (mod S). Hence j= h’(x)= h(x)= h(y)= h’(y).
(5’) h’(x)=j, h’(y)=k,j# k implies that there is an ieSfqS’k s.t. xi# Yi. Since

h(x) ], h(y) k there must be such an in S fq Sk. However, since x -= y e (mod St)
must belong to

By the induction hypothesis, there exists a set R’ s.t. IR’I--< (t- 1)t/2 and h’(le(S’ U
R’))=0. Set R=R’US. Then clearly [Rl<=t(t+l)/2 and h(Ie(SUR))
h(le(S’U R’))= h’(le(S’U R’))=0. 1-]

THEOREM 2.3. Let N be a CREW PRAM (1) that computes a function g in time
T such that :le I (I= {0, 1}") for which I{x llg(x) g(e)}] <-III/r. Then T= fx/log2 r.

Set E I and F I-E . Consider time period t. For any j let P be the set
of input positions read by processor pj up to time and define E and its complement
F’ as follows:

Case 1. There is no processor p and no input x E ‘-1 such that p) writes on x
at time t: Then E’ - E t-l, F’ *- Ft-1.

Case 2. No processor writes on e at time but there is an x E t-1 such that
some pj writes on x at time t" For every input x E t-1 which causes a processor p to
write at time define

C’x l({(i, xi)l P}).
Each C is specified by the values in at most input cells since IPI-<- t. It is clear

that any x E ’-1 which causes a write at time is in some C’ Also any y E ’-1 (q C’xy.

will cause a write at time since processor p at time will not be able to distinguish
y from x. Thus if we eliminate the elements of these "cubes" from Et-1 no writes will
occur at time t.
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The "cubes" also satisfy an additional property. If Cx fq Cry # then their shared
specifying positions must agree in value. Therefore if Cx # C then Cx and Cry musty

be specified by different input cells and so correspond to different processors. It follows
c I-Et-l= Ft-1 otherwise there would be a simultaneous writethen that C’x f’l Cy

which is not allowed.
Thus if we designate the distinct cubes as {Ci} then

and

tf-) t--IwhereVi#j, Ci Cs F

Case 3. There is a (unique) processor pj that writes on e E t-1 at time t: Then
we require that the input agree with e in the positions of P. We may regard this as
requiring that the input be in the cube which is the subset of the input specified by
these IP[-<-t values. Equally well this may be regarded as excluding from the input
all values which are in the cubes specified by the other 2IPI- 1 possible settings of
values in these positions. If we call these excluded cube’s {C I} as in Case 2, it is
immediate that Vi ], Cf’l C=

___
Ft-1. Then as in Case 2 we have

and

LEMMA 2.8. For any >-_ 0 and any "cube" C which is specified by at most s cells
of the input 5t an integer r such that IC f-I Ftl rill (2s+(t(t+l)/e)).

Proof. By induction on
t- 0" Ft= so the claim is true with r- 0.
Assume the claim for t- 1" F Ft- +i Ct Ft- Ft-since V # j, C f-) Cs

(we use additive notation for disjoint union). Therefore

ICSf-lFt[= CS[’-](Ft-l+E (C_Ft-l))

IC n Ft-l +E I( cs n cl)- Ft-1

IC’ NF’-II+E (IC’NCII-I(C’NCI)NF’-ll).

If we only sum over nonempty intersections then C n C is a subset of the input which
restricts the input only by specifying input positions and which is specified by at most
s + of them. Thus we may designate C/t= C f-I C. Therefore

IC’nF’I=IC’nF’-II+E (ICT+’l-ICT+’rqF’-ll)

pill qilII rilII
--2s+t(t-1)/2"l-i "--i 2s+t+t(t-1)/2 where p, qi, ri are integers.

This follows by the inductive hypothesis for the first and last terms and because of the
form of the middle terms.

Since all of the denominators divide 2s+t(t+l)/2 the claim holds for and the lemma
is proved.

LEMMA 2.9. e E T and Vx E T g(x) g(e)
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Proof of Theorem 2.3. If we apply Lemma 2.8 with s 0 then C I and we see
that IFrl is an integral multiple of 111/2 r(r+)/:. Since Er= I-F
is also a multiple of this number. Now e
11/2//2. By our assumption on g and by Lemma 2.9 we need Illr. Therefore
2 r(r+l/2 >_ r and so T l)(/log2 i;).
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ON THE MOVEMENT OF ROBOT ARMS IN 2-DIMENSIONAL
BOUNDED REGIONS*

JOHN HOPCROFT’, DEBORAH JOSEPH$ AND SUE WHITESIDES

Abstract. The mover’s problem is the following: can an object in 3-dimensional space be moved from
one given position to another while avoiding obstacles? It is known that the general version of this problem
involving objects with movable joints is PSPACE hard, even for a simple tree-like structure moving in a
3-dimensional region. In this paper, we investigate a 2-dimensional mover’s problem in which the object is
a robot arm with an arbitrary number of joints. In particular, we give a polynomial time algorithm for
moving an arm confined within a circle from one given configuration to another. We also give a polynomial
time algorithm for moving the arm from its initial position to a position in which the end of the arm reaches
a given point within the circle. Finally, we show that 148 circles suffice to cover the boundary of the reachable
region of a joint in an arm enclosed in a circle and that the boundary can be computed in polynomial time.

Key words, robotics, manipulators, mechanical arms, algorithms, polynomial time

1. Introduction. With current interests in industrial automation and robotics, the
problem of designing efficient algorithms for moving 2- and 3-dimensional objects
subject to certain geometric constraints is becoming increasingly important. The mover’s
problem is to determine, given an object X, an initial position Pi, a final position Py
and a constraining region R, whether X can be moved from position Pi to position Py
while keeping X within the region R. Polynomial time algorithms (LozanooPerez and
Wesley [3], Reif [5], Schwartz and Sharir [6]) are known in the case where X is a rigid
2- or 3-dimensional polyhedral object, and R is a region described by linear constraints.

A more difficult problem, which is related to problems in robotics, assumes that
the object X has joints and is hence nonrigid. Schwartz and Sharir [7] give a polynomial
time algorithm, the degree of the polynomial being exponential in the number ofjoints,
for moving X from position P to Py within a region R. Unfortunately, an algorithm
with running time polynomial independent of the number of joints is unlikely, as Reif
[5] has shown that the problem of deciding whether an arbitrary hinged object can be
moved from one position to another in a 3-dimensional region is PSPACE complete.

This paper investigates variants of the mover’s problem that we believe are of
interest. We begin in 2 and 3 by considering the problem of folding a carpenter’s
ruleruthat is, a sequence of line segments hinged together consecutively. This problem
arises because a natural strategy for moving an arm in a confining region is to fold it
up as compactly as possible at the beginning of the motion. Unfortunately, deciding
whether an arbitrary carpenter’s ruler (whose link lengths are not necessarily equal)
can be folded into a given length is NP-complete. Because of this, it turns out to be
at least NP-hard to decide whether or not the end of an arbitrary arm (i.e., a carpenter’s
ruler with one end fixed) can be moved from one position to another while staying
within a given 2odimensional region.

In 4-6 we consider the problem of moving an arm inside a circular region, and
we are able to give polynomial time algorithms for changing configurations and reaching
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points. Also, we show that circles covering the boundary of the set of points reachable
by a joint can be computed in polynomial time.

2. Folding a ruler. In this section, we ask how hard it is to fold a carpenter’s ruler
consisting of a sequence of n links L1,’’’, L, that are hinged together at their
endpoints. These links, which are line segments of integral lengths, may rotate freely
about their joints and are allowed to cross over one another. We assume that the
endpoints of the links are consecutively labeled Ao,’’ ", An and for =<i <- n, we let
li denote the length of link Li. (See Fig. 2.1.) We define the Ruler Folding problem to
be the following:

Given: Positive integers n, 1,..., In, and k.
Question: Can a carpenter’s ruler with lengths 1,..., In be folded (each pair of

consecutive links forming either a 0 or 180 angle at the joint between them) so that
its folded length is at most k?

L
A A

L4 LsA5Ao

’5

FIG. 2.1. A typical ruler with five links.

By a reduction from the NP-complete PARTITION problem (see Garey and
Johnson [1]) we can easily show that the RULER FOLDING problem is also NP-
complete. The PARTITION problem asks whether, given a set S of n positive integers
1,, , In, there is a subset S’ S such that

|i’-- |j.
lieS’ ljeS-S’

THEOREM 2.1. The RULER FOLDING problem is NP-complete.
Proof. Given an instance of the PARTITION problem with S-(l,,..., ln, let

d -i---1 l. Then the desired subset S’ of S exists if and only if a ruler with links of
length 2d, d, l,..., In, d, 2d (in consecutive order) can be folded into an interval of
length at most 2d. To see that this is the case, imagine that the ruler is being folded
into the real line interval [0, 2d], and notice that both the initial endpoint Ao of link

L1 (the third link in our ruler) and the terminal endpoint An of link Ln (the third from
last link) must be placed at integer d. The set S’ in the PARTITION problem then
corresponds to the set of links Li whose initial endpoints A_ appear to the left of
their terminal endpoints A in a successful folding of the ruler. [3

The RULER FOLDING problem and the PARTITION problem share not only
the property of being NP-complete, but also the property of being solvable in pseudo-
polynomial time. The time complexity of the RULER FOLDING problem is bounded
by a polynomial in the number of links, n, and the maximum link length, m. In fact,
it is possible to find the minimum folding length in time proportional to n m by a
dynamic programming scheme. However, in order to carry out this scheme we need
to know that a ruler with maximum link length m can always be folded to have length
at most 2m.

LEMMA 2.1. A ruler with lengths 1, , In can always befolded into length at most

2m, where m max {1ill =< -<_ n}.
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Proof Place link LI into the interval [0, 2m] with Ao at 0. Having placed links
L1, L2,’’ ", Li-I into the interval, position Li as follows: Place L with A to the left
of Ai_, if possible. Otherwise, place Li with A to the right of A_. To see that this
is possible, suppose that p is the position of Ai_ and note that if A cannot be placed
to the left of A_, then r <- 1 <= m. Hence A can surely be placed to the right of A_I. [3

Using this result, we can now give an O(m2 n) dynamic programming algorithm
for determining the minimum folding length of a ruler, where n is the number of links
in the ruler and m is the maximum length of any given link.

ALGORITHM 2.1. Ruler folding in minimum length. Given a ruler with links
L, , L,, compute the maximum link length m. Then, for each k, -<_ k <_- 2m, construct
a table with rows numbered 0 to n and columns numbered 0 to k. For a given k, a T
is placed in row i, columnj if the linkage L, L2, Li-1 fits in [0, k] with the endpoint
A, at integer j. Row 0 is filled in by writing a T in each column j. Once row i-1 has
been filled in, fill in row by writing a T in each column j for which the linkage
L,..., L, fits in [0, k] with endpoint A at integer j. To do this, examine row i- to
obtain the possible locations for A,_. The last row of the completed table contains a
T if and only if the ruler can be folded into [0, k]. Find the smallest k for which the
table contains a T in the last row, and read the table from bottom to top to reconstruct
the desired folds.

The next example shows that 2m is, in some sense, the best upper bound for the
minimum folding length.

Example 2.1. A ruler with minimum folding length 2m- e. Consider a ruler which
has n 2k- links Ll,- ", L,. (See Fig. 2.2.) Suppose that links with odd subscripts
have length m and that links with even subscripts have length m- e, where e m! k.
It is easy to check that this ruler cannot be folded into length less than 2m- e.

A
0

-A

L

L

An-l

2 r.-

L2k_

m+ m+2e

A

FIG. 2.2. The ruler of Example 2.1.

Having established some basic results about folding rulers, we now return to the
original problem .of moving such objects.

3. Moving an arm in two dimensions. The remainder of this paper is concerned
with moving a ruler that has one endpoint, Ao, pinned down. We will refer to such a
ruler as an arm.

Unrestricted movement. It is easy to find out what points can be reached by the
free end of an arm placed in the plane. The answer is given in the next lemma, whose
simple proof we omit. (The lemma extends readily to three dimensions.)
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LEMMA 3.1. Let L1, ", L, be an arm positioned in. 2-dimensional space, and let
r i=l li, the sum of the lengths of the links. Then the set of points that A, can reach
is a disc of radius r centered at Ao--unless some li is greater than the sum of the other
lengths. In that case, the set ofpoints A can reach is an annulus with center Ao, outer
radius r, and inner radius li-Y,ji lj.

Restricted movement. If an arm is constrained to avoid certain specified objects
during its motions, then determining whether A, can reach some given point p is
difficult. The following example suggests that a reduction of RULER FOLDING can
be used to show that this problem is NP-hard even for walls consisting of a few straight
line segments.

Example 3.1. A hard decision problem. We want to know whether the arm shown
in Fig. 3.1 can be moved so that A, reaches the given point p. The arm consists of a
"ruler" with links of integral lengths attached to a "chain" of very short links. The
chain links are short enough to turn freely inside the tunnel, which is sufficiently
narrow that links of the ruler can rotate very little once they are inside. Since the ruler
cannot change its shape very much while moving through the tunnel, it must be foldable
into length at most k in order to move through the gap of width k. Thus, point p can
be reached if and only if the ruler can be folded into length at most k.

gap of width k

....................... -A
--ruler long, tunnel

_
short links

FIG. 3.1. A point that is hard to reach.

We would like to find natural classes of regions for which questions concerning
the movement of arms are decidable in polynomial time. Certainly the simplest such
region is the inside of a circle, since there are no corners in which an "elbow" might
be caught. We believe that studying motions inside a circle sheds light on the underlying
movements of the arm without the complexities that arise in situations where a link
can jam in a corner. For the remainder of this paper, we will discuss polynomial
algorithms for moving an arm within a circle. In a subsequent paper, we hope to treat
more general situations.

4. Changing configurations inside a circle. In this section, we solve the problem
of moving an arm from one given configuration to another inside a circular region.
Simply determining whether this can be done turns out to be a matter of checking that
links whose "orientations" differ in the two configurations can be reoriented. This
checking can be done in time proportional to the number of links. Assuming that it is
feasible to change configurations, we show how to move the arm to its desired final
position by first moving it to a certain "normal form" and then putting each link into
place, correcting its orientation if necessary. Correcting orientation involves destroying
and then restoring the positions of previous links. Our algorithm consists of a sequence
of "simple motions" (which we are about to define), and the length of this sequence
is on the order of the cube of the number of links.

Simple motions. A definition of a "simple motion" is needed in order to make
clear the sense in which our algorithms for moving an arm are polynomial. This
definition should not. limit the positions the arm can reach nor should it complicate
the algorithms and proofs. With these considerations in mind, we define a "simple
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motion" of an arm as follows. (There are many other definitions which would give
similar results.)

DEFINITION 4.1. A simple motion of an arm is a continuous motion during which
at most four joint angles change. (The angle between the first link and some reference
line through the fixed point A0 may be one of these.) Moreover, a changing angle is
not allowed both to increase and to decrease during one simple motion.

Figure 4.1 illustrates some simple motions of the type we use. Note that in the
motions shown, the joints where angles are changing are connected together by straight
sections of the arm. This is true of all the simple motions we will use.

A4 A8 A

A

A is moving to the circle by a simple motion. The locations of
Ao, Aj, A6, AT, and A remain fixed. The angles at Aj, A3, As,
and A are changing.

A

A6= A

A

A is moving to the circle by a simple motion. The locations of
Ao, A, and A remain fixed. A4, As, and A move first counter-
clockwise, then clockwise around the circle. Only the angles at
A2, A3, and A4 are changing.

FIG. 4.1. Examples of simple motions.

Normalform. It is convenient to begin by showing that any arm positioned within
a circle can be moved by a short sequence of simple motions into a normal form that
has as many joints as possible positioned on the circle. We immediately dispense with
the case in which the distance from Ao to the circle is greater than the length of the
entire arm, since in this case the circle is irrelevant.

DEFINITION 4.2. Suppose Ao is fixed at some point distance do from the circle,
and suppose that j is the smallest integer such that =, li--> do. Then the arm is in
normal form if and only if L,,..., Lj contains at most one bent joint, and for each
k, j <= k <- n, Ak is on the circle. Moreover, if L1, , Lj is not a straight line of links,
the bend is at joint A_. (See Fig. 4.2.) In any event, LI,’’ ", L_, lie on a radius.

LEMMA 4.1 (normal form). For any given configuration of an arm within a circle
there is a sequence ofO( n) simple motions that moves the arm to normalform. Moreover,
this sequence can be computed in O(n) time.

Proof. The process consists of two stages. First, the tail will be straightened until
An reaches the circle. Then, starting with An_,, the other joints will be moved one by
one onto the circle.

Suppose Lj, L+I, ", Ln form a straight line segment. Move An toward the circle
by rotating this segment about A_, until An reaches the circle or L_, is added to the
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A
8 A

Ao
6

A A

Ao, A, and A lie on a radius. A is the first joint that can

reach the circle. A and its successors lie on the circle.

FIG. 4.2. An arm in normal form.

straight segment. In this latter case, rotate the extended straight segment about Aj_2.
Eventually, A, reaches the circle or the entire arm becomes a straight segment that
can be rotated about Ao to place A, on the circle. (Recall that we are assuming that
the arm is long enough to reach the circle.) This process requires at most O(n) simple
motions and can be computed in O(n) time.

Now assume that A,, A,-1, , Aj are on the circle, that A_l is not on the circle,
and that the sum of the lengths of the first j- links exceed the distance from Ao to
the circle. Let Li, Li+, , Lj_ be the maximal straight segment leading back from A_.

If Ai_ Ao, then leave the line of links L,..., Lj_ straight while rotating it
about Ao so that A_ moves closer to the circle. (If L,. ., Lj_ lies on a diameter,
rotate clockwise, say.) At the same time, adjust the angle at A and move Aj,..., An
around the circle. Stop when Aj_l reaches the circle.

If Ai_l is not Ao, then A_l is a bent joint. Keeping L, L+l, , L_l straight and
the positions of Aj and A,-2 fixed, rotate Lj about Aj moving Aj-t away from Ai_2.

Rotate clockwise, say, if there is a choice because A_l is completely folded. (See Fig.
4.3.) L is rotated until A_t hits the circle (in which case we have. a new joint on the
circle), or Li_l is added to the straight segment L,..., Lj_, or A_ hits the circle. If
L_ is added to the straight segment, then the process of rotating Lj is continued with
the straight segment replaced by a new one containing at least L,..., Lj_ and Li_l.
If A_ hits the circle, then A_ is held fixed while the angles at joints A_, Aj_, and
Aj are adjusted so as to push Aj_ to the circle while keeping Aj and its successors on
the circle. In this way, one can force onto the circle as many joints as possible (i.e.,
Aj can be placed on the circle, where j is minimum such that the sum of the lengths
of the first j links exceeds the distance from Ao to the circle). Once these joints are
on the circle, it is easy to position the links at the beginning of the arm as desired.

Aj_ moves toward the circle away from Ai_2. The locations

of Ai_ and its predecessors and the locations of Aj and its

successors remain fixed. Only the angles at Ai_2, Ai_, Aj-l,
and Aj are changing.

FIG. 4.3. fCloving an arm to normal form.
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This process requires O(n) simple motions and once again, these motions can be
computed in O(n) time. Thus, a total of O(n) simple motions is needed to put an arm
into normal form, and O(n) time is needed to compute the motions.

Reorientation of links. For any given position of an arm inside a circle, we define
each link to have either "left" or "right" orientation. This is done by first observing
that the straight line extension of a link Li cuts the circle into two arcs. Li is said to
have left orientation if the arc on the left of the extension, viewed from Ai_ to Ai, is
no longer than the arc on the right. Right orientation is defined in a similar manner.
(See Fig. 4.4.) Note that a link that is on a diameter of the circle can be regarded as
having either orientation and that a link must move to a diameter in order to change
orientation.

right orientation left orientation

FIG. 4.4. Link orientations.

An obvious necessary condition for being able to move the arm from one configur-
ation to another is that it be possible to reorient each link whose orientation differs
in the two configurations. (It turns out that this condition is also sufficient.) We are
about to show that determining whether a link can be reoriented is simply a matter of.
determining how far its endpoints can be moved from the circle.

For an arm with Ao fixed within a circle C, let c and d denote the minimum and
maximum distance that A can be moved from C by arbitrary motions of the arm
within C. Of course, distance is measured along a radius of C, so 0 <= c <-d <= d/2,
where d is the diameter of C.

Since Ao is fixed, Co and do are determined by the position of Ao. The Normal
Form Lemma 4.1 shows that each successive A can get closer to the circle by the
amount 1 until the circle is reached. Thus

ci max {c_ li, 0}.

Computing the d’s is slightly more complicated. We begin by computing for each
i, 0 -< i-< n, the maximum distance t; that A; could move from the circle if it were
constrained only by the tail of the arm (i.e., if Li/, , L, were freed from L, , Li
and L,..., Li were discarded). This leaves a "tail" L/,..., L, that has no joints
pinned down. Note, however, that the presence of a long link could prevent A from
moving far off the circle. For example, if link L/ has length d, then t =0! Then we
compute di from t, c_, and d_.

LEMMA 4.2. For any arm L, ., L, ., L, inside a circle of diameter d,

d/2 if no link beyond A is longer than d/2,
min {d / 2, d ik +<<k It, where lk is the length of the

first link beyond A longer than d/2} otherwise.
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Proof For any configuration of the tail, Li+, ", L,, keep Ai fixed while moving
the tail to a normal form. Let Aj be the first joint on the circle. If j => + 2, the straight
section of arm between Ai and Aj-1 lies on a radius of the circle. (If j or i+ 1, this
section is just the point A.) While changing only the angles at joints A_l and A, one
can push this straight section along the radius toward the circle’s center while A and
its successors move around the circle. (See Fig. 4.5.) New links are added to the moving
straight section until Ai reaches the center or the first long link Lk prevents further
travel because it has folded against the straight section (or reached the diameter in
the case Lk L+ ). 1-1

Ao, , Ai-1 have been removed. Ai, , Aj_l move along the
radius while Aj, An move around the circle. Only the angles
at A_l and A are changing.

Joint Ak_ is about to fold completely, preventing further travel
of A along the radius.

FIG. 4.5. Moving Ai distance ti from the circle.

Now that we have calculated the t’s, it is easy to calculate the d’s. We only need
to observe that for any given distance x between c and d, there is obviously some
way to move A to a position that is distance x from the circle. (The distance of A
from the circle is a continuous function that must take on all values from ci to di as

Ai moves from one extreme to the other.) For i> 0:

min { ti, di_ + li}
di ti

rain { ti, d li ci-l}

if li < d/2- di-1,
if d/2- di_ <-- 1 <-_ d/2 ci_,

if li > d/2- c_.

The point of the next remarks and lemma, which we need before we can give an
algorithm for reorienting the links of an arm, is that this can be done using a short
sequence of simple motions.

Remark 4.1. Suppose that the tail L+I, ", Ln has been detached from the arm
L,- ., Ln. Then note that this tail can be moved from its initial position so that the
distance between Aj and the circle monotonically increases or decreases. To see this,
put the tail (regarded as an arm with initial point Aj fixed) into normal form. Then
move the straight segment of links containing Aj along the radius on which it lies,
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adding or deleting links from the segment as their endpoints get closer to or farther
from the center of the circle.

Remark 4.2. Consider the arm as a whole, and suppose the tail beginning, at Aj
is in normal form. Then Lj can be rotated about Aj_ to push A closer to or farther
from the circle while the angles at Aj and two other joints in the tail are adjusted to
keep the tail constantly in normal form. In fact, Remark 4.1 shows that any rotation
of L for which the distance between A and the circle is either an increasing or a
decreasing function can be carried out in at most n-j simple motions. El

LEMMA 4.3. Let A be a joint ofan n-link arm positioned within a circle. For any x
between cj and d, there is a sequence of O(n2) simple motions that moves the arm from
its original position to a position in which A is distance x from the circle.

Proof. Compute the ci for each predecessor Ai of A. Then, given x, compute the
sequence of numbers defined by the following recursive formula:

x=x for =j,

x_=max {c_,x-l} for 2<=i<=j.

(Note that c <- x -<_ d. This can be seen by working backwards from =j and observing
that xi <= di-1-Fli at each step. Thus x-l -< d_.) To position A distance x from the
circle, first put the entire arm into normal form (O(n) steps). Then, beginning with

A, move each Ai in turn to a position distance x from the circle. This is done by
rotating .L about Ai_ while keeping the tail in normal form. All together, at most

(n l) + (n 2) +. + (n -j) additional simple motions are needed, so the entire
repositioning sequence contains O(n2) motions. Note that this sequence can be com-
puted in O(n2) time.

We are now ready to give the conditions under which links can be reoriented.
LEMMA 4.4. A link L can be reoriented if and only if at least one of the following

inequalities holds:
i) d-l<-d_+d;
ii) d _>- 1 + ci_;

iii) d_ >- 1.
Furthermore, if L can be reoriented, then this can be done with O(n2) simple motions

that can be quickly computed.
Proof As we noted at the beginning of this subsection, L must lie on a diameter

in order to be reoriented. Hence, the above conditions are obviously necessary because
i) holds when L is on a diameter and the center of the circle is between A_ and A,
ii) holds when L lies on a radius with A closer to the center than A_, and iii) holds
when Li lies on a radius with A_ closer to the center than A.

To prove that the conditions are also sufficient, first suppose that inequality i) or

iii) holds. Using the method in the proof of Lemma 4.3, move A_ to a position
distance d_ from the circle in O(n2) simple motions. After this has been done, hold

Ai-i fixed, and rotate Li about A_ to bring L to the diameter through A_. By
Remark 4.2 this takes at most n simple motions, and these can be quickly computed.

If inequality ii) holds, move A_ distance c_ from the circle, and then rotate Li
to the diameter.

We need to make one more observation before we can show how to change
configurations.

Remark 4.3. Suppose L is a link that can be reoriented. Then starting from any
initial configuration of the arm, we can reorient L and return A,..., Ai-l tO their
starting positions without changing the new orientation of L, all with O(n:) motions.
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To see this, bring Li to a diameter with O(n) simple motions, and then "undo" these
motions but with the orientation of Li reversed. That is, keep the angle at Ai_ adjusted
so that at corresponding moments before and after Li reaches the diameter through
A, Li forms the same angle with this diameter but lies on the opposite side of it. This
keeps Ai the same distance from the circle at corresponding times. (See Fig. 4.6.) To
check that the tail can be moved in a compatible fashion, note that reversing the
changes in the size of the angles in the tail indeed keeps Ai the same distance from
the circle at corresponding times. Although the tail does not return to its original
configuration, it does return to its original shape. [3

At time to- t, L forms an angle 0 with the diameter through
Ai_, and Ai is distance x from the circle.

At time to, Li reaches a diameter.

At time o+ t, Ai_ has returned to the position it occupied at
time to-t. L again forms angle 0 with the diameter through
A_, but has changed orientation. The distance between A
and the circle is again x.

FIG. 4.6. Reorientation of a link L with restoration OrAl," Ai_.

An algorithmfor changing configurations. Suppose we are given an initial configur-
ation and a desired final configuration of an arm within a circle. Using the formulas
of the preceding subsection, we can quickly compute the c’s, di’s, and ti’s. Using
Lemma 4.4, we can then quickly check whether each link with differing initial and
final configuration can be brought to the diameter. If this necessary and sufficient
condition holds, then the following motion algorithm shows that the arm can be moved
to the desired final configuration with O(n3) simple motions.
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ALGORITHM 4.1. Algorithm for changing configuration.
Step i) Move the arm to normal form (O(n) simple motions);
Step ii) Once the predecessors of Ai are in their final positions, reorient Li if

necessary, restoring the predecessors of Ai to their final positions (O(n2) motions, by
Remark 4.3). Then rotate L about A_ to put A in final position (n simple motions,
by Remark 4.2). Increment i, and repeat Step ii) until i> n.

Notice also that the decision problem of whether the desired final configuration
can be attained can be answered in linear time on a machine that does real arithmetic
(+, -, ,, /2, min (,)) since it is necessary only to compute the c’s, di’s, and 6’s,
determine the links which must be reoriented, and check that the conditions of Lemma
4.4 hold for these links.

In the next section, we show how to reduce the problem of reaching a given point
with A, to a problem of changing configurations.

5. Reaching a point with an arm inside a circle. In this section, we will solve the
problem of deciding whether an arm inside a circle can be moved from a given initial
position to one which places A, at some given point p. We will do this by showing
that this problem can be reduced to the problem of changing configurations, which
we solved in the last section.

Points on the circle reached by the A’s. We want to compute a feasible configuration
(i.e., one to which the arm can be moved from its initial configuration) that places A,
at a given point p (inside or on the circle). In order to find such a configuration, we
first construct the set Rj of points on the circle that can be reached by Aj from the
given initial position of the arm.

LEMMA 5.1. Each R consists of at most two arcs of the circle.
Proof. (Induction on j). Clearly, Ro {Ao} if Ao is on the circle. Otherwise, the

Normal Form Lemma 4.1 shows that the first nonempty R is the one for which

l, "3t"""" "_1 < CO= do<--l, +. +1,

and that all subsequent Rj’s are nonempty. It is easy to see that the first nonempty Rj
consists of at most two arcs.

Now consider a joint for which Rj_ is nonempty but consists of at most two arcs.
If Aj is at some point in Rj, we can move Aj-l to the circle while moving A around
the circle. (This can be done in the same way that an arm is put into normal form.)
Of course, A stays in one arc of R during this process. Thus, each point in R1 belongs
to an arc of R that contains a point reached by A with Aj_I in R_l. This number is
at most the number of arcs generated by placing Ai_ in Rj_l and A on the circle.

Depending on the possible orientations for L, there are one or two possible
locations for Aj for each location of Aj_. These locations for A, when taken together,
give rise to at most two arcs for each arc of R_. (It need not be the case that Aj_
can move throughout its arc of R_ without leaving the circle.) We have already
observed that the other points in Rj can be moved along the circle to points in these
arcs. What we show next is that if Lj has two possible orientations, then the two
corresponding arcs that an arc of Rj_l produces must overlap, so that each arc of R_
gives rise to just one arc of R.

Suppose that A_ and Aj are on the circle and that d_ >= lj. Then we can reorient
Lj while moving A around the circle, keeping A in R. Our observation about counting
arcs shows th’at each arc of R_ gives rise to only one arc in Rj. Thus in this case, R
consists of at most two arcs.
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Now suppose that Aj_ and Aj are on the circle and that d_l < Ij. Then we can
move Aj_ from any point in Rj_I to any other point in R_, which may require lifting
A_ off the circle, without ever taking Aj off the circle or changing the orientation of
Lj. Hence, all the points of R that are reached from R_ by Lj with left orientation
are in the same arc of R. The same is true for L with right orientation, so again R
consists of at most two arcs.

In our algorithm for reaching a point p, we will need to find for any given point
in R a feasible configuration of the arm that positions A at that point. In the next
section, we show how to compute this information quickly.

Determining the R’s. First we will show that each set R is a union of certain
contributions from its predecessors, and then we will describe an algorithm for calculat-
ing the Rj’s and determining how to reach them.

The following lemma, the proof for which we omit, can easily be established using
the ideas in the proof of the Normal Form Lemma 4.1.

LEMMA 5.2. Suppose an arm is positioned inside a circle so that A is located at a
point p on the circle. Then A can be kept fixed at p while the arm is moved to a position
where one,of the following conditions holds:

i) links L, Lform either a straight line (with no folds) or an "elbow" whose
only bend is at A_;

ii) for some <j, Ai is on the circle, and links Li+,’’’, Lj form either a straight
line or an elbow whose only bend is at A_.

Given a value for j, we need to find out for each Rj, i<j, which points of R can
be reached from Ri by the straight lines and elbows of Lemma 5.2.

Suppose that Pi is a point in Ri and that li/ +" + 1 <= d. If all the links between
A and A can be given the same orientation, then Pi contributes a point to R by means
of a straight line. (If both orientations are possible, then pi contributes two points to

R.) Contributions of this type from points in R form at most four arcs, two for each
arc of Ri. These arcs amount to shifts of R around the circle.

Now consider the possibilities for joining a point p in R to a point p in R by
an elbow whose last joint is the one which is bent. Certainly 1/ +.-. +1_ must be
at most d. Since Lj and the straight line from A to A_ might have either orientation,
there are four types of elbows to consider. Consider a particular feasible elbow, and
note that it must place A_ somewhere on an arc of a circle of radius 1/ +. + lj_
centered at pi. Since the orientations of the links in the elbow are specified, this arc is
bounded by the circle at one end and by the diameter through A at the other. The
set of points that can then be reached by L in its specified orientation, with A_ on
the arc, forms an arc on the circle. Hence, each feasible elbow type allows R to
contribute a widened shift of itself to R).

The contributions of Ao to R can be determined in a similar fashion.
It is now easy to give an O(n2) algorithm to do the following: compute the

endpoints of the R’s, and build a table that allows one, given a pj in R, to find in
O(n) time (where n is the number of links in the arm) a feasible configuration having

A at pj:

ALGORITHM 5.1. Finding the R’s. First, determine how the links can be oriented
(O(n) time). Next, compute the contributions from Ao of straight lines and elbows
whose last joint is the one that is bent. Record these contributions by listing the
endpoints of the arcs together with the description of the lines or elbows that generated
them (O(n) time). At this stage, the first nonempty R has been completely determined,
and so its endpoints (of which there are at most four) can be computed (O(n) time).
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Finally, for each Ri in turn, compute the contribution of Ri to its successors, and then
compute the endpoints of Ri+ (O(n) time per iteration).

In the next subsection, we use the information about the Rj’s to solve the problem
of moving A, to an arbitrary point inside the circle.

How to reach a point. If we want to place An at a point p on the circle, we merely
compute R, and test p for membership. If p is in Rn, we use the table generated by
Algorithm 5.1 to determine a feasible arm configuration that has An at p. Then we can
use Algorithm 4.1 to move the arm to this configuration.

Now suppose p is inside the circle. If the arm can be moved to a configuration
in which An is at p and some other joint is on the circle, then p can be reached by a
feasible configuration in which some A is on the circle and links Li+l,"" ", Ln form
either a straight line or an elbow with the bend at A+I. To see whether this happens,
we compute the Rj’s and then look for an appropriate straight line or elbow reaching
from p back to a nonempty Rj. If no such line or elbow can be found, we check to
see whether p can be reached by a configuration that does not touch the circle.

LEMMA 5.3. Suppose that an arm L,..., Ln can be moved to a configuration in
which An is at a given point p inside the circle, but that no such feasible configuration can
have any joint on the circle. Then the arm can be moved to a configuration in which An
is at p and at most two joints are bent.

Proof. Consider a feasible configuration with An at p. If it has more than two
bends, proceed as follows. Let Ai, A, and Ak, where 0 <i<j < k < n, denote the first
three bent joints. Let A, denote the fourth bent joint if one exists; otherwise, set
A A Keeping Ak and its successors pinned down, rotate the line of links between
A0 and Ai about Ao so that A moves away from A,,. (See Fig. 5.1.) Eventually, one
of three events must occur:

i) some joint straightens (in which case we can start over with a smaller number
of bends);

ii) A moves close enough to Ak to fold the joint A completely;
iii) Ai reaches the line through Ao and A,.

Note that by hypothesis, no joint can hit the circle.
If ii) occurs, keep joint Aj folded, unpin Ak, and continue the rotation. Since

is moving away from A,, the rotation can continue until joint Ak straightens or A
reaches the line through A0 and A,.

Assume that A, Ao, and A,, are collinear. Pin down Ao, , A and A,,, .,., A,,
and rotate the line of links between Ai and A about A so that A moves away from
Am. One of the joints A and Ak must straighten during this rotation.

There are O(n) configurations of the type described in Lemma 5.3, and each one
can be tested for feasibility in constant time. All together, then, we need O(n2) time
to compute the R’s, O(n) additional time to check for a feasible configuration with
some joint on the circle, and if no such configuration exists, O(n2) time to check for
feasible configurations with no joint on the circle. If a feasible configuration is found,
we can then use Algorithm 4.1 to move An to p with O(n3) simple motions. Note that
our method can be used to solve the problem of moving any arbitrary joint A to a
specified point.

6. Covering the boundary of a reachable region. In this section, we consider the
boundary of the set of points that can be reached by a joint of an arm enclosed in a
circle. It turns out that this boundary can always be covered by a finite’number of arcs
of circles. In fact, the number of circles involved is never more than 148, a bound
which we did not attempt to lower. For each joint, the entire process of computing
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The locations of A and its successors are held fixed while Ai
is rotated about Ao away from A,,. Joint Ai or Aj may straighten,

A may reach the line through A0 and A,,, or...

joint Aj may fold, preventing continued rotation of Ai about Ao.

"’Ill \\

Then A is unpinned, joint A is kept folded, and the rotation
is continued until A reaches the line through A and A.

FIG. 5.1. Reaching p with at most two bent joints.

the centers and radii of the circles can be done in time proportional to a polynomial
in the number of links in the arm.

Our proof that the boundary of a reachable region can be covered by at most 148
circles is technical and involves much case by case analysis. We will outline the proof
here, referring the reader to Hopcroft, Joseph and Whitesides [2], where all the technical
details appear.

We now summarize the main points of the outline before giving it in more detail.
There are certain circles, such as C itself, that are obvious candidates for inclusion

in the set of covering circles and that will be called "basic". If a joint Am is on the
boundary of its region but does not lie on one of these "basic" circles (which we define
later), then at least one of the predecessors of Am must lie on C. In fact, the joints
between Ao and A, that lie on C can be thought of as breaking the arm between Ao
and A, into "segments". The intermediate segments consist of straight lines of links,
but the initial and final segments may each have one joint that is completely folded.
No joint is partially folded. Consideration of the special case in which the final segment
lies on a diameter of C gives rise to some additional "supplementary" circles that are
added to the set of covering circles.

If Am lies on the boundary of its region Sm but does not lie on a basic or
supplementary circle, then the portion of the arm between Ao and Am must lie in one
of several possible configurations. In each of these configurations, the number of
possible locations for the last joint Aj before A, that lies on C is small. These possible
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locations become centers for covering circles of radii determined by the final segment
between Aj and Am. The number of possible locations is small because certain
inequalities in the link lengths must hold, and these inequalities can have only a small
number of solutions.

Our final observation before giving the detailed outline is that we may assume Ao
is the only joint whose location is fixed. Of course by our definition of "arm", Ao is
the only joint that is fastened to the plane. However, it may be that other joints are
effectively fixed for geometric reasons. For example, Ao may be located on C, and the
first link L may have length equal to the diameter d of C so that the location.of joint
A cannot change. However, it can be shown with the aid of the Normal Form Lemma
4.1 that there is a joint index j such that the location of Ai can change if, and only if,
j _-< n. Furthermore, this index can be found quickly. This result takes care of regions
consisting of single points and allows us to assume without loss of generality that Ao
is the only fixed joint.

We now give a detailed outline of the proof of the following theorem.
THEOREM 6.1. For any joint Am ofan n-link arm enclosed in a circle, the boundary

ofthe set Sm ofpoints that Am can reach can be covered by at most 148 circles. Descriptions
of these circles can be computed in p(n) steps, where p is a polynomial.

As a notational matter, we denote a straight line of links between a joint x and
a joint y by [xy].

Basic circles. To define two of the four basic circles that we immediately put into
the set of covering circles, recall that in 4 we proved that the minimum and maximum
distances cm and dm that a joint Am can move of[ the circle can be computed in p(n)
steps, where p is a polynomial in the number of links. Call the two circles centered at
the center O of circle C that have radii Cm and dm basic.

To obtain the other two basic circles, note that summing the lengths of the links
preceding Am gives an upper bound for the maximum distance Am can move from
Ao. If A, is preceded by a link Lj that is so long that

i= l,ij

then this difference gives a positive lower bound for the minimum distance between
Ao and Am otherwise, 0 is a bound. Call the circles centered at Ao with these radii,
which are easy to compute, basic also.

Facts about joints. Before continuing to build up a collection of circles covering
the boundary points of Sin, we first need to observe some facts about joints. These are
stated in Lemmas 6.1 through 6.3 below.

Consider a joint A that does not lie on the circle C. If L and L+ form a 0(= 360)
or 180 angle, Ag is said to be a straight joint or a fold, respectively. If Aj does not lie
on the circle and is open to any other angle, it is called an elbow. (It is important to
note that the definition of an elbow requires that the joint not be on C.) The next
lemma gives a simple but fundamental observation about elbows. The proof is a
consequence of the fact that links in the tail beyond a given joint never constrain the
motion of the joint along any path that stays within the minimum and maximum
distances that the joint can move off the circle C. (Recall Remarks 4.1 and 4.2.)

LEMMA 6.1. Suppose that no joint strictly between Ai and Ak lies on circle. C but
that some joint Ag between them is an elbow (A and Ak may or may not lie on C.) Then
the location ofA can be held fixed while Ak is moved to all those points in some open
ball centered at Ak that do not violate the minimum and maximum distances that Ak can
be located from the circle. (See Figs. 6.1a and b.)
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A

FIG. 6.1a. The elbow at Aj enables Ak to reach the points in the shaded area while the location of Ai
remains fixed.

FIG. 6.lb. Link L is so long that A cannot reach any points inside the dashed circle.

Another basic observation is that a fold can sometimes be turned into an elbow.
LEMMA 6.2. Suppose that u and v are two joints of an arm enclosed in a circle C

and that all joints between u and v are straight with one exception, x, which is a folded
joint not lying on C. If the lines of links [xu] and [xv] from x to u and x to v are not
equal in length and if the longer contains at least two links, then an elbow can be created
at x without changing the locations of u and v. If the lines [xu] and [xv] (possibly of
equal length) each contain at least two links, then again, x can be turned into an elbow
without moving u and v. (See Fig. 6.2.)

A final basic observation is that an elbow can be created from two folds that are
joined by a straight line of links unless the line consists of a single "long" link.

LEMMA 6.3. Let u and v be joints of an arm lying inside a circle C. Suppose all
joints strictly between u and v are straight with two exceptions, which are folds. Then the
locations of u and v can be held fixed while the arm is moved to create an elbow between
u and v unless the folds are joined by a single link that is at least as long as the sum of
the lengths of all the other links between u and v.

Segments. If a configuration of the arm places A, on the boundary of region
but not on one of the four basic circles, then it is not difficult to use Lemmas 6.1-6.3

Y y

FIG. 6.2. Creating an elbow at x.
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to prove that some joint strictly between Ao and Am must lie on circle C. In particular,
we can find some last joint Aj between Ao and Am that is on C. We will say that the
links between Aj and Am form the final segment of the configuration before Am, or
simply, the final segment. Similarly, we will say that the links between Ao and the first
joint beyond Ao on C form the initial segment of the configuration. (Here, Ao may or
may not be on C.)

It is clear from Lemmas 6.1-6.3 that thefinal segment is made up ofeither a straight
line of one or more links from a joint on C to Am or a single link from a joint on C to a
figld that is followed by a straight line ofone or more links to Am. In either case, the final
segment lies along a line.

Recall that by Lemma 5.1, S f’)C consists of at most two arcs of C. A routine
analysis of several cases shows that if the final segment from A to Am lies on a diameter
of C, then R, the arc of S fq C to which A belongs, consists of a single point. Using
this fact, together with Lemmas 6.1-6.3, it is easy to establish the general form of a
configuration that places Am on the boundary of Sm but not on a basic circle.

LEMMA 6.4. Suppose that an arm has been moved to a configuration that places Am
on the boundary ofSm but not on a basic circle. Let Ai be the first joint beyond Ao on C,
and let Aj be the last joint before Am on C. Then all joints between Ao and Am that do
not lie on C are straight, with the possible exceptions ofAi_ and Aj+ 1. IfA_ and Aj+
are not straight, then they must be folds.

This general form will help us to enumerate the remaining configurations that
might have Am on the boundary of its reachable region. Before we do this, we first
observe that we can simplify the enumeration by assuming that the final segment does
not lie on a diameter of C. In order to assume this, however, we must add some more
circles to our collection.

Supplementary circles. If Am lies on the boundary of Sm but not on a basic circle,
and if the final segment from Aj to Am lies on a diameter of C, then it can be shown
that the initial segment consists of a single link L that is connected directly to the
final segment, which begins at Aj A. The proof involves the analysis of several cases
and uses Lemma 6.4 together with the fact cited previously that R consists of a single
point. The important consequence of this new fact is that if the final segment lies on
a diameter of C, then Am lies on one of at most four supplementary circles that we are
about to describe. Note that in this situation, there are at most two possible locations
for A, corresponding to the two possible orientations for L (see 4 for the definition
of orientation). Then, for a fixed position of A, Am lies on a circle centered at A of
radius either j___ lj or, when positive, 12- lj. This defines at most four circles,j=3

which we call supplementary and add to our set.
Enumerating configurations. From now on, we assume that Am is neither on a

basic circle nor on a supplementary circle so that we need only concern ourselves with
situations in which the final segment before A does not lie on a diameter of C.

In order to enumerate the possible configurations of the arm between Ao and Am,
it is useful to establish some forbidden subconfigurations. In [2] we listed six of these,
two of which are shown in Fig. 6.3. These subconfigurations are forbidden because
they can be moved to form elbows, which are excluded by Lemma 6.4, without changing
the location of their endpoints. In Fig. 6.3a, the locations of u and x can be held fixed
while [uv] is rotated about u. This requires that v move closer to x, which can be
accomplished by creating an elbow between v and x. Similarly in Fig. 6.3b, the locations
of u and y can be held fixed while [xy] is rotated about y. This requires that x move
away from u, which can be accomplished by opening the joint at v while simultaneously
rotating [uv] about u.
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a) [uv] lies off the diameter. b) [vx] lies off the diameter.

FIG. 6.3. Configurations that give rise to elbows. Arrows indicate the angular range for a line of links. A
sharp tip indicates that the endpoint of the arc belongs to the range, and a round tip indicates that it does not.
No order is implied by the letters at joints: u could come before or after v. There may be additional joints
between the ones that appear in the figure. A dashed extension ofa link indicates that its endpoint may lie on C.

By using the list of six forbidden configurations, we were able to list by careful
and tedious analysis a set of ten possible configurations for the arm when the final
segment contains more than one link. (Two typical ones are shown in Fig. 6.4.)
Consequently the boundary of Sm can be covered by a collecton of circles consisting
of the basic circles (at most 4), the supplementary circles (at most 4), circles of radius

lm centered at the endpoints of Rm- (at most 4) together with circles covering the ten
configurations enumerated. In half of these, as in Fig. 6.4a, Am lies on a circle of
radius lj+ -I[Aj+lAmJI centered at the end point of an arc of Rj, where Aj is the last
joint on C between Ao and Am. In the other configurations, Am lies on a circle of
radius I[AjAm][, where Aj has the same definition. Thus each possibility for j in each
of the configurations gives rise to at most four new circles to add to the collection
because Rj has at most four endpoints. Therefore, it suffices to show that the total
number of possibilities for Aj is small, and that the possibilities can be determined in
polynomial time. This can be done one configuration at a time.

Aj-

Aj-I

Ao Ao

a) b) Here, either Lj or Lj_ is
the last link before A, with
length max (!1," , !,).

FIG. 6.4. Two of the ten possible configurations.

The basic idea for handling each configuration is this. Show that for a fixed m,
there are only a constant number (independent of the arm) of possibilities for A, the
last joint before Am on C. Then a constant number of circles (at most 8 for the worst
choice of A) can be added to the basic and supplementary circles to form a collection
that covers the boundary of Sm. This is because Am must lie on a circle of radius either
Yk=j+l lk or 1+--Yk=j+21 about Aj, and A must lie at one of the endpoints of R, of
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which there are at most four. The possibilities for Aj will be determined by inequalities
involving the link lengths that can only be satisfied in a few ways.

Consider, as a simple example, the configuration in Fig. 6.4b. There are only two
choices for Aj. It could be the higher indexed endpoint of the highest indexed link of
longest length, or it could be the next joint after that.

As for the configuration in Fig. 6.4a, it can be shown that unless 1 or 1/1> r, the
radius of C, then the entire arm could be moved so that the configuration between
A_l and A+ would go to its mirror image with respect to the initial line determined
by Aj_ and A/ while the configuration of the rest of the arm would be restored.
Since this would create elbows, it must be the case that 1 + l/l > r. Of course, diameter
d > lj+ > [[Aj+,Am]I. If there are solutions to these inequalities, let z be the largest
feasible choice for index j + 1. Then note that there can be at most three feasible choices
for j + that are smaller than z, giving a total of four choices for A.

The idea of moving a subconfiguration to its mirror image to show that certain
inequalities must hold is used to handle several of the configurations.

Summing over all ten possible configurations listed in [2], the total number of
choices for Aj is at most 34. Since R may have as many as four endpoints, this generates
at most 136 circles. There were at most 12 circles initially, so the total number of circles
needed is at most 148. This completes the outline of the proof of Theorem 6.1.

The bound of 148 is probably very generous. The important point, though, is that
the boundary does not depend on the arm.
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SOME RESULTS ON THE REPRESENTATIVE INSTANCE IN
RELATIONAL DATABASES*

MINORU ITO?, MOTOAKI IWASAKI" AND TADAO KASAMI?

Abstract. Recently, the representative instance has been proposed as a generalized concept of the pure
universal relation. Let R {(R1, F1), , (Rn, Fn)} be a database scheme, where each R is a set of attributes
and Fi is a set of functional dependencies over Ri. R is said to be consistent if the representative instance
of every database i r, , rn} of R satisfies F (= F [3 LI Fn), that is, if whenever each relation ri
satisfies its own functional dependencies Fi, the representative instance satisfies all the functional dependen-
cies F. In this paper, we present the following two results, which are generalizations of the previous results
by [Sag2].

(1) It can be determined in O(nlF[IIFI[) time whether R is consistent, where IFI is the number of
functional dependencies in F and [IFll is the size of the description of F. (A polynomial time algorithm for
determining whether R is consistent is presented, independently, in [GY].)

(2) Suppose that R is consistent. Given a subset V of R1 t3...t3 Rn, we can construct in O(nlFIIIFII)
time a relational expression such that (a) its value is the total projection of the representative instance onto
V for every database of R, (b) it consists of projection, extension join, and union, and (c) it contains neither
a redundant union nor a redundant join.

Key words, consistency, functional dependency, representative instance, total projection

1. Introduction. In the design theory of relational databases, a database scheme
is defined as an ordered set R= {(R1, FI),..-, (Rn, Fn)} of relation schemes, where
each Ri is a set of attributes and Fi is a set of constraints over Ri. An ordered set
I {rl," , rn} of relations is called a database of R if each ri is a relation over Ri
that satisfies Fi. In this paper, functional dependencies (FDs) [Arm], [Cod ], are treated
as constraints. It has been often assumed in many papers that for a database I
{rl,’", r} of R, there is a single relation r over the set RLI...t_J Rn of all the
attributes, called the pure universal relation, such that (1) r satisfies all the FDs in
FI [3... U Fn and (2) each r coincides with the projection of r onto Ri. However, the
pure universal relation assumption is controversial and there are some criticisms (e.g.,
[Ken]). Recently, the representative instance is proposed as a generalized concept of
the pure universal relation [Honl], [Sagl], [Sag2], [Vas]. The representative instance
is based on an assumption that for a database I {r, , r} of R, there is a relation
r over R [.J R,, called the weak universal relation, such that (1) r satisfies F
F, and (2) each r is contained in the projection of r onto R. As pointed out in [MUV],
the representative instance is a suitable model of the data as stored in one relation
under the weak universal relation assumption. A database scheme R=
{(R1, F1),’’’, (R, Fn)} is said to be consistent if the representative instance of every
database I {rl, , r,} of R always satisfies F F, that is, if whenever each
r satisfies F, the representative instance of I satisfies F1 ’’-LI F,. (The notion of
"consistency" is equivalent to the notion that "local consistency implies global con-
sistency" in [Sag2] and the notion that "R is independent with respect to F1 [_J [_J Fn"
in [GY].) In this paper, we consider the following two problems:

(1) Determine whether R is consistent.
(2) Given a subset V of R [.J 13 R, and a database I of R, how can we compute

efficiently the total projection of the representative instance onto V?

* Received by the editors July 14, 1982, and in revised form February 2, 1984.

" Department of Information and Computer Sciences, Faculty of Engineering Science, Osaka University,
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The computation of the total projection is important for evaluating a query that
refers to the set V with respect to the representative instance [Sag l, [Sag2], [MUV].

Sagiv [Sag2] presented some results on these problems. As for the problem (1),
he presented a necessary and sufficient condition for R to be consist.ent, called the
uniqueness condition, under the restriction that each (Ri, Fi) is in Boyce-Codd normal
form (BCNF), that is, the left-hand side, of every FD in F is the key of (Ri, F). As
for the problem (2), he presented a quadratic algorithm for constructing a relational
expression whose value is the total projection of the representative instance onto V
for every database I of R, provided that R satisfies the uniqueness condition. The
expression consists of projection, extension join [Hon2], and union. Thus its value for
a database ofR can be computed efficiently. Finally, he presented a quadratic algorithm
for minimizing the number of unions and the number of joins of the expression.
However, the following negative results on BCNF are known [BB].

(a) There is a universal relation scheme that cannot be transformed into any
BCNF database scheme. Furthermore, it is NP-hard to determine whether a given
universal relation scheme can be transformed into a BCNF database scheme.

(b) It is NP-complete to determine whether a given relation scheme (Ri, F) is not
in BCNF (that is, whether there is a subset X of Ri such that F implies a nontrivial
FD X A but does not imply X- R).

As for the problem (1), Graham et al. [GY] and, independently, the authors [ILK]
presented polynomial time algorithms for determining whetherR is consistent with no
restriction on R. Furthermore, Graham et al. [GY] extended this result to the case
where the join dependency *[Rl,’’’, R,] also exists. The algorithm of [GY] requires
repeated tableau computations. The basic idea of our algorithm of [IIK] is essentially
the same as that of theirs, but our algorithm is simpler and easier to implement, since
no tableau computation is needed.

In this paper, we extend Sagiv’s results to any database scheme as follows. All
the results were presented in [ILK], but the proofs are simplified in this paper.

(i) Let R {(R, F),..., (Rn, F,)} be a database scheme. It can be determined
in O(nlF ]IFI]) time whether R is consistent, where F= F, (.J... U F,, ]FI is the number
of FDs in F, and [[Fll is the size of the description of F.

(ii) We can construct in O(nlF] IIFI]) time a relational expression whose value is
the total projection of the representative instance onto V for every database of R,
provided that R is consistent. The expression consists of projection, extension join,
and union. The expression can be transformed in O(nlFI II1:11) time into a simplified
relational expression in the sense that it contains neither a redundant union nor a
redundant join.

2. Definitions. A relation r over a set R {Al, , Av} of attributes is a finite set
of tuples that are members of the Cartesian product dom (A1) .. dom (Av), where
dom (A) is the domain of A. A relation can be viewed as a table whose rows are
tuples, and whose columns are labeled by attributes. Let /z be a tuple in r. For an
attribute A in R, /x[A] denotes the value of/x in A column. For a subset X of R,
/z[X] denotes the values of/z in X columns. We use A, B, C,... for attributes, and, X, Y, Z for sets of attributes. We often write A for the singleton set {A}, and XY
for the union X LI Y.

A functional dependency (FD) over R is a. statement X Y, where X and, Y are
subsets of R [Arm], [Cod l]. A relation r is said to satisfy X- Y if for all tuples /x
and ., in r,/z[X] ,[X] implies/z[ Y]= ,[ Y]. A set F of FDs is said to imply an FD
f if whenever a relation satisfies F, it also satisfies the FD f For a set X of attributes,
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we define closure (X, F)= {AIF implies X- A}. We can compute closure(X, F) in
O(llFII) time [BB].

In the following we often consider a relation with variables. That is, a tuple in a
relation may contain variables in some columns. For two tuples/x and v,/x[A] viAl
if and only if/z and v have either the same constant or the same variable in A column.
We say that/x and u agree in X columns if/x[X] v[X]. Let r be a relation that may
contain variables and let F be a set of FDs. The chase of r under F is a relation
obtained by applying FD-rules for F, which are defined below, to r until no rule can
be applied anymore [ABU], [MMS]. An application sequence of FD-rules for F to r
is called a chase process of r under F.

FD-rules. An FD X- Y in F has an associated rule as follows. Suppose that
there are two tuples and u which agree in X columns. FD-rule for X Y executes
the following for each attribute A in Y-X.

(1) If/z (or u) has a variable v in A column and u (or Ix) has a constant c in
that column, then replace all occurrences of the variable v in A column with the
constant c.

(2) If/x and u have different variables v and v2 in A column, then replace all
occurrences of v in A column with v2.

If/z and u have different constants in A column, then/z and u are said to conflict
(for X Y). In this case, the chase of r under F does not satisfy F. By FD-rule for
X- Y, /z and u will be equated in Y columns unless they conflict. The chase of r

under F satisfies F if and only if no conflict occurs by any chase process of r under
F. If the chase satisfies F, then it is unique up to renaming of variables [MMS].

A relation scheme is a pair (R, F) of a set R of attributes and a set F of FDs over
R. A database scheme over a set U of attributes is an ordered set R=
{(Rl, Fl),""", (R,, F,)} of relation schemes such that U RI’’" R,. An ordered set
I {r,. ., r,} of relations is called a database of R if each r is a relation over R
that satisfies F. We assume that no database of R contains any variable. Let I
{r,. , r,} be a database of R. Each r can be viewed as a relation over U by adding
columns for the attributes in U-R that contain distinct variables, as defined below.
For a tuple/x in r, let augt (/x) be a tuple over U that agrees with/z in R columns
and has distinct variables for the attributes in U-R. We define augt (r)=
{augt (/x)l/z is in ri}, and augt (I) augt (r)U.." U augt (r,). We assume that each
variable occurs once in one tuple in augt (I). (augt (ri) is called the augmentation
of r in [Sagl].) We denote F F U. LI F,. The representative instance of/, denoted
rep (I), is defined as the chase of augt (I) under F [Honl], [Sagl], [Vas]. A database
scheme R is said to be consistent if for every database I of R, rep (I) satisfies F. For
simplicity, we assume the following.

Assumption 1. For every FD X - Y in F with <- <_- n,
(a) Y= closure (X, Fi) X, and
(b) X- Y is not implied by F-{X-> Y}.
If F does not satisfy Assumption l, then it can be transformed into a set satisfying

the assumption in O(IF IIFII) time [BB].
Assumption 2. F,. ., F, are pairwise disjoint.
If Assumption 2 does not hold, then we can see that R is not consistent by

Algorithm l, which will be presented in 3.2. In fact, suppose that F and F contain
the same FD X Y. Consider a database I {rl," , r,} of R such that (1) r consists
of a single tuple that has a constant c in all the columns, (2) r; consists of a single
tuple that has c exactly in X columns (and another constants in R;- X columns), and
(3) any other relation is empty. (Note that if a relation is empty or consists of a single
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tuple, then it satisfies any FD trivially.) A conflict for X Y occurs in augu (I), and
thus R is not consistent. Assumption 2 is used in order to uniquely identify the set Fi
that contains X- Y for each X- Y in F.

3. Testing consistency of a database scheme. In this section, we present an algorithm
for determining whether a given database scheme is consistent. In 3.1, we present
three lemmas that are useful for developing the algorithm. In 3.2, we present the
algorithm, and estimate its time complexity.

3.1. Conditions for consistency of a database scheme. Let R={(RI, F),..’,
(Rn, Fn)} be a database scheme over U and let ! {r,..., r,} be a database of R.
Consider a chase process of augu (I) under F. If a tuple/z in augu (I) is transformed
into a tuple /x’ by a number of applications of FD-rules for F, then /z is said to be
expanded to /z’, which is called an expansion of/z. An application of FD-rule for
X Y in Fi to/x and u that agree in X columns is said to be restricted if either/z or
u is an expansion of a tuple in augu (ri). If/x is the expansion, then v is equated to
/z in Y columns by the restricted application unless/z and u conflict, and/z remains
unchanged. Let u’ be the resulting tuple. Then u’ agrees with u in U- Y columns and
agrees with/z in XY columns. We denote the restricted application by

XY ( XY )u u’ or simply u u’

If/x and u conflict for X- Y in Fi (that is, if/x and u agree in X columns but have
different constants in a column in Y) and if either/x or u is an expansion of a tuple
in augu (r), then the conflict is said to be restricted.

Example 1. Let
R {(ABC, {C - A}),

(BCDE, {B- D, C DE)),

(ABE, {AB- E, E A}),

(BF, {B

Let ! {{111}, {1221,2131}, {112}, {11}}. Then augu (I) isthe following relation, where
U ABCDEF, and v,- , v4 are distinct variables.

A B C D E F

DI D2 /-)3

v4 2 2 v5
i)6 2 3 1)7

v8 v9 2 v0
1)11 1)12 1)13 1)14

FD-rule for C DE is applied to the first and third tuples to replace v and v2 with
3 and 1, respectively. This application is restricted. By applying FD-rule for E A to
the first and second tuples, v4 is replaced with 1. This application is not restricted.
FD-rule for B- D is applied to the fourth and fifth tuples to replace v9 with Vl3. This
application is not restricted. By applying FD-rule for B- D to the second and fourth
tuples, all occurrences of v3 are replaced with 2. This application is restricted. The
result is the following relation.
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A B C D E F

3 0

2 2 vs
v6 2 3 v7

Vs 2 2 Vo
v v2 2 v14

In this relation, the second and fourth tuples conflict for AB- E. This conflict is
restricted. Furthermore, the first and fifth tuples conflict for B- D. This conflict is not
restricted.

We have the following lemma, whose proof is given in the appendix.
LEMMA 1. If R is not consistent, then there is a database I of R such that a restricted

conflict occurs by a number of restricted applications of FD-rules for F to augu (I).
For a relation scheme (Ri, Fi), a sequence X1 YI," ",X, Y, of FDs in F- F

is called a derivation of a subset V of U from Ri if Xk
_
RiYI Yk- for <_--k <_-rn

and V_ RiY’’’ Ym. If X1 Y," "’, X,- Y, is a derivation of V from R, then
R- Y Y, is derived from the sequence by an inference rule, called the additivity
rule" "if S - T, Z W and Z

_
ST, then S - TW". Since R Y1 Y, implies R- V,

we have V
_

closure (R, F). In this section, we consider the case where V is a singleton
set {A}, and Y, contains A. Such a derivation is called a derivation of A from Ri.

For an. FD X Y in F, we. define cover (X Y)= {Z- WIZ W is in F and
ZW

_
XY}, and proper-cover (X Y) {Z WIZ W is in F and ZW XY}. Let

X - Y1,- , X, - Y, be a derivation of A from R. For <- k-<_ m, let Xk Yk be in
Fk, and let Hk be the intersection of Fk and {X YI,"" ", Xk-l-- Yk-}. We define
cover (Hk) U z-. w in H cover (Z - W). The derivation X - Y1," ",X, - Y, is said
to extend minimally if for 1-< k <_-m, (1) cover (Hk) contains all the FDs X- Y in
proper-cover(Xk Yk) such that X_ RiYI... Yk-, and (2) cover(Hk) does not
contain Xk Yk. We say that X Y is a minimal FD in G such that X

_
S if there is

no FD Z - W in G such that Z
_
S and ZW XY. Then it follows that the sequence

X Y,..., X,,- Ym extends minimally if every Xk Yk is a minimal FD in Fj-
cover (Hk) such that Xk

_
RiY Yk-. Note that ifa sequence XI - Y, , X, Y,,

extends minimally, then so does its subsequence X- Y,..., Xk Yk. The last
FD X,. - Y, is said to be irreducible (with respect to the derivation X
Y, of A from R) if X, A is not implied by cover (H,,).

Example 2. Let

R {(ABC, {C ---> A}),

(ABDG, {AS DG}},

BCEFK, {E ---> K, BC -->

DEFGHIJ, {E ---> , D ---> H, OH I, DEE -->

Consider a sequence. AB DO, D --> H, BC ---> EFK, E ---> O, OH ---> I, DEF -> GHIJ. It
is a derivation of I from ABC such that DEF GHIJ is not irreducible, since DEF I
is implied by cover (H) {E --> G, D--> H, OH --> I}. Consider a sequence BC --> EFK,
E --> G, AB--> DO, D---> H, E ---> K, DEF--> GHIJ. It is a derivation of J from ABC such
that DEF-.->. OHIJ is irreducible, since DEF-->J is not implied by cover(H)=
{E --> G, D--> H}. However, the derivation does not extend minimally, since E --> K is
in cover (H) {BC EFK, E --> K }. Next, consider a derivation BC ---> EFK, E
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AB --> DG, D --> H, DEF -> GHIJ of J from ABC. Then DEF -> GHIJ is still irreducible,
but the derivation does not extend minimally, since DEF--> GHIJ is not minimal in
F4 cover (Hs) {GH -> I, DEF --> GHIJ}. Finally, consider a derivation BC - EFK,
E -> G, AB -> DG, D --> H, GH -> I, DEF -> GHIJ of J from ABC. Then DEF --> GHIJ
is irreducible, and the derivation extends minimally.

LEMMA 2. If R is not consistent, then for a relation scheme (Ri, Fi), there is a
minimally extending derivation X1--> YI,’", Xm--> Ym of an attribute A from Ri such
that (1) RY Ym-1 contains A and (2) X,-> Y,, is irreducible.

Proof. First we prove the following claim.
Claim 1. For an FD X--> Y in F, if F-{X-> Y} implies X--> V, then so does

proper-cover (X - Y).
If F- {X Y} implies X V, then there is a subset H {Z - W,. ., Zs - Ws}

of F -{X Y} such that V XW W and Zt XW Wt_ for -< _-< s [BB].
Since H implies X W1 W by the additivity rule, we have XW1 W

_
XY by

Assumption (a). Since X - Y in not in H, we have XWl W c.g: XY by Assumption
l(b). Thus Claim holds.

Suppose that R is not consistent. There is a database I {rl,"" ", r,} of R that
satisfies the condition of Lemma 1. Suppose that an expansion , of a tuple ’l in
augu (ri) restrictedly conflicts with an expansion/x of a tuple/z,, in augu (rj.) for an
FD Xm Y,.,, in F. Then ’l can be expanded to , by a number of restricted applications
of FD-rules for F without changing any other tuple in augu (I), and u restrictedly
conflicts with/x, for X,, Y,,. Thus there is a chase process

Xl-’ YI X2"- Y2 Xm-l’- Ym-l
ll l,2 " 1

Id, Id, Id,

of augu (I) under F such that /Xm and ,, agree in X, columns but have different
constants in A column for an attribute A in Y,,. For <= k<= m, Xk RiY’’’ Yk-1,
and /7k has constants exactly in RYI’’’ Yk-1 columns. Thus the sequence X->
Y1,"" ", X,--> Y,, is a derivation of A from R such that RYI’’’ Y,,-1 contains A.
Let Xk--> Yk be in F;k and let Hk be the intersection of F;k and

Claim 2. It can be assumed without loss of generality that (a) every Xk-> Yk is
in F cover (Hk) and (b)/x,, and ,, satisfy proper-cover (X,, -> Y,,), if each variable
is considered as a constant.

Suppose that Xk-’> Yk is in cover (Hk). There is an FD X--> Y/ in F such that
< k and XkYk XtYt. Since /Xk and ’k agree in XkYk columns by

/l //+l,

we have

x >//k /Tk.

Thus Xk--> Yk can be deleted from the derivation, and Claim 2(a) has been proved.
Suppose that/x,, and ,,, do not satisfy proper-cover (Xm Y). There is an FD Z W
in proper-cover (Xm Ym) such that and satisfy proper-cover (Z W) but do
not satisfy Z- Then either (1) V restrictedly conflicts with for Z- W or (2)
we have

ZW

m
m
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and u’ restrictedly conflicts with /tl, for X,, Y,. In the former case, if we consider
the restricted conflict for Z W instead of the one for X. - Y,, then/Zn and v satisfy
proper-cover (Z- W), and Claim 2(b) holds. In the latter case, if and v’ satisfy
proper-cover (X Y), then Claim 2(b) holds by considering a chase process

XI YI Xm-l-1 ZW

u" Um’1 m--I m

instead of the original chase process. If and v’ do not satisfy proper-cover (X
Y), then Claim 2(b) will hold by repeating the process above.

Claim 3. .-{X Ym} does not imply X A.
Since m and v agree in Xm columns, and satisfy proper-cover (X Y) by

Claim 2(b) above, they agree in closure (X, proper-cover (X Y)) columns. Since
and v have different constants in A column, A is not in closure (X, proper-

cover (X Y)), that is, proper-cover (X Y) does not imply X A. Thus Claim
3 follows from Claim above.

Now, we prove Lemma 2. Considering Claim 2(a), we can transform the derivation

X Y,..., X Y of A from R into a minimally extending derivation P
Q,’",PQt, X Ym of A from R by inserting some of the FDs in
Uk proper-cover (Xk Yk). Since RY Y_ contains A, so does RiQ Qt.
Let H’ be the intersection of and {P Q,. ., Pt Q}. Since x Y is not in
cover (Hm) by Claim 2(a), it is not in cover (H’). Thus cover (H’) does not imply
X A by Claim 3. By the discussions above, the sequence P Q,..., Pt Q,
Xm Y is a minimally extending derivation of A from R such that A RQ... Qt
and X Ym is irreducible. Consequently, Lemma 2 holds.

Conversely, we have the following lemma.
LEMMA 3. If there is a derivation X Y,..., X Y of an attribute A from

R such that (1) RY Y_ contains A and (2) X Y is irreducible, then R is not
consistent.

oo First we prove the following claim.
Claim I. If XY and ZW are in and ZXY, then ZW is in

cover (X Y).
Since implies X by the additivity rule, we have W XY by Assumption

(a). Thus the claim holds.
LetX Y be in and letH be the intersection of and {X Y,. , X_

Y_}. We denote H {Z W,. , Z W}. In order to prove Lemma 3, we show
that there is a database I of R such that a restricted conflict for X Y occurs by
expanding one tuple by m-l restricted applications of FD-rules for X
Y,..., X_ Y_ in that order. We define I {r,..., r,} as follows.

(1) Every rk except . consists of a single tuple that has a constant c in all the
columns.

(2) rj {, , , }, where each tuple for k s has the constant c

exactly in ZkWk columns and distinct constants (that do not appear in any other tuple)
in all other columns, and has the constant c exactly in closure (X, cover (H))
columns and distinct constants in all other columns.

We claim that I is a database of R. It suces to show that satisfies . Let X- Y
be an FD in and let and v be tuples in that agree in X columns, where v is
one of ,..., _, +,..., , . Since [X] v[X] implies that k and v have
c in X columns, we have X ZkWk, which implies Y ZkWk by Claim above. Thus

k has c in Y columns. If v t, then t has c in Y columns by the same reason,
and thus k and t satisfy X Let v . Since (1) X closure (X, cover (H))
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and (2) cover (H,,) contains X - Y by the fact that X ZkWk and Claim 1, cover (Hm)
implies X,,-closure(X,,,,cover(Hm))t3 Y by the additivity rule, that is, Y
closure (X,,, cover (H,,)). Thus/z has c in Y columns, and ttk and /z satisfy X Y.
The claim has been proved.

Let r be in augts (r). We claim that there is a chase process

X| YI X2 Y2 X _l’-- Ym-1
"1"1 7"2 , 7"

}’2 Pm

such that each 7"k has c exactly in RiY’" Yk-I columns. Since ij, initially rl has
c exactly in Ri columns. Suppose that 7.k has c exactly in R, Yt... Yk- columns. Let
Xk "-> Yk be in Fjk. Ifjk =j, then as the tuple Vk, we can choose a tuple in augv (rj) that
has c exactly in XkYk columns. Ifjk j, then /2k has c exactly in Rjk columns. Thus by

Xk-> Yk
Tk

tuple 7"k+ has c exactly in RiYI’’" Yk columns. The claim has been proved. Since

Xm
_
RY Y_, 7"m agrees with augu (/) in X, columns. Since cover (H,) does

not imply X,- A by the irreducibility of Xm- Y,, augt (/) does not have c in A
column. However, since A RY Y,,_, 7",, has c in A column. Thus 7" restrictedly
conflicts with augt (/) for Xm

3.2. The method.
ALGORITHM 1.
input: A database scheme R {(R, F),. ., (R,, F)) over U.
method" If there is a number such that the following procedure EXAM (R)

returns "no", then R is not consistent. Otherwise, R is consistent.
procedure EXAM (R)
begin
(1) Let S R (that is, assign R to S). For _<-j =< n, let G (that is, let G be

empty).
(2) while there is a number j( i) such that F-G contains an FD X-> Y with

X_S
do begin
(2-i) Select a minimal FD X -> Y in F G such that X S.
(2-ii) If S Y-closure (X, G), then return "no".
(2-iii) Otherwise, let S S J Y and G G U cover (X -> Y).
end while

(3) return "yes".
end EXAM

Example 3. Let

R= {(ABC, {BC ---> A}),

(ABDE, {A ---> D, AS -> DE}),

(BCF, (Be -> F, F--> C}),

(DEFGH, {D--> H, DE --> GH, F -> G, H --> D))).

We execute EXAM (ABC). Initially, S ABC and GI G2- G3- G4--. Either
A-> D or BC -> F can be selected in step (2-i). Select BC -> F. Then the condition of
step (2-ii) does not hold, and thus we have S ABCF and G3 {BC-> F, F-> C) in
step (2-iii). Since F_ S, F-> G as well as A D can be selected in step (2-i). Select
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A--) D. It does not satisfy the condition of step (2-ii). We have S ABCDF and
G2 {A-)D} in step (2-iii). Since D S and AB S, one of F--)G, D-)H, and
AB--) DE can be selected in step (2-i). Select D--) H. It does not satisfy the condition
of step (2-ii). We have S=ABCDFH and G4={D H,H D}. Either F--)G or
AB--) DE can be selected in step (2-i). Select AB-)DE. Though S f’l DE D f,
AB--) DE does not satisfy the condition of step (2-ii), since closure(AB, G2)=
closure (AB, {A --) D}) ABD. Thus we have S ABCDEFH and G
{A--) D, AB-) DE}. Either F-)G or DE--) GH can be selected in step (2-i). Select
F- G. It does not satisfy the condition of step (2-ii). We have S ABCDEFGH and
G4 {D H, H - D, F G}. Finally, we select DE GH in step (2-i). Since S f) GH
GH and closure (DE, G4) closure (DE, {D H, H- D, F G})= DEH, we have
S fq GH-closure (DE, G4)= G. Thus, EXAM (ABC) returns "no" in step (2-ii). We
conclude that R is not consistent. In fact, consider a database 1 {{ 111 }, { 1111 }, { 111 },
{11211, 22122}} of R. We shall see that rep (1) does not satisfy F.

Example 4. We execute EXAM (ABDE) for the database scheme R of Example
3. Initially, S ABDE and G G2--G3--G4--. Only D--)H can be selected in
step (2-i). It does not satisfy the condition of step (2-ii), and thus we have S ABDEH
and G4-" {D-") H, H --) D} in step (2-iii). Then DE --) GH can be selected in step (2-i).
It does not satisfy the condition of step (2-ii). We have S ABDEGH and Ga--
{D-) H, H--) G, DE -) GH}. No FD can be selected in step (2-i) anymore, and the
loop of step (2) terminates. Thus EXAM (ABDE) returns "yes" in step (3).

We prove the correctness of Algorithm 1. We denote the values of S, G1," ",

at the kth execution of step (2-i) by S(), G), .., u, respectively. We denote the
FD selected at the kth execution of step (2-i) by X(g) Y(g). Then we have S
RY(l) Y(’-) by stp (2-iii). Since X()

_
S(), the sequence X()- y(l,..., X(g)

Y() is a derivation of each attribute in Y(g) from R. Let X()- Y( be in F, and
_.) (k)let Hk be the intersection of F and {X(1)--) y(1),.. ", x(k-1) y(k-)} Then JJk

cover (H) by step (2-iii). Since X(g)--) Y() is a minimal FD in F-,!g)._.J such that
X(,) Ry()... y(k-), the sequence X(1)--) y(1),..., X(k)__) y(k) extends minimally.-uppose that EXAM (R) returns "no" at the kth execution of step (2-ii), that is,
s(k) Y(k)--closure(X(k), Gk))#(. Let A be in s(k) y(k) closure (x(k), Gj).(k)
Since closure (X(k) (k) (k) (Hk), ,X(k) y(k)

’Jk does not contain A and ’Jk =cover --) is
irreducible with respect to the derivation X()--) Y(),. , X(k) Y(k) of A from Ri.
Furthermore, since A S()= RiY()... Y(-), R is not consistent by Lemma 3.

In order to prove the converse, we show two lemmas in advance.
LZMMA 4. Let X Y,..., X,,--) Y,, be a minimally extending derivation of an

attribute A from R such that Xm --) Ym in F is irreducible. For a subset G ofF, if G does
not contain X,--) Y,,,, then closure (X,, G) does not contain A.

Proof It suffices to show that F- {X,, --) Y,,} does not imply X,, --) A. Let H,, be
the intersection of F and {X--)Y,..., X,_--)Ym-}. Since the derivation X--)
Y," , Xm --) Y, extends minimally, it holds that closure (X,, proper-cover (Xm
y,,)) c__ closure (X,,, cover (H,,)). (If it does not hold, then there is an FD Z--) W in

F -cover (H,,) such that ZW X,,,Ym and Z RiY Y,,_.) Since X,, --) Y,, is
irreducible, A is not in closure (X,,, cover (H,,)). Thus A is not in closure (X,,, proper-
cover (Xm "-) Y,,)), that is, proper-cover (X,, -) Y,,) does not imply X,, -) A. Hence,
F- {X,, --) Y,} does not imply X,, --) A by Claim in the proof of Lemma 2.

LEMMA 5. Let X--) Y,..., X,,--) Y,, be a minimally extending derivation of an
attribute from R. If Xm--) Y,, is not selected in step (2-i) during the execution of
EXAM R then EXAM R returns "no".



REPRESENTATIVE INSTANCE IN RELATIONAL DATABASES 343

Proof. Suppose that EXAM (Ri) returns "yes". We denote the final values of
S, G1," ’, Gn by S’, G,..., G’, respectively. Then S’= closure (Ri, F), since for
every X - Y in F, if X S’, then Y S’ by the terminating condition of the loop of
step (2). Since RY Y, closure (R, F), it holds that Xk

_
S’ for -<_ k <= m, and

thus Xk Yk is in G t_J. U G’ by the terminating condition of the loop of step (2).
Suppose that X,- Y,, is not selected in step (2-i). Let X,- Y, be in F. There is an
FD X(k)-- y(k) in F such that X,Y

_
x(k)Y(k), and that X,- Y, is added to G at

the kth execution of step (2-iii). Then it holds that (1) x(k S(k, (2) x(k y(k) is
a minimal FD in F-GJk such that x(k_ RgY(’’" y(k-l, and (3) X,, Y,, is in

F- GJk. We prove Lemma 5 by induction on the number m.
Basis. Consider the case where m 1. Then X, R implies X,

_
S(k, and thus

x(k)y(k) XmY by the minimality of x(k y(k). Since X,Y, X(k)Y(k), we have
x(k) y(k) XmYm. We claim that there is an attribute A in Xm such that F -{X(k y(k)}
does not imply X(k - A. If there is no such attribute A, then F-{X(k - y(k)} implies
X(k X,. Since F_{x(k

_
y(k)} contains X,, - Y,, it implies x(k- X,Y,

(= x(k)y(k)) by the additivity rule. This, however, contradicts Assumption l(b). The
claim has been proved. Note that A is in y(k). Since GJk) does not contain X(k- y(k),
closure (X(k, GJk) does not contain A by the claim. Furthermore, since A X,,

_
S(k,

we have S(k f’) Y(k-closure (X(k, GJk) f. Thus EXAM (R) returns "no" at the
kth execution of step (2-ii).

Induction. If X, S(k, then EXAM (Ri) returns "no" by the same reason above.
Suppose that X,,--s(k f. Since X,

_
RY... Y,_, there is an FD Xp- Y. such

that p<m and Yp contains an attribute A in X,-S(k. Since X,Y, x(k) Yk) and
the derivation XI- Y1,"" ", X,- Y, extends minimally, Xp Yp is different from
x(k)_ y(k). Let Xp- Yv be the first FD in the derivation X Y,..., X, Y, such
that Yp contains A. Then Xp Yp is irreducible with respect to the minimally extending
derivation X- Y,..., Xp Yp of A from R, since none of Y1," ", Yp- contains
A. By the induction hypothesis, Xp Yp is selected in step (2-i). Suppose that Xp Yp
is selected at the/th execution of step (2-i). Since (1) AS(k) but A Yp S(1+ and
(2) x(k- y(k and Xp Yp are different, we have k < l, and thus S(k+lS(1. Since
AX,,_x(ky(k_s(k+, S(1 contains A. Let Xp Yp be in Fq. Since (1) G(q does
not contain Xp Yp and (2) Xp- Yp is irreducible, closure (Xp, G(q) does not contain
A by Lemma 4. Thus we have s(lf’l Yp-closure (Xp, G(qI) . EXAM (R) returns
"no" at the /th execution of step (2-ii).

Suppose that R is not consistent. By Lemma 2, there is a minimally extending
derivation X- Y,..., X, Yr of A from Ri such that (1) A RY... Y,_ and
(2) X, Ym is irreducible. By Lemma 5, it suffices to consider the case where X, Y,
is selected in step (2-i). Suppose that X, Y,. is selected at the kth execution of step
(2-i). There are two cases to be considered.

Case 1. Suppose that A is not in Ri. There is an FD Xp Yp such that p < m and
Yp contains A. Let Xp- Yp be the first FD such that Yp contains A. Then Xp- Yp is
irreducible with respect to the minimally extending derivation X- Y,..., Xp Yp
of A from R, since none of Y,..., Yp_ contains A. By Lemma 5, it suffices to
consider the case where Xp Yp is selected in step (2-i). Suppose that Xp Yp is
selected at the /th execution of step (2-i). Suppose that < k. Let X,- Y, be in F.
Since X,,- Y, is irreducible and not in GJk, closure (X,, Gk) does not contain A
by Lemma 4. Since A Yp c__ S(I+_ S(k, we have s(k Y,-closure (X,,
Thus EXAM (Ri) returns "no" at the kth execution of step (2-ii). The same argument
applies also to the case where k < I.
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Case 2. Suppose that A is in Ri. Since AERieS(k), we have s(k)"] Ym-
closure (Xm, GJk)) f by the same reason above. Thus EXAM (Rj) returns "no" at
the kth execution of step (2-ii). This completes the correctness proof of Algorithm 1.

We estimate the time complexity of Algorithm 1. We assume that as the input of
Algorithm l, each attribute in U is represented as an integer, and each given set of
attributes (e.g., R,. , Rn and X, Y for X - Y in F) is represented as an increasing
sequence of integers. Before executing the procedure EXAM (Rj), we execute the
following (a), (b), and (c). (These can be executed in O(IFI IIFll) time.)

(a) For each X Y in F with _-<j_-< n, list all the FDs Z W in F such that
ZW

_
XY, that is, cover (X- Y).

(b) For each A in U, list all the FDs X- Y in F with A E X.
(c) For each X- Y in F, we introduce a variable count (X Y), and let the

initial value of count (X Y) be IRj-XI. We use count (X Y) for examining whether
S contains X.

When executing EXAM (Rj), the loop of step (2) is most expensive. However,
the loop is repeated at most IFI times. Consider how to select an FD X Y in step
(2-i). For each execution of the loop, if an attribute A is added to S, then we decrease
the value of count (X - Y) by one for each FD X Y with A X. Note that such an
FD has been listed in step (b) above. If count (X - Y) 0, then we have X

_
S. Since

for each A in U, and for each X - Y in F with A X, the value of count (X - Y) is
decreased by one at most once, this process can be executed in O(IIFII) time as a
whole. Since we have listed cover (X- Y) for each X- Y in F in step (a), we can
test in O(IFI) <_- O(IFI) time whether X - Y is a minimal FD in F- Gj such that X

_
S.

This process can be executed in O(IFI2) time as a whole. Next, we can examine the
condition of step (2-ii) in O(IIFII) time, since closure (X, Gj) can be computed in
o(lIG ll)--< o(llF ll) time [BB]. Note that we examine the condition of step (2-ii) for
each FD at most once. By the discussions above EXAM (Ri) can be executed in
O(IFI IIFII) time. Thus we have the following theorem.

THEOREM 1. Let R={(R, F),..., (Rn, F,,)} be a database scheme. It can be
determined in O(nlF liFII) time whether R is consistent, where F= F t.J F,.

By Algorithm l, we can determine whether a given database scheme is consistent.
However, given a universal relation scheme (U, F), we do not know how to design a
database scheme R= {(RI, FI),’’ ", (R,, Fn)} over U that is consistent, preserves F
(that is, the set of FDs implied by F coincides with the one implied by FILI. t.J F,),
and has some "desired" property. We note that there is a universal relation scheme
which cannot be transformed into any second normal form (2NF) database scheme
[Cod2] without violating the consistency. For example, consider (ABCDE, {A-
DE, AB- CDE, B E, D- E}) as a universal relation scheme. It is not in 2NF, since
AB is the key of the scheme but there is an FD A DE. It can be transformed into a
2NF database scheme R {(ABC, {AB - C}), (ADE, {A DE, D E}), (BE, {B -E})}. However, R is not consistent. Note that the relation scheme (ADE, {A - DE, D-E}) is not in third normal form [Cod2].

4. Computing the total projection of the representative instance. Let r be a relation
over R and let V be a subset of R. The projection of r onto V is defined by
r[V]-{/[V][/ is in r). The total projection of r onto V is defined by r[V-total]-
{/[V]I/ is in r, and has no variable in V columns}. Let r and r, be relations over R
and R2, respectively. The join of r and r2 is a relation over RR2 defined by rr2
{/]/[R] is in r, and [R] in r2}. If r, satisfies R, Rt --> R2- R, then rtr2 is called
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the extension join. Unlike usual joins, extension joins can be computed efficiently
[Hon2].

Let R={(R,F),... ,(Rn, Fn)} be a database scheme over U. A relational
expression over R consists of R,..., R, as operands and projection, join and union
as operators. Formally a relational expression over R is defined as follows.

(1) Each Ri is a relational expression over R by itself.
(2) If E and E2 are relational expressions over R, then so are (Et)[V], (E)N(E2),

and (El) [.J (E2).
The value of a relational expression E over R for a database I {r,. ., r,} of

R, denoted E(I), is computed by assigning r,. ., r, to Rl," ", R,, respectively, and
applying the operators according to the definitions. For simplicity, we omit the paren-
theses of E in a usual manner.

In this section, we present an algorithm for constructing a relational expression
E over R whose value is the total projection of the representative instance onto V,
that is, E (I) rep (I)[ V-total] for every database I of R, provided that R is consistent.
The expression E is of the form [.JEi[V], where each Ei is a sequence of extension
joins, and thus rep (/)[V-total] can be computed efficiently. In 4.1, we present three
lemmas that are useful for developing the algorithm. In 4.2, we present the algorithm,
and estimate its time complexity. In 4.3, we discuss the simplification of E.

4.1. Conditions for computing the total projection. Let Z --> Wl," Z ---> W be a
derivation of a subset V of U from Ri and let H {Zl--> W1,’’’, Zs- W}. The
derivation is said to be minimal if there is no FD Zt -> Wt such that Ri-> V is implied
by (H-{Zt --> Wt}) U proper-cover (Zt -> Wt). Note that H implies Ri-> V. The following
lemma implies that if R is consistent, then a minimal derivation ZI - W, , Zs - Ws
of V from Ri is really minimum in the sense that RiWl Ws RiYI Ym for every
derivation Xl--> Y,’’’, Xm-> Y, of V from

LEMMA 6. Let Zt-> W,’. ., Z-> W be a minimal derivation of a subset V of U
from Ri and let X1--> Y1, X--> Y be a derivation of Vfrom Ri. If R is consistent,
then every Zt--> Wt is in cover (Xk .--> Y:) for some Xk-> Yk.

Proof. First we prove the following claim.
Claim. Zs-> Ws is in cover (Xk-> Yk) for some Xk-> Yk.
Suppose that there is no such FD Xk -> Yk. We will show that R is not consistent.

Let Z-> W be in F. There is an attribute A in V f’) Ws such that F-{Z-> Ws} does
not imply Z-> A, as shown below.

Suppose that there is no such attribute A. Then F -{Zs -> Ws} implies Zs -> V f’) W.
By Claim in the proof of Lemma 2, proper-cover (Z-> Ws) implies Z-> V fq Ws.
Since subsequence Z1-> W,..., Zs_-> W_ is a derivation of Z(V- W) from
Ri-> V is implied by {ZI --> W1," , Z_I --> Ws_} [_J proper-cover (Z --> W). This,
however, contradicts the minimality of the derivation Z--> WI,"’, Z-> Ws.

Consider a sequence X--> Yl, ", Xm --> Y,, Z "-> WI, ", Z --> Ws. This is a deri-
vation ofA from Ri. Let H,+s be the intersection ofF and {XI -> Y1, , Xm --> Y,, Z1 ->

Wl,, ,, Zs_ --> Ws_l}o Since the derivation Z--> W,. ., Z--> W is minimal, no
cover (Z -> W,) with < s contains Z -> W. (If cover (Z-> W) contains Zs - Ws, then
subsequence Z- W,..., Z_--> W_ is a derivation of V from Ri.) Furthermore,
since no cover (Xk--> Yk) contains Z--> Ws by the assumption, cover (H,,+s) does not
contain Zs W. Since F-{Zs Ws} does not imply Z-> A, cover (H,,+s) does not
imply Z-> A, that is, Zs--> W is irreducible. Since A V RiY’’" Y,,, R is not
consistent by Lemma 3. The claim has been proved.
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The minimality of the derivation Z1 - W1, , Zs - Ws of V from R implies that
subsequence Zl Wl, , Z_l W_l is a minimal derivation of Z( V- W) from Ri.
Since V RiYl Y,, and Zs W is in cover (Xk - Yk) for some Xk - Yk by the
claim above, sequence X1 Y1,""", X,,- Y, is a derivation of Z(V- W) from R.
By the claim, Z_l- Ws_l is in cover (X- Y) for some X- Y. The same argument
applies also to every Zt Wt. Thus Lemma 6 follows, l-]

LEMMA 7. Let Zl- W1,..., Z- Ws be a minimal derivation of a subset V of U
from Ri and let I {r,. , r,} be a database of R. Suppose that R is consistent. For a
tuple IZo in augu (ri), if there is a chase process

Id,O
Xt_ Y x Y

1,rn

such that tXm has constants in V columns, then there is a chase process

such that tx’ agrees with Ixm in V columns.
Proof. We show that there is a chase process

ZI-- W Zt-- W
Io ;," > tx

such that/x’t agrees with //’m in RiWl’’" Wt columns by induction on the number r
This implies Lemma 7, since V_ RW... W.

Basis. If 0, then it holds trivially.
Induction. Suppose that there is a chase process

z- w z,_- wt_ -, -tt/Xo >" t-1

such that/x’t_l agrees with /x. in RW Wt_ columns. Since Z c_ RiWl Wt-,
/x’,_l and /Xm have the same constants in Z columns. Since (1) Z, XYg for some
X Y by Lemma 6 and (2) and u have the same constants in XY columns by

Xk Yk
k- > k,

k

tuples ’_ and Pk have the same constants in Z columns. Thus we have

k

Clearly, ’ agrees with in RWI"" columns.
For a database I of R, we define that augu (I)* is a relation obtained by restrictedly

applying FD-rules for F to augu (I) until no variable can be replaced with any constant.
We have the following lemma, whose proof is given in the appendix.

LEMMA 8. Let I be a database of R and suppose that no conflict occurs in augu (I)*.
If there is a chase process of augu (I)* under F such that a variable is replaced with a
constant, then R is not consistent.

Lemma 8 implies that if R is consistent, then rep (/)[V-total] augu (I)*[ V-total]
for every subset V of U.

4.2. The method. Suppose that R is consistent. Let I {r,. , r} be a database
of R and let V be a subset of U. Let [ be a tuple in rep (/)[V-total], where is
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an expansion of a tuple/Xo in augu (ri). By Lemma 8,/Zo can be expanded to a tuple
that agrees with/x in V columns by a number of restricted applications of FD-rules
for F without changing any other tuple in augu (I). That is, there is a chase process

XI-Y X Y

Xo
m. >

such that /z, agrees with /z in V columns. Let Z1 W1,’’ ", Zs-> Ws be a minimal
derivation of V from Ri. By Lemma 7, there is a chase process

Z W Z W

such that /.’s agrees with /z, in V columns. Let Zt--> Wt be in F,. Then /z’ is in

r,t)![Z1 W1]" trj[ZW]. Thus/z[ V] is in (r,lrj,[Zl WI]" r[ZsW])[ V]. Con-
versely, let u be a tuple in rtr![Z W]. r[ZW]. Since V RiW W, u[V]
is in rep (I)[ V-total].

Let Ei RR![ZW1]...RL,[ZsW]. By the discussions above, /z[V] is in
rep (/)IV-total] if and only if /z[V] is in Ei[V](I). Note that E is a sequence of
extension joins. We have the following algorithm.

ALGORITHM 2.
input: a consistent database scheme R= {(R, Fl),’’ ", (R,, F,)} over U, and a

subset V of U.
output: a relational expression E over R such that E(I) rep (I)[V-total] for

every database I of R.
method:
(1) For each R such that V closure (R, F), construct a term E as follows.

Compute a minimal derivation Z- W,..., Z- W of V from Ri, where
each Zt--> W is in F,. Let E, R,R![Z1W1]. .Rj[ZWs].

(2) Let E be the union of all the terms E[ V], where E is constructed in step (1)
above.

Note that every expansion of every tuple in augu (ri) has constants at most in
closure (R, F) columns. Thus if closure (R, F) does not contain V, then for no
expansion/z of any tuple in augu (r),/z[V] is in rep (/)IV-total].

Example 5. Let
R {(ABC, {AC B}),

(ABDE, {AB---> DE, A---> D}),

CF, {c -, F}),

(DFGHM, {F--> G, DF--> GM}),

GIMN, {GM --> N}),

(JKLP, (J- L}),

(DJM, {J- DM}),

(KOPQR, {K - R, P- OQ}),

(NQR, {QR - N})}.
Note that R is consistent. We construct a relational expression E over R such that
E(I) rep (I)[DMN-total] for every database I of R. Then closure (Rl, F),
closure (R, F), and closure (R6, F) contain DMN, where R, ABC, R= DFGHM,
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and R6=JKLP. For R, sequence AD, CF, DFGM, GMN is a
minimal derivation of DMN from R1. Thus El RtR2[AD]
R3[CF]R4[DFGM]Rs[GMN]. Similarly, we have E4=R4NRs[GMN] for R4,
and E6= R6mR8[POQ]R7[JDM]NR8[KR]Rq[QRN] for R6. Thus E
EI[DMN] 1.3 E4[DMN] 1,3 E6[DMN].

We consider how to find a minimal derivation of V from Ri for each Ri such that
V_ closure (R, F). Suppose that in the execution of EXAM (R,) in Algorithm 1, the
loop of step (2) is repeated p times, and let G {X1) YI), , Xp YP}, where
xk yk is the FD selected at the kth execution of step (2-i). A minimal derivation
of V from Ri is computed by the following algorithm.

ALGORITHM 3.
(1) Let H=G(={XI) y(l) X(p) y(p)})
(2) for k p step until

do begin
(2-i) If H-{x(k)- y(k)} implies Ri V, then delete X(k)--), y(k) from H.

(Otherwise, leave x(k- y(k)in H.)
end

(3) Let Hfinal be the final value of H in the loop of step (2). Construct a derivation
of V from R by reordering the FDs in H,al. (Since Hfinal implies R- V, this
can be executed in O(llHnal[) time by the method of [BB].)

Example 6. Consider the database scheme of Example 5. We compute a minimal
derivation of DMN from Rl (=ABC). By EXAM (R), the sequence of the FDs
selected in step (2-i) will be C F, A - D, AB -, DE, F - G, DF GM, GM N. Let
H be the set of the FDs in the sequence. Since H-{GM-N} does not imply
Rl DMN, GM - N remains in H. Then H-{DF- GM} does not imply Rl - DMN,and thus DF- GM remains in H. Since H-{F- G} implies R DMN, F-> G is
deleted from H, and H becomes C F, A D, AB DE, DF- GM, GM N}. Next,
H-{AB DE} implies R DMN, and thus AB DE is deleted from H, and H
becomes {C - F, A D, DF GM, GM N}. Then neither A D nor C - F can be
deleted from H. Thus Hfinal becomes {C F, A D, DF- GM, GM- N}. Note that
in Example 5, we present the minimal derivation A D, C F, DF- GM, GM - Nof DMN from

We prove the correctness of Algorithm 3. Suppose that the derivation obtained
by Algorithm 3 is not minimal. Then there is an FD X(!

_
y(l) in Hfinal such that R- V

is implied by (Hfinal-{X(l).-> Y(I)}) proper-cover (X(1)-
Claim. For a minimal derivation Z W,- , Z - W of a subset V of U from

R, every FD Z, W, is in G.
Since the derivation Z- Wl,’’ ", Z- W can be transformed into a minimally

extending derivation of V from Ri by inserting some of the FDs in
t.J l=,__< proper-cover (Z,- W,), every Z,- W, is selected in step (2-i) of EXAM (R)
by Lemma 5. Thus the claim holds.

By the claim above, we assume without loss of generality that R- V is implied
by (Hfinal-{X(i) yl)}) LI (proper-cover (X) yi)) Iq G). Let H!) be the value of H
when k in the loop of step (2) of Algorithm 3. Since Xk)- yk) with < k is not
in proper-cover (Xt)- Y)) by step (2oiii) of EXAM (R) in Algorithm 1, we have
proper-cover (XI)- yl))fq G

_
H). Since Hnam- H1), R- V would be implied by

H!) {X!)
_

yi)}. This, however, contradicts that X ) - YI) is in H,a. This completes
the correctness proof of Algorithm 3.

We estimate the time complexity of Algorithm 2. Since G is obtained in O(IFI
time by EXAM (R), a minimal derivation of V from Ri can be computed in O( Pll GII) =<
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O(IFI IIFll) time by Algorithm 3. Thus Algorithm 2 can be executed in O(nlFI
time. We have the following theorem.

THEOREM 2. Let R= {(R, Fl), ", (Rn, Fn)} be a consistent database scheme over
Uand let Vbe a subset of U. We can construct in O(nlFI IIFII) time a relational expression
E over R such that E(I)= rep (/)IV-total] for every database I of R.

Recently, the concept of "boundedness" was proposed [MUV]. Intuitively, a
database scheme R {(Rl, F1),’’’ (Rn, Fn)} over U is bounded for a subset V of U
if for every database I of R such that rep (I) satisfies F, every tuple in rep (I)[ V-total]
can be obtained by a bounded number of applications of FD-rules for F to augt (I).
By Theorem 2, if R is consistent, then it is bounded for every subset V of U.

4.3. Simplification of the relational expression. Let E be the relational
expression over R obtained by Algorithm 2. E may contain a redundant term Ei[V]
in the sense that even if Ei[ V] is removed from E, the value of the resulting expression
is rep (/)IV-total] for every database I of R.

LEMMA 9. Suppose that E contains a term E[V] which is of the form
(R,NRj,[Z W] Rjs[ZsWs])[ V], where Z- W, Z -’, W is a minimal deriva-
tion of Vfrom Ri. Let H--{Z W1,’’’, Z W}. Then Ei[V] is redundant for E if
and only if cover(H) implies Z, W, Vfor some Zt W,.

Proof. Only if part. Suppose that cover (H) does not imply ZWt V for any
Z, W,. It suffices to show that there is a database I of R such that E[ V](I) contains
a tuple but no other Ej[V](I) contains the tuple. We define I {r,. ., r} as follows.

(1) r consists of a single tuple that has a constant c in all the columns.
(2) For =<j-<_ n with j i, let {P Q1," ", Pl Q} be the intersection of F and

H. Then let rj {/z , ,/Zl}, where each/Xk has the constant c exactly in PkQk columns
and distinct constants in all other columns.

We can show that r satisfies F in the same way as the proof of Lemma 3. Thus
I is a database of R. Let Vo be the tuple in augt (r). Clearly, there is a chase process

such that has c exactly in RW... W columns. Thus Ei[V](I) contains v[V],
which has c in all the columns. Suppose that E[V](I) with j i contains the tuple
v[V]. For a tuple ro in augt (r), there is a chase process

X Y X2-- Xm-’, Y

’to ’rl
Y2 >... )’ ’rm

l 2 m

such that rm agrees with vs in V columns. Since j i, ro has c exactly in Z, W, columns
for some Z, W, in H. We prove the following claim by induction on the number k.

Claim 1. ’k has c exactly in Z,W,Y... Yk columns.
The claim holds for ’o. Suppose that rk- has c exactly in Z, W,Y Yk- columns.

If Xk Yk is in F, then 8k has c exactly in R columns, and thus the claim follows from

Let Xk Yk be in Fp with p i. Then tk has c exactly in ZqWq columns for some
Zq- Wq in H. Since each constant except c occurs once in I and
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tuple 6k has c in Xk columns. Thus we have Xk
_
ZqWq, which implies that Xk Yk

is in cover (Zq - Wq) by Claim in the proof of Lemma 3. Thus tk has c in Yk columns.
The claim follows from

Xk- Yk
Zk-1 ’-> 7"k.

3k

Let H’={X- Y,... ,Xm- Y}. Then we have the following claim, which
contradicts that cover (H) does not imply ZtW

Claim 2. H’ implies ZtWt V, and is a subset of cover (H).
Since Xk ZtWtY’’’ Yk-I by the proof of Claim above, H’ implies ZtWt

Y"" Ym by the additivity rule. Since V ZtWY... Y by Claim l, H’ implies
ZtWt Next, we prove the latter half of Claim 2. Since Xk Yk is either in F or
in cover(ZqWq) for some ZqWq by the proof of Claim 1, we have H’
F U cover (H). Suppose that there is an FD Xt in F. Since Xg ZWY Yk-
and Xl R, sequence Z W,. , Z W,X Y,. , X_ -1 is a derivation
of an attribute A in R from R itself. Let P Q be the first FD in the derivation such
that Q contains A. Then the subsequence Z W,..., P Q is a derivation of A
from R such that (1) A R and (2) P Q is irreducible. Thus R is not consistent by
Lemma 3. Contradiction. The claim has been proved.

If part. Suppose that cover(H) implies ZtW K There is a subset H’=
{XY,...,XY} of cover(H) such that VZWY... Y and Xk
ZWY... Yk- for lkm [BB]. Let I={r,...,r,} be a database of R, and
suppose that E[ V](I) contains a tuple . For a tuple o in augu (r), there is a chase
process

zw
o>" s

1 s

such that [V]= . Since H’ cover (H), we can show that there is a chase process

X YI X2 Y2 Xk Yk
l > 81 tk

such that k agrees with/s in ZtWtY"" Yk columns by induction on the number k,
in the same way as the proof of Lemma 7. Since V Z,W, Y1... Y,, 8, agrees with

/xs in V columns. Since Ej,[V](I) contains ,[V] (=/z) by Lemma 7, we have
Ei[V](I) Ej,[V](I). Thus Ei[V] is redundant for E, and Lemma 9 has been proved.
We will show a stronger result that there is a database I’ of R such that Ei[V](I’)
E,[ V](I’). This implies that for each redundant term E[ V], there is a nonredundant
term E[V] such that Ei[ V](I)_ E.[V](I) for every database I of R. Let Ej,[V] be of
the form (Rj,Rk1[PQ]"" IRk,[PtQ])[ V], where P- QI, PI - Ql is a minimal
derivation of V from R,. By Lemma 6, every P- Q is in cover (Xk- Yk) for some

Xk- Yk in H’. Furthermore, since (1) H’ cover (H) and (2) cover (H) is disjoint
from F, no P Q is in Fi. Consider a database I’--{r,..., r,} of R such that (1)
every r except r consists of a single tuple that has a constant c in all the columns
and (2) r is empty. Then Ej,[V](I’) contains a tuple that has c in all the columns, but
E[ V](I’) is empty. [3

By Lemma 9 and the remark above, we can remove all the redundant terms from
E. Let E’ be the resulting relational expression over R. Suppose that E’ contains a
term Ei[ V] which is of the form (RRjI[Z W]... R[ZW])[V]. For a database
I of R, if E[ V](I) contains a tuple, then all the joins of E are necessary in order to
obtain the tuple, since Z WI,’", Z W is minimal. Thus E[V] contains no
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redundant join. Since it can be determined in O(sllcover(H)ll)<= O(IFIIIFII) time
whether cover (H) implies ZtWt - V for some Z, - W in H, E’ can be obtained from
E in O(nlFI IIFll) time. Thus we have the following corollary of Theorem 2.

COROLLARY. The relational expression E over R obtained by Algorithm 2 can be
transformed in O(nlflllFII) time into a simplified relational expression over R that
contains neither a redundant union nor a redundant join.

Example 7. Consider the term E[DMN] in E in Example 6. E is of the form
R1NR2[AD]NR3[CF]NR4[DFGM]NRs[GMN], where A- D, C - F, DF- GM,
GMN is a minimal derivation of DMN from Rl (=ABC). Let H=
{A D, C - F, DF GM, GM- N}. Then cover (H) {A - D, C F, DF GM,
F- G, GM- N}. For DF GM in H, cover(H) implies DFGM DMN. Thus
EI[DMN] is redundant for E. In fact, we can show that E[DMN](I) c__ E4[DMN](I)
for every database I of R. Neither E4[DMN] nor E6[DMN] is redundant for E.

Appendix. Proofs of Lemmas 1 and 8. First we show two facts that are useful for
the proofs. Let R={(R, F),..., (R,, Fn)} be a database scheme over U and let
I {rl,"" ", rn} be a database of R. We define that augt (I)* is a relation obtained
by restrictedly applying FD-rules for F to augt (I) until no variable can be replaced
with any constant. Suppose that no restricted conflict occurs in augt (I)*. Let X-* Y
be an FD in Fi, and let/x and , be tuples in augt (I)* that agree in X columns. Since
(1) all the variables of augc (I) are distinct and (2) FD-rules for F are restrictedly
applied to augt (I) in order to obtain auger (I)*, all the variables of augt (I)* are
distinct. Thus/x[X] ,[X] implies that/x and , have the same constants in X columns.
Suppose that/x has constants exactly in V columns. (Then X c_c_ V.) Let/xi be a tuple
over R that agrees with/x in V fl XY columns and has distinct constants (that do not
appear in augt (I)*) in all other columns. We claim that rt_J{/x} satisfies F. Let
Z W be an FD in Fi and let r be a tuple in ri that agrees with /x in Z columns.
Since r[Z] =/xi[Z] implies Z V f-) XY, r also agrees with/x in Z columns. Since (1)
no restricted conflict occurs in augt (I)* and (2) no variable can be replaced with any
constant by any restricted application of FD-rule for F to augt (I)*, /z[Z]= -[Z]
implies/x[ W] -[W], that is,/x and - have the same constants in W columns. Since
Z c_ V f’) XY, we have W c_ XY by Claim in the proof of Lemma 3. Thus/x and/x
have the same constants in W columns, which implies/x[W] r[ W]. The claim has
been proved. We have the following fact.

Fact 1. I’={rl,..., rt.J {/xi},..., r} is a database of R.
For the database I’, we can obtain augt (I)*U augv (/x) by a number of restricted

applications of FD-rules for F to augt (I’). Since /x[X]= ,[X]= augt (/x)[X], we
have the following fact.

Fact 2. (a) FD-rule for X Y can be restrictedly applied to/x and augt (/x).
(b) If there is an attribute A in Y such that/x[A] ,[A], and ,[A] is a constant,

then , and augt (/x) restrictedly conflict for X Y. Otherwise, FD-rule for X- Y
can be restrictedly applied to , and augt (/x).

LEMMA 1. If R is not consistent, then there is a database I of R such that a
restricted conflict occurs by a number of restricted applications of FD-rules for F to

augv (I).
Proof. Suppose that R is not consistent. There is a database I {r,. , r,} of R

such that a conflict occurs by a chase process of augv (I) under F. Without loss of
generality, we consider a chase process that computes augt (I)* and then applies
FD-rules for F to augt (I)* until a conflict occurs. Suppose that a conflict occurs by
k applications of FD-rules for F to augt (I)*. We prove Lemma by induction on
the number k.
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Basis. Let k 0. That is, a conflict occurs in augt (I)*. If the conflict is restricted,
then Lemma follows. Suppose that no restricted conflict occurs in augt (I)*. For
an FD X - Y in Fi, there are two tuples/z and , in augt (I)* that agree in X columns
but have different constants in a column in Y. If we consider the database I’ of R
defined in Fact 1, then Lemma follows from Fact 2(b).

Induction. Let k >-1. Let the first (nonrestricted) application of FD-rule for F to

augt (I)* be the one for X Y in Fi to/x and ,. Consider the database I’ of R defined
in Fact 1. When we compute augt (I’)*, the first nonrestricted application can be
replaced with two restricted applications of FD-rules for X Y to z and augt (/i)
(and , and augt (/xi)) by Fact 2. Since augt (I’)=augt (I)Uaugt (/x), for every
tuple in augt (I)*, there is an expansion of 8 in augt (I’)*. Thus a conflict occurs
by at most k-1 applications of FD-rules for F to augt (I’)*. From the induction
hypothesis, Lemma follows.

LEMMA 8. Let I {rl,’’’, r,} be a database of R and suppose that no conflict
occurs in augu (I)*. If there is a chase process of augt (I)* under F such that a variable
is replaced with a constant, then R is not consistent.

Proof. An application of FD-rule for X Y in F to two tuples in r is said to be
minimal if r satisfies proper-cover (X- Y) (by considering each variable of r as a
constant). If a variable v is replaced with a constant c by a chase process of augt (I)*
under F, then v can be replaced with c by a number of minimal applications of FD-rules
for F to augt (I)*. Suppose that a variable v is replaced with a constant c by k
minimal applications of FD-rules for F to augt (I)*. We prove Lemma 8 by induction
on the number k.

Basis. Let k 1. That is, for an FD X Y in Fi, there are two tuples tz and u in
augt (I)* such that/z[X]= t,[X], tz[A]= v, and ,[A]= c for an attribute A in Y. If
we consider the database I’ of R defined in Fact 1, then Lemma 8 follows from
Fact 2(b).

Induction. Let k >_-2. Let the first minimal (nonrestricted) application of FD-rule
for F to augu (I)* be the one for X - Y in F to tz and ,. We assume that no variable
can be replaced with any constant by any application of FD-rule for any FD in F to
any two tuples in augt: (I)*. (Otherwise, Lemma 8 follows from the basis above.) For
the database I’ of R that is defined in Fact 1, consider the following chase process of
augt (I’) under F.

(1) Compute augt (I)* (.J augu (/x).
(2) Expand augu (tzi) by restrictedly applying FD-rules for F until it can not be

expanded anymore. Let/z’be the resulting tuple. (We have augu (I)* (.J {tz’} by step (2).)
(3) Expand each tuple z in augt: (I)* by a restricted application of FD-rule for

an FD in F to z and/x’. Let r be the resulting relation.
If a conflict occurs in r, then Lemma 8 follows. Suppose that no conflict occurs

in r. We prove the following claims.
Claim 1. r augu (I’)*.
Claim 2. v is not replaced with c by the chase process above.
If a tuple in augu (I)* remains unchanged in step (3) above, then it can not be

expanded by any restricted application of FD-rule for F. Suppose that there is a
restricted application in step (3) such that

ZW

for Z-* W in F. First we show that ZW XY.
Since augu (I)* satisfies proper-cover (X Y) bythe minimality ofthe application

of FD-rule for X - Y, so does augt (I)*
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Y). Thus Z- W is not in proper-cover (X- Y). Since/xi has new constants (that do
not appear in augu (I)*) in Ri-(Vfq XY) columns by the definition, r[Z]=/x’[Z]
implies Z XY, and thus Z W is in cover (X - Y) by Claim in the proof of Lemma
3. Hence Z - W is in cover (X - Y)- proper-cover (X - Y), which implies ZW XY.

Since r’ has constants in ZW (= XY) columns by

ZW

it can not be expanded by any restricted application of FD-rule for cover (X Y).
Suppose that - has constants exactly in P columns. Then " has constants exactly in
PW columns by

ZW

Since no variable can be replaced with any constant by any application of FD-rule
for any FD in F to and /z by the assumption, ’ has new constants (that do not
appear in augu (I)*) in PW-P columns. (This implies Claim 2.) Thus " can not be
expanded by any restricted application of FD-rule for F-cover (X Y). Thus Claim
has been proved.

If v has been replaced with a constant c’ with c’ c in r, then a conflict must
occur by a chase process of r under F. Thus Lemma 8 follows. Suppose that v is not
replaced with any constant in r. When we compute r (= augu (I’)*), the first nonrestric-
ted application can be replaced with two restricted applications of FD-rules for X - Yto /x and augu(/x) (and u and augu(/z)) by Fact 2. Since augu(I’)=
augt (I)t.J augu (/zi), for every tuple 6 in augu (I)*, there is an expansion of 6 in
augu (I’)*. Thus v can be replaced with c by at most k-1 minimal applications of
FD-rules for F to r. From the induction hypothesis, Lemma 8 follows. (The reason
we consider minimal applications of FD-rules is that if the first nonrestricted application
is not minimal, then v may have been replaced with c in augt (I’)*.)
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RECTILINEAR GRAPHS AND THEIR EMBEDDINGS*

GOPALAKRISHNAN VIJAYAN AND AVI WlGDERSON

Abstract. The embedding problem for a class of graphs called rectilinear graphs is discussed. These
graphs have applications in many VLSI Layout Problems. An interesting topological characterization of
these graphs lead to efficient algorithms for recggnizing and embedding rectilinear graphs which are
embeddable on the plane.

Key words, graphs, embeddings of graphs, VLSI layouts, algorithms for graph embedding

1. Introduction. The problem we address in this paper is an embedding problem
for a class of graphs which we call rectilinear graphs. These graphs are important in
many VLSI layout problems. In fact, this problem arose in the implementation of ALI
[7],[8], a procedural language for VLSI design currently under development at
Princeton. An embedding algorithm can be used to automate the production of VLSI
layouts in many procedural design systems.

The following is an informal description of rectlinear graphs and their embeddings.
The vertices of a rectilinear graph have degree at most four. The edges incident on
each vertex are given distinct labels from the set (Left, Right, Up, Down). Suppose we
place the vertices on the grid points of a rectangular grid, and for each edge draw a
straight line segment betwc’en its endpoints. We call the result an embedding of the
graph, if the edges lie along grid lines, no two edges cross, and the directions of the
edges at each vertex are consistent with their labels.

Consider the.following model for VLSI layout design. A VLSI layout is described
hierarchically using cells and wires that connect the cells together. Each cell C is
enclosed within a rectangle R (C), and has four lists of pins, one each for the left, top,
right, and bottom of rectangle R (C). Each wire w is denoted by a pair of pins (Pi, Pj),
such that pi and pj are pins of different rectangles, and are of opposite types. For
example, if p is a right pin then p should be a left pin. Given such a description of a
VLSI layout, our aim is to produce an embedding of the description on the plane,
such that (i) no two bounding rectangles touch each other, (ii) the pins appear in the
correct order on the bounding rectangles, (iii) the wires are straight and rectilinear,
and (iv) no two wires cross each other. Later on, we can fill each bounding rectangle
R (C) with the embedding of the cell C in the same manner.

The restriction that wires cannot be bent may seem unrealistic, but this is certainly
the case in many design systems including ALI. If a wire has to be bent, the user
specifies that by breaking up the wire into several straight wires and placing cells at
each of the turn points of the wire. In ALI, for example, the user can incorporate
routing algorithms in a ALI program to determine how the wires are to be bent. The
restriction that wires cannot cross implies that we are dealing with the wires on a single
layer. For a layout with multiple layers, it is clearly necessary that the wires on each
layer do not cross.

It is easy to observe that the above description of a layout induces a rectilinear
graph, whose vertices are the pins and the corners of the bounding rectangles, and
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whose edges are the wires and the segments created on the bounding rectangles by
the vertices.

For VLSI applications, we need efficient algorithms to recognize and then actually
embed rectilinear graphs. In this paper, we present an O(n) recognition algorithm
and an O(n2) embedding algorithm, where n is the number of vertices in the graph.
Thus, a hierarchically described VLSI layout with cell instances C1, C2,""", C, can
embedded in time O (Yi=l n), where ni is the number of pins in cell instance C.

An embedding of a rectilinear graph is just a relative placement of the vertices
(cells) on a rectangular grid, such that no two edges cross. Some of the relative
placement information is already present in the description of a rectilinear graph. For
example, if (a, b) is the rightgoing edge of vertex a, then a should be to the left of b,
and .a, b should be on the same horizontal grid line. Hence, an embedding can be
viewed as a "completion" of the rectlinear graph description. We showed in a different
paper [10] that the completion problem for a slightly more relaxed VLSI layout model
is NP-complete. In light of this result, the results in this paper have become more
important.

In 2, we present formal definitions of rectlinear graphs and thier embeddings.
In 3, we mention some properties of rectlinear graphs. We discuss some topological
properties of the embeddings in 4. A necessary and sufficient condition for biconnected
rectilinear graphs to be embeddable is presented in 5. A similar condition for arbitrary
rectilinear graphs is the main result in 6. We also describe a O(n) recognition
algorithm in this section. In 7, we use the ideas of the previous sections to obtain an
O(n2) embedding algorithm. An important subclass of rectilinear graphs is discussed
in 8. In 9, we discuss extensions and open problems. For definitions of graph
theoretic terminology used in this paper, please refer to [1], [2].

2. Definition of the problem. First we give a formal definition of a rectilinear
graph.

DEFINITION 2.1. A rectilinear graph G is a triple (V, E, ), where V is the vertex
set, E is the edge set, and

,’VxV-;U{e}, where 2, {L, R, D, U}

is a vertex ordering relation with the following properties:
for every a, b, c e V and X e E
(i) X ((a, b)) e :> {a, b} E

(ordering is specified only between adjacent vertices);
(ii) A((a,b))=Lc:>A((b,a))=R, it((a,b))=DcrA((b,a))= U;
(iii) A((a, b))=XA((c, b)) X, Vc a (no overlapping edges).

D

R

-R

R UI

D

FIG. 2.1. A rectilinear graph.
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Each vertex in a rectilinear graph has degree at most four, and each edge (a, b),
as it goes from one vertex a to another b, has a nonempty label on it, which in the
embedding will indicate the direction (left, right, down, or up) in which the edge leaves
a vertex a. There can be at most one edge with a particular label emanating from each
vertex. The undirected graph G(V, E) will be referred to as the underlying graph.
Figure 2.1 (like all other figures) gives an illustration of a rectilinear graph.

Now we define what sort of an embedding we are looking for.
DEFINITION 2.2. An embedding of a rectilinear graph G( V, E, A) on a rectangular

grid is given by two mappings x, y: V- Z (the integers) which are the x and y
coordinates respectively of the vertices. These mappings obey:

1. The ordering relation, A, i.e. for all edges {a, b} E

A ((a, b)) Ly(a) y(b), x(a) > x(b),

A((a, b))= ROy(a)= y(b), x(a) < x(b),

A((a, b))=Dx(a)=x(b), y(a)> y(b),

A((a, b))= Ux(a)=x(b), y(a)< y(b).

2. Planarity, no two edges cross, i.e. for each pair of nonadjacent edges (a, b},
{c, d} such that A((a, b))= R and A.((c, d))= U, the relation

x(a) x(c) <= x(b) and y(c) <- y(a) <= y(d)

does not hold.
An embedding of a rectilinear graph on a rectangular grid is one in which the

vertices are placed at grid points, the edges run along grid lines in the directions given
by their labels, and no two edges cross each other except if they share a vertex. Also,
an edge cannot touch a vertex unless it is incident on it. We say that a rectilinear graph
is embeddable if it has an embedding. We will show in the next section that not all
rectilinear graphs are embeddable.

Now our main problem can be stated simply: Given a rectilinear graph G( V, E, A),
is it embeddable, and if it is, find an embedding.

3. Some comments on reetlinear graphs. In this section we list some properties
of rectilinear graphs and their embeddings. Some of these properties will give an
indication of why our problem is different from other embedding problems, in par-
ticular, planar graph embedding [3], [6].

1. Embeddability is a hereditary property. Subgraphs are defined in the usual
fashion, but here the labels of edges are inherited. This is obvious, but worth mentioning,
because this will be used in the proofs.

2. If each connected component of a rectilinear graph is embeddable then the
graph itself is embeddable. So, without loss of generality we will restrict ourselves to
connected rectilinear graphs.

3. Rectilinear graphs with nonplanar underlying graphs are clearly not embed-
dable. So it is not interesting to consider those graphs. However, not every rectilinear
graph with a planar underlying graph is embeddable. In Fig. 3.1, we have two simple
cycles which are not embeddable.

4. In contrast with planarity, embeddability is not a property determined by the
biconnected components. Fig. 3.2 provides an illustration of this fact.

5. This problem is a restriction of an NP-complete problem [10], [12]. For each
wire w, we are given its orientation (horizontal or. vertical), and a set Vw of vertices.
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FIG. 3.1. Two nonembeddable rectilinear cycles.

(a) (b)

FG. 3.2. Two nonembeddable rectilinear graphs whose biconnected components are embeddable.

The wire w has to touch each vertex in the set Vw (the vertices could be touched in
any order). Then, the embedding problem becomes NP-complete.

6. If we relax the rectilinearity of the edges and impose only the cyclic ordering
of the edges at each vertex, then there is an O(I VI) algorithm [11 ]. The cyclic orderings
automatically determines the faces of the embedding (if one exists). Thus a embeddable
rectilinear graph has a unique embedding in this sense.

4. Topological structure of embeddings. There is a natural way to extend the
function h to paths and cycles in the graph as follows. Given a path P (Vo, Vl, , vt)
we define h (P) h ((Vo, Vl))A ((vl, Ve)) , ((vt-1, v,)). We define a similar extension
for cycles where now v v0. , becomes a mapping that associates with each path or
cycle in the graph a string in E* which is the concatenation of labels along the path
or cycle. Note that strings containing RL, DU, LR, UD as substrings do not represent
paths. Also the direction in which we traverse a path and the starting point in a cycle
are important. An example of this mapping can be found in Fig. 4.1.

Next we define two topological operations on rectilinear graphs. These operations
will simplify a rectilinear graph while preserving its topological structure. Let G be a
rectilinear graph.

h

-d

’a

A ((abcdefgh)) LURDRUL

FIG. 4.1. The extension of h to paths.
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Operation lmEdge contraction. Let (abcd) be a path in G such that both b and
c have degree 2, and A((abcd))=XYX where X, YE. Contract the edge (b, c) to
the vertex b. The resulting path (abd) will have A ((abd))= XX. We abbreviate this
operation by XYX XX (Fig. 4.2(1)).

Operation 2--Vertex deletion. Let (abc) be a path in G such that vertex b has
degree 2, and A((abc))=XX where XE. Delete the vertex b and introduce the
edge (a,c). The resulting edge (a,c) will have A((a,c))=X. We abbreviate this
operation by XXX (Fig. 4.2(2)).

R (1) R R

a b a b d

R R (2) R

a b c a c

FIG. 4.2. Edge contraction and vertex deletion.

In a natural way we can define inverses for the above two operations which we
will refer to as edge expansion and vertex addition respectively.

LEMMA 4.1. Let G be a rectilinear graph and G’ be the graph resulting from G by
the application of a sequence of the above four operations. Then G’ is also rectilinear
and moreover G’ is embeddable if and only if G is embeddable.

Proof The proof is easy and is left to the reader. [3

DEFINITION 4.1. Given a string y E* representing a path or a cycle, the simplified
form ,, of 3’ is obtained by repeatedly applying the reduction rules XYX- XX and
XX X, where X, Y E until they cannot be applied any more. If y represents a
cycle then it is treated as a cyclic string.

In Fig. 4.3 we give a path and a cycle along with their simplified forms.

RDLDR R RDLDRULDLURDLU RDLU

FIG. 4.3. Simplification of a path and a cycle.

LEMMA 4.2. Every string y ,* has a unique simplified form.
Proof. The replacement system defined by the two reduction rules have the

Church-Rosser property [9]. [3

DEFINITION 4.2. A square is one of the cyclic strings LURD or LDRU.
Sometimes we may distinguish between two squares by their starting labels.
DEFINITION 4.3. A spiral is a substring of (LURD)+ or (LDRU)+.
LEMMA 4.3. Every path is embeddable.
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Proof. Every spiral is embeddable. Since any path simplifies to a spiral, by Lemma
4.1 it is also embeddable.

So it is the cycles which make the problem nontrivial. The following lemma is a
crucial fact about cycles.

LEMMA 4.4. A cycle is embeddable if and only if it simplifies to a square.
Proof. If. A square is embeddable and hence by Lemma 4.1 any cycle which

simplifies to a square is also embeddable.
Only if. Let f be an embeddable cycle and ;t (f)= y. By Lemma 4.1, the cycle

defined by /is also embeddable. Let I1 n. Look at the embedding of /. Since it has
no crossings the embedding is a simple polygon. Therefore the interior angles of this
polygon sum to (n-2) 180. Since /is a spiral all its interior angles are 90. The
only solution to n 90 (n-2) 180 is n 4. Therefore /is a square.

The proof of the previous lemma suggests another useful characterization of
embeddable cycles. Going along a cycle f= VlV2""VnVl in the counterclockwise
direction, let us denote by 0r(vi) the angle at vertex vi, which is the angle between
(vi-1, vi) and (vi, Vi/l), and by 0(f) the sum of these angles.

LEMMA 4.5. A cycle f vl V2""" Vn/)l, n => 4 is embeddable if and only if o(f)=
E=l 0f(v) (n +/- 2) 180.

Proof. Suppose f is embeddable, then its embedding is a simple polygon. Depend-
ing on whether we sum the interior angles or exterior angles we should get (n +/- 2)
180

To prove the sufficient part we show by induction on n that f simplifies, to a
square. The possible values for 0(vi) are 90, 180, 270. The basis for induction is
n 4. In this case the given sum of the angles is either 360 or 1,080, which implies
that each angle is either 90 or 270 respectively. So f must be a square by itself.

Assume that the claim is true for all values less than n and let n > 4. If for some
i, (v)= 180 then (v_vv+)= XX. We can apply vertex deletion at v to obtain

f’-" VlV2"’" Vi_ll)i+l’’’ VnV1. Then (f’)=(f)-(vi)=((n-1)+/-2)180,and by
induction we are done.

This leaves the case where all angles are either 90 or 270. Since n > 4 and
o(f)=(n+2)180 not all the angles can be equal. Hence there must be a k such
that qr(Vk) # qr(Vk+). Hence we have A (Vk_ Vkl)k+l Vk+2) XYX. Apply edge contrac-
tion to obtain f’= v Vk-UVk+2"" V,V. The edge contraction removed 360 from
the angle sum and added 180. Hence 0(f’) ((n- 1) +/-2) x 180.

DEFINITION 4.4. A complement of a path P with respect to a square tr is any path
P in the graph such that ppc is a cycle which simplifies to

LEMMA 4.6. Given a path P, all its complements with respect to a square tr, which
have the same start and end labels, have a unique simplified form.

Proof. Let A (P) a XIX2" Xk. Since a is a spiral we have X X for ](4).
Assume that k > 4 and that the spiral a and the square tr are either both clockwise
or both counterclockwise. Then tr must be a substring of c. Since tr is a cyclic string
we can assume that o-= XIXzX3X4.

Let pc be a complement of P with respect to tr and let , (P) =/3. Since k > 4,/3
must spiral in the opposite direction to a. Since both a and/3 are simplified a/3 can
be simplified only at the borders between the two strings. Write/3 =/31/32/33, such that
301--0. We are allowed to shift 3 because aft is a cyclic string. Then it is clear
that fl {Xk-aXk, Xk, e} and f13 {e, X1, X1X4}. fiE is the "essential part" of ft. Since

lal k and tr =4, we must have Ifl.l k-4. From the possible values of fll and f13,
and the fact that fl is a spiral opposite in direction to a, we can conclude that
fl: Xk-Xk-:" X4. We use k > 4 in order for fiE not to be an empty string. Therefore
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[3 {e, Xk, Xk_3Xk}Xk_l X4{e, Xl, XlX4}, which is unique but for the start and
end labels. The arguments in the cases where a and r are in opposite directions and
for k _-< 4 are similar.

5. Biconnected rectilinear graphs. In this section we discuss an algorithm for
recognizing biconnected rectilinear graphs. Note that the ordering relation A induces
a cyclic ordering of the edges incident at each vertex v. For convenience we will need
the following definition.

DEFINITION 5.1. Let v be a vertex in a rectilinear graph G. Define Lo(v) to be
the cyclic list of the neighbors of v in G in the counterclockwise order.

Using these lists, we can define the essential notion of a candidate face of a
biconnected rectilinear graph.

DEFINITION 5.2. Let G (V, E, A) be a biconnected rectilinear graph. With each
edge e (Vl, v2), Vl > v2 we associate two lists of vertices called candidate faces CFI(e)
and CF2(e) which are defined as follows. CFI(e)= Vl, v2,"’, Vk, Vk+I where
for 1 _--< < j_--< k, and )k+l )i for some i, 1 _-< < k- 1. Also, for each l, 1 < < k + 1,
V+l is the successor of Vl-1 in the cyclic list LG(t)I). CFE(e) is similarly defined but
starting with rE,

It is easy to see that CF and CF2 are uniquely defined. An illustration of this
definition is given in Fig. 5.1.

e 2 3

5",
_I

4

6 7

L(1)-- (5, 2) and L(2) (1, 7, 3)
CF1(e)-2,1,5,6,7,2 and CF2(e)=l,2,7,6,5,4,3,2

FIG. 5.1. Candidate faces.

We now need a lemma about biconnected undirected graphs. Let us define a
biconnected graph to be minimal if for every edge e in the graph G-e is not
biconnected. The following lemma is taken from [2] and is stated without proof.

LEMMA 5.1. If G is a minimal biconnected graph having at least four vertices then
G contains a vertex of degree two.

LEMMA 5.2. In any biconnected graph G which is not a simple cycle, there is a
simple path P (Vl, V2) (/)2, V3),""", (/)r--l, Vr), r--> 2, with the intermediate vertices (if
any) vi, 1 <i< r all having degree 2, such that the graph G’= G-P is biconnected.

Proof. Transform the given graph G to another graph G" by replacing all paths
of the form P (Vl, v2), (v2, v3)," , (Vr-1, Vr) where the vertices vi, 1, r all have
degree 2, by the edge (v, vr). So for each edge e in G" we have a corresponding path
Pe in G. Note that the degree of any vertex in G" is at least three. If G" has multiple
edges between some two vertices, say u and w, then in G there must be at least two
parallel paths between u and w. Since G is not a simple cycle any one of those paths

For convenience we assume that V is a set of integers.
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will serve our purpose. If G" does not have multiple edges then it must have at least
4 vertices. By Lemma 5.1 G" cannot be minimal. Therefore there is an edge e in G"
such that G"-e is biconnected, which implies that G-Pe is also biconnected.

The following theorem gives a necessary and sufficient condition for a biconnected
rectilinear graph to be embeddable.

THEOREM 5.1. Let G (V, E, A) be a biconnected rectilinear graph with at least
three edges. Then G is embeddable if and only if for each edge e in the graph both the
candidate faces CFI(e) and CF2(e) represent simple embeddable cycles in the graph
(i.e. the starting and ending vertices are identical, and it simplifies to a square). Moreover,
if the graph is embeddable each such distinct candidate face corresponds to a face in
the planar embedding.

Proof. Only if. Supposing for some edge e=(vl, v2), CFl(e) is not a cycle, i.e.
CFI(e)= Vl, v2,"’, v, Vk+l with Vi=Vk/l for some i, l<i<k-1. Suppose G is
embeddable. Look at the cycle vi,’", Vk, Vk/l in the embedding. Suppose that the
edge (vi_l, vi) is inside this cycle. There can be no other edges (u, vj), i< j <= k inside
this cycle, otherwise u would have appeared instead of Vj/l in CFI(e). From this
observation and the fact that the embedding is planar, it follows that vi is an articulation
vertex, which contradicts the biconnectedness of G. The case where (Vi_l, vi) is outside
the cycle is similar (both cases are depicted in Fig. 5.2).

T
Vk 1)

U 1)2 Vi-
Viv v

Vi+
Vi+

FIG. 5.2. Two possible embeddings of CFI( e).

Suppose CFI(e) is a cycle but is not embeddable. Since CFI(e) is a subgraph of
G, G itself cannot be embeddable. Similar arguments hold for CF2(e).

If. The proof of this part is by induction on the number of edges. The basis for
the induction are simple embeddable cycles. Assume that the claim is true for any
biconnected rectilinear graph which has less than k edges. Let G be a biconnected
rectilinear graph which is not a simple cycle and which has k edges. By Lemma 5.2,
there is a simple path P (vl, V2) (V2, V3) (Vr--1, Vr) with the vertices v, 1, r
all having degree 2, such that the graph G’ G-P is biconnected, v and Vr will have
degree greater than two. Also assume that Vl> v2 and e12- (Vl, v2).

Since all our candidate faces are cycles, if an edge e lies on a candidate face f
then either CF(e)=f or CFz(e)=f. So each edge will be present in exactly two of
these candidate faces. Hence the path P will appear in CFl(e12) and its reverse path
will appear in CFz(el2). Let

fl CFa(e12) Vl, V2, Vr, bll, lgj, Vl,

f2 CF2(e12) Vr, Vr-l, Vl, Wl, Wk, Vr, and



RECTILINEAR GRAPHS AND THEIR EMBEDDINGS 363

It follows from the definition of the candidate faces fl and f2 that the vertices uj,/.)2, Wl
appear consecutively in that order in L(Vl) and that Wk, V-I, Ul appear similarly in
L(v) (see Fig. 5.3). Therefore for each edge in fl or f which is not in P, the new
candidate face in G’ will be f3 which is a simple cycle.

We still have to show hat f3 is embeddable. Since fl and fe are both embeddable
qg(fl) -tr/j+/- 2) 180 and qg(f2) -(r+ k+ 2) 180. However, since fl and f2 share
the edge e12 it is implied by the definition of candidate faces that (fl) (r+]+ 2) 180
and (f2)=(r+ k + 2) 180 is impossible. With a little bit of algebraic manipulation
we can show that (fa)=((j+k+2)+/-2)180. Since f3 has j+k+2 vertices by
Lemma 4.5, it is embeddable. Thus the candidate faces for G’ are the same as those
for G, excepting for f3 replacing the two faces fl and f2. So for each edge in G’ its
two candidate faces are again simple embeddable cycles. By the induction hypothesis
G’ is embeddable and each distinct candidate face corresponds to a face in its embed-
ding. The orderings of the edges at the vertices v and Vr imply that the end edges
(Vl, /)2) and (vr_a, vr) of the path P are both trying to go inside the face corresponding
to f3.

FIG. 5.3. The two cycles fl, f2 and the path P.

We are left to show that we can add the path P back without destroying embeddabil-
ity. Find any rectilinear path P’ in the face corresponding to f3 in the embedding of
G’, that starts and ends with A ((/)1,/)2)) and A ((/)r_a, vr)) respectively. This is clearly
possible although we may have to extend the grid in order for P’ to lie on the grid
lines. P’ creates a face in the embedding with the path P1 =/)rUl U2"’" Uj/). If f3 is not
the outside face then A(PIP’)= A(fl)= A(PIP)= t. The case when f3 is the outside
face is slightly more complicated. There are two such different paths P’ depending on
the new outer face that is created. However, for one of the two the above holds and
suppose this is the one we chose. By definition both P and P’ are complements of P1
with respect to o-, they also share the same start and end labels, and by lemma 4.6 we
have A (P) , (P’). Therefore G’+ P’ can be obtained from G by applying a sequence
of the four topological operations, and since G’+ P’ is embeddable, by Lemma 4.1 G
is also embeddable. It is easy to see that the two new faces we get after inserting P in
the embedding of G’ correspond to fl and f2.

The above theorem leads to the following algorithm for recognizing embeddable
biconnected rectilinear graphs. The algorithm also outputs the faces of the embedding
if the graph happens to be embeddable.

Algorithm check-biconnected(G);
begin

if G is an edge then return;
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if EI > 3 VI 6 then
begin

write (" not embeddable")
quit

end;
for each edge e do
begin
mark [e, 1 := false;
mark [e, 2] := false

end;
for each edge e do
fori:=l to2do
begin

if not mark [e, i] then
begin
f := candidate-face (e, i);
if not embed-cycle (f) then
begin

write (" not embeddable")
quit

end;
for each edge e’= (Vl, v2) in f do

if Vl > v2 then mark [e’, 1] := true
else mark [e’, 2]:= true;

output (f)
end

end
end.

Boolean function embed-cycle (f) returns value true if f is an embeddable cycle.
If f is a cycle then we simplify using the reduction rules and check if we end up with
a square. This can be done in time linear in the size of f Function call candidate-face
(e, i) returns the candidate face CF(e) and the function can be implemented exactly
as described in Definition 5.2. In the calls to this function, each edge e can be traversed
at most twice, due to the flags mark [e, 1] and mark [e, 2]. Therefore the algorithm
runs in time O( V[). We conclude this section with a lemma which will let us identify
the outer face in a rectilinear graph.

LEMMA 5.3. Let G be an embeddable biconnected rectilinear graph. For all interior

faces f in the embedding of G, (f) n 2) 180, and for the unique exterior face fe,
q( fe) (n + 2) 180.

Proof. Consider the embedding of G. The faces of the embedding are determined
by G, and are simple polygons in the plane. By the definition of 0, for every interior
we count the interior angles, and for the exterior face we count the exterior angles.
The lemma follows. (Remember that if G is a simple cycle, the embedding has two
faces).

LEMMA 5.4. Let G be an embeddable biconnected rectilinear graph, fe the exterior

face in its embedding and v a vertex on re. If qte (V)= 180, then G can be embedded
inside a polygon of shape U, as shown in Fig. 5.4a. If qte 270’ then G can be embedded
inside a polygon of shape W, as shown in Fig. 5.4b.

Proof. The proof is easy and left to the reader.
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(a) (b)

FIG. 5.4. Shapes U and W.

6. Articulation vertices. In this section we examine the conditions under which
the embeddability of the biconnected components of the graph imply the embeddability
of the graph itself. Clearly, this will depend on the way components meet at articulation
vertices. In Fig. 3.2, we showed two examples of nonembeddable rectilinear graphs,
each of which decomposes into two embeddable biconnected rectilinear graphs.

In those cases, the two biconnected components are not "compatible" at the
articulation vertex. However, the situation need not be so local. Fig. 6.1 depicts two
nonembeddable graphs, each of which decomposes into three embeddable biconnected
components, so that the components meeting at each articulation vertex are compatible.
Note that an edge is a (trivial) biconnected component.

(a) (b)

FIG. 6.1. Decompositions of nonembeddable graphs.

If v is an articulation vertex in a graph G, then its removal results in several
connected subgraphs Gi of G. We will refer to the subgraphs Gi + v, as the subgraphs
meeting at v. Throughout this section we will implicitly assume that we are dealing
with rectilinear graphs whose biconnected components are embeddable.

DEFINITION 6.1. Let B1 and B2 be two nentrivial biconnected components of a
rectilinear graph G that share an articulation vertex v. Then B1 and B2 are said to
interlace if the horizontal edges at v belong to B1 and the vertical edges belong to B2
(Fig. 3.2a). We also say that v is an interlace vertex. Any articulation vertex that does
not have this property is said to be interlace-free.

LEMMA 6.1. A rectilinear graph G which has an interlace articulation vertex v is
not ernbeddable.

Proof. Let B1 and B2 be the two biconnected components sharing the vertex v.
Since B1 and B2 are nontrivial, the horizontal edges at v lie on a cycle in B1 and the
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vertical edges lie on a cycle in B2. It is impossible to draw G on the plane without
these two cycles crossing.

DEFINITION 6.2. Let B1 and B2 be two noninterlacing biconnected components
of G that share an articulation vertex v, and assume B1 is nontrivial. Then B1 is said
to dominate B2 at v (or, B2 is inside B1) if either (i) v is not on the exterior face of
B1, or (ii) edges (v, u) and (v, w) at the vertex v are on the exterior face of B1, and
u, w are consecutive in that order in L(v) (note that they are always consecutive in
LBI(v)). If neither B1 dominates B2 nor B2 dominates B1, then B1 and B2 are said to
be outside each other.

The intuition behind the above definition is that in the embedding, one biconnected
component must lie wholly inside some face of the other if one edge of it does. This
is due to the planarity criterion. Clearly, if biconnected components B1 and B2 that
share an articulation vertex v dominate each other, the graph is not embeddable (this
is the case in Fig. 3.2b).

Let B and B2 be two biconnected components of a graph G that share an
articulation vertex v, such that B1 dominates B2. Let G’ be the subgraph of G meeting
at v that contains B2. If G is embeddable then in any embedding of G, all of G’ should
lie inside one face of B1. This suggests extending the relation "dominate" as follows:

DEFINITION 6.3. Let B {B1, B2," Bin} be the set of biconnected components
of G. We say that Bi dominates Bj if there exists a biconnected component Bk and an
articulation vertex v, such that (i) Bk and Bi share v, (ii) Bi dominates Bk at v, and
(iii) Bj and Bk are both subgraphs of one of the connected subgraphs meeting at v..

Let us denote by V(G) the vertex set of the graph G and by E(G) the edge set.
LEMMA 6.2. If in a rectilinear graph G, there exists some pair of biconnected

components B1 and B2 that dominate each other, then G is not embeddable.
Proof. If B1 and B2 share an articulation vertex v, then as mentioned earlier G

is not embeddable. Suppose that B1 and B2 are disjoint. Since B1 and B2 dominate
each other, there must be articulation vertices Vl, v2, biconnected components B, B&,
and subgraphs G1, G2, such that for i= 1, 2, (i) Bi and B share vi,. (ii) B dominates
B at v, and (iii)G is one of the subgraphs meeting at v and contains BI. Let us
assume that G is embeddable. From (i) v2 e V(G1), (ii) G1 lies wholly inside B1 in the
embedding, and (iii) V(G1)(’1 V(Ba)= {va}, we can conclude that v2 must be properly
inside a polygon defined by the face fl of Bx containing Vl. Similarly Vl should be
properly inside the polygon defined by a face f2 of B2 containing v2. Therefore some
vertices of ]’2 must lie outside fl and the two faces must intersect, and hence G is not
embeddable.

Given a rectilinear graph G, with a set of biconnected components B and a set
of articulation vertices A, we can construct a tree T of biconnected components such
that

V(T)=AUB, and E(T)={(v,B)lvA,BB,vV(B)}.

LEMMA 6.3. Let G be a rectilinear graph with the set of biconnected components
B and tree of biconnected components T. Let B be a leaf in the tree T which is adjacent
to an articulation vertex v of degree 2 in T. If B dominates B’ the other biconnected
component adjacent to v in T, then B dominates every other biconnected component in B.

Proof. The only two subgraphs meeting at v are B and G-B + v and the proof
follows from Definition 6.3. 1-1

If no two biconnected components dominate each other, then the relation "domi-
nate" induces a partial order on B. A nondominating element in this partial order is
a biconnected component which does not dominate any biconnected component.
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COROLLARY 6.1. If for a rectlinear graph G "dominate" is a partial order, then
there exists a nondominating biconnected component which is a leaf in the tree T of
biconnected components.

Proof. Any trivial biconnected component (which is just an edge) must be non-
dominating. If any vertex in T (corresponding to an articulation vertex in G) is adjacent
to two leaves, then either the two leaves are nontrivial and not dominating, or one of
them is a trivial biconnected component. If no vertex in T is adjacent to two leaves,
then all leaves are adjacent to vertices of degree 2, and there are at least two such
leaves. If two of these leaves are dominating, then by Lemma 6.3 the two leaves
dominate each other which is a contradiction that "dominate" is a partial order. In
fact all of these leaves must be nondominating.

THEOrEM 6.1. Let G be a rectlinear graph and B its set of biconnected components.
G is embeddable if and only if

(i) every biconnected component B in B is embeddable,
(ii) every articulation vertex in G is interlace-free, and
(iii) "dominate" induces a partial order on B.
Proof. The necessary part follows from Lemma 6.1 and Lemma 6.2.
The sufficient part is shown by induction on the number of vertices. The basis for

induction is any biconnected rectilinear graph. Let G be not biconnected with V(G)I
n. Assume that the claim is true for all smaller graphs. Look at the tree T of biconnected
components. By Corollary 6.1, there exists a leaf B in T which is nondominating. Let
v be the articulation vertex shared by B and G’ G-B + v, the rest of the graph. G’
being a subgraph of G also satisfies the conditions of the claim. By induction hypothesis
G’ is embeddable. By condition (i), B is also embeddable. If B is a single edge it is
easy to add the edge to the embedding of G’. Assume B is nontrivial. Since B is
nondominating, v must lie on the exterior face fe of B and qe(v) 90 (why?).

Embed G’ and B separately and consider the vertex v in both embeddings. If
qte(v) 180, then v is only one edge in G’. Add six new grid lines to the embedding
of G’, create the shape U as shown in Fig. 6.2a, magnify the embedding, and embed
B in the U as in Lemma 5.4. If qe(V) 270, then v is either on just one edge in G’,
or on two perpendicular edges in G’. In both cases, add six new grid lines, create the
shape W and embed B as shown in Fig. 6.2b.

Before we describe an algorithm for testing embeddability, we need an algorithm
for testing whether "dominate" is a partial order on the set of biconnected components.
From the tree T of biconnected components,’we construct T a partially directed tree
as follows. Assume that no biconnected component dominates and is dominated at
the same vertex. If so then "dominate" is not a partial order. Direct edge (v, B) from

G’ G’

(a) (b)

FIG. 6.2. Adding B to the embedding of G’.
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B to v if B dominates at v. Direct edge (v, B) from v to B if B is dominated at v.
Leave all the other edges undirected.

This partially directed tree T can be constructed in linear time as follows. Find
the faces of each of the biconnected components using the algorithm check-biconnected.
This takes O(I VI) time. Check for dominations at each articulation vertex as described
in Definition 6.2. There are at most 4 biconnected components at each articulation
vertex and hence there are at most 12 (ordered) pairs to be tested for domination (in
fact only 2 tests are necessary, how?). Construct T by. directing the edges of T as
described earlier. Note that articulation vertices and biconnected components can be
found in O(IVI) [1]. For each vertex x in T, denote by din(X), dout(X), and d(x), the
number of incoming arcs, the number of outgoing arcs, and the number of undirected
edges of x respectively. The rest of the algorithm is given below.

Algorithm check-dominate-po G
begin

construct T;
for each vertex x in T do

if din (x) > 1 then
begin

write ("not a partial order");
quit

end;
if search T) then write ("yes, partial order")
else write ("not a partial order")

end;

function search T)" boolean;
begin

if T then search := true
else begin

if3 B B with do,t(B) O, din(B) -I- d(B) 1 then
begin

Let v be the neighbor of B;
if din (t)) -t- dour (t) w d(v) 1 then search := search T {B})
else search := search T-{B, v})

end else search := false
end.

The above algorithm can be easily shown to be correct using Definition 6.3 and
Corollary 6.1. The boolean function search can be implemented nonrecursively to run
in linear time by maintaining a queue of the leaves of T.

Given the biconnected components and articulation vertices, checking that the
articulation vertices are interlace-free can be done in O(I V]) time. Let check-interlace-
free be a procedure that checks a given articulation vertex for interlace-freedom. We
end this section with aO(1V[) algorithm for testing embeddability of rectilinear graphs.

Algorithm check-rectilinear (G);
begin
Decompose G into its biconnected components;
for each biconnected component B do check-biconnected (B);
for each articulation vertex v do check-interlace-free (v);
check-dominate-po (G)

end.
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7. An embedding algorithm. In the previous section we gave an algorithm for
testing embeddability. This algorithm can be easily modified into an algorithm which
gives an embedding. However, the complexity of this naive algorithm would be O(1VI3).
The reasoning is as follows. The path P’ that we find in the proof of Theorem 5.1
could be O([ VI) long. For each topological operation that we apply on this path to
transform it to the path P, we update the coordinates of the vertices in the embedding
once. Thus for each path added we require O(I VIe) time. There can be O(I V[) such
paths and hence the complexity of the algorithm is O(1VI3). To reduce the complexity
to O(I Vl)e), we have to make sure that the path P’ is never longer (asymptotically)
than the path P. In this case the sum of the lengths of all such paths P’ is O(1V[), and
the O(I VI e) complexity follows. In the following, we show how we can always find
such paths, describe the algorithm, and analyze its complexity.

LEMMA 7.1. Let G be a planar biconnected multigraph with minimum degree three.
Then any embedding of G has an interior face of size at most five.

Proof. The dual Ga of G is also a planar graph. Since G has minimum degree 3,
Ga is a simple graph. Hence Ga has at least two vertices of degree -< 5 [2]. G is
biconnected and hence one of the vertices must correspond to a face whose size is less
than or equal to 5.

LF.MMA 7.2. Given an embedding of a planar biconnected graph G, which is not
a cycle, there is a simple path P, such that (i) the interior vertices of P all have degree
2, (ii) the end vertices of P have degree >-2, (iii) P appears in an interior face f in the
planar embedding, and (iv) 5.

Proof. As in the proof of Lemma 5.2, transform G to G’ by replacing all paths
with property (i) and (ii) by edges. By Lemma 7.1, G’ has an interior face f of size
at most 5. The longest of all the paths in G corresponding to the edges of f will satisfy
conditions (iii) and (iv).

To get an embedding of a given rectilinear graph, we first test if the graph is
embeddable and then apply the following algorithm.

Algorithm embed-rectilinear (G);
begin

for each biconnected component B do embed-biconnected (B);
join-the-embeddings

end.

Algorithm embed-biconnected B)
begin

get-long-path (P, P1, o’);
embed-rectilinear B P);
find-path-in-embedding (P’, P1, r);
apply-operations-and-transform P’, P)

end.

Procedure get-long-path returns paths P, P1, and square o-, such that P satisfies
the conditions of Lemma 7.2, and the interior face f PP1 simplifies to r. By Lemma 7.2
such a path exists.

Procedure find-path-in-embedding traces a path P’ in the embedding of B-P,
such that P’ starts and ends in the same directions as P, and P’P1 simplifies to r. P’
and P are both complements of P1 with respect to the square r. Since PP1 is an interior
face, P’ can be obtained by starting in the required direction, then following the path
P1 in the embedding of B-P, and ending in the required direction (Fig. 7.1). This will
result in P’ being a complement of P1 with respect to r. We have ]P’[ O(IPal) o(IPI).
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FIG. 7.1. Finding the path P’ in the embedding of B-P.

Procedure apply-operations-and-transform applies a sequence of the four topologi-
cal operations to P’ in the embedding of B P+ P’ and transforms it to P thus resulting
in a embedding of B. This is done by first simplifying the path P’ and then expanding
the simplified path to get the path P (Fig. 7.2). The number of operations applied will
be o(IPI + IP’I) o([PI).

B-P+P’

p,

’_I-I
B-P+ P’ B

FIG. 7.2. Path addition, simplification and expansion.

Procedure join-embeddings takes the embeddings of the biconnected components
and puts them together to get an embedding for G. This is done essentially following
the proof of Theorem 6.1. Find a nondominating component B. Recursively embed
G’= G-B. Join the embeddings of B and G’ using the shapes U or W as shown in
Fig. 6.2.

The algorithm can be shown to be correct using the material developed in the
previous three sections. We now analyze the complexity of each step in the algorithm
and show that the total complexity is O(I VI2).

Procedure join-embeddings updates each coordinate at most once per recursive
call. The total number of calls is bounded by the number of biconnected components.
Hence this procedure takes O(I VIe) time.

Procedure get-long-path can be implemented to run in O(I VI) time each time it
is called. Remember that we can get the faces of a biconnected graph from the testing
algorithm, and searching all faces to get the required face takes linear time. Procedure
find-path-in-embedding takes O([PI)= o(Ivl) time. These two procedures will be
invoked at most O(I VI) time. Hence total time spent in these calls is O(1VI2).

Procedure apply-operations-and-transform applies a sequence of O(IPI)
operations. Each edge in G will appear in only one such path P. Hence the sum of
the lengths of all such paths P is O(1V[). Each operation updates at most O(I V[)
coordinates. Therefore the time spent in calls to this procedure is O(I V[2).
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8. Consistent rectilinear graphs. Certain rectilinear graphs cannot be drawn on
the grid even if we relax the planarity criterion. We say that a rectilinear graph
G( V, E, A) is consistent if it can be drawn on the grid satisfying the ordering relation
,X. In other words, G is consistent if the set of equality and inequality constraints
generated in part 1 of Definition 2.2 is consistent.

The equality constraints define an equivalence relation on the set of coordinates
of the vertices of G. Let us denote by e(x) the equivalence class containing the
coordinate x. Denote by Ix and Ir the sets of x-coordinate and y-coordinate inequality
constraints respectively. Construct two directed graphs Gx( Vx, Ex) and Gr( Vy, Ey) as
follows:

Vx {e(x)lx x(a), a V} and Ex
V and E are similarly defined.

It can be easily shown that G is consistent if and only if the two directed graphs
Gx and Gy are both acyclic. A solution to the coordinates, which satisfies the constraints
will correspond to a (possibly) nonplanar embedding of G on the grid. This can be
obtained by performing the topological sort operation [5] on the two acyclic digraphs.
In fact this will yield a solution that minimizes the area of the rectangle bounding the
embedding.

In a nonplanar embedding of a consistent rectilinear graph on the grid, all crossings
are between horizontal edges and vertical edges. The vertical edges can be assigned
one layer, and the horizontal edges can be assigned a second layer. In other words
the "thickness" [2] of a consistent rectilinear graph is less than or equal to two.

9. Extensions, open problems, and conclusions.
1. It can be easily shown that the area of the embedding given by the algorithm

in this paper can be made O(I VI2) without extra time penalty. There are graphs that
require this much area. To minimize the area is NP-complete if the input graph is
allowed to be disconnected. The minimization problem is open for connected rectilinear
graphs.

2. The embedding problem of appropriately defined graphs for other grids
(triangular, hexagonal, etc.), seems to be interesting in light of certain systolic layouts
for VLSI [4] that use them. It originally seemed to us that the ideas of this paper will
carry through without much change to other grids. They do not. "Triangular" graphs,
for example, may have triangles which must be equilateral in any embedding. This
rigidity (which does not appear in the rectilinear case), makes some of our results false
for these graphs.

3. If we allow two layers for the embedding (each of which must be planar), then
assigning horizontal and vertical edges to different layers easily solves the problem.
However, in reality the user decides which wire will be on which layer. The results in
this paper give only a necessary condition for the embeddability of such a multilayered
rectilinear graph. Under what conditions can we obtain compatible embeddings on
the different layers (i.e. embeddings that have corresponding vertices at the same grid
points)?

4. An interesting class of graphs that contains all rectilinear graphs is the class of
graphs in which the edges incident on each vertex are cyclically ordered (now there
is no degree or direction constraints). The corresponding problem is whether a graph
in this class can be laid on the plane consistent with the cyclic orderings of the edges
at each vertex, so that no edges cross. This problem can be solved in linear time [11].

We conclude by observing that even linear time and space algorithms may not be
considered efficient for VLSI applications, due to the huge size of the graphs involved.
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However, if the layout is given by a "good" hierarchical description, then both time
and space complexity of our algorithms can be reduced considerably. ALI allows
hierarchical description of layouts through its cell mechanism [8], and our algorithms
will be implemented in ALI.

10. Acknowledgments. This problem was originally raised by Professors Bob
Sedgewick and Dick Lipton. We wish to thank Professors Dick Lipton and Jacobo
Valdes for several useful discussions. We are grateful to Professor George Lueker for
pointing out an omission in an earlier version of this paper. Our thanks are also due
to Edna Wigderson, Vijaya Ramachandran and the referee for their comments.

REFERENCES

[1 A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. BEHZAD, G. CHARTRAND AND L. LESNIAK-FOSTER, Graphs and Digraphs, Wadsworth Inter-
national Group, London, 1981.

[3] J. E. HOPCROFT AND R. E. TARJAN, Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974),
pp. 549-568.

[4] H. T. KUNG AND C. E. LEISERSON, Systolic arrays (]:or VLSI) in Sparse Matrix Proceedings, I. S.
Duff and G. W. Stewart eds., Society for Industrial and Applied Mathematics, Philadelphia, 1979.

[5] D. E. KNUTH, The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley,
Reading, MA, 1971.

[6] C. E. LEISERSON, Area efficient graph embeddings (for VLSI), Proc. 21st Symposium on the Founda-
tions of Computer Science, October 1980.

[7] R. J. LIPTON, S. C. NORTH, R. SEDGEWICK, J. VALDES AND G. VIJAYAN, VLSI layout as
programming, ACM Trans. Programming Languages and Systems, 5 (1983), pp. 405-421.

[8], ALI: a procedural language to describe VLSI layouts, Proc. of the 19th Design Automation
Conference; Las Vegas, June 1982.

[9] R. SETHI, Testing for the Church-Rosser property, J. Assoc Comput. Mach., 21 (1974), pp. 671-679;
errata, 22 (1975), p. 424.

[10] G. VIJAYAN, Completeness of VLSI layouts, VLSI Memo #1, Dept. of Electrical Engineering and
Computer Science, Princeton Univ., Princeton, NJ, September 1982.

[11] G. VIJAYAN AND A. WIGDERSON, Planarity of edge ordered graphs, Technical Report #307, Dept.
Electrical Engineering and Computer Science, Princeton Univ., Princeton, NJ, December 1982.

[12] A. WIGDERSON, The complexity oftheHamiltonian circuitproblemfor maximalplanargraphs, Technical
Report #298, Dept. Electrical Engineering and Computer Science, Princeton Univ., Princeton,
NJ, February 1982.



SIAM J. COMPUT.
Vol. 14, No. 2, May 1985

1985 Society for Industrial and Applied Mathematics
008

AXIOMS FOR THE THEORY OF LAMBDA-CONVERSION*

GYORGY REVESZ"

Abstract. In the standard presentations of A-calculus (e.g., in [H. Barendregt, The Lambda Calculus,
Its Syntax and Semantics, North-Holland, Amsterdam, 1981] or [J. R. Hindley, B. Lecher, J. P. Seldin,
Introduction to Combinatory Logic, Cambridge Univ. Press, London, 1972]) the operation of substitution is
defined as a primitive operation and used in the definition of convertibility. In the present paper we show
that the.axioms for the theory of lambda-conversion can be simplified in such a way that substitution is not
needed at all, as it is reduced to a more elementary operation of replacement without giving up the intuitive
simplicity of the lambda-notation. This is achieved by making essential use of the properties of substitution
in formulating the axiom system. Also, another unusual axiom system will be presented which uses renaming
that replaces every (free or bound) occurrence of a variable by another. Finally, we give the outline of a
program written in PL/I that computes the normal form (if any) of A-terms by using our axioms.

Key words, lambda-calculus, combinatory logic

1. Introduction. Interest in lambda-calculus has been growing rapidly in recent
years especially among computer scientists. Its significance with respect to the semantics
of programming languages has been widely recognized. The appeal of lambda-calculus
lies in its ability to handle the problem of substitution in the most general setting.

Substitution has always been a stumbling-block with mathematical logic and with
programming languages, as well. Even in the simplest logical systems it is a problem
how to define the substitution operation exactly. The problem becomes far more
complex if we have to deal with different types of variables, and if some of the variables
may be bound, as is the case with most programming languages. In the introduction
of the book Combinatory Logic (see [6, pp. 3-4]), the authors express their view this
way: "The extent of the complications in such cases may be seen from the fact that
most formulations of the rule for substitution for a functional variable in the first-order
predicate calculus which were published before 1940, were demonstrably incorrect;
and there is little doubt that one of the first correct formulations, that were given by
Church {IML}, p. 57, was derived by the aid of the theory of larnbda-conversion, the
form of combinatory logic which is his specialty." (See [5].)

Various attempts have been made at simplifying the operation of substitution. The
most radical approach is represented by the theory of combinators, developed mainly
by Curry, where bound variables are eliminated altogether using constants, called
combinators, to describe the properties of substitution. But, for this technical advantage
we have to sacrifice the intuitive simplicity of the lambda-notation. Actually, the idea
of eliminating all variables from mathematical logic goes back to Sch6nfinkel [11].
Unfortunately, all attempts to provide a foundation for mathematics via lambda-
calculus or combinatory logic failed. Tarski and others have shown, however, that
substitution can be eliminated from the predicate logic by making essential use of the
properties of identity in formulating the axiom system. (See [8], [9], and [13].)

In the present paper we use a similar approach to the pure lambda-calculus.
Namely, we show that the axioms for the theory of lambda-conversion can be formu-
lated in such a way that substitution is not mentioned. This is achieved by making
essential use of the properties of substitution in formulating the axiom system. At the
same time, in contrast with the theory of combinators, we keep the intuitive simplicity
of the lambda-notation. Our axiom system corresponds, in fact, to the decomposition

* Received by the editors November 9, 1981, and in final revised form November 28, 1983.
f Computer Science Department, Tulane University, New Orleans, Louisiana 70118.
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of the substitution operation into a sequence of more elementary steps. Thus, we do
not eliminate the bound variables. Instead, we generalize the notion of reduction to
cover incomplete substitution, as well.

Hence, our approach differs significantly from that of de Bruijn [3], [4], or Berkling
and Fehr [2], or Staples [12]. De Bruijn developed a notational system, where occurren-
ces of variables are indicated by integers giving the "distance" to the binding A instead
of a name attached to that A. (Different occurrences of the same variable will thus
often be represented by different integers and conversely, different occurrences of the
same integer may represent different variables.) This means that the elimination of the
variables is made at the cost of readability by humans. This drawback is acknowledged
in the introduction of [3], but the system is claimed to be easy for metalingual discussion
and for computer programming.

Berkling used a similar approach by introducing a new unbinding operator,
denoted by #, which neutralizes the effect of one preceding lambda binding. The
n-fold iteration of #, denoted by # n, would play the same role as the integers of de
Bruijn. Namely, an occurrence of # nx for some variable x is obviously bound by the
n + 1st preceding A, if any. (Here precedence is used, of course, in the structural sense.)
The complete equivalence to the system developed by de Bruijn is recognized in the
introduction of [2]. The definition of the fl-reduction is rather complicated in both
systems, because of the difficulty of updating those numerals everywhere inside the
affected part of the lambda expression being reduced.

A somewhat complementary approach is taken by Staples in [12]. He eliminates
only the bound variables by incorporating a list of the relative positions of the
occurrences of the bound variable into the binding A operator. Thus, he needs only a
placemaker (dummy) at the occurrences of the bound variables since he is using
forward references to their positions, whereas in de Bruijn’s or Berkling’s representation
the occurrence of a bound variable is indicated by an integer which refers back to the
corresponding A operator. The representation developed by Staples requires also a
fairly complicated updating of those lists when making fl-reduction. The system is not
particularly suitable for computer implementation nor is it simple for humans.

It is clear that the complexity of the substitution operation lies behind the efforts
to eliminate bound variables. Curry has solved this problem with his combinators. The
above mentioned other approaches do not seem to have made substitution and fl-
reduction (which should be taken together for making comparisons) any easier than
with the original lambda calculus. Such technical matters are of little concern for the
semantical (i.e., model theoretical) investigations but they are of primary importance
for computer implementations as shown, for instance, by Turner in [!4].

We shall see below that technical simplicity can be achieved without giving up
the intuitive appeal ofthe standard lambda-notation. Section 2 is devoted to elimination
of substitution from the definition of -reduction. The corresponding axiom system
was presented first in [!0]. In 3 we will introduce another axiom system which makes
use of an absolutely unorthodox way of substitution that replaces every occurrence
(free or bound) of a variable by another. Such a brute force substitution, called
renaming, appears to have certain advantages for implementing fl-reduction. (It may
be viewed as the automatic though partial enforcement of the variable convention as
specified in 1, p. 26]. Section 4 briefly describes our computer program which computes
the normal form (if any) of lambda expressions.

2. The elimination of substitution. We define the set of A-terms as the formal
language generated by the context-free grammar:

(A-term) ::: (variable)[A (variable).(A-term)[ ((A-term))(A-term)
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where the set of variables is an infinite sequence of identifiers, say, in the sense of
ALGOL 60.

The above syntax is unambiguous as it generates a fully parenthesized form for
each A-term. We do not allow for redundant parentheses and do not use additional
rules for omitting unnecessary ones. Since we are using identifiers, i.e., strings of
characters to represent variables, we have to distinguish somehow between xy as a

single variable and xy as the application of x to y. For the latter case we have, therefore,
the notation (x)y as required by our syntax. Also, it can be observed that according
to our grammar functional application associates to the right. Namely, (x)(y)z is the
application of x to the term (y)z, while ((x)y)z denotes the application of (x)y
to z.

In this paper we shall use small x, y, z, as generic names for arbitrary variables,
and thus, they may occasionally stand for the same variable. Arbitrary A-terms will
be denoted by capital letters. Two A-terms, P and Q, are equal, in symbols P Q, if
Q is an exact (symbol by symbol) copy of P. Note that the relation denoted by is
the syntactical identity of A-terms based on the given context-free grammar only.
Each A-term has a unique parsing tree in that grammar which can be used to deter-
mine its subterms. A A-term may, of course, have several occurrences of the same
subterm.

An occurrence of a variable x in a A-term P is bound if it is inside a subterm
with the form Ax.Q, otherwise it is free. The set of free variables of a A-term P will
be denoted by (P). This can be defined inductively as follows.

DEFINITION (the set offree variables of a A-term).
(i) p(x)- {x}.
(ii) p(Ay.P)= (P)-{y}.
(iii) q((P)Q)= q(P)t.J q(Q).
Next we define the axiom system Ao where no substitution occurs.
DEFINITION 2. The axiom system Ao consists of the following axiom-schemes.
a-rule:
(a) Ax.P --> hy.(Ax.P)y for any y (P).
fl-rules
(ill) (Ax.x)Q--> Q.
(/32) (Ax.y)Q -> y if x # y.
(f13) (Ax.Ax.P)Q-> Ax.P.
(/34) (Ax.Ay.P)Q->Ay.(Ax.P)Q if x y: and x:(P) or y:(Q).
(/35) (Ax.(P)P2)Q-> ((Ax.PI)Q)(Ax.P2)Q.
A term of the form Ax.P is called an a-redex without any restriction. However, a

term of the form (Ax.P)Q is a fl-redex if and only if it has the form of the left-hand
side of a fl-rule and satisfies its conditions. In particular a A-term of the form

(Ax.Ay.P)Q

with xy, x (P), and y(Q) is not a/3-redex.
Replacing a redex by the right-hand side of the corresponding rule is called a

contraction. It should be clear that the contractum of a/3-redex (i.e., the result of its
contraction) is unique, since for every/3-redex there is at most one fl-rule that can be
applied to it.

Our a-rule above is, in fact, an expansion rather than contraction. Nevertheless,
we shall use the word "contraction" in a technical sense for every axiom. An axiom
of Ao, i.e., an instance of one of its axiom-schemes, is a simple replacement rule (or
rewriting rule) in the usual sense. Note that our a-contraction alone would not replace
a bound variable by another but the/3-rules can take care of it thereafter.
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On the basis of our axiom system Ao we can define the convertibility of A-terms
and thus, the theory of A-conversion can be developed without explicitly using substi-
tution.

DEFINITION 3 (reduction in one step). The relation M:=>N (read M reduces
directly to N) is defined inductively as follows:

(i) M:=>N whenever M- N is an axiom.
(ii) If MN for some A-terms M and N, then also Ax.MAx.N for any

variable x.
(iii) IfMN for some A-terms M and N, then both (M)T(N)T and (T)M:=>

(T)N for any A-term T.
(iv) M==>N only in those cases as specified by (i) through (iii).
DEFINITION 4 (reduction). We say that M reduces to N, in symbols M N, if

M N or there is a A-term T such that M :> T and T=:> N. (In other words the
relation :, is the reflexive and transitive closure of ==>.)

DEFINITION 5 (A-convertibility, A-equality). We say that M and N are convertible
A-terms, in symbols M:> N, if[ M :> N or N :> M or there exists a A-term T such
that Me:> T and TO:> N. (In other words the A-convertibility is the symmetric and
transitive closure of :=>.)

Another way of defining A-convertibility would be to change first the axioms into
equalities (i.e., two-way rules), and then define convertibility in one step similarly to
the reduction in one step. Then, its reflexive and transitive closure will define the
relation of A-convertibility.

The relation <=> is clearly an equivalence (reflexive, symmetric, and transitive)
relation on A-terms defining the classes of convertible A-terms. For variables x and y,
x :> y if[ x y. Also, if x y then Ax.Ay.x Ax.Ay.y. The latter assertion is not obvious
and is in fact the consequence of the Church-Rosser theorem.

Before comparing our Ao with the conventional axiom system At, we show some
basic lemmas.

LEMMA 1. If P => Q and x (Q) then x q (P). The prooffollows immediately
from the fact that free variables may only disappear but can never be introduced by any
contraction.

LEMMA 2. For any variable x and A-term P we have (Ax.P)x > P.
Proof This can be shown by induction on the structure of P. Namely,
(Ax.x)x x by/31
(hx.y)x y by/32
(hx.Ax.R)x hx.R by/33
(hx.Ay.R)x - hy.(Ax.R)x for x y by/34

where (Ax.R)x , R by the induction hypothesis, and finally

(AX.(Pl) P2)x " ((Ax.PI)x)(Ax.P2)x : P,

by f15 and the induction hypothesis.
LEMMA 3. IfX

_
p(P) then for every Q we have (Ax.P)Q : P.

Proof. Again we use induction on the structure of P. If P-y then y x and
(Ax.y)Q- y by/32. If P hy.R for some y and R then either y x and thus,

Ax.Ax.R Q Ax.R

by/33, or else y x and x (R) which implies

Ax.Ay.R Q - Ay.(Ax.R Q : Ay.R

by/34 and by the induction hypothesis. For P-(P)P2 we use/35 and the induction
hypothesis which completes the proof.
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In the standard presentations of A-calculus (e.g., in [7]) the operation of substitu-
tion is defined first and used in the definition of convertibility. But the usual definition
of substitution already involves the idea of a-conversion (or congruence) which makes
it unclean from a theoretical point ofview. Here we define substitution without worrying
about the exact choice of the new bound variable.

DEFINITION 6 (Substitution). The substitution of Q for the free occurrences of
the variable x in P, denoted by [Q/x]P, is defined recursively as follows:

(1) [Q/x]x= Q
(2) [Q/x]y y for x y
(3) [Q/x]Ax.P Ax.P
(4) [Q/x]Ay.P= Ay.[Q/x]P if x y and y q(Q)
(5) [Q/x]Ay.P= Az.[Q/x][z/y]P ifx y andy tp(Q), for any z: ((P)Q)U{x},
(6) [Q/x](PI)P2 ([Q/x]P)[Q/x]P2.

Note that in (5) we have not specified precisely the variable z. It can be shown that
our definition is equivalent to the standard one. Now, we prove an important lemma.

LEMMA 4. (Ax.P)Q: [Q/x]Pfor every x, P, and Q.
Proof. We use induction on the number of occurrences of variables in P.
Basis. If P has a single occurrence of a variable then the assertion is trivial by

/31 and/32 and Definition 6.
Induction step: Assume that the assertion is true for all A-terms with at most n

occurrences of variables and let P have n + of them. Then P has the form either
(PI)P2 or Ay.R. For the former case the result follows immediately from the induction
hypothesis. For P-Ay.R we have three subcases"

(a) x y. In this case the assertion is trivial.
(b) x y and y (Q). Here we have

(Ax.Ay.R)Q- Ay.(Ax.R)Q, Ay.[Q/x]R

by/34 and the induction hypothesis.
(c) x y and y q(Q). In this case we get

Ax.Ay.g Q(Ax.Az. Ay.g )z) Q

hz.(Ax.(Ay.g)z)Q :, Az.(hx.[z/y]g)Q :, z.[Q/x][z/y]R

by a, /34, and by the induction hypothesis. In the last step we have assumed that
[z/y]R has no more occurrences of variables than R does. This is easy to show
separately by induction which completes the proof.

Note that in case (c) the variable z can be chosen for the a-conversion to be the
same as requested by Definition 6.

We conclude this section by a theorem relating our axiom system Ao to the
conventional one. Let us recall the conventional axiom system.

DEFINITION 7. The axiom system A1 consists of the following axiom-schemes:
(a’) hx.P hy.[y/x]P for any y q(P),
(fl’) Ax.P) Q Q/x]P.
Reduction and convertibility can be defined as before simply by using A1 in place

of Ao.
THEOREM 1. For any two A-terms, M and N, if M : N holds in A then it also

holds in Ao.
Proof It is enough to show that M, N holds in Ao whenever M- N is an

axiom in A. If M N is an instance of a’ then M hx.P, and N hy.[y/x]P for
some x, y, P, such that y p(P). But then, in Ao we have

(Ax.P) + Ay.(Ax.P)y > Ay.{y/x]P
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by a and Lemma 4. If, on the other hand, M - N is an instance of fl’ then M (Ax.P)Q,
N [Q/x]P for some x, P, and Q and thus,

(Ax.P)Q [Q/x]P

by Lemma 4 which completes the proof.
The converse of Theorem is obviously false. For instance, Ax.P : Az.(Ax.P)z is

not true in A. Convertibility, however, is the same in both systems. Indeed, if M N
is an axiom in Ao then there is always some A-term T, such that both M and N are
reducible to T in A1. For instance, both (Ax.(PI)Pz)Q and ((Ax.P)Q)(Ax.Pz)Q are
reducible to ([Q/x]P)[Q/x]P2. Hence they are convertible not only in Ao but also in
A, and thus, the Church-Rosser property is valid also for Ao. (Ao is a compatible
refinement of A1.) Incidentally, the Church-Rosser theorem could be shown directly
for Ao, but it does not seem to be any easier than for A.

3. A new technique to perform substitution. The actual implementation of /3-
reduction using a conventional programming language has led us to the idea of
renaming.

DEFINITION 8 (renaming). The renaming of a variable x in P by z, denoted by
[z//x]P, is defined recursively as follows:

(1) [z/Ix]x- z
(2) [z//x]y y if x y
(3) [z//x]Ax.P= Az.[z//x]P
(4) [z//x]Ay.P= Ay.[z//x]P if x y
(5) [z//x](P1)Pz ([z//x]P,)[z//x]P
Renaming can be viewed as a brute force replacement of all occurrences of x by

z without any respect to the possible bindings of x. Interestingly enough, such a
renaming seems to be useful in improving our axiom system. First we prove a basic
lemma about renaming.

LEMMA 5. For every x, z, and P such that z is neither free nor bound in P we have

(Ax.P)z :, [z//x]P

with respect to Ao.
Proof We use induction on the structure of P. If P is a variable then the assertion

is trivial.
For P Ax.R we get

(Ax.Ax.R)z hx.R Az.(hx.R)z Az.[z//x]R [z//x]Ax.R

by the induction hypothesis and Definition 8.
For P Ay.R with x y z we have

(Ax.Ay.R)z Ay.(hx.R)z: Ay.[z//x]R =[z//x]hy.R.

For P (P1)P2 the result follows immediately from the induction hypothesis and
this completes the proof.

Now, we define our axiom system A2 which is the enhanced version of Ao.
DEFINITION 9. The axiom system A2 consists of the following axiom-schemes:
(a") Ax.P Az.[z//x]P for .any z which is neither free nor bound in P,
(/31") (Ax.x)Q - Q,
(fiT’) (Ax.P)Q- P if x o(P),
(f13") (Ax.Ay.P)Q- hz.(hx.[z//y]P)Q if y# x q(P), for any z q((P)Q)LJ{x}

which is not bound in P,
(/34") (Ax.(P1)P2)Q((Ax.P)Q)(Ax.P2)Q if xe q((P)P2).
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In order to decide whether to apply/32" or/33" we have to scan through P to
check if x q(P). At the same time we can also perform the renaming [z//y]P. But
the point is that we never have to examine Q to check whether or not y q(Q), we
only have to insure that z q(Q). This can be done by choosing a fresh "system"
variable each time we need one in the course of the reduction. The classical definition
of substitution requires the checking of Q as well as of P. (It would be possible to
cancel (4) from Definition 6 and use always (5) instead, but then the definition of
[z/x]Ay.P would become

[z/x]Ay.P= Av.[z/x][v/y]P

which results in an excessive number ofnew bound variables.) That is why our renaming
is more efficient.

THEOREM 2. For any two A-terms, M and N, if M N holds in Az then it also
holds in Ao.

Proof It is enough to show that M => N holds in Ao whenever M--> N is an
axiom in A.

If M-> N is an instance of a" then the assertion follows from Lemma 5.
If M--> N is an instance of/31" or/34" then the assertion is trivial while for/32"

it follows from Lemma 3.
If M-> N is an instance of/33" then we have

(Ax.Ay.P)Q - (Ax.Az.(Ay.P) z)Q- Az.(Ax.(Ay.P)z)Q => Az.(Ax.[z//y]P)Q

by c,/34 and Lemma 5 which completes the proof.
This means that renaming (which is an extremely primitive operation) combined

with the axioms of A2 is a convenient tool for computing normal forms of A-terms.
On the basis of our renaming we can also modify the definition of substitution

although substitution need not be mentioned at all in our development of lambda-
conversion.

DEFINITION 10 (substitution). The substitution of Q for the free occurrences of
the variable x in P can be defined recursively as follows:

(1) [Q/x]x= Q
(2) [Q/x]P= P if x q(P)
(3) [Q/x]Ay.P Az.[Q/x][z//y]P if y x e q(P), for any z_ q((P)Q) LJ {x}

which is not bound in P
(4) [Q/x](PI)P2- ([Q/x]P)[Q/x]P2
It can be shown that this definition is equivalent to Definition 6, only the choice

of the new bound variables remains open in both cases. (This is usually reflected in
the so called a-congruence, or a-convertibility.) Definition l0 actually provides for a
new technique to perform substitution in a different, but equally correct way.

It is also easy to show that a reduction M :> N in the conventional lambda-calculus
implies that M: N holds also in A2.

4. Computing normal forms of lambda-terms. Our program for computing normal
forms of lambda-terms has been designed in such a way that it is easy to
implement in any programming language. It is written in PL/I but makes no use of
the specific features of that language. This means, for instance, that input characters
are read one by one and coded immediately as integers.

The overall structure of the program is extremely simple. It is based on a slightly
modified version of the Turing maching called two-pushdown automaton (see Fig. l)
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where the nonblank portion of the Turing tape is represented by the contents of the
two pushdown stacks. The top of each stack is scanned by a read-write head of the
finite control device to determine the next move.

Initially the lambda-term to be processed is placed into the second stack such
that its first symbol is on the top and the last one is at the bottom of the second stack,
while the first stack is empty. In the course of processing the term left-to-right, changes
are made at the tops of the stacks and symbols will be copied from the second stack
into the first one. Occasionally, a reverse scan is made by copying the first stack into
the second.

First stack Second stack

Control device

FIG. 1.

Each cell in the stacks contains an integer representing a variable or a special
symbol like A,., ), or ;. The latter are encoded as negative numbers while the code
of a variable is a pointer to the location of its identifier in a vocabulary.

The computing process is based on our axiom system A2 with simple replacement
rules. For any given redex (Ax.P)Q it is easy to determine which of the /3-rules is
applicable. First we check if x (P). (The search stops at the first free occurrence
of x.) If x (P) then we apply/32". Otherwise the symbol occurring next to the first
dot in the redex determines the type of the redex. If that symbol is the same as the
bound variable then the redex must have the form (Ax.x)Q. If that symbol is A, or
then we have a f13", resp. f14" redex.

The application of/31" is just the popping of (Ax.x) from the first stack. Applying
/32" means shifting P into the first stack and popping Q from the second. The application
of/33" involves a scan for all occurrences of y in P. They will be replaced by a fresh
system variable. But, as we have said, we do not have to check Q and thus, it remains
untouched in the second stack. Finally, the application of/34" requires copying Q into
the first stack from below P2 on the second stack.

The contraction of the redexes is performed essentially from left to right. This
means that the algorithm works with the leftmost redex except when it has just made
a/33" contraction. Note that the /33" rule is more like the preparation for an actual
contraction than a contraction by itself. Therefore, the redex to be contracted next
after a /33" contraction is always its "trace", i.e., the resulting redex of the form
(Ax.[z//y]P)Q. Otherwise, after each contraction we continue with the leftmost redex
in the entire expression. We claim that this order of evaluation results in the normal
form whenever it exists. To see this, note that a sequence of/33" contractions followed
by an "actual" contraction as described, amounts to a contraction of the leftmost redex
in the usual sense.

Several A-terms separated by semicolons can be processed by the program one
after the other. Another very useful feature of the program is the possibility of using
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definitions. Namely, in the input we can assign A-terms to variables this way:

I Ax.x,

K Ax.Ay.x,

S= Ax.Ay.Az.((x)z)(y)z.

Then, if we write

(((K)I)(K)A)B,

we get the result B which is computed as the normal form of

(AL(AK.(((K)I)(K)A)B)Ax.Ay.x)Ax.x.

Or we can define

and compute

DELTA=Ax.(x)x,

OMEGA= (DELTA)DELTA,

(hx.((x)hx.hy.hz.x)OMEGA)Ay.((y)z)OMEGA;

which gives the result z as its normal form. All the program does with a definition like

DELTA Ax.(x)x,

is that it places the string

in the first stack and

(A DELTA.

),x.(x)x

in the second. The A-term that follows will then be placed automatically in between,
that is on top of the second part. Hence, each occurrence of DELTA in that A-term
will be replaced by Ax.(x)x during the reduction that follows. Recursive definitions,
however, cannot be processed automatically by the program in its present form. They
will be detected and signalized by the program, but it would not have recourse to the
fixpoint combinator in order to resolve recursive equations.

A-terms being in normal form are easily compared by using renaming in place of
a-conversion.

The above described rudimentary algorithm can be improved upon in various
ways. The most important improvements could be achieved by a highly parallel
reduction strategy working concurrently on different parts of the A-term. We feel that
our reduction rules are very helpful in designing such a strategy.
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ON THE MULTIPLICATIVE COMPLEXITY OF MODULES
OVER ASSOCIATIVE ALGEBRAS*

W. HARTMANN"

Abstract. The complexity L(A, M) of a finite-dimensional module M over a finite-dimensional associa-
tive algebra A is the number of nonscalar multiplications/divisions of an optimal algorithm to compute the
product of an element of the algebra with an element of the module.

It is known that

L(A, A) -> 2. dim A s,

where s is the number of maximal two-sided ideals of A. We give a generalization of this lower bound to

arbitrary A-modules M.

Key words, multiplicative complexity, modules over associative algebras, structure theorem of
Wedderburn

1. Introduction. Let k be an infinite field, A an associative k-algebra (with 1) of
dimension n and M a (left-) A-module of dimension m. Let e,..., en be a basis of
the vector space A, fl," ,fro a basis of the vector space M and let

/=1

with zij k. Then we have

j=l /=1 i,j=l

Let x, , x,,, y,. , Ym be indeterminates over k. In the following we make use of
Ostrowski’s model of computation in k(x,..., x,,, y,..., y,,,), i.e. we allow linear
operations, such as additions, subtractions and scalar multiplications at no cost, and
we minimize the number of nonscalar multiplications/divisions.

DEFINITION. The complexity of the A-module M is

(1) L(A,M)=L E r,.x,y l<-_l<-rn
i,j=

L(A, M) does not depend on the choice of the basis. In [1] Alder-Strassen prove a
general lower bound for the complexity of multiplication in an algebra A:

L(A, A)-> 2. dim A-the number of maximal two-sided ideals of A.

We prove a generalization of this lower bound to arbitrary A-modules M.

2. Results. For the facts about algebras and modules, which will be needed later,
see e.g. [3, Chaps. 2, 3].

First we take into account, that isomorphic A-modules have the same complexity.
Furthermore, given an A-module M and a morphism of algebras f" A’ A, then M
can also be regarded as an A’-module, and for f surjective we have

L(A’,M)=L(A,M).

* Received by the editors July 25, 1983.

" Institut fiir Angewandte Mathematik der Universitit Zurich, R/imistrasse 74, CH-8001 Ziirich,
Switzerland.
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(L(A’, M) <= L(A, M) is trivial. L(A’, M) >-_ L(A, M) follows using a section of the
linear map f.)

In particular for an isomorphism f: A’ A we have L(A’, M)= L(A, M). Let
ann (M)= {aAlaM=O} be the annihilator of M. ann (M) is a two-sided ideal of
A, M regarded as an A/ann (M)-module is faithful, and we have

L(A, M)= L(A/ann (M), M).

Therefore, in the following we may restrict ourselves to faithful A-modules. Given an
A-module M and a B-module N, we can regard M and N as A B-modules by the
projections A B A and A B- B respectively. Hence M)N can be regarded as
an A B-module. Vice versa, each A B-module P is of the form M0)N with M an
A-module and N a B-module (namely M (1, 0). P and N (0, 1). P). By analogy
with the strategy of Alder-Strassen, we now reduce the problem to semisimple algebras.
We denote the radical of A by rad A, and the radical of M by rad M. We have
rad M rad A. M, and M/rad M can be considered as an A/rad A-module.

THEOREM 1. Let M be a faithful A-module. Then

L(A, M)>= L(A/rad A, M/rad M) + dim (rad A) + dim (rad M).

A/rad A is semisimple and is thus, as a consequence of the structure theorem of Wedder-
burn, isomorphic to a direct product offull matrix algebras K’,n, over k-division algebras
Ki. Up to isomorphisms the modules of such a factor K are of the form Km (scalar
multiplication matrix product).

Repeated application of the next theorem therefore yields lower bounds for the
complexity of modules over semisimple algebras.

THEOREM 2. Let K be a k-division algebra, dimk K A, B an arbitrary algebra, N
an arbitrary B-module. Then for n, m >=

where

L(K ’x" xB, K’Xm N)>-f(n, m, h)+ L(B, N)

f(n, 1, A)- An2+ (A 1)n,

f(n, m, A) h. max { n2, nm- m + n} + hnm for n, m > 1,

f(1, m,h)=(2h-1)m.

The above theorem can also be formulated coordinate-free.
Let A be a simple algebra and M # 0 an A-module. Let E be a simple submodule

of M, F a simple submodule of the EndAM-module M and Kp the algebra of
endomorphisms of E. Further let B be an arbitrary algebra and N an arbitrary
B-module. Then

L(A x B, M03 N) ->_ dimk A+ dimk M dimK M+ L(B, N), dimK F

L(A x B, MO) N) >= max {dimk A, dimk M- (dimg F- dimk E)}

+ dimk M- + L(B, N), dimK E, dimK F> l;

L(AxB, MN)>-2dimkM-dimKM+L(B,N), dimKE 1.

Using the above theorems we obtain the following corollaries.
COROLLARY (A. Alder, V. Strassen [1]). Let A be an arbitrary algebra. Then

L(A, A) >_- 2. dim A- s,

where s is the number of maximal two-sided ideals of A.
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Proof Considered as an A-module, A is faithful. Theorem yields

L(A, A) >- L(A/rad A, A/rad A) + 2 dim (rad A).

A/rad A is isomorphic to a direct product of simple algebras, say

""’ dimk K h.A- Ki’
i=1

s coincides with the number of maximal two-sided ideals of A. Repeated applications
of Theorem 2 with n m yields

L(A/rad A, A/rad A) > E (2h- 1) + E (2hn 1)

2" dim (A/rad A) s.

Together we get

L(A, A) -> 2. dim A- s.

The lower bound for n together with the well-known upper bound yields the
following corollary.

COROLLARY 2 (L. Auslander, S. Winograd [2]). Let K be a k-division algebra,
dimk K h. Then

L(K, Kin)>= (2A 1)m.

For the multiplication of matrices over k, we get the following corollary.
COROLLARY 3.

L( k,,,, k,m) >=
(.max {n2 + nm l, 2nm + n m 1},

Thus for rn=l and m=n we get the well-known bounds. For n=2 we obtain
particularly the next corollary.

COROLLARY 4.

L(k22, k2" >- 3m + 1.

It is known that

L( k22, k2" < 3 rn + 2

(S. Winograd, [5]). Since L(k22, k22) 7 the lower bound is sharp at least for rn 2.
Let D2, be the dihedral group of order 2n, C[D2,] its group algebra over k C.

If n is odd we have (using character theory)

C[D.] C (C-)(’- >/-,
if n is even we have

CEDE,] C4 X (C2X2) n/2-1,
i.e. the irreducible representations of DE, are either one-dimensional or two-
dimensional.

Let M be an arbitrary C[DE,]-module. Considering a decomposition of M into
a direct sum of simple modules and denoting by s the number of the one-dimensional
modules in this decomposition and by the number of isotypical components belonging
to two-dimensional representations, we get the following lower bound.
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COROLLARY 5. L(C[D2,], M) ->_ s +(dim M s) + t.

Proof Let M be a faithful C x(C22)t-module, M’ an isotypical component,
M M’)M" and s as above. For M’ belonging to a one-dimensional representation
Theorem 2 with n h and m dim M’ yields

L(C (C22) t, M) ->_ dim M’+ L(C’- x (C22)t, M").

For M’ belonging to a two-dimensional representation Theorem 2 with n 2, A
and m 1/2 dim M’ yields

L(C (C2) t, M) _-> 3m + + L(C (C22)-1, M")
dim M’ + + L(C (C22)-, M").

Taking into account, that s is the sum of the dimensions of the isotypical components
belonging to one-dimensional representations, dim M-s the sum of the dimensions
of the isotypical components belonging to two-dimensional representations, we get by
induction

L(C (C22) t, M) >_- s+ (dim M s) + t.

Analogously we get (using L(k22, k2m) -<_3m + 2) the upper bound

L(C[D2,], M) <-_ s/ (dim M s) / 2t.

In the next corollary we determine the complexity of k[x]/(f)-modules in the case,
that f is squarefree. In this case k[x]/(f) is semisimple. Denoting by s the number of
simple modules in a direct sum decomposition of M we get the following corollary.

COROLLARY 6. Let f k[x] be squarefree. Then

L( k[x]/ (f), M)= 2 dim M- s.

Proof. Let f=p...p be a prime decomposition. For

k[x]/(f)- K,
i=1

with K k[x]/(p) M is (up to isomorphism) a direct sum of K-modules K,
i=l,...,r. Thens-s/.../s.Byinductionfor l<_- r we show

L K, K, >-2 dimk K" Si--(S1 -"" "" Sl).
i=1 i=1 i=l

(In particular L(1-I= K, M) >_- 2 dim M- s.)
The case l- 0 is trivial. Theorem 2 with n- l, A dimk Kt and m s yields

L(I=I K,,),= K’)>-(2dimkKt-1)st+L( tI’,-l K,, K.,)
>-2. dimk K. s-(s + / st) (induction hypothesis).

i=l

By an analogous induction we show (using Corollary 2) that the upper and lower
bounds coincide.

Let C, be the cyclic group of order n. Considering that

kC.]- k[x]/(x- 1)

and that x"- is squarefree for charkfn, Corollary 6 in particular describes the
complexity of arbitrary k[C,]-modules for chark/n.
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3. Proofs. The multiplication A xM M is a bilinear map. We will consider the
computational complexity of slightly more general maps, namely homogeneous quad-
ratic maps.

DEFINITION. Let E, W be finite-dimensional k-vector spaces with bases e, , e,
resp. f,. , f,,. A map

h:E- W

is called quadratic, if there are quadratic forms h,. , hm in k[x, , x,] such that
for all ,. ., :, k

h :,e, E h,(l,..., ,)f.
i=l /=1

L(h) L(h,..., hm) is called the complexity of h. The notion of a quadratic map
and L(h) do not depend on the chosen bases. If: E’ E, W W’ are linear maps,
then o ho is again quadratic and

(1) L(h)L(oho),

PoPosIO (see [1]). Let h:E W be quadratic. en L(h)r, iff there are

u, v E*, w W(p 1,..., r) such that for all x E

h(x)= uo(x)vo(x)o,

here * denotes the dual of.
The following technical lemma, which was communicated to me by V. Strassen,

unifies the methods used in [1].
LEMMA 1. Let A, B and W be finite-dimensional k-vector spaces and h A x B W

a bilinear map, written as multiplication.
For all a e A, b e B let

(2) a. b uo(a b)vo(a, b)wo
01

with uo, vo e A x B)*, oe W and let X c A, Y’ c Yc B, P c W be linear subspaces,
such that the uo’s with oPseparate the points ofX x Y’, i.e. their restrictions to X x Y’
generate the dual ofX x Y’. en one of the following conditions holds.

(i) After possibly interchanging some uo with vo the uo’s with woP separate the
points ofX x

(ii) ere exists y e Y Y’ with Ay P+ X.
(Analogous with sides interchanged.)
Proo Assume (i) to be false. By permuting the terms of the sum (2) and by

interchanging some uo with vo, we can assume w.l.o.g.

1,"" ", eP, +1,"" ",

u+,..., u separate the points of X x Y’,

u+,..., uq are linearly independent on X x Y,

uq+, , u vq+, , v are linearly dependent on

u+,..., uq as linear forms on X x Y,

u+, .., u do not separate the points of X x
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In particular Up+,..., l,q separate the points of X x Y’, but not those of X x Y. That
is, there exist x e X, y e Y\ Y’ with Up+(x, y) Uq(X, y)=0. It follows

Uq+l(X,y) ur(x,y)=O,

vq+(x,y) vr(x,y)=O.

If a e A, b B are arbitrary we use the linear independence of up+l, Uq on X x Y
to find s e X, e Y such that

Vp(p+ <--_ p <- q) uo(a b) -uo(s, t)

thus Up+(a+s, b+t) Uq(a+s, b+t)=0. So we get

(a+ s)y+x(b+ t+ y)=(a+ s+x)(b+ t+ y)-(a+ s)(b+ t)

(uo(a+s,b+t)+uo(x,y))(vo(a+s,b+t)+vo(x,y))wo
p=l

uo(a+s,b+t)vo(a+s,b+t)wo
0=1

i (uo(a + s, b + t)Vo(X y)
p=l

+ uo(x, y)vo(a + s, b+ t)+ uo(x y)vo(x, y))wo.

Since

it follows that

up+l(x,y) ur(x,y)=O,

Up+(a+ s, b+ t) Uq(ad- s, bq- /)=0,

l)q+l(X, y v(x, y)=O,

P

(a+s)y+x(b+t+y)= (u(a+s,b+t)vo(x,y)
O=1

Setting b 0, we obtain

hence

+uo(x, y)v (a+s, b+ t)+uo(x, y)v(x, y))wo e P.

ay+xt+(s+x)ye P

Aye P+X. Y.

Proof of Theorem 1. Let L(A, M) r. Then there are uo, vo e (A x M)*, wo e M
such that

(3) VaA, xeM a.x= uo(a,x)vo(a,x)wo.
p=l

It suffices to find a representation (3) with the additional property that

(4) u,. , u separate the points of rad A x rad M.

Assume (4) and let q =dim (rad A), q2 dim (rad A). W.l.o.g. we can assume

Ul," ql+q linearly independent on rad A xrad M.

Let E {Ul Uql+q2 0} C A xM. Then we have E f’l (tad A xrad M) =0.
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Let h" E - M be the restriction of the multiplication A M- M. h is a quadratic
map and

L(h) <- r-(qt + q2) (for h(a,x)= i uo(a,x)vo(a,x)wo).
p=q+q2+l

Let /x (resp. /x’) be the multiplication A x M - M (resp. A/rad A x M/rad M
M/rad M). The commutative diagram

AxM " M

A/radAxM/radM " M/radM

yields (by restriction) a commutative diagram

E M

A/radAxM/radM "’ M/radM

Since E f) (rad A x rad M) O, a is an isomorphism. Therefore we have

L(A/rad A, M/rad M) L(/z’)_<- L(h) <= r--(ql + q2)

L(A, M)-dim (rad A)-dim (rad M).

This shows that it is sufficient to have (3) with the property (4). After interchanging
some uo with vo, Ul," ", ur separate the points of rad A x0.

Otherwise Lemma with P 0, X’= 0, X rad A, Y 0 yields a rad A, a 0
with aM 0, a contradiction (since M is faithful). Since rad A is nilpotent there exists
kwith (rad A) k =0. By inverse induction for i, <_- =< k, we show that after interchanging
some u, with vo, u,. ., ur also separate the points of rad A x (rad A)iM, in particular
the points of rad A rad M.

The case i= k was shown above.
Assuming. that we cannot conclude case i-1 from case i, Lemma with P 0,

X rad A, Y’= (rad A)iM, Y (rad A)-M yields x (rad A) i-I M\(rad A)M, such
that

Ax rad A. (rad A)i-IM (rad A)M.
Then x (rad A)M, a contradiction.

For the proof of Theorem 2, we will need the following lemma.
LEMMA 2. Let K be afinite-dimensional k-division algebra, dimk K

a k-base of the K-module K n. Then setting n(h 1), there exist (il,. ", (it) <- i <
..<it<-_An such that P= kwi,+...+kwit does not contain a one-dimensional K-

subspace.
Proof. By induction on <- we show: There are il," , il such that <_- i < <

it An and that P kw, + + kwi, does not contain a one-dimensional K-subspace.
The case is trivial.
For the induction step, we can assume w.l.o.g, that P kWl + + kwt_ does not

contain a one-dimensional K-subspace. It suffices to show that there exists j-> such
that P + kwj does not contain a one-dimensional K-subspace. Assuming that for all
j>= l, P+kwj contains a one-dimensional K-subspace g we obtain, that the sum
g+...+gn cannot be direct (since hn-l+l>-hn-t+l=n+l and dimkg=h).
Thus w.l.o.g.

ga. f-) (g + + gxn-1) - O,
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hence

and therefore

gx, c g + + gxn-

g,n P + kwan fq P + kwt + + kwa,_ P.

This means P contains a one-dimensional K-subspace, a contradiction.
Proof of Theorem 2. Let L(K"" x B, KnmO) N) r. Then there are up, vp

((Kn" B) X(KnmN))*, w,K"mO)N such that

/(a, b) Knm xB, (x, y) K"m 0) N,

(ax, by)= up(a, b; x, y)vp(a, b; x, y)wp.
p--1

In the following Knn-submodules of K"" are called left modules and
Endr--K""-submodules of K"" are called right modules.

Case m 1. Associating with each e Kp the right-multiplication in K with
as endomorphism we get (because of rn and K"’= Kn)

End,,,K" Kp.

Furthermore w,..., w generate Kn@N, hence r_-> An and w.l.o.g, we can assume
that w,. ., w,n are k-linearly independent and that, taking

W kw + + kw,
we have Wfq N 0. (Wl,. ", w,n are to be chosen such that the projections on K
are k-linearly independent.)

In particular, we have

K@N

’0)wo, K N (1 < <r). w w’Let wp=wp wp wp =P= an are a k-base of K Let
(A 1)n. By Lemma 2 (applied on Endr K Kop), we may assume w.i.o.g, that

P’= kw +. + kw’, K"

does not contain a one-dimensional Endr-.K"-subspace, and thus no right submodule
0 at all.

Let P kw +. + kwt.
We claim: After interchanging some u, with vp the up’s with p > separate the

points of (Knn 0) 0. (In particular r > ;tn2+ An2+(A- 1)n.) Otherwise Lemma
with P as above, X’=0 x0, X K"n 0, Y=0 yields a Knn, a 0 such that

(a, 0). (K" N)= ak" P,

hence aK P’.
aK is a right submodule of K n, therefore

aK =0,

i.e. a is an element of the annihilator of the K"-module K", a contradiction.
Therefore w.l.o.g, we can assume that the restrictions of u,+,..., u,+a,: are a

base of ((K"n 0) 0)*. Thus if b B, y N are arbitrary, we find a uniquely deter-
mined a K ,

such that

(5) Vp(t+l<=p<-_t+An2) u,(a,O;O,O)=-u,(O,b;O,y).



MULTIPLICATIVE COMPLEXITY OVER ASSOCIATIVE ALGEBRAS 391

Therefore

thus

u,+(a, b; O, y) u,+xn2(a, b; O, y) =0,

a. OO)b. y= b. y= up(a, b; O, y)vp(a, b; O, y)wp

+ up(a, b; O, y)vp(a, b; O, y)wp.
p:=t n2+l

Denoting by tr" W0)N-> N the projection along W we get

b. y , Up(a, b; O, y)vp(a, b; 0, y)tr(Wp).
p=t+An2+l

(5) describes a system of linear equations for a. Therefore we can consider up and up
in the above representation as linear forms on B x N. Finally we have

L(B, N) <- r + An2).
Case n 1. As in the preceding case, we can assume w.l.o.g, that wl," ", wa, are

k-linearly independent and that, taking

W=kw +. + kwh,,

we have

thus

WON=O,

KmO) N WN.

Let (A 1)m. Proceeding as in the case m 1, we can assume this time w.l.o.g, that

P’= kwh+. .+ kw,

contains no left submodule #0.
Let P kwl +. + kw,.
We claim: After interchanging some up with v, the up’s with p > separate the

points of 0 x Km. (In particular r => Am + (2A 1)m.)
Otherwise Lemma yields x K% x # 0 such that

(K x B)(x, O) Kxc P,

hence

Kx is a left submodule of K", thus

that means x 0, a contradiction.

Kx O,

Therefore w.l.o.g, we can assume that the restrictions of Ut+l, Ut+Am are a
base of (0 x Kin)*.

If b B, y s N are arbitrary we get, proceeding as in the case rn 1, a uniquely
determined x K" such that

Ut+l(0 b’ x y) U,+xm(O, b x, y)= O.
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Denoting the projection along W by tr: W@N N, we get proceeding as in the case
m=l

b. y uo(O b; x, y)vo(O b; x, y)tr(wo),
p=t+Am+l

and therefore

Case n >= m > 1.

L(B, N)<-_r-(t+Am).

K 0 ilK 0

is a simple left submodule of K"’. Let

codimk E- An(m- 1)- 1.

Again we can assume w.l.o.g, that

wt,’", w,+t are k-linearly independent

and that taking

we have

W=kw +. .+ kw,+

Wf’I(E@N)=O,

in particular for P kw +. + kw,

(6) Pf) (E @ N) =O.

P+(E@ N) is a hyperplane in Kn’@ N. Therefore

R ={a Knnl(a, 1)(Kn’@N)c P+(E@N)}
is a proper right ideal of K"".

In three steps we try to achieve, after interchanging in each step some up with
the following statement:

(7) up with p > separate the points of (K"" 0) E.

Step 1. Up with p > separate the points of (R 0) E. Otherwise Lemma with
above P, X’= 0 0, X R 0, Y 0 yields a R, a 0 such that

(a, 0). (K""N)c P

thus

aK"" P.

aK" is a right module. (6) implies

aK"" fq E -0,

hence aK" -0 and a--0, a contradiction.
Step 2. up with p > separate the points of (R 0) x E. Otherwise Lemma with

X R 0, Y’ 0, Y E yields x E, x 0 such that

(K x B) x P + RE.
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But K""x E, thus

RE E and (6) imply

EP+RE.

ERE,

a contradiction.
Step 3. uo with p > separate the points of (K "" 0) E. Otherwise Lemma

with X’= R x0, X K"" 0, Y E yields a K""\R such that

(a,O).(K""@N)cP+E,

hence a R by definition of R, a contradiction. Thus we have proved statement (7)
and we can assume w.l.o.g, that the restrictions of

ut+, ut (t’= t+hn2+hn)
are a base of ((K"" 0) E)*.

Corresponding to the preceding cases, we find for arbitrary b B, y N uniquely
determined a 6 g"" e 6 E such that

ut+,(a, b; e, y) u,, (a, b; e, y)=0,

a. e@b. y= uo(a b; e, y)vo(a b; e, y)wo
p=l

thus

+ uo(a, b; e, y)vo(a, b; e, y)wo.
t’+

Denoting the projection along W@E by r: W@E@N N, we get, since a. e E,

b. y= u,(a, b; e, y)v,(a, b; e, y)r(w).
t’+l

Again we can regard u and v in above representation as linear forms on B N.
Finally we obtain

L(B, N)-<_ r- t’= r-An2-hnm+ 1.

Case m >- n > 1.

is a simple right submodule of K"’.
For the proof, we proceed as in the case n->_ m > 1.
Let codimk F- h (n- 1)m- 1. W.l.o.g. we can assume that

w,. ., Wt/l are k-linearly independent

and that taking

W=kw +. + kwt+
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we have

Wf) (F N) =O.

In particular taking P kw +... + kwt we get

(8) Pfq (FO) N) =O.

P+(FO) N) is a hyperplane in Kn"q)N. Therefore

L={xK"m[(KnnxB) xc P+(FO)N)}

is a proper left module in K"m.
Let

I c Knn.

In three steps we will show that, after interchanging some u. with %, the following holds"

(9) u. with/9 > separate the points of (I x0) K"m.

Step I. u. with/9 > separate the points of 0 L. Otherwise Lemma yields x L,
x # 0 such that

K"n. x is a left module.
Equation (8) implies

(K""xB). xc P.

Knn" xfq F=O,

hence K ,. x O, a contradiction.
Step 2. u, with/9 > separate the points of (I x O) x L. Otherwise Lemma yields

a I, a # 0 such that

(a, O) (KnmN) P+ IL.

But aKn"= F, thus

IL c F and (8) imply

Therefore,

Fc P+ IL.

FcIL.

EeL,

which is impossible because Lc K"" is a proper left module.
Step 3. u. with/9 > separate the points of (I xO) x Kn". Otherwise Lemma

yields x Kn"\L such that

(KnxnxB) x P+IKnm.
Since IKnm F we have

(KnnxB) x P+F,

thus x e L by definition of L, a contradiction. Now we proceed as in the case n _>- m >
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and finally obtain

L(B, N) <- r- t- An hnm

r-2hnm+h(m- n)+ 1.
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PROBABILISTIC PARALLEL ALGORITHMS FOR
SORTING AND SELECTION*

RDIGER REISCHUK"

Abstract. Probabilistic parallel algorithms are described to sort n keys and to select the k-smallest
element among them. For each problem we construct a probabilistic parallel decision tree. The tree for
selection finishes with high probability in constant time and the sorting tree in time O(log n). The same
time bound for sorting can also be achieved by a probabilistic parallel machine consisting of n RAMs, each
with small private memory, and a common memory of size O(n). These algorithms meet the information
theoretic lower bounds.

Key words, parallel algorithms, probabilistic algorithms, sorting, selection, parallel random access
machines, decision trees, efficient algorithms

1. Introduction and known results. This paper deals with parallel algorithms for
comparison problems. The input is always a set X {Xl, , x,} of keys belonging to
a linear ordered set of arbitrary size and the only operations involving keys are
comparisons of a pair and store- and fetch-operations. Depending on the machine
model the sorting problem is either to determine a permutation 1-I of {1,. ., n} such
that xl<-_...<-x<, or to write the sorted sequence in n output registers. Xk is
called the k-smallest element of X or the element in X ofrank k. The selection problem
with additional input k demands either to determine 7r(k) or to give out X<k.

In the sequential case O(n) algorithms are known for selection and O(n log n)
algorithms for sorting, which meet (up to constant factors) the trivial lower bounds
for these problems. Obviously these lower bounds also hold for parallel algorithms
for the product of time and number of processors, but up to now no parallel algorithm
is known to the author that achieves these bounds.

With respect to lower bounds the most general model is the decision tree. A decision
tree algorithm for inputs of size n is specified by a binary tree where each internal
node is labelled with a pair (i,j) of {1,. -., n}. A run of the algorithm on input X is
a path from the root to a leaf. If the algorithm reaches a node u with label (i,j) the
comparison between xi and xj is performed and the left (resp. right) branch from u is
taken if xi-< xj (resp. xi > xj). An output is assigned to each leave. We say that a
decision tree algorithm solves a given problem if for each possible input one reaches
a leaf with the correct output. The time-complexity of a decision tree algorithm is
defined as the depth of the corresponding tree.

If p > comparisons can be performed at a time we get a parallel decision tree of
order p. Here each node is labelled with q-<_ p elements of { 1,. ., n}2 and a node has
2q sons, one for each of the possible outcomes of the corresponding comparisons. The
q simultaneous comparisons may involve a key more than once.

A probabilistic parallel decision tree of order p is a tree with two different kinds
of internal nodes which alternate on every path from the root to a leaf. Each choice
node has =1 () sons, corresponding to the subsets of {1,..., n} of size at most p,
and a probability distribution assigned to its set of outedges. Reaching a choice node
a son is chosen at random according to the given probability distribution. At the new
node, which is a comparison node, the corresponding comparisons between the input

* Received by the editors January 29, 1982, and in revised form March l, 1984. Research supported by
DFG-grant Pa 248/I. A preliminary report, A Fast Probabilistic Parallel Sorting Algorithm, was presented at
the 22nd IEEE Conference, Nashville, 1981.

f Universitit Bielefeld, Fakultit fiir Mathematik, 4800 Bielefeld l, West Germany.
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elements are made and one advances to one of its sons which is determined by the
outcome of these comparisons. For a given input X the average time-complexity is
defined as the average length of paths from the root to leaves. We say that the decision
tree algorithm runs in time T with probability a if for each input the probability of
paths from the root to leaves of length greater than T is at most -a.

Saying that out of a set Y an element y is chosen uniformly at random means that
equal probability is assigned to each element of Y. In [5] Valiant proves an upper and
lower bound n/p+loglogp+O(l for finding the maximum of n elements by a
deterministic parallel decision tree of order p. For p n this gives a log log n lower
bound. Hence for this problem the optimal speed-up by making n comparisons at a
time instead of is only n/log log n. One cannot achieve the general bound n. [5] also
describes a parallel decision tree of order n to sort n keys in time O(log n log log n),
which again gives a speed-up of only O(n/log log n).

Reference [3] considers the problem how many comparisons have to be performed
in parallel by a parallel decision tree that sorts in constant time d >_- 1. A lower bound
-(n l+l/d) and an upper bound O(nd log n) is shown where ad (3 2d-l- 1)/(2d 1).
Also results on merging are mentioned.

Here we are only interested in algorithms where the number of simultaneous
comparisons does not exceed the size of the input by much, because otherwise a good
speed-up is obviously impossible.

For a more realistic model of computation Preparata [4] obtains a parallel sorting
algorithm which sorts n keys using n log n processors in O(log n) steps. His model is
a single-instruction, multiple-data stream computer (SIMD) with random access
capabilities to a common memory. Simultaneous reading in the same storage location
is allowed, but no writing. Each .processor performs arithmetic operations +, -, *,

/ J, [log as well as the comparison of two keys in unit time. The algorithm recursively
sorts smaller subsets and then merges pairs of ordered sequences of size rn in
O(log log m) steps together to determine the rank of each element. The above time
bound includes the arithmetical computations, the number of comparisons and the
number of read/write operations in the common memory, but does not take into
consideration the problem of processor assignment when merging the subsets together.
When the assignment is done in an elementary way and the number of these steps are
also counted one needs additional O(log m) steps when merging sequences of size m,
which gives a total time bound O(log2 n/log log n). For this algorithm the speed-up
for N n log n processors is O(N/log N), resp. O(N log log N/log2 N).

For the same computation model [4] describes another algorithm which uses n
processors and runs in time O((1/a) log n) for any 0 < a _-< l, which gives a speed-up
of O(N/+)), N n+. The assignment of processors is easier in this algorithm and
different processors do not read in a storage location at the same time. Valiant’s results
show that for worst-case time complexity not every problem can be solved n times
faster if we use n instead of processor. He also conjectures that the attainable
speed-up for the selection problem is still smaller. The question arises whether a
speed-up of order n can be achieved at least on the average, whether probabilistic
steps can improve parallel algorithms substantially. Obviously for selection or sorting
adding probabilism cannot help much in the sequential case. In the following we will
show that for both problems a speed-up of order n can be achieved by probabilistic
parallel algorithms that use n processors.

We assume that the keys are pairwise distinct. This is no restriction since if we
are given n arbitrary keys Xl,’’ ", x, replace xi by (xi, i) and define an order of the
tuples by (x, i) < (x, j) iff x < x or x x and <j.
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2. A probabilistic parallel decision tree for selection. We first consider the selection
problem and describe a probabilistic algorithm that almost always runs in constant
time. This contrasts to the log log n lower bound [5] for finding the maximum in the
deterministic case.

THEOREM 1. For any n and <-_ k <= n there is a probabilistic parallel decision tree
algorithm of order n that selects the k-smallest element ofa set of n elements andfinishes
for any input with probability greater than 1-exp (-1/4na/16+O(ln n)) in Cl steps for
some constant c.

Proof. In [2] a probabilistic sequential selection algorithm of small average runtime
is described. Using some of those ideas we will construct a parallel algorithm
PPSELECT and prove that it has the properties stated above. We start with an informal
description of the algorithm.

Let X {Xl, , x,} be the given set and k the rank of the element to be selected.
When calling PPSELECT recursively two variables are used: Y, which denotes a subset
of X of size m -n, and a number l, _-< <_-m, the rank of that element in Y which
has to be selected. Thus PPSELECT (X, k) will do the job. For technical reason we
associate to a set of size s element -o0 (resp. element +oo) of rank 0 (resp. s+ 1),
which are smaller (resp. bigger) than every element in the given set.

Procedure PPSELECT Y, l)
if lYl-<-,/ compare in parallel every pair of elements in Y (since (12YI)<-n, this

can be done in one step)
if [YI > 4nn then do

1. let m denote the size of Y, s [x/-J and f=f(m) be some number which
will be specified later,
choose uniformly at random a subset S of Y of size s

2. compare in parallel every pair of elements in S (this determines for each
s S its rank in S); define

tl=max (O’ [ s+ f]}
t2=min{s+l, [iS+lm+l +

let si (i- l, 2) denote the element of rank ti in S
3. compare in parallel every element of Y with S

4. compare in parallel every element of Y with s2
5. define

if IA
if IA
if IA

< and IAI + [BI-->
_-->l

+IBI<I
end
end procedure

A {y YIY
B {y e gls <- Y <= s2}

C {y e YIs2 < y}

then call PPSELECT (B, l-IAI)
then call PPSELECT (A, l)
then call PPSELECT (C, l-

Since the correctness of PPSELECT can easily be checked we will only prove that it
terminates with high probability after some number of steps independent of the input.
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It obviously suffices to show that starting with X of size n with high probability after
a constant number of recursive calls a set of size at most x/nn is generated, which will
be the input parameter for the next call.

Let n be large enough for the following analysis and let Y of size m with
x/nn < m <_-n and <-l-<_ m be inputs of PPSELECT. We will only deal with the case
tl >- and t2 <_- s. The easier cases (tl 0 or t2 s + 1) can be handled similarly. Let R,
(i= 1, 2) be random variables denoting the rank of s, in Y.

LEMMA 1. For any f

P R (h +f) < exp t- O(ln m)
s+l 4 s+l

Proof. For f=0 the claim is obvious; therefore assume fe0. Let r=
(t+f)(m+l)/(s+l). For rN, l<-r<-m holds

(r- 1)()m-r (r)(m+l-rt, s ti t,(s +

If -t->_f then r-< 0 and iff>-_ s + h then r ->_ m + hence in both cases P(R r) 0.
Thus we may assume -t <f< s + 1- t. Using

(KN) :exp(KlnN+K N )(N-K) ln
N K

+ O(ln N)

one can transform (2.0) into

(2.1, -ln(P(Ri r,) tiln(m+l ) (m+l s.+_!zt_i+(s+ 1-t,) In + O(ln m).
\s+l s+l m+l-r]

For0<p<l and-p<x<l-pdefine

Hp(x) =p. In ,p +(l-p) In 1.-____p__p.
p+x 1-p-x

If in (2.1) r is replaced by t +f)(m + )/(s + the main terms on the right side become

t, ln(m+.l ) (m+l s+_l.-2t_,+(s+ 1-t) In
\s+l s+l m+l-r]

(2.2) t, In t’i +ti f+(s+ 1--t) In s+l--ti
s+ 1- ti-f

ti t f s + ti
with0< <1 and < <

s+l s+l s+l s+l

Differentiating Hp gives

(2.3)
H;(x)

H(x)

(p+x)(1-p-x)’

p_p2+ x2

(p+x)Z(1-p-x)2"

For 0 < p < and -p < x < p follows

(2.4) Hp(x)>-O, H(x) > 0.
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Hp(x) can be developed into a Taylor series at the point x/2, which gives

H
x x Hp(z)

H(x)= - +-. H +
2

for some z between x/2 and x. From (2.3) we get the bound

X H,(X X
2

(2.5) Hp(X)>=- P\2J = (p+x/2)(1-p-x/2)"

Hence

or

( f)>s+l f:
4 (t, +f/2)(s + t, -f/2)

> f2 f<- +f/2
since --t ---- O,

f2->- since ti+-f<s+l-4s+l 2=
From (2.2) and (2.1) now follows

P R,- (t+f) <exp --+O(lnm)
s+l 4 s+l

COROLLARY. Letf be a positive real number Then:

i) P R,_->(t +f) < exp +O(ln m)
s+l 4s+l

(m+l) ( f2ii) P R,<-_(t,-f) <exp -O(lnm)
s+l 4s+l

The proof follows from Lemma and the fact that there are at most m values r
with P(Ri r) > 0.

Let Eo be the event that for a run of PPSELECT on input (Y, l) the element of
rank in Y does not belong to set B which is generated in step 5, and El be the event
that the size of B exceeds 4 (f+ 1)(m+ 1)/(s+ 1).

LEMMA 2.

i) P(Eo) --< exp
4 s +

t- O(ln m)

ii) P(EI) --< exp
4 s +

t- O(ln m)

Proof. The event Eo implies the event [(Rl > l) or (R </)]. Since

m+l
+f) +1[ s+l f] +1

S+
(/l s+i l.- + f<lm+l

and

m+l m+l[ s+l ] m+l
s+ (t2-f) I.+f f>+ m+l S+i =l,

Rl>l implies Rl>(tl+f)(m+l)/(s+l) and R2<I implies R2<(t2-f)(m+l)/
(s+ 1).
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Similarly, if the size of B exceeds 4 (f+ 1)(m+ 1)/(s+ 1) then

This implies

m+l m+l
R<l-2(f+l) or Rz>l+2(f+l)

s+l s+l

m+l m+l
Rl< (tl-f) or R> (t+f).

s+l s+l

Claims i) and ii) then follow from the corollary.
Now let f=f(m) be increasing with m. Hence with probability at most a(m):=

exp (-1/4f(m)2/(s+ 1)+ O(ln m)) the first recursive call within PPSELECT (Y, l) uses
inputs (Y’, l’) with IY’l>4(f(m)+ 1)(m+ 1)/(s+ 1) :=/3(m).

If we choose f(m) m7/16 then for all large rn fl(m) can be bounded by 5 m 15/16.
Thus if o’(i) for i>= denotes the size of the current input parameter Y in the ith
recursive call of PPSELECT on input (X, k) then

tr(1) n

and

tY(i+ 1)> 5 t:r(i) 15/16 with probability at most a(tr(i)).

Since ()ll < 1/2, for all large n tr(12)> n 1/2 with probability at most

11

max a(tr(i))< 11 a(n/2)=exp(-n3/16+O(lnn)). VI
o-( )> or( l)>n 1/2

i=1

3. Sorting by a parallel decision tree. We now want to show that a probabilistic
selection algorithm running in constant time implies a O(log n) probabilistic sorting
algorithm. Unlike the sequential case this is not that easy for parallel algorithms, since
expected runtime is given by the expected maximum runtime over all components
working in parallel.

THEOREM 2. For n there exists a probabilistic parallel decision tree of order n
that .sorts n keys andfor any input does not use more than c2 log n stepsfor some constant
c_ with probability at least exp (-O((ln n) 19/16)).

Proof Let X of size n be the set which has to be sorted. We may assume that
n 2" and u 2 with u, v . The decision tree uses a divide and conquer strategy
until the problem size is reduced to u log n. Using PPSELECT as a subroutine the
element XmCd of rank n/2 in X is determined. Then, by comparing in parallel every
element of X with Xmed X can be split into sets Xo and X of those elements which
are smaller or equal (resp. greater) than Xma. Call these the lower (resp. upper) half
of X. Both halves are then sorted recursively in parallel each by a parallel decision
tree of order n/2. Subsets of size u, call them small, are sorted by a deterministic
parallel decision tree of order u by comparing successively each element with every
other element in parallel. This takes parallel time u.

To analyze the runtime consider the binary tree T of subsets of X which are
generated in the course of the algorithm. The root of T is X and leaves are the small
subsets of X. Sons of a set are its lower and upper half. T has depth r := u- v.

To show that the algorithm sorts in O(u) steps it suffices to show that on every
path Q from the root to a leafthe time spent for finding the medians ofthe corresponding
subsets, let us denote it by M(Q), is bounded by O(u).

Let Q- Y, Y2," ", Y and g(i) 5c [u/(’- i)2] for <= i< r where Cl is the
constant from Theorem 1. If the median of every Y, < r is found in at most g(i)
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steps then M(Q) is bounded by

g(i)= 5c, O(u).
i=, (’r-- i)2

From the preceding theorem it follows that the probability P(y, g) that the median of
a set of size y is not found in g ac steps, where a is bounded by

[exp (_r/,6+ O(n y))].

For y large enough this gives P(y,g)<-_exp (-(a/5)y/6).
Hence for some the median is not found in g(i) steps with probability at most

2 P(2- g(i))<2 exp
i= z

eXP(--23/16" ]

r exp (-u9/a) for some constant > 0.

Therefore the probability that for each of the 2" paths Q from the root to a leave
M(Q) is bounded by O(u) is at least

-2"r exp (-Tu/) n exp (-Tu/) -exp (-a((ln n)9/a)).

4. Sorting by a parallel RAM. We now describe a probabilistic parallel sorting
algorithm for a more realistic computation model than the decision tree. The parallel
computer consists of n processors PI,"" ", P, and a common memory of size O(n).
Each processor is a RAM [1] with a constant number of private registers and has
random access to the common memory. In the common memory different processors
may read a cell simultaneously, but in each step at most one processor can write into
it. The arithmetic instruction set contains +, -, *, [/J. Each processor needs one unit
of time to perform an arithmetic operation or to compare two keys. This implies that
functions like [x/-J, [log nJ, 2" all can be computed in O(log n) steps. The only
probabilistic step a processor can perform is choosing 0 or with equal probability.

Suppose we are given a set X ={xl,..., x,} of n distinct keys which at the
beginning are stored in the common memory in an array K K,. , K,, K x. This
sequence will be rearranged to get a partition of K into subsequences B, B
called boxes such that for <j every element of box B is less than every element of B.

Such a partition of K is uniquely defined by the indices of the first and last
element of each box. These indices are stored in arrays L= L1,’’’, L, and U=
U,. ., U, in the following way: if key K belongs to box B= K/,..., K then
L + and U u. Now the global structure of the sorting algorithm is the following:

1. Select a subset Y of K of size s [x/J at random and sort Y by comparing
every pair of keys in Y.

With the help of this ordered subset K can be partitioned into s + boxes
B, ., B where B contains those keys that are bigger than the ith smallest
but not bigger than the (i+ 1)-smallest element of Y.

2. By binary insertion determine in parallel for each K to which box it belongs.
3. Rearrange the sequence K such that <j and K B and K B’ implies r _<- r
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4. Recursively in parallel for each 0-<_j <= s sort the subsequence of K containing
BJ. A box of size at most log n, call it small, is sorted deterministically by
comparing each element with every other element in parallel.

While the basic structure of this algorithm is simple, the problem is to find an
efficient implementation for a parallel computer of the above type and to show that
with high probability each of the about /- boxes Bi are sorted fast.

The following notation will be used:

in parallel [Pi[a <- < b]: (commands).

This means that in parallel each processor Pi with index between a and b carries out
the commands.

The algorithm uses two subroutines which will be described and analyzed before-
hand. In the first one a key is selected from a subsequence of K almost uniformly at
random and stored in an array S.

SEL (l+ 1, u, S)
comment: PI+1 chooses one element from KI+I,’’’, Ku at random and writes it

into S.
processor PI+
1. choose 2 [log (u- l)] bits at random and interpret them as a binary number N

between 0 and 22lg(u-)l- 1.
2. compute m:= Nmod(u-l)= N-(u-l)(N/[u-lJ)
3. set Sl+ <-- KI+I+
end SEL

Procedure SEL (l + 1, u, S) can be executed in O(log (u l)) steps. To show that
it selects every key with nearly the same probability we prove the following lemma.

LEMMA 3. If U- >- 2 then for any subset Q of Kl+l," ", Ku the probability that
SEL (l + 1, u, S) selects an element of Q is at least IQI/(u- l+ 2).

Proof. Let x equal 22rg(-)l. For at least IQI" [x/(u-l)] numbers N between
0 and x-1 N rood (u-l) denotes the index of an element in Q. Thus the prob-
ability can be estimated by

IOl [x/(u- l)J >_ lo[X/(u- l)- [o](1x x u-l u-l (u-l)"
It is easy to see that forz->_2 1/z-1/z

The next procedure computes all partial sums of a sequence of m numbers in
O(log m) steps.

ALLSUM (l + 1, u, C, D)
comment: processors Pl+l,’’’, P compute all sums =/+1 Cj for i= l+ 1,. ., u

and store the results in array D. F and H are additional local arrays.
1. in parallel [Pill + <- <- u]: set Fi <-- Ci, Hi - l, Di - 0
2. for k= 1,..., [log (u-l)] do

in parallel [Pl+2.ill <= <- [(u l)/2_i]:

Fl+2k. <--- Fl+2k.i-b Fl+2.i_2-
end

comment: now for l+ l_-<j-< u with j =/+2k. and odd holds:

2

Fj Cl+21(i-1)+p
p=l
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3. in parallel [Pill + <-_ u]:
for k= [log (u-l)],. .,0 do
if Hi + 2k --< then Hi Hi + 2k

Di Di-l-
end

end ALLSUM.

We now describe the procedure PPSORT to sort a box B Kt+,’’’, K, with
processors Pl+, , Pu. As input parameters only l+ and u are specified, the lower
and upper boundary of B. Global variables for this procedure are the sequence K of
keys and the arrays L and U from which each processor gets + and u. Before starting
PPSORT (1, n) to sort the original sequence L is set identically to and U to n.

To store intermediate results some additional global arrays S, C, D, G are used,
each of length n. During PPSORT (l + 1, u) processors Pl/, , Pu only access global
arrays in the range between + and u. Let n be large enough for the following analysis.

PPSORT (l+ 1, u)
if u =< log n then do
0. in parallel [Pil l+ <= i<= u]:

set
for j {l+ 1,. ., u} do
if Ki >= K then Ci Ci +
end
set K/+c, *- Ki.

end
if u > log n then do

1. in parallel [Pill+ <- i<-_ u]:
compute and store in private memory

in steps 2-5 a subset Y of Kl+, , Ku of size w is selected at random and sorted
2. call n parallel fr 0<_-j< w SEL(l+jv+ 1, l+(j+ 1)v, S)
3. in parallel [Pl+iv+j+lO i,j < w]:

if Sl+i,:+ >= Sl+:+ then Cl+i,,++ <-

else Cl+i+:+ <- 0
4. call in parallel for 0 -< < w ALLSUM + iv + 1, / + 1)v, C, D)

(Dl+iv+ is the rank of Sl+i+ in Y)
5. in parallel [Pl+i+lO<= < w]" set

(Sl+,’’’, Sl+w is the ordered sequence of keys in Y)
in steps 6-7 it is determined into which box B: each key Kl+, , Ku falls, where

B: {Kill + <- u, Ki < SI+I},

B := {Kill + <- <= u, Sl+j <= Ki < Sl++} for =<j < w and

B := {Kill + <- <= u, Sl+w Ki}.

6. in parallel [Pill+ <-_ <= u]: Ci <- 0
7. for k= [log wJ,..., 0 do

in parallel [’,ll / <-_ <=
if Ci + 2 <-- w and Si+c,+ =< Ki then Ci <- Ci + 2

end
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(Ci is the index of that box to which Ki belongs)
in steps 8-13 the sizes of the boxes Bj and a relative position for each element
of Bj is computed.
8. in parallel [Pil + <- <- ul: set Di zC,
9. call ALLSUM (l+ 1, u, D; E)

(if Es i=+l Di for any + _-< s _-< u is expanded to the base z, that means
Es --o cg, z with 0_-< a,s =< u < z, then the coefficient aj, equals the
number of elements among K+l, ", Ks that belong to box B).

10. in parallel [Pl++lO<=j <w]: Gl+l+j<’--cej, IE./z#J-ztE./z+J
11. call ALLSUM (1 + 1, + + w, Gl, G2)

(G+l+: (resp. G+l+:=Xk__o Gl+l+k) is the number of elements among
Kt+l, , K, belonging to B (resp. BU U BJ))

12. in parallel JEll + _<-- _--< u]:
set G3
ifCi=0 then G,4.G,

2else
set K+G,4 Ki

(G4 equals the number of keys among K+l,’’ ", Ki that belong to a box
B with j_-< C; therefore G+l,. ", G4, is a permutation of {1,. , u-l}
and after rearranging the array K the elements of B are stored in
Kt+l+GL, ", KI+G?+j+ l)

13. in parallel [Pill + <= <- u]:
2if Ci > 0 then L+,4 + + G+c,

2U+ + al+l+C,
14. cMI lmrMle! PPSORT (/+ 1, l+G+l) and for 0<j_-<w

2 2PPSORT (l+ + G+, l+ Gl+j+l)

end PPSORT

We will not show the correctness of this algorithm because it follows easily from
the comments added to the description. Note that if each processor Pi knows its index
i, then all processors can be programmed equally.

THEOREM 3. For any n there is a probabilistic n-processor RAM that sorts n keys
and for any input takes no more than ce log n steps for some constant a with probability
at least 1-exp (-((log t1)5/4)).

Proof. Each of the steps 0-13 in PPSORT(/+I, u) takes O(log(u-l)) time. It
remains to estimate the size of the boxes B into which B is partitioned.

LEMMA 4. For all x , x >- 1,
i) L/] --< [x/[xJ] <_- / 2.
ii) 0_-< x Lx/L,///< L47J.
Proof. Distinguish 4 cases:

case

x=y
yZ<x<yZ+y

yZ+ y<=x < y+2y
y+ 2y<=x < (y+ 1)

LxJ Lx/LJIJ LJI Lx/LJJ.I

y y y2
y y y2
y y+ yZ+y
y y+2 yZ+2y
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Let B K/+I, Ku be a box of K where the elements of B may be in any order.
Let w and v be defined as in step and B, B be the boxes into which B is
split. For 0 <_-j _-< w let bj be a random variable denoting the size of Bj.

LEMMA 5. If U >-- 16 then for any >-- 0

P(some b exceeds 2) <-_ (u l) exp -,,/U

Proof. In step 2 of the algorithm B is divided into w subsequences F, Fw-I

of size v, from which each one element is selected at random, and a rest F of size
(u-l)-wv. By Lemma 4 (u-l)-wv< w<-,J-u-l. Define a permutation ,r of
{ 1," , u I} by K+,() < Kl+w(2)<" < Kt+.,,.(,.,-).

For a subsequence A of 2/3 consecutive elements of this ordered sequence let
0_<- =< w, be the number of keys in A that belong to F. It holds i=o/3 2/3 and flw < w.
From Lemma 3 follows that the probability not to select any of these elements when
choosing one from each of F, Fw- is at most

max Y 1-
/3o,...,/3w i= v + 2

Taking the logarithm yields

max ln 1- _-< max
/3o,--.,/3w = v + /3o,...,/3w i=o v + 2

2 flw 2,8_-< max -+ =<- +1
/3o,.-.,/3w v+2 v+2 x/u-l+4

by Lemma 4 and flw < w

< t- since x/- _--> 4.,/,

This gives

P(for some j b > 2/3)
-<_ P(there is a subsequence A of length 2/3 of which no element is selected),

-<_ Y P(no element of h is selected)
length of A= 2/3

( )<-- (u 1)" exp ,,/_ -
Similar to the proof of Theorem 2 the computation of the parallel RAM on a

sequence K of n keys can be represented by a tree, where each node is a box B
generated by the recursive partitioning. Sons of a node B are the Boxes B into which
B is partitioned. The root represents K and leaves are the small boxes.

The runtime obviously depends on how fast any larger box B is completely divided
into small boxes. Lemma 5 shows that for each individual box with high probability
all its subboxes generated by one partitioning become much smaller, call such an
operation successful. But after several recursive steps the algorithm has to handle many
still relatively large boxes in parallel, and the more such boxes there are the more
likely it is that at least for some of these boxes the partitioning is not successful. Thus
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simple repeated application of Lemma 5 to the global tree cannot show that the
algorithm finishes fast with high probability.

Instead we do the following: the range of possible sizes of the generated boxes,
from maximal n up to minimal 1, is divided into intervals Io, Ii," ". Then for every
k the probability is estimated that for any box, of which the size falls into interval Ik,
the size of at least one of its subboxes obtained by some number ’k of repeated
partitionings still belongs to this interval.

For suitable intervals and parameters ’k increasing with k this probability is even
globally very small and the claimed bounds follow.

Let1/2<y<l and l<d<l/y.
For

define

O<= k < M := [lg lg n -lg lg lg n]o /)

’rk d k, pk--n pM--O, interval Ik--]Pk+l, Pk]CR.

Simple arithmetic transformations, using

yields

(4.1)

log log n- log log log n log log n -log log log n
-I_<_M-I_<_

log (1/y) log (1/y)

Tk-1 < Tk, Pk-1 > Pk for all 0 <= k < M,

1( logn ) ’gd/’gl/v) <( logn ) lgd/lgl/v)<---- ’4-,- \1oo n

p_logn, Io=]nr, n], [1,1ogn]I_.

For an internal node B define i(B) by [BI/B), that is the index of that interval
which contains the size of B, and let s(B) be the number of steps 1-13 to split B. We
have

(4.2) s(B) O(log

If Q (B1, , Bt) is a path from the root to a leaf then 0 i(B) <-_. <= i(B,_) and
-,jt- s(Bj)+O(logn) gives the time until subbox Bt is sorted when started with
the sequence B K of length n. Hence the runtime of the algorithm on K can be
estimated by

t-1

(4.3) max s(Bj)+ O(log n)
BI ,’" "’Bt j=

where the max ranges over all paths Q from the root to a leaf. Let EQ denote the event:
for all O<-k<=M the sequence i(Bt),’’’, i(Bt-l) does not contain k more than
’k times.

If EQ holds then the time spent on Q does not exceed

(4.4)
M-

yk [ k ] O(log n) since yd < l.E O(logn )’+O(logn)=O(logn) 1+ yk d k

k=0
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From Lemma 5 it follows for any j and h < M that

P(i(B+) i(B)li(B)- A)

IB+ll)lBlexp 2,,/
pX+l--<pxexp 1----.2

since IBI-< 0h and IBm+I[ >- 0h*l

=exp l+ln(n )-n--]
exp + 3? In n --2 (n 3/.+,) 1/23/

<_-exp (-1/2(n3/"+’) -1/23/)
3/Xfor all n large enough since by (4.1) n > log n and 1/2), < 1.

This implies

P(i(Bj+.)-" i(Bj+r-l) i(B)li(B)= A)
+

H P(i(Bt)--i(Bl_l)li(Bt_) i(B)= A)
/=j+l

’r
_-<exp -(n

and

(4.5)

P(there exists 0 -< k < M such that the sequence i(B),..., i(B,_)
contains k more than rk times)

M--1 t--"

<--_ P(i(B+k i(B)=k)
k=0 j=l

=, P(i(B+,k) i(B)li(Bj)= k P(i(Bj)= k)
k

-< exp (n since <n/logn.
log n

For k < M holds
3/k+l(rk/3)(n )1--1/23/

(7k-l/3)(n )1-1/23/
3/k+l_yk 3/k --1)(1--1/23/)d(n )1--1/23/ d(n )(3/

-<_d(logn) withe (), 1)(1-)
3/k+l) 1-- 1/23/Thus if n is large enough (Zk/3)(n is monotone decreasing in k and (4.5)

can be estimated by

Mkl n exp( ’rk 3/k+1)1_1/23/)=o log n
(n

< n exp
’/’M-1 (n )3/
3
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( log n<_-nexp 1-- log log )logd/log(l/y) )y-l/2)(log n
n

(lgd/lg(l/Y))+Y-1/2(log log n) -lgd/lg(l/y))<_-- n exp --(log n)

Since there are fewer than n paths from the root to a leave the probability that for
some path Q event Eo does not happen is less than

(4.6) 1--n2 exp (--3(log n)(’gd/’g(l/V))+V-’/2(log log n)-’gd/lg(l/v)).
Choosing y=65- and d= 1.19 gives log d/log(1/y)+y-1/2> 1.28, and bounds (4.6) by

-exp 2 In n --d(log n)lE8(log log n) -1 <_-- -exp (-fl((log n)4)).

5. New results. The n log n-processor sorting algorithm in [4] uses an algorithm
for merging ordered sequences as a subroutine, but the paper does not contain a
solution to the problem of processor assignment for this kind of merging algorithms.
A. Borodin and J. Hopcroft show in Routing, merging and sorting on parallel models
of computation, 14th ACM-STOC, 1982, pp. 338-344 how this problem can be solved
efficiently by a parallel RAM implying a deterministic n-processor log log n merging
algorithm and a deterministic n log n-processor log n sorting algorithm.

M. Ajtai, J. Koml6s and E. Szemer6di announce to present an O(n log n) sorting
network at the 15th ACM-STOC, April 1983.
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AN "INTERCHANGE LEMMA" FOR
CONTEXT-FREE LANGUAGES*

WILLIAM OGDEN?, ROCKFORD J. ROSS: AND KARL WINKLMANN

Abstract. An "Interchange Lemma" is proven, providing a new necessary condition for languages to
be context-free. This "Interchange Lemma" is then used to show that the set of repetitive strings (i.e. strings
of the form xyyz with nonempty y) over an alphabet of three or more characters is not context-free--an
issue which in the past has shown remarkable resilience against standard tools for proving languages not
context-free and which has only recently been solved independently in [5] and [10]. The Interchange Lemma
presented in this paper is a generalization of the proof technique used in [10].

Key words, context-free languages, interchange lemma, repetitive strings

1. Introduction. Formal language theory provides a variety of tools for proving
languages not context-free, e.g. various pumping lemmas and closure results. Still there
are problems which do not seem to yield to these classical tools. One such problem is
the question of whether or not the set of repetitive strings over an alphabet of three
or more characters is context-free (see e.g. [1, pp. 374-375]. Intuitively, the answer
is easy: Context-free languages are recognized by pushdown automata, but the first-in-
last-out character of a pushdown store makes this storage structure useless for recogniz-
ing repetitive strings; therefore the language cannot be context-free. In spite of this
clear and easy intuition, the problem was only recently solved [5], [10] after having
been open for a long time. This contrast between easy intuition and apparent technical
difficulty suggests a deficiency in the theory of context-free languages.

In this paper we attempt to remove this deficiency by generalizing the proof
technique used in [10]. This generalization takes the form of an "Interchange Lemma",
providing a new necessary condition for languages to be context-free. Unlike pumping
lemmas, which predict increasingly longer strings to be in a language, the Interchange
Lemma points out relationships between strings of the same length. Put briefly it says
that if a context-free language L contains many strings of some fixed length, then parts
of these strings may be interchanged, giving new strings which must also be in L.

In 2 we state and prove the Interchange Lemma. In 3 we apply it to show that
the set of repetitive strings over an alphabet of three or more characters is not
context-free.

2. The Interchange Llemma.
Notation. A context-free grammar (cfg) G is a quadruple (L E, P, S). Here I is

the set of internal symbols (nonterminal symbols, variables), E is the set of external
symbols (terminal symbols), P is the set of productions and S is the start symbol. We
will use L, to denote the set of all strings of length n in a language L. Any other
notation we use is standard.
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An informal statement of the Interchange Lemma. The Interchange Lemma con-
cerns properties of Ln. In some applications these sets Ln may be difficult to work
with. Therefore, our Interchange Lemma will actually make statements about arbitrary
subsets of Ln. These subsets can then be chosen conveniently when applying the Lemma.
Specifically, the Interchange Lemma will state that if the cardinality of a subset On of
Ln is "large enough", then there will be strings zl wlxy and Ze wexeye in On with
Iwl=lw21, Ixl=lx21, and lyl=ly2l such that w1x2y and W2Xly2 are in Ln. "Large
enough" will mean, roughly, of size n2 or bigger.

DEFINITION 1. Let G (L E, P, S) be a cfg generating L and n be a positive
integer. For any subset Qn of Ln, A /, and nonnegative integers nl and n2 with
na + n2 <= n, define Qn (nl, A, n2) to be the set of words z Qn which have a derivation
of the form

(*) S wAy:=> wxy= z with Iwl--n and lYl- n2.

(Necessarily Ixl n- n,- n2,)
Informally, the set On (nl, A, n2) thus contains all words in On for which there is

a derivation in which the internal symbol A occurs "in the same place". Specifically,
in each such derivation there is an occurrence of A which produces a substring of
length n- nl- n2 that starts with the (nl + 1)st character of the whole string.

Remark 1. If zl and z2 are two words in Qn(nl, A, n2), then by definition there
are two derivations,

S wlAyl :=> WlXlyl Z1

and

S w2Ay2 w2x2y2 --z2,

of the form (*) of Definition 1. It then follows that there are also derivations

S wiAyl :=> WlX2Yl

and

S w2Ay2 W2Xly2

having the same form (*). Hence WlX2y and W2Xly2 are in Ln. (Since Qn is arbitrary
it is possible that the strings Wlxzy and Wzxly2 are not in Qn; it is also possible that
these strings are not different from the original strings Zl and z2.)

It will be useful to correlate the length of the substrings x in derivations of the
form (*) with the length n of the entire string. Lemma 1 does this.

LEMMA 1. Let G (L E, P, S) be a cfg generating a language L, let r >= 2 be the
length of a longest right-hand side of any production in P, and let n and m be integers
with n >-_ m >- r. Then for each z Ln there is a symbol A I and a derivation of the form

S wAy :=> wxy z

with m >-Ixl> m/ r and A L
Proof. We have to show that a derivation tree for z must contain a subtree with

leaves for some satisfying m => > m/r. The following algorithm finds such a subtree.
"leaves under a node X" is short for "leaves in the subtree of which node X is the root".
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Step 1. Consider the root of the derivation tree as the current node.
Step 2. While there are more than m leaves under the current node, repeat

Step 3.
Step 3. Choose from among the children of the current node one with the largest

number of leaves under it. (Break ties arbitrarily.) Make that child the new current node.
This algorithm stops because the current node keeps moving down a path in the

derivation tree and hence will eventually satisfy the termination condition of Step 2.
When the algorithm stops the current node is the root of a subtree with leaves for
some with rn >-_ > m/r >= 1 because

there are at least m leaves under the root of the derivation tree;
Step 3 is only applied if there are more than m leaves under the current node;

and
an application of Step 3 reduces the number of leaves under the current node

at most by a factor of r. [-1

LEMMA 2. Let G (I, U, P, S) be a cfg generating a language L, let r >-2 be the
length of a longest right-hand side of any production in P, and let n and m be integers
with n >= m >= r. Then for any subset O, of L, there are nonnegative integers n and n2
satisfying m >= n- n- n2 > m/ r and an internal symbol A e I such that
I[Q,(nl, A, n=)ll >--IIQll/(llZlln=).

Proof. By Lemma 1

Qn=UQn(nl, A, n2),
and hence

IIoll Q(n,, A, n=)[ <--E IIQn(nl, A,

where union and summation are over all A I and over all nonnegative integers n
and ne with m-> n-nl-n2> m/r. Since there are no more than IIIII n terms in the
sum at least one of them must equal or exceed IIQll/(llIIIn=).

Now we can easily prove the following Interchange Lemma. As before, L denotes
the set of strings from L which have length n.

INTERCHANGE LEMMA. Let L be a cfl. Then there is a constant ct such that for
any integer n >= 2, any subset Qn of Ln, and any integer m with n >-m >= 2 there are
k >-IIQll/(cn=) strings z, in Qn with the following properties:

(i) zi wixiy, i= 1,... k;

(ii) Iwl=lwl Iwl;

(iii) lyl lyal lyl;

(iv) m _-> Ixl Ix=l Ixl > m/2; and

(v) wixjy Ln for all i, j {1,..., k}.

Proof. Let G =(/, E, P, S) be a cfg in Chomsky normal form (see e.g. [8, pp.
92-94]) generating L. Choose cL ]]II]. Then by Lemma 2 there exist integers nl and
n2 satisfying m>-n-nl-n2>m/2 and an internal symbol AI such that
IIO,(n,A, n2)ll >= IlOnll/(cLn2). By Definition 1 each string zi, i= 1,..., k, in this set
On(n, A, n2) has a derivation of the form

S wimyi :=> wixiYi zi with w, n, and ly, n2.

Such strings w, x, and yi, i= 1,..., k, satisfy claims (i)-(iv). Claim (v) follows from
Remark 1.
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3. An application of the Interchange Lemma. We now apply the Interchange
Lemma to repetitive strings. A nonempty string of the form yy is called a repetition.
A string which contains a repetition as a substring (i.e., a string of the form xyyz with
nonempty y) is called a repetitive string. Interest in repetitive and nonrepetitive strings
dates back to Thue’s 1906 paper [12]. One summary of Thue’s work can be found in
[113.

TI-IEOREM [5], [10]. The set of repetitive strings over a three-letter alphabet is not

context-free.
Proof. The main part of this proof is an application of the Interchange Lemma

to prove the following Lemma 3.
LEMMA 3. The set of repetitive strings over a six-letter alphabet is not context-free.
Postponing the proof of Lemma 3 for a moment, we observe that the theorem

follows from Lemma 3 by the fact that context-free languages are closed under inverse
homomorphism (see e.g. [8, pp. 132-133]) and the following result, which is a direct
consequence of [2, Thm. 1.7].

COROLLARY aO [2, Thm. 1.7]. There is an e-free homomorphism hfrom a six-letter
alphabet to a three-letter alphabet such that for all strings w, w is repetitive if and only
if h(w) is repetitive.

We now finish the proof of the theorem by providing a proof of Lemma 3.
Proof of Lemma 3.
Let L be the set of repetitive string over a six-letter alphabet. Assume that L is

context-free. In the following we will lead this assumption to a contradiction.
Choose n to be divisible by 4 and large enough to satisfy

2n/4/(CLn2 > 2"/8+1

where cL is the constant from the Interchange Lemma. (The reason for this choice
will become clear.) Throughout this proof we keep n fixed. Therefore we do not always
show it explicitly as a subscript.

Choose a nonrepetitive string r’ of length n/4-1 over the three-letter alphabet
{ a, b, c}. (The fact that arbitrarily long nonrepetitive strings over a three-letter alphabet
do exist was first shown in [12]. Proofs can also be found in [4], [7], [9], [13] and [6,
pp. 36-40]. See also [3].) Define r $r’. The following observation is a straightforward
consequence of this choice of r.

Observation 1. The string rr contains only one repetition (rr itself).
For any two strings u ala2" ap and v bib2" bp Of equal length define the

interleaving I(u, v) of u with v to be the string albla2b2" apbp. Now define

An {I(rr, s): s {0, 1}n/2}.
Then every string in An has length n and typically looks like

$OaOblcOalblalcO... laO$1aOblcOaObOalcl.., lal.

The "a-b-c-pattern" is the same in both halves of the string and the same in every
string in An. The "0-1-pattern" is entirely arbitrary throughout the string. A simple
consequence of this definition of An is the following observation. Informally speaking,
it states that any change in the "0-1-pattern" (to a new "0-1-pattern") of a string
in An yields a new string, z2, which is also in An.

Observation 2. Let zl W1Xly and Z2 WzXzy2 be strings from An with IWll
IXll ]x2[, and lYl] lY2[. Then the strings Wxzyl and W2Xly2 are also in An.

Observation 3. Let z be a string from An. Then z is repetitive (i.e. z contains a
repetition) if and only if z is a repetition (i.e. z if of the form z’z’). In other words,
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the only way in which a string z=I(rr, s) with s{0, 1}n/2 can be repetitive is by
having s s’ for some s’ {0, 1} "/4.

Observation 3 follows easily from Observation 1 and the Definition of An.
The repetitive strings from An will form the set On in our application of the

Interchange Lemma. Define

On {I(rr, ss)" s {0, 1}n/4}.
Observation 4.

IIQnll=2n/4.

For strings in An we will use terms like "a pair of corresponding positions in the
two halves" with the obvious meaning: the ith position of the first half of the string
"corresponds" to the ith position of the second half.

Informally speaking, the next observation states that if we take a string from Qn
and change the 0-1-pattern in some substring of length no more than n/2 then the
resulting string will not be repetitive.

Observation 5. Let ZI’- W1XlYl Qn and z2 w2x2y2An with Iwl =lw=l, Ixl
Ix2l <= n/2, lyl lyl, and Xl x2. Then neither wx2y nor w2xy2 is a repetitive string.

Observation 5 is true for the following reason. When x gets replaced by x in
the string Zl some 0 or 1 in Zl gets changed (since Xl x2) but since IXll Ix[ <= n/2
the corresponding character in the other half of z remains unchanged. Thus the
resulting string WlX2Yl is not a repetition and although wx2Yl is in Am by Observation
2, by Observation 3 it is not repetitive.

Observation 6. Let nl and n2 be two nonnegative integers with n/2 >- n n n2 >
n!4 and let S be a subset of Qn with the property that all strings in S agree on positions
nl + 1 through n- n2 (in other words, two strings in S can only disagree in their first
n and their last n2 characters). Then IlSll-<_2"/8/2.

Observation 6 holds for the following reason. By assumption there is a stretch of
l= n-n-n2 contiguous positions on which all strings in S agree. Because l>= n/4
this stretch includes at least n/8-1 O’s and l’s but for none of these O’s and l’s does
this stretch include the corresponding position in the other half of the string (since
<= n/2). Consequently, from the definitions of Qn and S all the strings in S agree on

at least n! 8-1 pairs of corresponding 0-1-positions. This leaves at most n! 8 + 1 pairs
of corresponding 0-1-positions to be filled arbitrarily.

Applying the Interchange Lemma with m n!2 yields the following observation.
Observation 7 (application of the Interchange Lemma). Define k Q ! (c n2).

There is a subset R {Zl,’’’, Zk} of Qn which satisfies the following properties"

(i) zi wixiyi, i= 1,..., k;

(ii) Iw, t--Iw2[ IWk[;

(iii) lyl- ly21 lY[;

(iv) n/2 >= Ix l Ix l Ix l > n/4; and

(v) wxy e Ln for all i, j e {1,. -., k}.

To complete the proof, now, we must show that there are p, q {1,. , k} with
xp xq. Let R be as in Observation 7. Then by Observation 4 and our initial choice
of n the following observation holds.

Observation 8.

IIRII > 2/8+
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Let wi, Xi, and Yi, i= 1,..., k, be as in Observation 7.
Observation 9. There are two subscripts p, q e { 1,.. , k} such that Xp Xq.
Observation 9 holds for the following reason. Assume for the sake of a contradic-

tion that all xi, i= 1,..., k, are equal. Define nl to be the length of the wi’s and n2
the length of the yi’s in Observation 7. Applying Observation 6 to this set R yields

I[RII2/s+l

contradicting Observation 8.
But now by Observation 5 neither WpXqyp nor WqXpyq are repetitive, contradicting

(v) of the Interchange Lemma.
This ends the proof of Lemma 3.

4. Summary. The Interchange Lemma provides a new tool for proving-languages
not context-free. While many other tools exist for studying context-free languages
none seems to apply directly to the question of whether or not repetitive strings are
context-free. As shown in 3 the Interchange Lemma allows a fairly simple answer
to this question and hence seems to fill a gap in the theory of formal languages.
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A STOCHASTIC MODEL OF FRAGMENTATION
IN DYNAMIC STORAGE ALLOCATION*

E. G. COFFMAN, JR.’, T. T. KADOTAf AND L. A. SHEPPf

Abstract. We study a model of dynamic storage allocation in which requests for single units of memory
arrive in a Poisson stream at rate A and are accommodated by the first available location found in a linear
scan of memory. Immediately after this first-fit assignment, an occupied location commences an exponential
delay with rate parameter/z, after which the location again becomes available. The set of occupied locations
(identified by their numbers) at time forms a random subset S, of 1, 2, .}. The extent ofthe fragmentation
in S,, i.e. the alternating holes and occupied regions of memory, is measured by max (St) -IStl. In equilibrium,
the number of occupied locations, ISI, is known to be Poisson distributed with mean p A//x. We obtain
an explicit formula for the stationary distribution of max (S), the last occupied location, and by independent
arguments we show that (E max (S) EISI)/EISI- 0 as the traffic intensity /9 . Moreover, we verify
numerically that for any/9 the expected number of wasted locations in equilibrium is never more than 1/2 the
expected number of occupied locations.

Our model applies to studies of fragmentation in paged computer systems, and to containerization
problems in industrial storage applications. Finally, our model can be regarded as a simple concrete model
of interacting particles [Adv. Math., 5(1970), pp. 246-290].

Key words, dynamic storage allocation, checkerboarding, M/M/o queue, memory allocation

1. Introduction. Adopting the terminology of queues, suppose customers arrive
in a Poisson stream at rate A to a linear queue of waiting or storage locations numbered
1, 2,.... According to the so-called first-fit policy each customer occupies the lowest
numbered location available at his time of arrival. Immediately upon being installed
in an available location, a customer commences a delay or residence time having an
exponential distribution with parameter/x. At the end of his residence time a customer
departs from the queue, thus making available the location he occupied. As locations
are occupied and released "holes" build up, so that the total occupancy, defined as the
highest numbered location occupied by waiting customers, may be substantially greater
than the number of customers in the queue. The principal objectives of this paper are
an analysis leading to the stationary distribution of this total occupancy, and a
characterization of the fraction of wasted space under heavy-traffic conditions, i.e. for
large

In queueing parlance our model may be recognized as an M/M/c queue on
which a first-fit discipline for placement into a linear sequence of servers has been
superimposed. The equilibrium distribution for the number in system is well-known
for the M/M/ system [4, p. 414].

Although we shall make some use of these classical results, we focus on the more
difficult analysis of the total occupancy process, an analysis that is clearly more
important in the applications noted below. Similar results for an M/M queue have
been obtained in [2], where conventional methods were found to be adequate. The
greater difficulty of our problem stems from the more easily motivated, but com-
binatorially more complex, first-fit placement rule.

Interpreting customers as requests for single units of storage, our model is an
instance of the general problem of dynamic storage allocation in computers. The
elements of this subject have been treated by Knuth [6], and a recent survey appears
in ]. In particular, the infinite-server model was introduced in [6, p. 445] in an analysis
of the well-known fifty-percent rule.
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Paged computer systems are specific applications of our model. Here, single units
of storage become pages and locations become page frames, i.e. sets of consecutive
memory locations that can accommodate exactly one page and that begin at integral
multiples of the fixed page size. As before, the analysis of total occupancy leads to a
characterization of the extent of fragmentation that occurs as pages come and go under
a first-fit rule. Indeed, by an appropriate substitution of terms, our model applies quite
generally to any such first-fit storage/server assignment problem where locations would
correspond, for example, to telephone trunks, parking spaces, etc. There are a number
of extensions to our model which would broaden its applicability. These, along with
their implications for the analysis of stochastic models, are discussed in the last section.

Our analysis starts with the observation that the total occupancy process cannot
be formulated as a Markov chain. We then identify a bivariate Markov chain in
continuous time from which the stationary state probabilities of this process can be
calculated. This calculation amounts primarily to a solution of the partial differential
equation governing the generating function for the equilibrium probabilities of the
bivariate Markov chain. For this purpose we adopt an apparently novel approach with
generating functions, whereby a partial differential equation is replaced by an infinite
but solvable system of ordinary differential equations. By an independent argument
bounds on the expected total occupancy are derived; asymptotic properties of the total
occupancy process are deduced from these bounds.

In the next section the mathematical model is formally defined. The major results,
also presented in the next section, are then proved in 3 and 4.

2. Mathematical model. For a fixed traffic intensity p A//x > 0 consider a con-
tinuous time Markov chain Mo whose states are the (finite) subsets of {1, 2,...}. A
given state St is just that collection of numbers corresponding to occupied locations
at time t. Transitions occur at rate /x > 0 from any nonempty S to each of the sI
subsets of S obtained by deleting one location from S, and at rate A from any S to
the union of S and the smallest numbered location not in S. Because S diminishes at
rate [SI/x, it is easy to see that for any p, if ISol < then ISt[ < for all t> 0 with
probability and that Mp is a Markov chain with a stationary distribution on the set
of finite subsets of {1, 2,...}. It does not seem possible to obtain the stationary
distribution of S, but we are able to find this distribution for both IsI and max (S),
the maximum element of S. Note that max (S) is simply the total occupancy mentioned
in the previous section.

Letting ’71"k limt.P(lStl k), k 0, 1, , denote the stationary distribution, we
have the following standard results from the analysis of an M/M/ queue [4]

k

(2.1) 7rk =. e k=0, 1,...

and

(2.2) E lSl Y. p.
k>_O

Next, consider the distribution of max (S). We will prove in 3 that

P(max (S)> m) 2
(-1)

m-0, 1,...o
(2.3) ,=o n+l

k=O

Note that for m=0, P(max (S)>0)= I-P(S=)= l-P(ISl=0) l-e-, as seen
from (2.1), and (2.3) agrees with this result. For m 1, the right side of (2.3) becomes
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an integral and

P(max (S) > 1) e --pxl/’ dx.

However, for large m and p, calculation of the right side of (2.3) is awkward. For
these cases we can make use of the following crude bounds,

(2.4)

where

trm --<_ P(max (S) > m) _<- p
O’m O’m

pk
(2.5) r,,=e o k ., m=0,1,....

=0

To prove (2.4), note that max (S)>=ISI so that P(max (S)> m)>=P([Sl> m); the
first inequality thus follows from (2.1) and (2.5). For the second, note first that

(2.6) P(max (S)> m)<-E[S{m+ l, m+2, "}I- EISI-EISf){1,2, m}l.

Now observe that S, fl{1,".,m}l is an embedded Markov process on states
0, 1,. ., m, and that its stationary distribution can be easily obtained as

pk
(2.7) P(lS{,’’’,m}l--k)-ky=op/j !, k-0, m.

Using (2.7) in (2.6) gives the second inequality in (2.4).
We can use (2.4) to show that the rate of wastage (the fraction of holes) is

asympotically negligible for p c. First note that, for any integer K,

(2.8) E max (S) Y P(max (S) > m) <= K + Y P(max (S) > m).
m=O m=K

Choosing K [(1+ e)pJ and using (2.4) and (2.8), we have, since tr,’l,

O’K_
(2.9)

E max (S) <_- + e+.
P CrK

Since for every e > 0, 1- crK_l--> 0 as p-> oo, [4, p. 193] it follows from (2.9) that

E max (S)
(2.10) lim -<_ 1.

On the other hand, max (S) >- ISI,.thus E max (S)_>-EIS p. Hence

(2.11) E(max(S)-ISI)=o(EISI) as p.

Thus, as p the wastage becomes negligible relative to the number of occupied
locations.

The method of (2.8) can be used to tighten the bound of (2.9) on E max (S) by
applying (2.8) for K [(p log p)/J instead of K [(1 + e)pJ. In fact we show in 4
that

(2.12) E(max (S)-[SI) --< c(p log p)/=
for some constant c. For an even closer look at asymptotic behavior numerical calcula-
tions were worked out by using (2.3) directly in (2.8). A plot of log P(max (S)> m)
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vs. log 1/p revealed a nearly linear graph and thus indicated that, as p-

(2.13) E(max(S)-ISl)--,c’p’,

for constants a and c’. The numerical results showed that a -0.42.
In Fig. l, the wastage rate, defined as (E max (S)-EISI)/EISI, is plotted as a

function of 1/EISI 1/p. It shows that the wastage rate approaches 0 monotonically
as p--> oo and p--> 0. What is more interesting, however, is the existence of a maximum
clearly less than 1/3 at lip- 0.40 and the strictly monotone behavior on both sides
of the maximum. Thus, E max (S) is at most times E[SI.

Q55

0.:30

0.25

0.20

0:15

0.40

0.05

0.0
""]1

2 5 4 5 6 7 8 9 ’10

1/p(=l/ElSl)

FIG. 1.

3. Derivation of (2.3). The derivation depends first on the use of an embedded
two-dimensional Markov process and then on the use of a novel technique with
generating functions. The embedded Markov process is (IStf]{1,2,..., m}l IStfq
{m + l, m + 2, .}]) which is Markovian on states of integer pairs (k, r), 0 _-< k <_- m, 0 <_- r.
The stationary distribution, for fixed m >_-0,

(3.1) 7r(k, r)= zr(k, r; m)= P(ISfI{1,..., m}[= k, ISO{m+ 1, m+2,...}[= r)

satisfies the equations

(3.2). zr(k, r)(h +(k+ r)/x) 7r(k- l, r)h + 7r(k+ 1, r)(k+ 1)/x + 7r(k, r+ 1)(r+ 1)/z

for 0 <_- k < m, 0 <_- r where 7r(- l, r) 0, and

(3.3) 7r(m, r)(h +(m+ r)tx)= Tr(m- l, r)h +Tr(m, r-1)h +r(m, r+ l)(r+ l)iz

for r >= 0, where 7r(m, l) 0. Introducing the generating function

(3.4) F(x, y)= Y. 7r(k, r)xky r,
k=0 r=0
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and p hi/z, we obtain from (3.2) and (3.3)

(3.5)
OF OF

p(1 x)F(x, y) + (x 1) T- (x, y)+ (y 1) s- (x, y) pxm(y X)fm(y)
OX oy

where

(3.6) fro(y)
r=O m Ox

F(x, y).

In view of the fact that

(3.7) P(max(S) <-m)=P(lS0{m+l,m+2,...}[=0)= E w(k, 0)=F(1,0),
k=0

we want to find F(1, 0). The difficulty with solving (3.5) for F is that it is a partial
differential equation (and, moreover, of degree m by (3.6)). However, by alternately
setting x and y and repeatedly differentiating, we can reduce (3.5) to an infinite
series of ordinary differential equations which we can solve.

First, setting x in (3.5) and noting that F(1, 1)= 1, we obtain

(3.8) F(1, y)= 1- o fm(u)du.

Next, setting y in (3.5), we obtain

(3.9) F(x, 1) -IOF
p -x (X, 1) xmfm(1),

and solving this (ordinary) differential equation, with F(1, 1)= 1,

(3.10) F(x, 1)=pe’ e-’u"du fm(1).

Now, for each n_-> 1, differentiate (3.5) n times with respect to y and then set
y 1, to obtain

p(1-x)DyF(x, 1)+(x-1)x[DyF(x 1)]+nDyF(x, 1)
(3.11)

px’( x)f(m")(1) + npx’f(m"-)(1)

where D, /Oy" and

(3.) f)() D,"fm(y), n O, , , ..
Solving (3.1 l) for D]F(x, 1) we obtain

LDyF(x, 1)=
(x-l)

pe’ due-"(u-1)"-l[um(1-u)f)(1)+numf(m" 1)(1)]’
(3.13)

n= 1,2,....

Since F(x, y) is a polynomial in x for any y, the right side of (3.13) must be finite at
x and hence the integral in (3.13) must vanish at x 1, namely,

(3.14) due-"(u-1)"-l[ur"(1-u)f(m")(1)+nu’f2-1)(1)]=O, n>-l.
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Rewriting (3.14),

fn-)(1)
due-U(u 1)n-lu m, n>= 1,(3.15) /)(1)

due-U(u-1)num= i---i’i
we observe that the function described by the left side of (3.15) does not depend on
n =0, 1,2,.... Setting n in the right side of (3.15), then using (3.10) and the fact
that F(1, 1)= 1, we have

(3.16)
f’(1

due_O,(u_l),u
f)(1)

due_OUu___
nt 01 p

Now, using Taylor’s expansion about y 1,

(3.17) f(Y)= E
f)(1)(y-1)

.=o n!

Since the coefficients w(m, r) in (3.6) satisfy (m, r)P([SI m+ r)= O(1/rt) by
(2.1),f is an entire function and the validity of (3.17) follows. Using (3.16) and (3.17),
we have

e-(3.18) f(Y)= E (Y- 1)"
O n=o I du e-"(u 1)"U

Then, from (3.8),

(3.19) F(1, y) e- E
(y 1)"+’

,=o (n+ 1) , du e-"(u- 1)nu

and setting y =0 gives (2.3) because of (3.7).
We obsee finally that the joint distribution of max (S) and ISI can be obtained

from F(x, y), which is determined from (3.13) and (3.16) explicitly. Indeed

(3.20) P(max (S) m, ISI k) 2 (J, 0; m)
j=O

and w(L 0; m)=(L O)=g/OxF(O,O), which can be obtained from F(x,y). The
resulting expression for the joint distribution of max (S) and SI does not appear to
have a simple form and is therefore omitted.

4. Derivation of (2.12). First, note that

(4.1) 1+ + + x>O.
= m!- K K K-x’

From (2.8) and (2.4) with p x
x

(4.2) E max(S)K+x
m=K m Ejo (x/J)"

-vt t) as x-Since e =o (x/J [4, p 193], by setting K [x+yJ we obtain, using
(4.1) with Stirling’s formula,

X
x+y

X + y
E max (S) x + y + ClX e

(x + y)/(x + y)+Y e-*+y) y

Cl(X + y)3/2ey
<=x+y+

y exp [(x + y) log (1 + y/x)]

c(x + y)3/eY
<=x+y+

y exp (y + y2/2x)

(4.3)
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for an appropriate constant c > O. Then, setting x =p and y c(p log p)/2, we have

(4.4) E max (S)<=p+c,(p log p)’/2+ [p + c (p log p)/213/2
(p log p)/p/2

Thus, by choosing c appropriately, say c =(2+ e) 1/2, the last term of (4.4) can be
made to vanish as p oo. Finally, by modifying the constant of the second term of
(4.4), we obtain (2.12).

5. Discussion. The main results of this paper have been the explicit form in (2.3)
for the stationary distribution of max (S), and the asymptotic behavior of the wastage
rate given by (2.11). Two principal conclusions concerning fragmentation are that the
stationary expected total occupancy, E max (S), never exceeds about the minimum
possible expectation, EISI, and that the difference between the two is asymptotically
o(EIS[) i.e. for sufficiently heavy traffic the effects of fragmentation become unimpor-
tant. Although proved only for the first-fit rule, one would expect this asymptotic
behavior of any rule that places newcomers, whenever possible, in an unoccupied
location less than max

We have considered several extensions to the basic model with the same objectives
in each case: an explicit form for P(max (S) m) in equilibrium and a characterization
of the asymptotic wastage rate. While the first objective appears unattainable (and
hence not treated in detail here), these extensions are given below as open problems,
since the prospects for asymptotic results or easily computed numerical results may
be much better.

1. Extensions to the delay (M/M/o) queue. Suppose there is a fixed bound, M,
on the number of locations: arrivals at times when IS,l-max(S,)-M are simply
lost. Our basic process [S, fq{1,2,..., m}, Stf-I{m+ 1,... ,M}] is now a bivariate
finite Markov chain. Although explicit forms are apparently limited to matrix equations,
conventional numerical methods can be employed to study the influence of the boun-
dary. The results of preceding sections serve as descriptions of the asymptotic behavior,
Mc.

As another extension to the original model, suppose all arrivals now request a
fixed number > of consecutive locations, and are accommodated by a first-fit policy;
departures occur individually as before. It is easy to verify for this bulk-arrival queue
that the process [S, f-1 { 1, 2, , m}, St fq { rn + 1, rn + 2, .}] no longer has the Markov
property. Indeed, the types of fragmentation now possible are such that any Markov
chain from which P(max (S,) m) could be calculated would have a much larger state
space (essentially, it is now necessary to consider ordered subsets).

It is also interesting to question whether the wastage rate is still asymptotically
negligible in this model. In contrast to the case it is now possible for max (St) to
increase even though holes exist. Equivalently, max (St) <- max__<tlS] no longer holds
for 1> 1. It would be especially interesting to resolve this issue analytically in the
general model where is a random variable with a stationary distribution, {f}, and
all locations of a given request are made available (i.e. depart) at the same instant.
For if E max (S)- E[S were not asymptotically o(EISI) as p c then this would be
further strong support for the concept of paging (or containerization in a general
industrial setting).

To acquire further insight into this general problem, a number of simulations were
run on first-order extensions of the basic model. First, request sizes were allowed to
be either or 2 locations and second, either 2 or 3 locations. In addition to the
parameters A and/z we have the parameter p denoting the stationary probability that
a given request is for the smaller of the two sizes.
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Typical results of these simulations are shown in the checkerboard patterns of
Fig. 2, where locations 1-100 are in row of the tableaus, locations 101-200 in row 2,
etc. An integer k in some location of a tableau signifies that this location is one of a
sequence of k allocated to a single request (k 0 denotes an available location). For

111100100101010001011

a. X--- l, z---0.001

22222222222222222200000022002200002200002200220022

b. = 1, =0.001, p 1/2

3000000333000000000333000333000000333000000333333000333

FIG. 2. Storage patterns under heavy loading.
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comparison with our earlier analysis we have also shown results for the basic model
having requests of size only.

Figure 2a is consistent with our earlier asymptotic analysis in that the number of
available locations is small relative to the number of occupied locations when p is
large (p )t//x 1000 in the figure). As expected from a first-fit rule the available
locations tend to be higher numbered ones.

In Fig. 2b both of these effects are also illustrated for the system with two request
sizes, and 2, in spite of the greater fragmentation stemming from the fact that holes
with a single location can be used only by requests for a single location. Accordingly,
the first-fit rule justifies another obvious feature of the pattern, viz. that requests of
size tend to be concentrated in the smaller numbered locations.

The results from which Fig. 2c was selected also indicate that available locations
tend to be higher numbered and smaller allocations tend toward the smaller numbers
when request sizes are limited to 2 and 3. On the other hand, fragmentation is somewhat
worse in this system because of the occurrence of poor fits, e.g. a request of size 2
allocated the first two locations of a hole consisting of three available locations creates
an unusable hole of one location. Thus, the above effects are somewhat less pronounced
than in Fig. 2b.

Motivated by these limited simulations, the authors quite recently conducted much
more extensive tests of asymptotic behavior. These simulation results (to appear in
[2]) suggest strongly that our earlier conjecture in fact holds, i.e. first-fit is asymptotically
optimal in the sense that E max (S)-EIS o(EISI) as p- for any distribution {f}.
Another recent extension [5] of the present paper stems from the apparent difficulty
in proving this conjecture, and is based on a modified first-fit rule. Although the new
rule is unlikely to be selected in favor of the simple first-fit rule in practice, it is proved
rigorously in [5], with the help of the results in this paper, that the new rule is
asymptotically optimal.

2. Single server disciplines. Suppose we have the original first-fit model except that
only one occupied location can be served (at rate/x) at a time. In this case, of course,
we need A </z for a stable system, i.e. for the existence of a stationary distribution.
The preemptive, last-in-first-out service discipline, where the location being served is
always max (St), is trivially solved, for in this case IStl and max (St) are identical and
no fragmentation occurs. The standard solution for the stationary M/M queue
applies.

Unfortunately, the more interesting first-in-first-out discipline suffers from the
same general difficulties as the bulk-arrival MM queue described earlier. However,
suppose we consider the processor-sharing discipline" when IStl>0 every occupied
location is being served, but at a rate i/IStl, so that the overall departure rate from a
nonempty system is still /. In this case, [Stf3{1,2,..., m}, Stf{m+ l, m+2,...}]
retains the Markov property, but unfortunately, the partial differential equation for
the generating function appears to be quite intractable. It is again apparent that one
must resort to a numerical study.

Acknowledgments. We are grateful to J. C. Lagarias for assistance in obtaining the
bound (2.12), and J. A. Morrison for interest and discussions on the asymptotics of
the formula (2.3) as p-> .
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SEQUENTIAL MACHINE CHARACTERIZATIONS OF TRELLIS AND
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Abstract. We look at a simple, but general model, of a systolic system called a trellis automaton (TA).
A TA is equivalent in computational power to a one-dimensional unbounded cellular automaton (CA), a
model of parallel computation which has been studied extensively in the literature. Different varieties of
TA’s are equivalent to corresponding variations of CA’s. We present, for the first time, sequential machine
characterizations of TA’s (CA’s). The sequential machines are useful and powerful tools for investigating
properties of TA’s (CA’s). They ar easy to program because, unlike the parallel models, one does not have
to deal with the problem of synchronization. Several applications are given. In particular, we prove a new
speed-up theorem which is stronger than what has previously been shown.

Key words, sequential machine, Turing machine, systolic system, trellis automaton, cellular automaton

1. Introduction. In recent years, computer science has devoted much attention to
problems related to highly structured computing systems and their potential applica-
tions. Current VLSI technology requires uniformity and regularity in both the processing
elements and their integration on a given chip. These requirements naturally lead one
to conceive of a multiprocessor system with a large number of relatively simple and
uniform processors interconnected in a regular pattern. A simple model of such a
system is the systolic array automaton. It is known that homogeneous systolic arrays
with simple interconnection networks (e.g., tree-structured, linear, orthogonal and
hexagonally-interconnected) can efficiently solve nontrivial problems such as matrix
manipulations, sorting, searching and language recognition problems [3], [5]-[7], [13],
[16]-[19]. Analyzing the power of a systolic system is not so easy; it requires us to
think about a large number of synchronized processes. Not only is it usually hard to
find an algorithm to solve a problem on such a system, but showing the correctness
of a given algorithm is also quite difficult. Hence, it is useful to have characterizations
of these systems in terms of sequential machines where we do not have to deal with
the problem of synchronization, thus making programming easier.

In [6], [7] a very simple model of a systolic trellis automaton, called a triangular
trellis automaton, was introduced and studied (see also [5]). This model was character-
ized in terms of a simple type of Turing machine in [13]. This characterization turned
out to be a very useful tool for investigating the properties of triangular trellis automata.
The characterization was used to prove new results as well as give simpler proofs of
known results concerning the trellis model.

In this paper we look at a more general model of a trellis automaton which we
call a systolic trellis automaton (TA). A TA (see Fig. 1) is an infinite planar array of
simple processors of combinational logic with unit propagation delay between neigh-
boring processors (nodes). The TA is used as a language recognizer. An input string
ala2"’" a,, applied to n consecutive terminals is accepted if and only if some node
on the accepting column generates an accepting symbol. The least number of rows
needed to accept the string is the time complexity of the TA on the given string (see
Fig. 1).
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A TA is equivalent to a one-dimensional unbounded cellular automaton (CA) [1],
[8], [9], [10], 15], [22], [23]. Moreover, variations of a TA are equivalent to correspond-
ing variations of a CA (e.g., bounded, one-way, real-time, etc.) [1], [2], [8], [9], [10],
[lS], [22], [23].

In this paper we characterize TA’s and, hence, also CA’s in terms of full scan
Turing machines (STM’s). An STM is a restricted type of on-line Turing machine with
a single worktape. Using the characterization, we prove the following speed-up theorem
for TA’s (CA’s): Let R(n) be any function. Then any TA (CA) with time complexity
n+R(n) can be converted to one with time complexity n+ R(n)/k for any positive
integer k. This result is stronger than what has previously been shown. For example,
the speed-up for CA’s given in [22] is from n+R(n) to n+(n+R(n))/k. This is
because the speed-up in [22] uses the standard technique of "packing" the input
symbols and simulation. Packing involves synchronization (using the firing squad
algorithm [24]) which takes extra time. Thus, the speed-up in [22] is not useful when
R(n) is a slow growing function. Our result shows that it is possible to have a speed-up
from n + R(n) to n + R(n)/k for any R(n). This strong speed-up result is useful because
there are languages accepted by CA’s (TA’s) with time complexity close to real-time,
but which do not seem to be recognizable in real-time. For example, we can show,
using the characterization, that the language L {xix in {0, 1}/, number of l’s in x
number of l’s in the binary representation of the length of x} can be accepted by a
TA(CA) in time n+log(n)/k for any k=>l. However, it seems that L1 cannot be
recognized in less time. Actually, we are able to show that there is a language accepted
by a TA(CA) with time complexity quite close to real-time, but does not seem to be
recognizable in real-time. The language is L {c[g:lxlqxlcx2:fi # XklX in
{0, 1}+, Ix+,l [1og2 ]Xl], ]Xkl 1, the number of l’s in the binary expansion of k is
equal to the number of l’s in x}. L2 can be accepted by a TA (CA) in time n +log* (n),
where log* (n) is the number of times we must take logarithms base 2 of n to get to

or below. Direct construction of the CA’s (TA’s) to accept languages L and L2 is
not very easy. In fact, there is no example in the literature of a language which can
be accepted by a CA in close to real-time, but which does not appear to be recognizable
in real-time.

The STM characterization is also useful in establishing hierarchies of TA (CA)
time complexity classes. For example, we show that there is a dense time hierarchy of
the TA (CA) complexity classes in the polynomial range.

TA’s can simulate arbitrary TM’s. Hence, it would seem that all nontrivial decision
problems are undecidable. For example, it follows that the problem, "Given a TA, A,
an input, w, and a symbol, y, will any processor in A output y?" is undecidable. The
problem remains undecidable even when restricted to the processors on a given column.
On the other hand, the problem is clearly decidable if we restrict it to the processors



428 OSCAR H. IBARRA, SAM M. KIM AND SHLOMO MORAN

of a given row (simply simulate A on input w until the given row is reached).
Interestingly, we can show that the problem is decidable when restricted to the
processors on a given diagonal. The proof consists of showing that for any diagonal
d, the infinite sequence of symbols generated by the processors on the given diagonal
is ultimately periodic. The lengths of the initial segment and the period are functions
of d and the cardinality of the alphabet of the TA. There are, in fact, examples where
the period length is a monotonically increasing function of d, even when the TA and
the input string w are fixed.

The paper consists of 4 sections in addition to this section. Section 2 formally
defines a TA and shows its equivalence to CA. STM is also defined in this section.
Section 3 gives the characterization of TA’s (CA’s) in terms of STM’s. The strong
speed-up theorem is proved in this section, and some examples of STM constructions
are given. Section 4 proves a dense time hierarchy of TA(CA) time complexity classes
in the polynomial range. Finally, 5 looks at some variations of TA’s (CA’s) and their
characterizations.

2. TA’s, CA’s and STM’s. We begin with a definition of a simple model of a
systolic system called a systolic trellis automaton (TA). A TA is a generalization of
the triangular trellis automaton studied in [6], [7], [13]. We shall see that TA’s are
equivalent (in some precise sense) to one-dimensional unbounded cellular automata
[1], [8], [9], [10], [15], [22], [23].

A TA is a system A (F, Z, A, f) consisting of an infinite planar array of identical
processors (i.e., combinational logics) with unit time propagation delay between the
processors as depicted in Fig. 2(a). In that figure, each node represents a processor
which computes a partial function f: F F--> F, where F (which contains the blank
symbol A) is a finite operational alphabet. The function f has the property that
f(A, A) A. Each processor computes f as shown in Fig. 2(b). An input to the TA is

\’/-’,,,

accepting
column

(a) (b)

FIG. 2. (a) A TA. (b) A processor(node)" f(a, b)= c.

a string w=ala2’’’ a,, where ai is in the input alphabet E_F-{A}. The symbols
al, a2,’’’, an are applied to the input terminals of some In/2] consecutive nodes of
the base row (ee Fig. 2(a)). All other input terminals of the base row get A’s. (Note
that if n is odd, then the right input terminal of the [n/2]th node gets A.) The TA
accepts w in time if the processor in row of the accepting column (the dotted
column in Fig. 2(a)) outputs a symbol from the set of accepting symbols, A F-{A}.
L(A)= {xlx is accepted by A in time for some t} is the language (or set) accepted
by A. L_ E+ is a TA-language if there exists a TA, A, such that L= L(A).

A TA has time complexity T(n) if every input of length n that is accepted can
be accepted in time less than or equal to T(n). Clearly, T(n) >-2, In/2]. (If T(n)< n,
then some suffix of the input cannot affect the outcome of the computation.)
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We can define a different input mode for the TA’s such that the input string is
applied on n consecutive base nodes as shown in Fig. 3. Call this model MTA. One
can show that a language L is accepted by a TA in time 2. [n/2] + R(n), R(n)>= 0,
if and only if it can be accepted by an MTA in time 2(n + R(n)). An MTA is essentially
a time-space diagram for a one-dimensional unbounded cellular automaton (CA, for

accepting
column

FIG. 3. An MTA.

short) [1], [8], [9], [10], [15], [22], [23]. A CA is shown in Fig. 4(a). Each node represents
the same sequential machine. The inputs a, a2," , a, in E are applied in parallel at
time 0 to the input terminals of some n consecutive nodes. The input terminals of all
other nodes, those that do not receive an input symbol from E, get ,X’s. After time 0,
the input terminals of all the nodes get h’s. At each time unit, a node sends a symbol
(signal) to its left and right neighbor (see Fig. 4(b)). The sequential machine representing
a node is specified by a transition function :F x (E U {h }) x Q x F F x Q x F, where
F, which contains A, is the communication alphabet, E is the input alphabet, and Q
is the state set. The transition 8(Z/, a, q, ZR)= (Z[, q’, Z) (see Fig. 4(c)) means that
if a node receives symbols Z/ and ZR at time from its left and right neighbors,
respectively, and it is in state q with symbol a applied to its external input terminal,
then, at time + 1, the node enters state q’ and sends symbols Z[ and Z to its left
and right neighbors, respectively. The transition function 8 satisfies the condition:
8(A, A, qo, A)= (h, qo, A). The input al’’’a, is accepted by the CA within time T(n)
if the node which gets input symbol a (circled twice in Fig. 4(a)) enters an accepting
state after at most T(n) steps.

from left right ZL Z"
neighbor 9+.___ nelghbor ?lef from right Z
neighbor neighbor

input {}
terminal

(b) (c)

FIG. 4. (a) CA. (b) The input/output terminals. (c) Signal notation.

It can easily be shown that a language L is accepted by an MTA in time 2( n + R n )),
R(n) >-0, if and only if it can be accepted by a CA in time n + R(n). Hence, we have

PROPOSITION 1. Let R(n)>-_O. A language L is accepted by a TA in time 2* In/2] +
R(n) if and only if it can be accepted by a CA in time n + R(n).

It can be shown that the TA’s and CA’s are time-wise equivalent to the "one-sided"
TA and CA shown in Figs 5(a) and 5(b), respectively.
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@OOo *-000:
aT

(b)

FIG. 5. Equivalent forms of TA and CA.

Important convention. For notational convenience, when dealing with TA’s, we
sometimes write 2..[n/2]+ R(n) as n+R(n).

The TA(CA) can be characterized by a restricted type of on-line Turing machine
with a single worktape called a full scan Turing machine (STM). An STM is a device
M (Q, E, F, i, qo, A), where Q, E, F are the set of states, input alphabet and tape
alphabet, respectively (see Fig. 6). F contains two special symbols $ and A (for blank).

’9 (read-write worktape,

"’fl " %initialll tains blanks)

(two-way read-write head)

ala
(input string with right endmarker, on-line)

FIG. 6. An STM.

$ which is not in E is used as an end marker for the input, qo is the start state,
A F-{$, A} is the accepting tape alphabet, and i is a partial function i:Q x
(E U {$, e}) xF--> Q x(F-{A}) x{-1, +1}. Thus M does not write blanks. i is restricted
as follows: Suppose i(q, a, Z) (p, Z2, d). Then

(1) If q=qo and Z=A, then a is in EU{$}, p#qo, d=-I and if a=$ then
Z2 $ else Z2 # $.

(2) ifqqoandZA, then a=e,p#qo, Z2#$, d=-l.
(3) Ifq#qoandZ=A, then a=e,p=qo, Z2$, d=+l.
(4) Ifq=qo, ZA and Z # $, then a=e,p=qo, Z2=Z, d=+l.
(5) Ifq=qoandZ=$,then a=e,p#qo, Z2=$, d=-l.

Restrictions (1)-(5) mean that M’s read-write head (RWH) operates as follows: The
RWH makes alternative sweeps on the worktape (right-to-left and left-to-right between
A’s). During the left-to-right sweep, the machine remains in a distinguished state qo
and does not change the tape contents. However, during the right-to-left sweep, the
machine can change state (except into qo) and can change the tape contents. (The
RWH does not write A’s.) An input symbol is read if and only if the RWH is on A
and the machine is in state qo.

The machine starts by making a right-to-left sweep (see Fig. 7). Thus M, in state
qo with A on the worktape reads a, and rewrites A by a tape symbol, say Z ( A),
and moves left in some state q(# qo). Now in state q, reading A on the worktape (on
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e input), the machine rewrites h by a tape symbol, say Z2 ( h), and starts a left-to-right
sweep in state qo until the RWH reads h. Repeating the procedure, the machine reads
a2, replaces h with a tape symbol Z3 and begins the next right-to-left sweep. When
the machine reads the input end marker "$", it replaces h with the distinguished
symbol "$" and the range of the sweep can no longer be extended to the right. It can,
however, still be extended towards the left by one cell each time the machine takes a
right-to-left sweep. Figure 7 shows a worktape profile of an STM for 3 complete
(right-to-left and left-to-right) sweeps. An input string w= aa2’’’a,, n >-1, each ai
in E, is accepted if M, when given the string aa2"" a,$, writes an accepting symbol
(i.e., a symbol in A) at any time after reading $. L(M) denotes the language (or set)
accepted by M. L

_
E/ is an STM-language if there exists an STM M such that L (M).

FIG. 7. The worktape profile from 3 full sweeps of an STM.

The sweep complexity S(n) of an STM on an input ala2 a,, is the least number
of complete sweeps needed to accept the input, where a complete sweep consists of
a right-to-left and a left-to-right sweep. Clearly, S(n)_-> n + 1.

To simplify the proofs of the characterizations, it is convenient to introduce a
generalization of an STM, called an r-STM. For a positive integer r_-> 1, an r-STM is
an STM which reads r input symbols before it starts a right-to-left sweep. If the machine
encounters $ (the input end marker) while trying to read r input symbols, the machine
writes $ on the worktape and makes a right-to-left sweep. After the machine writes $,
it operates like an STM (i.e., repeats the sweeps extending the range only to the left).
By definition an STM is a 1-STM. The sweep complexity S(n) of an r-STM is defined
in the same way as in an STM. Clearly, S(n)>= [n/rJ + 1.

The models defined above can be made nondeterministic in the obvious way. For
example, a TA, A (F, E, A, f), can be made nondeterministic by making the function

f multivalued, i.e., f: FF2r. To simplify notation, the results presented in this
paper are stated in terms of the deterministic models. However, the results easily extend
to the nondeterministic models.

The relationship between STM’s and r-STM’s is formalized by the following
theorem.

THEOREM 1. A language L is accepted by an r-STM with sweep complexity S(n)=
n/rJ + R(n), R(n) >= 1, ifand only if it can be accepted by an STM with sweep complexity

S2(n) n + R(n).
Proof Suppose M is an STM with sweep complexity $1(n)= n + R(n), R(n)>= 1.

We construct an equivalent r-STM M2 with sweep complexity S2(n) [n/rJ + R(n)
as follows. M2 has a worktape with each cell divided into r subcells. Reading r input
symbols at a time (except possibly the last read sequence), M2 simulates r right-to-left
sweeps of M in one sweep until all the input symbols are read. Then each subsequent
sweep is simulated by M2 in one sweep. Notice that M takes n + sweeps to read the
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whole input string (including $), while ME takes [(n+ 1)/r] sweeps. Hence, M2 takes
[(n+ 1)/r]+(R(n)- 1)= [n/rJ + R(n) sweeps for the simulation.

Now suppose M1 is an r-STM with sweep complexity Sl(n)= [n/rJ+R(n),
R(n) >_- 1. An equivalent STM, M2, with sweep complexity n + R(n) can be constructed
as follows. The left neighbor of the cell where M’s work head is initially positioned
has two subcells, one of which is used for packing r input symbols (see Fig. 9 for the
case r-2). In each right-to-left sweep, M moves the input symbol read onto the
packing cell and packs it. When M sees that r input symbols are packed in the packing
cell, the machine simulates Ml’s right-to-left sweep. After processing all of the input
symbols, M simulates each of the subsequent right-to-left sweeps of M1 in one sweep.
As an example for the case r 2, Fig. 9 shows ME’S worktape profile when simulating
MI’S computation which is shown in Fig. 8. In Fig. 9, # ’s are written for blanks.
(Recall that, by definition, an STM does not write A.) Clearly, M2 takes n+ R(n)
sweeps if M makes In/r] + R(n) sweeps.

FG. 8. A computation profile ofM (r=2) on input aaa3a4as$.

I.
I’ 1 I,I

FG. 9. e simulation profile of M.

In 3 we shall characterize TA’s (CA’s) in terms of STM’s. Some well-known
variations of TA’s (CA’s) [1], [2], [8], [9], [10], [15], [22], [23] can also be characterized
in terms of corresponding variations of STM’s. We give a %w examples in 5.

3. Nee- eretedfi teres. In this section, we prove that TA’s
(CA’s) and STM’s are equivalent in computational power. Before we present the
characterization, we prove a speed-up theorem for STM’s. The speed-up theorem can
be used to prove a similar speed-up theorem mr TA’s (CA’s) which is stronger than
what has been shown previously.
ToM 2. Let M be an STM with sweep complexicy S(n)=(n+l)+R(n),

R(n) 0. en for any positive integer k, we can construct an equivalent STM M with
sweep complexity S( n n + + R n)/k

R(n)/k means [R(n)/k].



TRELLIS AND CELLULAR AUTOMATA 433

Proof Clearly, it is sufficient to prove the case k 2. M2 has a 2-track worktape.
M2 simulates M faithfully (i.e., sweep by sweep) until it reads the input end marker
$. Then M2 simulates 2 sweeps of M in one sweep. For example, suppose M on
input ala_$, has the computation profile shown in Fig. 10. Then M2’s profile will be
as shown in Fig. 11, where the circled symbols are written on one cell. [3

FIG. 10. e computation profile ofM on input aa2$.

FIG. 11. The simulation profile of M2.

COROLLARY 1. Any STM with sweep complexity n + c, where c is somefixed constant,
can be converted to one with sweep complexity n + 1.

Remark 1. If an STM has sweep complexity n + l, then we say it is real-time. In
this case, we do not really need the input end marker $. (When making a right-to-left
sweep after reading an input symbol a, the machine can also simulate, in parallel, the
computation that would take place if the symbol to the right of a is $.) Thus, a real-time
STM with end marker $ having sweep complexity n + is equivalent to an STM without
end marker having sweep complexity n.

Next, we characterize TA’s (CA’s) in terms of STM’s. We shall see that the
characterization is very useful in studying the properties of TA’s (CA’s).

THEOREM 3. Let R(n)>=O. A language L is accepted by a TA (CA) in time

T(n)- n / R(n) if and only if it can be accepted by an STM with sweep complexity
S(n)=(n+l)+R(n).

Proof. By Proposition l, we need only prove the equivalence of TA’s and STM’s.
The constructions are given in Lemmas and 2 below.

LEMMA 1. Let A be a TA with time complexity T(n) 2* n/2 + R(n), R(n) _-> 0.
We can construct an equivalent STM M with sweep complexity S(n)= (n / )+ R(n).

Proof. We shall only illustrate the construction by example. The formal construc-
tion is left to the reader.

Consider a computation of the TA, A, on an input aaaaa4a5 as shown in Fig.
12, where we assume that the nodes output some results of their computations (the
outputs are not shown in the figure to simplify the illustration). Construct a 2-STM,
M’, which simulates A as shown in Fig. 13. Each cell in the tape profile lists the
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FIG. 12. The computation profile of A.

FIG. 13. The simulation profile of M’.

identification numbers of the node or nodes that it simulates. (Actually, the node
number would be replaced by the output of the node.) In this figure, M’ simulates A
node by node in the order 1, 2, 3, 4, (5, 5), 6, 7, 8, 9, (10, 10), (11, 11), 12, . Notice
that nodes a and n are located at symmetric points with respect to the accepting
column, and M’ simulates them at the same time. If the length of the input is odd,
the last input symbol, a,, will be read with $. In this case, the machine writes $ as
defined, carries a, to the left neighboring cell, creates a new subcell and writes the
value f(an, A) on it. This operation corresponds to the simulation of node 7 in Fig. 12
(see (8, 7) from the third sweep in Fig. 13). From now on, this subcell is considered
the first cell to the left of the $ that was written when the input end marker was read.
M’ simulates the accepting node on row at the end of ith sweep (in the order of the
accepting nodes 2, 6, 12, 19,. in Fig. 12). Clearly, M’ can simulate A in 1/2(2. [n/2J +
R(n))+ In/2] + R(n)/2+ sweeps. By Theorem 1, we can construct an STM, M,
which simulates M’ in n+ R(n)/2+ <-(n+ 1)+ R(n) sweeps, l-1

LEMMA 2. LetMbe an STM with sweep complexity S(n n + + R(n), R(n) >- O.
We can construct an equivalent TA, A, with time complexity T(n)= 2. In/2 + R(n).

Proof. Using the speed-up theorem and Theorem 1, we can construct a 2-STM,
M’, which simulates M in In/2] + R(n)/2 sweeps. Assume, without loss of generality,
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that M’ writes an accepting symbol only on A at the end of the right-to-left sweep.
(Given a 2-STM, M’, we can easily convert M’ to a 2-STM, M", which has this
property. Whenever M’ writes an accepting symbol, M" carries this information in its
finite control to the end of the sweep and writes an accepting symbol.) We also assume
that 8(qo,$,A)=6(qo, e, $)=(p, $, -1) for some fixed state p. For suppose M’ has
8(qo, $, A) (s, $, 1) and 8(qo, e, $) (t, $, 1). Then we can modify M’ so that it
enters a unique state p in both cases. When M’ reads $, it enters p, and makes a
right-to-left sweep. Entering the left neighboring cell in state p, M’ marks the cell if it
is not marked, and does the operation with state s. If the cell is marked, the machine
does the operation with state t.

As with Lemma 1, we illustrate the construction of a TA from M’ by an example.
Suppose that M’ with the input ala2a3a4asa6a7$, has the computation profile shown
in Fig. 14. Then the simulation profile of a TA, A, will be represented by Fig. 15 which
shows only the information generated on the tape profile. To simplify notation we use
states qo, P and q, where q can be any state. Notice that the sequence of nodes
1, 2, 3, 4,... on the diagonal lines in Fig. 15 simulates the right-to-left sweeps of M’.
It is easy to check that A has time complexity 2, In/2] + R(n). El

FIG. 14. The computation profile of M’ on input aa2a3a4asa6aT$.

FIG. 15. The simulation profile of A.

From Theorems 2 and 3, we get the following corollary"
COROLLARY 2. Let A1 be a TA (CA) with time complexity T(n)=n+R(n),

R(n)>-O. Then for any positive integer k, we can construct an equivalent TA (CA) A2
with time complexity T2(n)= n+ R(n)/k. (Note that, since a TA accepts an input only
on an even numbered row, R(n)/k should be even.)



436 OSCAR H. IBARRA, SAM M. KIM AND SHLOMO MORAN

A TA (CA) with time complexity T(n)= n is called a real-time TA (CA). From
Theorem 3 and Corollary 1, we get the following result which has essentially been
shown in [8] using a different proof technique.

COROLLARY 3. Any TA (CA) with time complexity n+ c, where c is some fixed
constant, can be converted to a real-time TA (CA).

Corollary 2 is stronger than what has been shown before. For example, the speed-up
for CA’s given in [22] is from n + R(n) to n + (n + R(n))/k. This is because the speed-up
in [22] uses the standard technique of "packing" the input symbols and simulation.
Packing involves synchronization (using the firing squad algorithm [24]) which takes
extra time. From Corollary 2, it is possible to have a speed-up for CA’s from n + R(n)
to n+R(n)/k. This strong speed-up result is useful because there are languages
accepted by CA’s (TA’s) with time complexity close to real-time, but which do not
seem to be recognizable in real-time. For example, using the characterization and
Corollary 2, we can conclude that, for any positive integer d, the languages in Examples
and 2 below are recognizable by CA’s (TA’s) in time

k

n+log-..log(n)/d and n+log*(n)/d,

respectively, where log* (n) is the number of times we must take logarithms base 2 of
n to get to or below.

Since an STM is a sequential device, it is relatively easy to program. The characteriz-
ation theorem (Theorem 3) can be used to provide simple solutions to many language
recognition problems concerning CA’s (TA’s). In fact, since we can easily convert an
STM into an equivalent CA (TA), STM’s can be used as programming tools when
designing CA’s (TA’s). We look at two examples.

Example 1. Let k be any positive integer. Then the language Lk=
{cg2 I’llXlCX2 # # XklXi in {0, 1}+, Ixi+ll [log2 IxiI], the number of l’s in the binary
expansion of Ixl-the number of l’s in Xk} is in an STM-language with sweep
complexity

k

S(n) n + log log. log (n).

Lk can easily be accepted by an STM, M, operating as follows. While copying the
input on its worktape, M does the following:

(1) Reading xi, <- <_- k, M builds a counter to the left of the separator to count
the length of xi. At the same time, for 2-<_ <= k, the machine checks that the length of
x is equal to the length of the binary representation of the length of

(2) After reading $ (input end marker), M checks that the number of l’s in the
binary representation of Ix l is equal to the number of l’s in Xk.

All the required counting and length checking can be done during the first n
sweeps, where n is the length of the input. To check that the number of l’s in the
binary representation of Xk is equal to the number of l’s in Xk, M needs an additional
log (Ix l) sweeps. So M takes

k k

n+log (Ixkl) n +flog log ’. log([xll)_--< n +)cg log’’- 10g(n)
sweeps.

Example 2. L= {CtIg21’Ilxlcx2# # XklX, in {0, l}+, [X,+ll [log2 Ix, I], IXkl l,
the number of l’s in the binary expansion of k is equal to the number of l’s in Xl} is
in an STM-language with sweep complexity S(n)= n+2 log* (n).

The algorithm is basically the same as that for Example 1. After reading the input
end marker $, the STM, counting the number of separators (c and #’s), constructs
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the binary representation of k to the left of the separator c. Then the machine compares
the number of l’s in xl and the number of l’s in the binary representation of k. If
Ixll m, the machine needs log* (m) sweeps to count k. The machine takes at most
log (log* (m)) sweeps (the length of the binary representation of k) to compare the
number of l’s. Hence, the machine needs n+log* (m)+log (log* (m))<_- n+2 log (n)
sweeps.

The reader will observe that direct construction of CA’s (TA’s) to accept the
languages in Examples and 2 is not as easy. In fact, there is no example in the
literature of a language which can be accepted by a CA in close to real-time, but which
does not seem to be recognizable in real-time.

The next theorem shows the relationship between STM’s and TM’s. The first part
has already been observed in [7].

THEOrEM 4. (1) If L is accepted by an STM with sweep complexity S(n), then L
can be accepted by a single-tape TM in time O(S2(n)).

(2) If L is accepted by a single-tape TM in time T(n), then L can be accepted by
an STM with sweep complexity O( T( n)).

Proof Direct simulation of an STM proves (1). To prove (2), we construct an
STM M2 which simulates a single-tape TM, M, by constructing the ID’s of M. If
we assume that M begins its computation with its read-write head on the blank to
the left of the input string, we can construct an STM, M2, which simulates M1 in the
following way: Given an input aa2"" a,$, M2 copies the input on its worktape (see
Fig. 16(a)), and constructs M,’s initial ID as shown in Fig. 16(b) by shifting the
symbols in Fig. 16(a) to the left. From this point on, each time M2 constructs M’s next
ID, it shifts the whole ID one cell to the left, inserts a blank in the vacant cell, and
moves the next state according to the M’s direction. This process is illustrated by the
sequence of moves represented by Figs. 16(c)-(f). (In the figures the B’s represents
the blanks ofthe TM tape. Note that, by definition, an STM does not write ,.) Obviously,
M2 takes O(T(n)) sweeps.

(a)

(bl

(c)

gener the

(d)

(e)

(f)

FIG. 16. The worktape ofM simulating M,.

It follows from Theorem 3 that Theorem 4 also holds when "STM" is replaced
by "TA" ("CA"), and "sweep" by "time".

From Theorems 3 and 4 we see that TA’s can simulate arbitrary single-tape TM’s.
Hence, it would seem that all nontrivial decision problems are undecidable. For
example, it follows from the undecidability of the halting problem that the problem:
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"Given a TA, A, a string, w, and a letter, Zo, in F, does any processor in A output Zo
on input w?" is undecidable. The problem becomes decidable, however, if we restrict
it to the processors in a given row in A (this can be done by simulating A on input w
until it reaches the appropriate row). On the other hand, the problem remains undeci-
dable when restricted to the processors in a given column of A. (Recall that A accepts
w if and only if some processor in column 0 outputs a symbol in A, see Fig. 17.)
Interestingly, the problem is decidable when restricted to the processors in a given
diagonal. This follows from an interesting property of the diagonals of a TA.

Notation. Rows, columns and diagonals are defined as in Fig. 17. The rows are
numbered from to , the bottom row being the first. The columns are numbered
symmetrically from - to +, on either side of the accepting column which is
numbered 0. The diagonals (directed from the lower right to upper left) are numbered
from - to +c on either side of the diagonal containing the processor activated by
the input symbol a, which is numbered 1.

diagonals

,0 ,1 42

columns -i

FIG. 17. Numbering of the rows, columns and diagonals of a TA.

In the rest of this section, A is some fixed TA, and w al’’" a, is some fixed
input string over . Let and j be given integrers (i=> 1). Then, dj, is defined as the
output of the processor on the ith row and jth diagonal of A on input w. Dj
(dj, l, dj,2, , dj, i, .) is the sequence of outputs of the processors on the jth diagonal
(if j<-0, then Dj=(A, A,"" ")).

DEFINITION. A sequence (al, a2,’’’, a,,...) is ultimately periodic with initial
index io and period p if for some positive integers io and p, a a+p for all >- io, and
io and p are the smallest positive integers which have this property.

The following lemma is easily shown by induction on j.
LEMMA 3. Let F, the alphabet ofA, have k letters. Then, for allj >- O, Dj is ultimately

periodic. The initial index of Dj is at most k + and the period of Dj is at most kj.
We can now use Lemma 3 to prove the following theorem.
THEOREM 5. The problem" "Given a TA, A, a string, w, a letter, Zo and a number,

j, does any processor on the jth diagonal ofA output Zo on input w ?" is decidable.
Proof By Lemma 3, Zo is produced by one of the processors at the jth diagonal

if and only if it is produced by a processor in the jth diagonal and ith row for some
i=< 2k + 1. Hence, we need only check the outputs of the first 2k + rows to decide
the problem, and this can be done by a straightforward simulation. [3

Next, we give an example which shows that the periods of the Di’s become
arbitrarily long even for a very simple TA. Define the following TA:

F= {0, 1, A}, for a, b in {0, 1}" f(a, b)= a+ b(mod 2);f(a, a)=f(a, O) ;f(a, b) =f(O, b).
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Let the input be the one letter word "1". Figure 18 shows part of the output from the
active portion of the TA on this input. The labels (O’s and l’s) on the nodes show the
outputs from the nodes. This output can be constructed from the Pascal triangle by
replacing the odd numbers in it by and the even numbers by 0. Since the (i+ 1)st
"diagonal" in the Pascal triangle is the infinite sequence ((), (i1),... ,), the sequence
Di of the TA on input "1" has the following form:

i+
mod2, mod2,.Di= I,,...,,,1,

If we set k 2, the length of the period of D is 2k, as the following proposition
shows.

FG. 18. A TA.

PROPOSITION 2. Let m>--O be given, and let mk=(m+ 1)(m+2)..-(m+k) (in
particular, Ok k!). Then for k 2i, 2k-I divides mk, and 2k divides mk if and only if
k_-< m (mod 2k)_-<2k- 1.

Proof. Let k and m be given. Then among the numbers m + l, m + 2,..., m + k,
exactly k/2 are divisible by 2, exactly k/4 are divisible by 4, and, in general, k/2 are
divisible by 2 for _-<j_-< i. This implies that:

(a) the largest d such that 2d divides mk is at least k/2 + k/4/. + k-
(b) d is greater than k if and only if one ofthe numbers m / l, m / 2, , m / k

is divisible by 2+= 2k. (There may be at most one such number.)
The proposition follows.

To see that the length of the period of Dk is indeed 2k, recall that the (k + m)th
element in Ok is (mk/k!)(mod 2). From Proposition 2 we know that this number is
if 0-_< m(mod 2k)=< k-l, and that it is 0 otherwise. Hence, the period of the kth
diagonal consists of k l’s followed by k O’s.

4. Two hierarchy theorems. Let STM(T(n)) denote the class of languages accep-
ted by STM’s with sweep complexity T(n). Let TA(T(n)) and CA(T(n)) denote the
corresponding classes for TA’s and CA’s. We shall prove two hierarchy theorems
concerning STM(T(n)). The first follows rather easily from a known hierarchy result
concerning TM time complexity classes and Theorem 4. The second result shows how
a stronger theorem (dense hierarchy) can be obtained using translation. By Theorem
3 the results hold also for TA(T(n)) and CA(T(n)).

THEOREM 6. STM(T2(n))-STM(Tl(n)) qb if TE(n) is time constructible on a
single-tape TM and

T(n) log* T(n)
inf O,

T( n)
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where log*(m) is the number of times we must take logarithms base 2 of m to get to
or below.

Proof. It is known [20] that if T2(n) is time constructible on a k-tape TM(k >- l)
and inf,_oo (T(n) log* T(n)/TE(n)) 0, then there is a language accepted by a k-tape
TE(n) time-bounded TM but by no k-tape Tl(n) time-bounded TM. The theorem now
follows from this result and Theorem 4. (A Tl(n) sweep-bounded STM can be simulated
by a 1-tape T(n) time bounded TM; a 1-tape T1 n)-time bounded TM can be simulated
by a T(n)-sweep bounded STM.)

Next, we show how we can improve Theorem 6 using translation (or padding).
Translational techniques have been used before in the study of complexity classes of
TM’s, formal languages, multihead automata, etc. (see e.g. [4], Ill], [12], [21]). Our
contribution here is the technique employed to prove a translation lemma. To illustrate
the idea, we consider the polynomial-time complexity class, i.e., the class
J k=>l STM(nk). The translation lemma we need is:

LEMMA 4. If STM (Tl(n))_ STM (T2(n)), then STM (TI(2kn))STM (TE(2k"))
for every positive integer k.

Before we prove the lemma, we prove the following.
THEOREM 7. If r >- and e > 0 then STM (nr) c STM (n r+).
Proof The use of the translation lemma to prove this result is similar to the one

described in [11].
Clearly, there are positive integers s and such that STM (nr)_ STM (n s/t) and

STM (n(S+l)/’) STM (nr+). Thus, it suffices to show that STM (nS/t)c STM (n(S+l)/’).
Suppose not. Then STM(n(+I)/’)c_STM(n/’). By the translation lemma, with
k=(s+i)t, i=0,1,...,s we have STM(2(+)(+)")STM (2s(+)"). Now for
i= 1,2,. , s, (s+ 1)(s+ i-1)>= s(s+ i). Hence STM (2s(+)") STM (2(+)(+-)"),
for i-l,2,...,s. It follows that STM(2(s+)(+)")STM(2()"), i.e., STM
(2(2s+2)")STM(2S"). But by Theorem 6, STM(2")cSTM(22:".n)STM
(2(2+s"). We get a contradiction, and so the assumption that STM
STM (n/t) is false.

We now give the proof of Lemma 4.
ProofofLemma 4. We only prove the case when k 1. The constructions generalize

easily to arbitrary k. Let M be a Tl(2") sweep-bounded STM accepting a language
L,. Let # be a new symbol. Define the language L2 {x# 2"-"Ix in L, [x[ n}. We
claim that L2 can be accepted by an STM, M2, which is T(n) sweep-bounded.
operates as follows when given input

aa2. a,# #$"

M2 sets up a binary counter to the left of the initial position of the RWH on a separate
track of the worktape. M2 reads the input and increments the counter for every symbol
read while simultaneously simulating the actions of M on /1’’" an$, being
interpreted as $.

After reading
ala2"" a,# #$,

the worktape will look like that shown in Fig. 19 if and only if m 2"-n. If this is
2n-n 2n-n

initial position
of

FG. 19
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the case, M2 continues the simulation of M, and accepts if and only if M accepts.
It is clear that L2 is accepted by M2, and M2 is Tl(n) sweep-bounded. Now by
hypothesis, STM T(n)) STM (T2(n)). Hence, L2 is accepted by some T(n) sweep-
bounded STM, M3. We now describe a T2(2") sweep-bounded STM, M4, which will
accept the original language L. M4 when given ala2 am$ simulates the computation
of M3 on input aa2.., a, # "-"$ as follows: M4 first reads a... a, and sets up its
worktape as shown in Fig. 20. When $ is read, the RWH writes $, moves left and
replaces a, by , adds to the binary counter on the second track (which is initially
blank), and shifts a...a, one cell to the left. When a crosses the boundary, it is
processed, i.e., M4 simulates what M3 would have done on input a. For example, if

M3 with input al writes YZ1 on its worktape, then M4’s worktape would look like
Fig. 21. Then M4 makes another right-to-left sweep to modify the worktape to that

boundary

" <t’t
+/-n t+/- al po+/-t+/-on

FIG. 20

shown in Fig 22. The next right-to-left sweep shifts a2""a. # to the left and when
a2 crosses the boundary it is processed. The worktape after this sweep would look like
Fig. 23. And after another right-to-left sweep would be changed as shown in Fig. 24.

Y1 Zl a2a anl
FIG. 22

YI] ZIZ2 a3a4

FIG. 23

YIY ZIZ2 a3a

FIG. 24

(For notational convenience, in Fig. 24, Z and Y were not changed, although, in
general, they would be different after a2 was processed.) The computation described
above (2 sweeps for every symbol crossing the boundary) continues until the counter
on the second track reaches the value shown in Fig. 25. When this happens, the machine
computes just like before, but when the RWH sees a "1" to the left of the boundary,
it knows that it has already processed exactly (2"-n)# ’s, and the symbols to the left
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FIG. 25

of the boundary are no longer shifted. Note, however, that the machine needs to write
a "dummy" symbol on the left because it still has to make 2 sweeps (the second sweep
rewrites ( by # ). Note also that the contents of the n-bit counter to the right of the
boundary will keep on changing, but will have no effect in subsequent computations.
Clearly, M4 has sweep complexity 2T2(2n). By the speed-up theorem, M4 can be
converted to a STM with sweep complexity TE(2n). [3

Theorems 6 and 7, of course, translate directly to TA (T(n)) and CA (T(n)) by
Theorem 3. The reader should note that a direct proof of Lemma 4 for TA’s or CA’s
would be much more difficult.

5. Variations of TA’s (CA’s) and STM’s. There are several variations of an MTA
(CA) that can be characterized in terms of corresponding variations of an STM. We
look at four examples here. Other examples can be found in [14].

First we consider the case when the MTA (CA) is bounded. Figure 26 shows a
bounded MTA (BMTA, for short). Thus, a BMTA is an MTA in which the "width"
(space) of the computation is bounded by the length of the input (dotted lines in the
figure). A BMTA is essentially a time-space diagram of a bounded cellular automaton
(BCA) [1], [8], [9], [10], [15], [22], [23] like that shown in Fig. 27.

accepting
column

FG. 26. A BMTA.

:9:O= 0

FiG. 27. A BCA.

One can easily show that a language is accepted by a BMTA in time 2(n + R(n)),
R(n)_-> 0, if and only if it can be accepted by a BCAin time n+ R(n). A BMTA (BCA)
can be characterized by a bounded version of an STM, called a BSTM. A BSTM
operates like an STM except that when it reads the input end marker "$", it writes $
on the worktape which is propagated to the left by one cell each time the machine
takes a right-to-left sweep. The computation profile of a BSTM on an input ala2a3$
is shown in Fig. 28. As in Theorem 3, we can show that L is accepted by a BCA in
time n + R(n), R(n)>-O, if and only if it can be accepted by a BSTM with sweep
complexity (n + 1)/ R(n). Theorem 2 and Corollaries 2 and 3 (speed-up’s) also apply
to BSTM’s and BCA’s.

Example 3. L {xx[x in X+} can be accepted by a BSTM with sweep complexity
S(n) n / 1. Hence L can be accepted by a BCA in real-time.
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Zl

FIG. 28. Computation profile of a BSTM on input ala2a3$.

We can construct a BSTM, M, which accepts L as follows. Copying the input on
its two-track worktape, M folds the input string into halves and compares them. Figure
29 illustrates this operation, where the B’s denote blanks. It follows from the characteriz-
ation theorem that L can be accepted in real time by a BCA. Again, direct construction
of a BCA is not as easy.

Next, consider the triangularly shaped MTA’s shown in Fig. 30. In that figure,
TA1 and TA2 get the input symbols a,, a2," ", a, at time 0 and TA3 and TA4 get the
input symbol ai at time i-1. All the triangular trellises accept the input if and only

FIG. 29. The worktape profile of M.

,, ,,_o,,,;;,, ,’<, i x,

a a2 a3 a5

FIG. 30. Triangular systolic trellises.
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if the topmost node generates an accepting symbol. Note that TA2 has time complexity
n, and the others have time complexity 2n- 1. The model TA2 is the triangular trellis
studied in [6], [7], [13]. It can be shown (see [5], [8], [14]) that TA1, TA2 and TA3 are
equivalent (in recognition power) to a real-time CA [1], [8], [10], [15], [22], [23], a
real-time one-way CA (OCA) [1], [8], [9], [10], [23] and a real-time iterative automaton
(IA) [2], respectively. See Fig. 31, column 2. TA4 is equivalent to the one-way iterative
automaton (OIA) operating in time 2n- 1. In the figure, the nodes represent the same
(Mealy type) sequencial machine. In CA and OCA, the input symbols a, a2," ", a,
are fed in parallel at time 0. In IA and OIA, the input symbols a,...,.a, are fed
serially at time 0, 1,..., n-1. The string w= aa2...a, is accepted (in the cases of
CA, OCA and IA) if the leftmost node enters an accepting state at time n. In the case
of OIA, the leftmost node must enter an accepting state at time 2n- 1.

read

aa qo
TAI real-time CA STMI

al
..... read

qo

TA2 real-time OCA STM2

@O---O
qoa ala2...a

TA3 real-time IA STM3

TA4 (2n-l) -time OIA STM4

FIG. 3 I. Char.cterizao. of tri.nu[.r re[[ie.

We illustrate that TA4 and an OIA are equivalent with a simple example. Let M
be an OIA with input ala:za3a4 as shown in Fig. 32(a). By expanding M in time and
space, we get the trellis form shown in Fig. 32(b). Figure 32(c) shows the active area
in Fig. 32(b) during the first 2n-1 steps. Finally, by folding the trellis in Fig. 32(c)
along the dotted line, we get the triangular trellis shown in Fig. 32(d). Conversely,
given a TA4, it is easy to transform it back to an OIA.

Column 3 of Fig. 31 shows the STM variations which characterize the triangular
trellises. In that figure all the STM variations operate in real-time, i.e., take n +
sweeps. STM is the real-time STM. For STM2, STM3 and STM4, initially the worktape
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.--0---0,.--0

ala2a3a

(a) (b)

(c)

FIG. 32. Transformation of an OIA into a TA4.

contains blanks (A’s) except for the symbol $. The restrictions are the same as in an
STM except the following:

(1) Initial position of the RWH:
STM2: the blank cell to the right of $.
STM3, STM4: the cell where $ is written.

(2) Condition for reading the input (see the arrow labeled "read" in Fig. 31):
STM2, STM3: when the RWH reads A.
STM4: when the RWH reads $.

(3) Sweep range:
Between $ and A.

(4) Accepting condition:
STM3, STM4: writes an accepting tape symbol at the end of the right-to-left
sweep after reading the input end marker.
STM2" enters an accepting state at the end of the right-to-left sweep after
reading the input end marker.

Figure 33 illustrates the operations of STM2, STM3 and STM4. Note that the sweep
patterns for STM3 and STM4 are the same. The difference is the location of the RWH
when the machines read the input.

The sequential machine characterizations can be used to show, rather easily, that
certain languages are recognizable by the parallel devices. We give two examples below.

Example 4. L= {0-"ln >_-1} can be accepted by an STM3 which increments a
binary counter (on the worktape to the left of $) every time it makes a right-to-left
sweep. The input is accepted if the counter has value 2"+ when the machine sees
the input end marker $. Hence, L can be accepted by a TA3 or a real-time IA. Direct
construction of a real-time IA is not as simple (see, e.g. [8]).
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STM3, STM4

FIG. 33. Computation profiles of STM2, STM3 and STM4 on input aa2a3a4as$.

Example 5. Let E be an alphabet. For 1, 2, let Ei {aila in E} be a distinct
alphabet. Let A E t_J E2. Define the homomorphisms hi" A*- E* by hi(a)= a if i=j
and e otherwise. Let # be a new symbol. For r>=0, define the language Lr
{ # rnx # rnln > 0, X in A+, Ix 2n, and h(x) h2(x)}. (Note that the strings in Lo have
no #’s.) Lo is called the twin shuffle over E [7]. It was conjectured in [7] that Lo
cannot be accepted by a TA2 (real-time OCA). However, using a nontrivial algorithm,
L2 was shown to be recognizable by a TA2 (real-time OCA) [7]. Here, we show by a
simple construction that, in fact, Lr and the languages L’r { # "xl same condition as
in L} and L {x # 1 same condition as in Lr} (which have only one-sided paddings)
can be accepted by STM2’s for any r >_- 1. Thus, by the characterization in Fig. 31 these
languages can be accepted by TA2’s (real-time OCA’s).

We describe an STM2 M’ accepting L’r. The STM2’s for L and L7 are constructed
similarly. The worktape has two tracks. Let y$ be an input to M’. The ith track in the
padded segment (i.e., the # ’s) is used to construct the string hi(y) from the alphabet
Zi with the symbols of hi(y) spaced r cells apart. Figure 34 shows an accepting profile
for the case r 1, E {a, b, c}, E {a, b, c}, E2 {a_, b, c}.

It does not seem that Lo L L can be accepted by an STM2. However, it is
obvious that an STM can accept Lo. Hence, Lo is recognizable by a TA1 (real-time CA).

Let (TAi) denote the class of languages accepted by triangular trellises of type
TAi. One can easily show that an STM can be simulated by an STM4, and conversely.
Hence, (TA1) (TA4). Also, from [8], we know that W(TA2) c (TA1), (TA3) c

(TA1), (TA2)- (TA3) # , and (TA3)- w(Tn2) # .
Input:

Worktape:

(2)
(al)

(2) (al)a
=2

(al) (aal)
a2

(#I) () (_a212)
(_al) (_al)(bbl)a

(#)
=2 a2
(al) (i) (bl)a

(al) (al)(21),()aa2 a2
(#) (al) (i) (bl) (el)a

(a_l) (al)(21)(Cl)(_Cl)a

FG. 34. The accepting, profile of M’.
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INTERSECTION AND CLOSEST-PAIR PROBLEMS
FOR A SET OF PLANAR DISCS*

MICHA SHARIR"

Abstract. Efficient algorithms for detecting intersections and computing closest neighbors in a set of
circular discs, are presented and analyzed. They adapt known techniques for solving these problems for
sets of points or of line segments. The main portion of the paper contains the construction of a generalized
Voronoi diagram for a set of n (possibly intersecting) circular discs in time O(n log2n), and its applications.

Key words, generalized Voronoi diagrams, computational geometry, intersection detection, closest-pair
and nearest neighbor problems, area calculation

1. Introduction. Let S be a set of n closed convex two-dimensional bodies of
relatively simple structure (e.g. circular discs, straight segments, polygons of few sides,
or expansions by some amount of such objects). In this paper we consider a variety
of problems associated with such a set S. Typical such problems are:

I. Do any two objects in S intersect?
II. More generally, suppose that we assign a "color" to each object in $. Does

there exist a pair of objects in S having different colors and intersecting each other?
III. If no two objects in $ intersect, what is the smallest distance between any

two objects in S (or, in the "colored" version, what is the smallest distance between
two objects in S having different colors)? More generally, for each object B in S find
the object in $ (of different color) nearest to B.

IV. Preprocess S so that, given an arbitrary "query point" X, the object in $

nearest to X can be found quickly.
Problems of this sort arise in robotics and are related to the problem of detecting

and avoiding collisions between a moving subpart of a robot system and stationary
objects, or between two or more moving subparts of such a system. In this note we
will simplify the problem by assuming that each of the robot subparts and the stationary
obstacles is either a closed convex object of a simple form, or else is covered by finitely
many such objects. Note that in the "colored" setting some of the objects involved in
our problem may be known a priori to intersect (e.g. objects covering two robot subparts
hinged together, or two objects covering some robot subpart which overlap each other
may always intersect). The "colored" version of our problems allows for this situation
by looking only for intersection of subparts which would not intersect under normal
conditions (e.g. subparts belonging to two distinct robot "arms", or a robot subpart
and an obstacle, etc.).

Efficient solution of these problems in the three-dimensional case would facilitate
construction of an "off-line" debugging system for robot control programs to check
whether collision occurs along a planned path of motion, and would also make it more
feasible to check in real time whether a moving subpart of the system is getting
dangerously close to another (moving or stationary) object. This paper addresses the
much simpler 2-dimensional case and uses generalized Voronoi diagrams for solving
some of the problems just noted. In the 3-dimensional case, efficient algorithms for

* Received by the editors March 7, 1983, and in revised form February 27, 1984. This research has been
supported in part by the Office of Naval Research under grant N00014-82-K-0381 and by a grant from the
U.S.-Israeli Binational Science Foundation.

" School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel and Department of Computer
Science, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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these problems would have to use other techniques since Voronoi diagrams in 3
dimensions are generally quadratic in the number of objects involved. A 3-dimensional
version of the simplest problem mentioned above, namely that of detecting intersection
in a set of n arbitrary spheres, has been recently solved in [HSS] by an O(n log2 n)
algorithm which uses sweeping methods.

This paper is organized as follows. In 2 we describe a simple sweeping technique
for detecting intersection in a set of n planar "monotone" objects. This technique has
already been noted by various other researchers, but was not published. It is in fact
a straightforward generalization of Shamos’ algorithm for detecting intersection of line
segments. We include it here for the sake of completeness, to indicate that the simplest
intersection detection problem mentioned above can be solved efficiently for rather
general planar objects. In 3 we define the generalized Voronoi diagram associated
with a set of n arbitrary and possibly intersecting planar discs, and analyze some of
its properties. Section 4 presents an efficient algorithm for the construction of this
diagram. Section 5 contains some applications of the diagram for the problems noted
above, and 6 presents another unrelated application, namely that of efficient calcula-
tion of the area of a union of many discs.

The study of the two-dimensional case carried out in this paper may find applica-
tions in collision detection and avoidance for robot systems whose underlying motion
is 2-dimensional, such as roving robots moving on a floor, etc. We hope that some of
the ideas suggested here would also be useful in attacking the three-dimensional case.

2. Detecting intersection of monotone objects. In this section we consider the first
problem posed above and show that it can be solved in time O(n log n) by a straightfor-
ward modification of an algorithm due to Shamos [Sh] which tests for intersection of
straight line segments. As noted in the introduction, the material presented in this
section has already been noted by several researchers. We assume that the bodies in
$ are monotone in the x-direction (i.e. the boundary of each object B $ consists of
an upper portion and a lower portion and both portions extend monotonously from
left to right). Thus for each such B there exist exactly two vertical lines tangent to it,
and any vertical line between these lines intersects B in a closed segment. The structure
of the objects in S is assumed to be simple enough so that each of the following
operations takes constant time:

(i) Check whether two specific bodies in S intersect each other.
(ii) For each B $, find the smallest and largest abscissae of points in B.
(iii) For each B S, find, for a given abscissa x, a point (x, y) B.
Let B,..., B, be the objects in S. For each j= 1,..., n let aj (resp. bj) be the

smallest (resp. largest) abscissa of a point in B. For simplicity we assume that the 2n
numbers a/, b/,j 1,..., n, are all distinct (see Fig. 1).

Note that if we draw a vertical line x =Xo it will cut (some of) the objects in S
in straight segments which, if the objects do not intersect each other along that line,
are disjoint from each other. Hence the objects in S which intersect the line x Xo can
be linearly ordered in a list L(xo) in which an object Bi precedes another B if the
segment cut off Bi by x Xo lies below the corresponding segment cut off Bj. Note that
since the objects in S are monotone, the list L(xo) remains unchanged as Xo increases
until either the line x Xo meets a new object Bk (this will happen when Xo ak), or
when it stops making contact with some object B (just after Xo b), or when two of
the objects in L(xo) intersect at x= Xo. Moreover, the leftmost intersection (if any
exists) of any two objects B, B’ $ will occur at some x Xo such that, for x slightly
less than Xo, the list L(X) contains B and B’ as adjacent elements. (Here we ignore
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L(Xo)= [B,Bz, B,]

oo

b, b,
Xo

FXG. 1. An instance of the intersection problem.

the special case in which B and B’ intersect at a point which is leftmost in one of
these objects, which requires a slightly different argument.)

In view of these observations, to detect the presence or absence of an intersection
one simply has to check repeatedly whether any two adjacent elements in the list L(xo)
intersect each other. Plainly, these checks have to be performed only at points where
L(xo) changes (i.e. at the points Xo aj, bj, j-- 1,..., n), and one only needs to test
newly adjacent pairs in L(xo). To facilitate execution of these operations, the list L
can be maintained as a 2-3 tree, allowing all the required list-maintenance operations
to be performed in time O(log n).

Details are as follows. The algorithm begins by sorting the 2n numbers a, b,j
1,..., n, in increasing order, and then processes them from left to right. Initially, the
list L is empty. Suppose that the abscissa currently being processed is one of the a.
Then L is updated by inserting the object B into L in its proper place, using a standard
2-3 tree search during which comparison of two objects B, B’ is accomplished by
comparing two representative points in the intersection of x aj with B, B’ respectively
(we have assumed that this can be done in constant time). After insertion, the algorithm
finds the two objects B, B’ immediately preceding and succeeding B in L, and checks
whether either B or B’ intersects B.

Similarly, if the abscissa currently being processed is b, then the object B is
deleted from L, using essentially the technique just outlined. After deletion, the
algorithm finds the two objects in L which immediately preceded and followed Bj
prior to its deletion (these will have become newly adjacent in L after deletion of B),
and determines whether they intersect each other.

The algorithm halts whenever an intersection is detected, or, if no intersection
has been detected, when all the abscissae a and bj have been processed, in which case
the algorithm reports that there is no intersection between the objects in S.

The correctness of the algorithm follows from the preceding observations. The
time complexity of the algorithm is O(n log n) since processing of each of the 2n
abscissae aj, bj can be accomplished in O(log n) time, using a 2-3 tree representation
for the list L.

3. Voronoi diagrams for circular objects. The algorithm presented in the preceding
section does not solve the more complicated "colored object" intersection problem
posed in the introduction. Indeed, the argument justifying the correctness of the
algorithm breaks down as soon as an intersection is detected, so that if the first
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intersection detected is between two objects having the same color we can no longer
use the procedure described to find additional intersection points. To handle the colored
intersections problem, we therefore propose a different approach based on generalized
Voronoi diagrams. We will show such an approach which can be used to handle the
special case where all the objects in the set $ are circular discs, not necessarily of
equal radii.

Let each of the objects Bj S be a disc of radius r about the center xj, for
j 1,..., n. These circular discs need not be disjoint from each other, and may
intersect, or even contain, one another. We define a generalized Voronoi diagram
Voro (S) associated with the set S as follows. For each i#j define

H(i,j)= {y6 E2: d(x,, y)- r,<-_d(xj, y)- },
i.e. the set of all points whose distance from Bi is no greater than their distance from

B (note that the distance of y from Bi is taken as the distance of y from the boundary
of B with a positive sign if y lies outside B and with a negative sign if y lies inside
B). Then define the.(closed) Voronoi cell V(i) associated with Bi to be

V(i)= CI H(i,j),
ji

i.e. the set of all points y whose distance from Bi is no greater than y’s distance from
any other element of S. (We will sometimes refer to the point xi as the center of this
Voronoi cell; hence the center of V(i) is the same as the center of the disc B.) Finally,
the Voronoi diagram Voro (S) is defined to be the set of points which belong to more
than one Voronoi cell. For simplicity we assume that no point in Voro (S) lies in more
than three Voronoi cells. This assumption generalizes the familiar assumption concern-
ing Voronoi diagrams associated with a set of points, in which one requires that no
more than three of these points be cocircular. As in the case of points, this assumption
is not essential, and is made just to simplify the description of the algorithm. Fig. 2.
shows an example of such a Voronoi diagram.

FIG. 2. The Voronoi diagram of a set of circular discs.

Generalized Voronoi diagrams have been previously introduced and analyzed by
various authors; see e.g. Kirkpatrick [Ki], whoc considers Voronoi diagrams for a set
of line segments and points, and Lee and Drysdale [LD], who consider Voronoi
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diagrams for sets of line segments and for sets of circular objects. Our setup is somewhat
different from that of [LD], in that we allow the objects in S to intersect each other,
or even to contain one another, whereas in [LD] the circles are required to be disjoint.
As we shall see below, there are some difficulties in adapting the technique of [LD]
to the case of intersecting circles. The algorithm of Lee and Drysdale for constructing
the Voronoi diagram of n disjoint circles runs in time O(n log n), but is given in a
very sketchy form without any analysis of the structure of the diagram, and without
any proof of its correctness. Another algorithm for constructing generalized Voronoi
diagrams for circles, which runs in time O(nc(lgn)/2), has been presented by Drysdale
and Lee [D], [DL].

The generalized Voronoi diagram just defined has the following properties.
(1) The collection of Voronoi cells covers the whole plane.
Proof. Immediate. Indeed, given any y E2, it will belong to the cell V(i) for which

d(x,y)-r=min{d(x,y)-r:j= 1,... ,n}.

(2) V(i) is empty iff B is wholly contained in the interior of another disc B; V(i)
has an empty interior iff B is wholly contained in another disc B.

Proof. For the first assertion, note that if V(i) is not empty it contains a point x
such that

d(x,x)-r<-min {d(x,x)-):j 1,...,n}.

The triangle inequality then shows that this same inequality holds for x x, i.e.

--ri--min {d(xi, xj)- rj’. j 1," ", n},

which implies that, for any of the other circles Bj of S, the point of B at maximum
distance from xj is not interior to Bj. Thus there is no Bj whose interior contains B,.
Conversely, if V(i) is empty, then x V(i), so that there exists j such that

d(x, x)- r < -r
i.e.

d(xi, xj) + ri < ),

which is to say that Bj contains B in its interior. Similarly, if the interior of V(i) is
not empty, it contains a point x such that

d(x, x)- r <min {d(x, x)- r: j= 1,..., n},

and again this inequality must hold for x x. Thus

-ri < d (xi, x)- r for each j i.

Hence rj <d(x,x)+ r for each j, i.e. the point of Bi at maximum distance from xj
does not belong to B. Thus there is no B which contains B.

Conversely, if the interior of V(i) is empty, x does not belong to this interior, so
that there exists j such that

d(x,, x)- ) <= r,

or

d(x,, x) <- r- r,,

which is to say, B is wholly contained in Bj.
(3) Voro (S) consists of straight or hyperbolic arcs.
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Proof. Let y Voro (S) be such that y lies in both Voronoi cells V(i) and V(j).
Then we have

d(x,, y)- d(xj, y) r, .
The locus of points satisfying this condition is a hyperbolic arc having xi and xj as

foci, or, if ri r, the perpendicular bisector to the segment [xi, x]. (Note also that this
(generally hyperbolic) locus degenerates into a half-line if d(xi, x)= +(r-r), i.e. if
the discs B, Bj are tangent to one another with one ofthem wholly containing the other.)

(4) Each nonempty Voronoi cell V( i) is star-shaped with l’espect to the point x.
Moreover, if V( i) has nonempty interior then the interior of a segment connecting x to

a point on the boundary of V(i) does not intersect the interior of any other Voronoi cell,
and such a segment can intersect another Voronoi cell V(j) only if the corresponding disc

B is wholly contained in Bi (so that, by remark (2), V(j) has empty interior).
Proof. Let y V(i), and let I be the segment connecting x to y. We first claim

that each point z in the interior of I is contained in V(i). Indeed, if this were false
then there would exist a point z in the interior of I which does not belong to V(i).
By (1) there woud exist j such that z belongs to V(j). Hence

d(x, z)- r < d(xi, z)- ri.

By the triangle inequality (and since z lies between x and y on a straight line) we have

d(x, y)- <- d(xj, z)+ d(z, y)- < d(x,, z)+ d(z, y)- r, d(x,, y)- r,.

Thus y cannot belong to V(i), a contradiction which proves that V(i) is star-shaped.
Next suppose that V(i) has nonempty interior. Let y V(i) and ! be as above,

and suppose that I contains an interior point z which also belongs to some other
Voronoi cell V(j). Then we have

d(x, z)- r d(xi, z)- ri.

Using the triangle inequality as before, we obtain

d(x3, y)- r <- d(xj, z) + d(z, y)- r3 d(x,, z) + d(z, y)- r, d(x,, y)- r, <- d(x, y)- r3,

since y V(i). Hence xj lies on the line containing/, and z lies between xj and y on
this line. However, this implies that

d(x,, xj) +(r,- ),
i.e. that one of the discs B, Bj contains wholly the other. But by (2) Bi is not wholly
contained in any other disc, so that Bj is wholly contained in B, and consequently
V(j) has empty interior. This establishes our two final assertions.

DEFINITION. The modified Voronoi diagram Vor (S) is defined to consist of the
boundaries of all cells in Voro (S) having nonempty interior. All other cells are discarded
from the modified diagram.

(5) The intersection I of three Voronoi cells V(i), V(j), V(k) in Vor(S) consists

of at most two points.
Proof. Let y be a point in /. By (4) the interior of the segment L (resp. Lj, Lk)

connecting y with x, (resp. x,xk) is contained in V(i) (resp. V(j), V(k)) and in no
other cell. Let y’ be another point in/, and let L’i, L, L;, be the segments connecting
y’ with x,, xj, Xk respectively. It is clear that no two of these six segments can intersect
one another (except at an endpoint). It follows that I cannot contain a third point z,
because at least one of the segments connecting z to the three centers x, xj, Xk would
have to intersect one of the preceding six segments, which is impossible.
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(6) Let D* denote the dual of Vor (S), defined to be a graph whose vertices are the
points xi, i- 1, n for which V( i) has nonempty interior, and which contains an edge
[xi, xj] if V( i) and V(j) have a nonempty intersection including at least one open arc. If
V( i) and V(j) intersect in more than one arc, define the graph D* to contain multiple
edges connecting xi to xj, onefor each such arc. Then D* is a planar graph, and its natural
planar embedding (described below) has all ofitsfaces exceptfor the outer one) containing
at least three edges.

Proof We define an embedding of D* in E2 as follows. Each vertex x is mapped
to itself (as a point in E2). Let e-[x, x] D* be an edge corresponding to an open
arc a in the intersection of V(i) and V(j). It follows from (5) that there must exist
at least one point y 6 a which does not belong to any other Voronoi cell. We then map
the edge e to the path consisting of the two segments [x, y] and [y, x]. To see that the
resulting graph G is indeed a planar embedding of D*, suppose to the contrary that
two distinct edges e =[x, xj], eE--[Xk, Xi] of D* map to paths which intersect each
other at a point z which is not a vertex of G. Let Zl (resp. z2) be a point on the common
boundary of V(i) and V(j) (resp. V(k) and V(l)) such that el (resp. e) appears in
G as the union of the segments [x, z] and [z, xj] (resp. [Xk, Z2] and [z, x]). Suppose
without loss of generality that the segments s [x, z] and s’= [Xk, Z2] intersect at a
point other than a common endpoint x Xk. Since by (4) the interior of the segment
s (resp. s’) is contained in V(i) (resp. V(k)) and in no other Voronoi cell having
nonempty interior, we must have either i- k or z z2. In the first case s and s’ meet
at xi, and so if they meet at another point they must overlap each other, which is
possible only if either Zl z2 or if one of these points (say Zl) lies in the interior of
the other segments s’. The latter assumption would contradict the fact that the interior
of s’ is wholly contained in V(i) and in no other cell having nonempty interior. Thus
we must have z- z2, and then by the choice of these points it follows that j too.
Then it is plain that the two arcs of the common boundary of V(i) and V(j) which
define our two paths are identical. Hence the two edges el and e2 are not distinct,
contrary to assumption. All this shows that G is a planar embedding of D*.

Note that the inner faces of the embedding G of D* stand in l-1 correspondence
to the Voronoi vertices in Vor (S). Hence the second part of our assertion will follow
from the fact that each Voronoi vertex must be incident to three Voronoi edges. This
property of Voronoi vertices will be established later in this section (see the Corollary
to property (1 l) below), and will thus imply the property stated above.

(7) Since D* contains O(n) vertices, and since each of its faces contains at least
three edges, it follows by Euler’s formula that it has at most O(n) edges, that is, Vor (S)
consists of at most O(n) connected straight or hyperbolic arcs.

(8) Let C be the convex hull of the union of all the discs B S. Note that the
boundary of C consists of an alternating sequence of straight segments and circular arcs,
the circular arcs being boundaryportions ofsome ofthe discs, whereas the straight segments
are tangents to a pair of discs in S. We will say that Bi and B are adjacent along the
boundary of C, if this boundary contains a straight segment tangent to both B and B.
Then the unbounded edges of Vor S) are those edges that are common to two cells V( i),
V(j) for which Bi and B are adjacent along the boundary of C. (This property will not
be used in the sequel, but is noted as a generalization of similar properties for other types
of Voronoi diagrams [Sh].)

Proof Let e be an unbounded edge of Vor (S), common to two Voronoi cells
V(i) and V(j). Since e is either a straight of hyperbolic arc, it tends asymptotically
to some half-line I. Suppose, without loss of generality, that is the positive y-axis,
and let a [0, t]be a point on I. For sufficiently large and for any k l, , n, d(a, Bk)
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behaves asymptotically as Tk rk, where Tk is the y-coordinate of Xk, i.e., as d (a, B k’)
where B k, is the image of Bk translated parallel to the x-axis until its center lies on
the y-axis. It follows that

i l- ri 7lj l- i Tlk’31" rk,

for every k 1,..., n. This however is easily seen to imply that Bi and Bj are adjacent
to each other along C, since the line y r/i + ri is tangent to both discs B, Bj and all
the discs in S lie in the lower half-plane which this line bounds, so that the portion
of this line between its points of tangency with B and B belongs to the boundary of
C. (An extreme case that we need consider is that in which the line y- r/i / ri is also
tangent to a third disc Bk, at a point lying between its points of contact with Bi and

B. However, if such a situation arises, it is easy to check that all the points on e

sufficiently far away are nearer to Bk than to one of B, B, contradicting the definition
of e. The converse statement, namely that any pair of adjacent discs along C induces
an unbounded Voronoi edge, can be proved using the above argument in reverse.

(9) Vor(S) need not be connected. In fact, it can have up to O(n) connected
components. However, every connected component of Vor S) is unbounded.

Proof. Consider the following set S of discs, which consists of the unit disc B,
and of k additional small discs B,..., Bk+ all of radius p, such that the centers of
these discs are placed on the boundary of Bl at equally spaced positions. If p is chosen
to be sufficiently small (e.g. of the order O(1/k2)) then it is easily checked that for
each j 2, , k + the discs B and B are adjacent to each other along the boundary
of the convex hull of the Bi’s. Moreover, it can also be shown that for p sufficiently
small each unbounded edge common to V(1) and some other V(j) is a full branch of
the corresponding hyperbola, and that no two such edges intersect each other. This
shows that Vor (S) can have as many as O(n) connected components.

Remark. The example just given also shows that the boundary of a single Voronoi
cell (V(1) in the example) can have up to O(n) disjoint connected components.

Suppose next that for some set S of discs Vor (S) contains a bounded component
K. Then the portion E of a sufficiently small neighborhood of K which lies exterior
to K must be contained in a single Voronoi cell V(i), since otherwise some arc of
Vor (S) would have to enter any such exterior neighborhood of K, contradicting the
assumption that K is a connected component of Vor (S). But if a whole neighborhood
of K in the exterior of K lies in V(i), there must exist a point yint (V(i)) such that
the line connecting y to xi intersects K, contradicting (4). Thus Vor (S) cannot have
any bounded connected component.

COROLLARY. Vor S) does not contain any isolated point. Moreover, by modifying
the argument given above one can also show that each Voronoi vertex must belong to at

least two edges. (Assertion (1 l) below will strengthen this claim, by showing that each
such vertex must belong to three distinct Voronoi edges.)

(10) No two edges of Vor (S) can be tangent to each other. Also, for each point z

on a Voronoi edge e separating two cells V( i) and V(j), the segment connecting z to xi
(or to xj) is not tangent to e.

Proof. Since Voronoi edges are either straight segments of hyperbolic arcs it

follows that if two oronoi edges are tangent to each other then any Voronoi edges
lying between them at their point of tangency must be tangent to both of them. Hence
if there exist any two tangent Voronoi edges, then there exist two such edges which
belong to the boundary of the same oronoi cell. Assume this to be possible, and let

V(i) be a Voronoi cell whose boundary contains two edges e, e’ which also belong to

V(j), V(k) respectively, and which are tangent to each other at some point y. It is
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plainly impossible for both e and e’ to be straight arcs; hence at least one must be
part of a hyperbola. Let be the line which is tangent at y to both hyperbolas (or to
the hyperbola and straight line) containing e, e’ respectively. As is well-known, a line
tangent to a hyperbola at a point y bisects the angle flYf2, where f and f2 are the two
foci of the hyperbola; furthermore, this result also holds trivially in case the hyperbola
degenerates into the perpendicular bisector of the segment connecting the two points
f,f2. Thus, in any case bisects the angle between the two segments connecting y to
xi and xi (resp. to xi and Xk). It follows that these two angles must be equal, and
consequently the three points y, xj, Xk are collinear, with x and Xk lying on the same
side of y. Suppose for definiteness that xj lies between y and xk. By definition of e and
e’ we then have

d(x,, y)- d(xj, y) r ,
d x,, y)- d Xk, y) r, rk

or

d(Xk, y)- d(x, y) d(x, Xk) rk ,
which is to say, B is wholly contained in Bk, so that by definition Vor (S) does not
contain any edge bounding V(j). This contradiction establishes our assertion.

The second assertion follows from the fact that no tangent to a hyperbola can
pass through any of its foci. (The only exception is when the hyperbolic arc containing
e degenerates into a half-line, but then either B or Bj must be wholly contained in
some other disc, so that by convention e does not appear in our Voronoi diagram.)

(11) Let e and e’ be two adjacent edges along the boundary of a Voronoi cell V( i).
Then the interior angle in V( i) between e and e’ is less than 180 degrees. (Stated otherwise,
in traversing the boundary of V(i) with V(i) to the right, we make a right turn as we
pass from one of the edges e, e’ to the other.)

Proof. We have already shown that e and e’ cannot be tangent to each other. Let
y be their point of intersection, and let be the line containing xi and y. The two edges
e and e’ cannot both lie on the same side of in the vicinity of y, because then the
segment connecting x to a point on one of them sufficiently near y would have to
intersect the other edge, contradicting (4). Suppose then that e lies on the left side of
(oriented from x to y), and that e’ lies on the right side of/. Extend e along the

hyperbolic branch containing it into the right side of (note that a hyperbola is never
tangent to the segment connecting a point lying on it to one of its foci), and denote
the extended portion of e by e". Then e’ must lie between x and e", for otherwise the
segment connecting x to any point on e’ lying sufficiently near to y will intersect e"
at a point z, and plainly no .point z e e" can belong to the interior of V(i) (because z
is equidistant from Bi and from some other disc in S), again contradicting (4). It
therefore follows that the interior angle between e and e’ is less than 180 degrees, as
asserted.

COROLLARY. This argument shows that each Voronoi vertex must be incident to
three distinct Voronoi edges, for if it belonged to just two edges, at least one of the angles
between these edges would be interior to some Voronoi cell, and would be greater than
180 degrees, contrary to what we have just shown.

4. Efficient construction of generalized Voronoi diagrams. Next we present an
algorithm which adapts the divide-and-conquer methods used by Shamos [Sh] and by
Kirkpatrick [Ki] to construct the modified Voronoi diagram of a set of points, and
which computes the Voronoi diagram of a set S of n circular bodies in time O(n log2 n).
The algorithm produces a list of all Voronoi cells having nonempty interior, and for
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each such cell constructs a circular list containing the edges on its boundary, arranged
in clockwise order (for unbounded cells this list will also include "virtual edges" at
infinity connecting pairs of unbounded edges e, e’ such that the intersection of e’ with
an arbitrarily large circle lies immediately clockwise to the intersection of this circle
with e). Finally, the algorithm produces a table in which each edge points to the two
cells containing it.

For simplicity, we will assume in what follows that no two circles in S have distinct
leftmost points lying on the same vertical line. If S does not have this property, then
we can apply an infinitesimal rotation that will make the abscissae of the leftmost
points of all circles in S distinct from each other. Cf. also [SS] where a similar technique
based on infinitesimal perturbations is used to resolve degenerate configurations arising
in other geometric problems. The algorithm begins by dividing S into two subsets R
and L of equal size, such that the leftmost point wi of each Bi L lies to the left of
the leftmost point wj of every disc Bj R. This partitioning of S can easily be done by
finding the median of these leftmost points in time O(n). Note that it has the property
that no disc B, L is wholly contained in another disc Bj R, although a reverse
containment is possible.

Assume that the Voronoi diagrams Vor (R) and Vor (L) have been computed
recursively. The main step of the algorithm is to merge these two diagrams into a single
diagram Vor (S). For this, one must compute the set C of points y which are simul-
taneously nearest to a disc B L and to a disc Bj R. Following Kirkpatrick [Ki] we
call C the contour separating R and L. We will see that, once C has been computed,
Vor (S) can be obtained by taking the union of Vor (R), Vor (L), and C, and then by
discarding (portions of) edges belonging to one of the partial diagrams Vor (R),
Vor (L), whose points have become nearer to some object belonging to the other set
(these portions will be delimited by the intersections of these edges with C). Note that
during this merging step some Voronoi cells V(i) with B R may be wholly deleted
from Vor (S) if B, happens to lie wholly inside some disc Bj L.

Since C will be a curve consisting of straight and hyperbolic arcs, the complement
of C will consist of finitely many open connected planar regions. Each such region
M is either a union of cells V(i) (in the final diagram Vor (S)) with Bi L (in which
case we will call M an L-region), or a union of cells V(i) with B, R (in which case
M will be called an R-region).

By assertion (9) of 3 and the example provided there, the contour C may consist
of several disjoint connected components, no matter how S is partitioned into R and
L (note that in the point-based case [Sh] appropriate partitioning of S will produce a
contour with a single component). Moreover, it is also possible for a connected
component of C to be bounded, as shown by the example appearing in Fig. 3.

FIG. 3. A bounded connected component of C.
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The following lemma restricts this complexity, and begins to develop some of the
facts that will be needed to show that tracing all the components of C need not be
expensive.

LEMMA 4.1. (a) C consists of a disjoint union of simple topologically closed curves
without endpoints (i.e, each such curve is either closed or stretches to infinity in both
directions).

(b) Let Bi L and let u be the horizontal half-line whose rightmost endpoint is xi.
Then u does not intersect C (and consequently lies wholly inside an L-region).

(c) There exists precisely one L-region; all other components of the complement of
C are R-regions.

(d) Each R-region has a connected boundary, consisting of a single (bounded or
unbounded) component of C.

Proof. (a) It follows from its definition that C is a union of Voronoi edges of
Vor (S). It therefore suffices to show that for each Voronoi vertex , of or (S) lying
on C, there are exactly two Voronoi edges emerging from u which belong to C. Since
we have ruled out degenerate configurations, we can assume that , belongs to exactly
three Voronoi cells V(i), V(j) and V(k). Moreover, since , C, one of the discs Bi,
Bj, Bk must belong to L, and another of these discs must belong to R. Assume first
that Bi, Bk L and that Bj R. Then, in the neighborhood of u, the contour C consists
of the two edges separating V(j) from V(i) and V(k) respectively. Much the same
argument applies if B, Bk R and Bj L. This proves (a).

(b) Suppose the contrary, and let z be a contour point lying on u. Let w u be
a point at distance ri from x (that is, w is the leftmost point of Bi). It follows that
there exist discs B R (which is not wholly contained in any other disc), and Bk L
such that

d(z, B) d(z, Bk) <- d(z, B) d(z, w).

But then some point on B (and in particular its leftmost point) must lie to the left of
w, or coincide with w. However, both these possibilities contradict the way in which
L and R have been defined, a contradiction which proves (b).

(c) It suffices to show that the centers xi, x of each pair B, Bj of discs in L are
connected to each other via a path which does not intersect the contour C. Let u (resp.
u) be the horizontal half-line whose rightmost endpoint is x (resp. x), and let wi
u (resp. w u) be the leftmost point of B (resp. Bj). For each t, let y (resp. y) be a

point on u (resp. u) whose abscissa is t. We claim that if is negative and has a large
enough absolute value, the segment e =yiy does not intersect the contour, which,
together with (b), implies that x and x are connected to each other via the polygonal
path xyyjxj which is wholly contained in a single L-region. To see this, suppose to
the contrary that there exists a contour point z e, nearest to some Bk R and to some
B,, L. Then

d(z, Bk)=d(z, B,,)<=d(z, B,)=(d2(yi, w)+d2(z, y,))’/2d(yi, w),

and similarly

d(z, Bk) <---- d(z, B)) d(y, w)

as t- . It follows that the leftmost point Wk of Bk does not lie to the right of w or
of w. Since, by definition of L, R, Wk cannot lie to the left of w, w, it follows that the
three points w, w, Wk all have the same abscissa, again contradicting the way in which
L and R are defined.



INTERSECTION AND CLOSES F-PAIR PROBLEMS FOR DISCS 459

(d) Suppose that M is an R-region whose boundary consists of at least two
disjoint connected components K, K2. By part (a) of the present lemma K (resp.
K2) partitions the plane into two disjoint components, both bounded by K (resp. K2).
Since K1 and K2 are disjoint, it follows that they both collectively partition the plane
into three components, one of which contains M, whereas the other two contain
L-regions. This, however, contradicts (c), thus proving our assertion. Q.E.D.

In general outline, the remainder of our argument is as follows. We first show
that, given points zK on each of the components K of C, the whole of C can be traced
in a number of steps bounded by O(n). Next we show how to find such a set of points
zK. This is done by noting that (by definition) every R-region must contain at least
one center xi of a disc Bi R such that B is not contained in any other disc of R.
Hence if we iterate over all such points x, and connect each one of them by a straight
arc e to a point of an L-regions these e must together intersect all the components of
C. We will show that in total time O(n log n) we can find such arcs e, each intersecting
C in just one point z, and in this way can find a z on each component K of C. This
leads to an O(n log n) merging step, and hence to an O(n log2 n) overall algorithm.
Note that in this generality our algorithm is very similar to that of [LD]; they differ
in the actual implementation of the various steps just outlined.

The tracing of C during the merge phase of our algorithm is done in a manner
quite similar to that described in [Ki]. To facilitate this tracing, we will find it convenient
(following [Ki]) to partition each Voronoi cell V(i) (of either Vor (L) or Vor (R)) into
subcells by connecting x to each vertex v of V(i) by a straight segment (called a spoke,
as in [Ki]). Clearly each subcell is an angular sector bounded by two spokes and one
Voronoi edge. Note that, given a directed straight line or hyperbolic arc e, its intersection
points with the boundary of any Voronoi subcell can be found in constant time,
assuming that we use an appropriate representation of the corresponding diagram
Vor (L) or Vor (R).

Suppose that we have somehow found a point z C (but such that z is not in
either Vor (L) or Vor (R)), for which the two discs B L, Bj R nearest to z are
known, and suppose further that the two subcells of V(i) in Vor (L) and of V(j) in
Vor (R) to which z belongs are also known. Then we can trace the component K of
C containing z as follows. We first find the Voronoi edge e (in Vor (S)) containing z.
Note that e is part of the straight line or hyperbolic arc equidistant from Bi and Bj,
and is an edge lying on K. We begin tracing K by following e from z in some direction,
and by computing its intersection points with the boundaries of the two subcells U(i),
U(j) of V(i), V(j) respectively, containing z. Suppose for specificity that the nearest
of these points along e is the point z’ at which e intersects the boundary of U(i). If
z’ lies on a Voronoi edge, then the contour K crosses this edge to another Voronoi
cell V(k) of Vor (L) after z’ (by assertion (10) of.the previous section, two Voronoi
edges are never tangent to one another). In this case, K continues after z’ along the
Voronoi edge e’ containing points equidistant from Bk and B. On the other hand, if
z’ lies on a spoke, K will continue after z’ along the edge e, but will cross into another
subcell of V(i). (Note that the contour can never be tangent to a Voronoi spoke, by
the second part of assertion (10).)

Tracing the contour in this way, we either come bac to z, in which case the
component K is a bounded component of the contour, or else we reach an unbounded
edge of the contour, in which case we have to repeat the tracing procedure just outlined
by starting from z in the other direction of the edge e in order to obtain the entire
component K.

Let M be the R-region bounded by K. Each cell V(i) through which K passes
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is cut by K into several portions, one of which belongs to an R-region (and contains
xi) while the others belong to the L-region. Moreover, all the cell portions belonging
to R-regions belong to the same R-region M. Thus, as K is being traced, we can also
note that all these cell portions cut by K belong to M. Observe that M may also
contain additional internal cells of Vor (R) which have not yet been encountered.
These will be dealt with during later steps of the algorithm.

Next we show that if a point zK is available on each of the components K of C,
the total cost of constructing C is O(n). The complexity of the tracing procedure just
described is plainly O(nK)+ n2r)), where n/ is the number of Voronoi edges in K,
and where n2r is the number of intersections of K with Voronoi spokes (in either
Vor (L) or Vor (R)). As in [Ki], we can show that the sum over all K of the quantities
nr+ n2:) is O(n). Namely we have the following lemma.

LEMMA 4.2. Each Voronoi spoke (in either Vor (L) or Vor (R)) is intersected by
the contour C in at most one point, Moreover this remark also holds for any segment one

of whose endpoints is the center xi of some Voronoi cell V(i) (in either diagram) and
which is wholly contained in V( i).

Proof. Let e be a Voronoi spoke of a cell V(i) in Vor (L). Then each point z at
which e and C intersect each other must lie on the boundary of the cell V(i) in Vor (S),
and since this cell is star-shaped with respect to x it follows that at most one such
intersection point can exist. Q.E.D.

COROLLARY. The total time required to trace the contour, given a point z (and the
two subcells in Vor (L), Vor (R) containing it) on each of its connected components, is

O(n).
Proof The total number of edges on C is O(n), because C is a subset of Vor (S).

The total number of intersections of C with Voronoi spokes is also O(n), by Lemma
4.2. Hence the total complexity of the tracing procedure applied to each component
K of C is

E (n:)+ n(2:)) O(n). Q.E.D.
K

The problem that now remains is that of finding a representative point zr on each
component K of the contour C (and also finding the subcells containing zr). For this,
Kirkpatrick [Ki] uses a technique which traces edges of minimum spanning trees for
R and L. However, this technique, which works nicely for a set S of points, is not
easily generalizable to sets of more general objects like the circles which now concern
us. We will therefore present an alternative approach, which works for sets of circular
discs, but whose complexity is O(n log n), instead of the linear complexity of
Kirkpatrick’s technique.

We iterate over all the cells V(i) of or (R) (and the corresponding circles B),
proceeding as follows. Let Bj L be such that x V(j) (in Vor (L)) so that Bj is the
circle of L which is "closest" to x. If Bg contains all of Bi, then, by definition, the final
diagram Vor (S) will not contain a cell V(i). In this case we simply do not use the
pair xi, xg to find a point on the contour, but go on to consider the other discs B, R.

Next suppose that Bg does not contain all of B. Then no other disc Bk L can
have this property, and so it follows that the disc BI in S for which d(x, x)- r reaches
its minimum belongs to R. Similarly, d(x, x)-r attains its minimum when l-j, since
no disc in R can contain the whole of a disc in L, and since the recursive construction
of Vor (L) described in the following paragraphs will eliminate discs that are wholly
contained in other discs. Thus the segment e- xxj must contain a point z for which
d(z, x)-rl reaches its minimum simultaneously for some B L and for some other
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disc B I, E R, which is to say, a point z on C. Moreover, since e emanates from xj and
is wholly contained in V(j), it follows by Lemma 4.2 that the contour C cannot
intersect e in more than one point. Hence e intersects C in exactly one point. Note
that the entire segment e is contained in a single subcell of V(j) in Vor (L). All that
we have to show is that we can either find z, or assure ourselves that a point on the
same component K (of C) as z has already been found, in total time O(n log n).

We can proceed to find the unique intersection z of e with C using a technique
quite similar to the contour-tracing procedure described above. That is, we first find
the Voronoi subcell (of V(i)) in Vor (R) containing points on e near xi (since e emerges
from xi, this amounts to finding the two Voronoi spokes of V(i) between which e lies).
We then find the intersection of e with the Voronoi edge bounding that subcell, beyond
which e crosses into another subcell of Vor(R). (In the extreme case in which e
coincides with a Voronoi spoke of V(i), e will exit the two subcells of V(i) in which
it lies at the Voronoi vertex which is the other endpoint of the spoke; it is then a bit
more complicated, but still straightforward, to determine the Voronoi subcell into
which e enters past this vertex.) Continuing in this manner, we partition e into
subsegments e, , e,,, each of which is contained in some oronoi subcell ofor (R)
or lies along a spoke of Vor (R). As all this is done, we keep track of all the cells V(k)
of Vor (R) that have already been encountered. If such a cell is encountered for the
second time, tracing of the sequence of edges el,. ", e,, stops immediately (this rule
is justified by Lemma 4.3 below). This guarantees that the total cost of traversing
subcells ofVor (R) is bounded by the total number of such subcells, and hence by O(n).

Remark. It is well to compare this tracing technique with the technique of Lee
and Drysdale [LD] for locating points on the contour. First of all there is an inaccuracy
in the description of their algorithm, even in the case of line segments. Namely (cf.
[LD, top of p. 83]) they claim that if is the nearest point on some segment of L to
an endpoint q of a segment in R, then the nearest endpoint of a segment in R to is
q itself. This however is false, as can be easily checked. Lee and Drysdale correct
themselves later by considering the midpoint m of the segment qt rather than itself.
In the case of circles, however, they also state an inaccurate statement of this form,
but do not correct themselves. In the case of disjoint circles, using the midpoint of the
segment uv (in the terminology of [LD, p. 86]) will result in a correct algorithm; it is
not clear whether this amendment will also work in the case of intersecting circles.

For each t-1,..., m let V(it) be the cell in Vor (R) containing et. As tracing
proceeds through the cell V(it), we check whether V(it) has been encountered before,
and, if not, whether there exists z E et such that d(z, Bj) d(z, B,) (this can be done
in constant time). As already shown, there will exist a unique point z on e having this
property, and this z will be the required intersection point of e with C (the algorithm
will reach this z only if tracing is not abandoned earlier, because a previously encoun-
tered cell of or (R) is encountered again). Let es be the subsegment of e containing
z. Note that z is found in time O(p/ s), where p is the number of subcells of V(i) in
Vor (R).

To show that tracing of e can be abandoned as soon as any cell of Vor (R) is
encountered for the second time, we will use the following:

LEMMA 4.3. Let s be as in the preceding paragraph. Then for each <-s, Vor (S)
contains a cell whose center is x,, and the point x, lies in the same R-region as x.

Proof Let M be the R-region containing xi, x, and let < <_-s. Pick any point
zt e (but in case s, zt must lie between x and z). Since -< s, the segment xz does
not intersect the contour, and therefore is wholly contained in M. As always, let B,
be the disc in L corresponding to the cell V(it) of Vor (R), and let xi, be its center.
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Suppose for the moment that we have already shown that a cell V(it) (with center xi,)
appears in Vor (S), i.e. that Bi, is not wholly contained in any disc of L. The segment
J zxi, is contained in the cell V(i,) of or (R), which is star-shaped with respect to
its center xi,, by property (4) of 3. Moreover, since this segment emanates from xi,,
it can intersect the contour in at most one point, by Lemma 4.2. But such an intersection
is impossible, because both the endpoints of J lie in an R-region (x, lies in an R-region
because by assumption it belongs to V(it) in Vor (S)). Therefore the polygonal path
x,zx, does not intersect the contour. But x and x, are connected to each other via
this path, and hence lie in the same R-region.

It only remains to show that a cell V(it) with center x, appears in Vor (S). For
this, note that the point zt lies in an R-region, so that it is nearer to some disc of R
than to any disc of L. From this it is plain that zt is nearer to Bi, than to any other
disc of S. But then zt must be an interior point of the cell V(it) in Voro (S), so that,
by definition of Vor (S), a cell V(it) with center xi, appears in this diagram, as
asserted. Q.E.D.

As we apply the procedure just described to each of the discs B R, one of the
following three situations will arise" either

(a) We discard B immediately, because the nearest disc B in L wholly contains
B; or

(b) While tracing subcells ofVor (R) crossed bythe segment e xx (where B L
is the disc for which x V(j)), we encounter a subcell of some cell V(r) whose
R-region M in Vor (S) was encountered before. In this case we conclude from Lemma
4.3 that B, as well as every other disc of R whose cell in Vor (R) has been crossed
by e so far, lies in the R-region M. In this case we can stop tracing e and go on to

process other discs of R, since we can be sure that the component of the contour C
intersected by e has already been explored. The algorithm wilt also note that all cells
of Vor (R) crossed by e so far belong to M, to avoid repeated processing of these cells
later on. (note that this case will arise only when V(i) is an inner cell in M, i.e. a cell
not intersected by the contour); or

(c) The tracing procedure continues until an intersection z of e with the contour

is found. In this case only new cells of Vor (R) are being traced, and z will lie on a

new component of C (this component must be new, because all the old components
of C have already been traced, and all the R-subcells through which they pass have

already been encountered and marked; hence before reaching any old component of
the contour the scanning will stop by step (b) above). As in (b), we take note of the
fact that all cells crossed by e during this tracing belong to the new R-region just
found, to avoid repeated processing of these cells later on.

These observations imply that we can find a representative point on ea6h com-

ponent of the contour in total time O(n), provided that, for each B R, the subcell
of the cell V(i) of Vor (L) containing x is already known.

To obtain this final item of information, we can use a simple plane-sweeping
algorithm, similar to those described by [Sh], [BO], [NP]. The algorithm sweeps the

plane from left to right and maintains a vertical "front" T(a) consisting of the segments
lying along the line x a and delimited by the points of intersection of this line with

the edges and spokes of Vor (L). The structure of T(a) will change only at points a

which are either abscissae of Voronoi vertices of Vor (L), or abscissae of centers of
discs in L, or points for which the line x a is tangent to some Voronoi edge of
Vor (L). The number of such "transition points" is plainly O(n), and the total number
of segments of T(a) is also O(n) for any real a. To start the algorithm, sort the set

A, consisting of all transition points of Vor (L) and all centers x of discs Bi R, by
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their x-coordinates, and initialize the list T(a) as a 2-3 tree for some large enough
negative real a. Both these tasks can be done in time O(n log n). Then scan A from
left to right. For each a A, if a is a transition point of Vor (L), update the list T by
an appropriate combination of deletions, insertions, and merge operations applied to
segments in T; this can be done in time O(ka log n), where ka is the number of
segments which undergo these changes. Note that if a is the abscissa of a center xi of
some disc Bi L, then k is the number of Voronoi edges on the boundary of the cell
V(i) in Vor (L), which may be large. Nevertheless, the total sum of all the k’s over
all transition points a is always O(n). If a is the abscissa of a center c of some disc
in R, search T to find the segment in T containing x, from which the Voronoi subcell
of Vor (L) containing c is readily obtained. Proceeding in this way, we locate all the
centers of discs of R in Vor (L) in time O(n log n).

Together, the details just described yield the following algorithm for constructing
Vor (S):

1. Split S into two equal-size subsets L, R such that the leftmost point of each
Bi L lies to the left of the leftmost point of every B R (we have assumed
that no two leftmost points have the same abscissa).

2. Compute Vor (L) recursively.
3. Apply the plane-sweeping procedure described above to locate the subcell V(j)

of Vor (L) containing x for all centers x of discs Bi R. Discard the disc B R
if it is wholly contained in Bj.

4. Let R’ be the remaining set of discs of R. Compute Vor (R’) recursi,ely.
5. Construct the "contour" C as follows:

For each disc B R whose R-region (in Vor (S)) has not yet been identified
a. Connect x to the center x of the disc B L whose Voronoi cell V(j)
in Vor (L) contains x. If Bj wholly contains Bi, then Vor (S) will not contain
a cell corresponding to B, and we go on to process other discs of R.
b. Find the unique intersection z of the contour with the segment e xxj
by applying the tracing procedure described above. If that procedure detects
an intersection of e with a cell V(k) of Vor (R) whose R-region M has
already been found, it assigns M as the R-region of B and of all other
discs of R whose cells in Vor (R) have been crossed by e before V(k) has
been reached, and continues with the main loop of this phase.
c. Trace the whole contour component K containing z. An R-region indica-
tion is thereby assigned to all discs Bk R whose cells in Vor (R) are
encountered.

6. Obtain the final diagram Vor (S) by taking the union of Vor (R) and of Vor (L)
with C, and then by discarding (portions of) edges of Vor (R) or of Vor (L)
which are cut off from their cells by C.

The algorithm just sketched runs in time O(n log2 n). Its costliest phase is step 3,
which locates subcells of Vor (L) containing the centers of discs of R.

Note that it is a simple matter to modify the algorithm so that it also produces a
mapping contain, which, for each disc B deleted from the diagram by the algorithm,
gives the disc B containing Bi as found in step 5a of the algorithm.

5. Applications of the generalized Voronoi diagram; possible extensions. In this
section we show how the generalized Voronoi diagram can be used to solve some of
the intersection problems mentioned in the introduction to this paper.
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Suppose that the generalized diagram Vor (S) for a set S of circular discs has
been constructed, and that it is represented by the data structures described in 4.

First consider the problem of detecting the existence of an intersection between
any pair of discs in S. This can be tested using the following procedure: First check
whether there exists a Voronoi cell V(i) having empty interior (i.e. a cell which is
missing from Vor (S)). If so, Bi is wholly contained in some other disc, and an
intersection has been found. Otherwise, for each edge e in Vor (S) belonging to the
common boundary of two Voronoi cells V(i) and V(j), compute the value

p(e) min {d(xi, y) ri: y e} min {d (xj, y) rj: y e e}.

If p(e)<= 0 for some e e Vor (S), then it is clear that the discs in S intersect. On the
other hand, if p(e)> 0 for each e e Vor (S), then no two discs in S intersect. Indeed,
suppose that two discs B and B intersect each other. Let I be the segment [x, x].
For each y I consider the function

f(y) =min {d(Xk, y)-- rk: k= 1," ", n}.

Note that f(y) <- 0 for each y e I, because each such y lies either in B or in B, so that
either d(xi, y)- ri or d(x, y)-rj is -<_0. Moreover, by assumption both V(i) and V(j)
have nonempty interiors, which implies by (2) that xi belongs to V(i) and to no other
cell. Hence I must intersect Vor (S) at least once. Let y e I be a point belonging to
some edge e of Vor (S), and let V(k), V(l) be the two Voronoi cells containing e in
their boundary. Then we have

to(e) <- d(Xk, y)-- rk =f(y) <_--0,

from which our claim follows immediately.
It is easy to see that a simple modification of the procedure just outlined yields

a solution to the more complicated problem in which the discs in S are of several
colors and we want to detect intersection between two discs of different colors. The
appropriate procedure in this case is:

(a) First check whether there exists a disc B which is wholly contained in another
disc B of a different color, i.e. if V(i) has empty interior, and x belongs to a cell
V(j) of a disc with a different color. Once the Voronoi diagram has been constructed
by the method described in the preceding section, and has been supplemented by the
mapping contain, we can detect such cases in O(n) time. Note that not every contain-
ment of a disc B of, say, red color in another disc B of a different color can be
detected from the contain map, because B might be contained in another red disc
and contain may map B directly to Bj. Nevertheless, if Bi is the largest possible disc
contained in a disc of a different color, then contain will map B to some differently-
colored disc containing it, so that if any disc is wholly contained in a disc of a different
color, the procedure just described will detect at least one such situation.

(b) If step (a) detects no intersection, compute the quantities to(e), as defined
above, for all edges e or (S). Then two discs of different colors intersect each other
if and only if there exists an edge e common to two cells V(i) and V(j), for which
B and Bj have distinct colors, such that to(e)<_-0.

Proof Plainly if to(e)<-_ 0 for such an edge e, then e must contain a point y which
lies inside both B and B, so that these two differently-colored discs intersect each
other. Conversely, suppose that two differently-colored discs Bi and B intersect each
other. Define the segment I and the function f on it as in the preceding paragraphs.
We can assume without loss of generality that V(i) and V(j) have nonempty interiors,
for if B (or B) had empty interior then it would have been wholly contained in another
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disc Bk of the same color, so that we could replace Bi (or Bj) by Bk in what follows.
Call the colors of Bi, Bj "red" and "green", and call a Voronoi cell V(p) a "red"
(resp. "green") cell if Bp is colored red (resp. green). Then x lies in (the interior of)
a red cell, whereas x does not. Hence I must intersect Vor (S) at an edge e which
separates a red cell V(k) and a cell V(l) of a different color. Arguing as before, it
follows that p(e)<-_0 for this edge. Q.E.D.

Next consider the problem of determining the shortest distance between any two
discs in S. Suppose that the discs in S do not intersect each other (if they do, the above
procedures will detect this fact, and the distance that we seek will be 0), and let B,
B be the two discs closest to each other among all pairs of discs in S. Let y be the
point on the segment I [x, x] equidistant from B and B. We claim that y Vor (S).
For otherwise, there would exist another disc Bk S such that d (Xk, y) rk < d (xi, y) ri.
But then, by the triangle inequality,

d(Bj, Bk) d(x, Xk)-- rk <= d(xj, y)- r + d(Xk, y)- rk

< d(xl, y)- r + d(x,, y)- r d(x,, xi)- r r d(B,, Bj),

contrary to assumption. Thus y Vor (S). Moreover, the function

f(z) =min {d(Xk, z) rk: k 1," ", n}

attains its minimum value on the whole Voronoi diagram Vor (S) at the point y. This
follows since by the triangle inequality we have 2f(z) -> d(Bk, B) for each z Vor (S),
where V(k) and V(1) are the two Voronoi cells containing z. It follows by the definition
of f and by the preceding definition of p(e) that f(y) is the smallest of the values
p(e), for edges e of Vor (S). Taken together, these arguments show that the shortest
distance between two discs in S is equal to

min {2p(e): e an edge of Vor (S)},

and hence this distance can be found in time O(n log2 n).
A similar technique can be used to find the nearest neighbor in S of each B e $.

Indeed, an easy generalization of the preceding argument implies that if B is the
nearest neighbor of Bi, then V(i) and V(j) meet at a common Voronoi edge, and the
shortest distance between B and any other disc in S is equal to

min {2p(e): e a boundary edge of V(i)},

from which the nearest neighbor of B is easily found.
These arguments extend easily to the case in which each of the discs of S is

assigned a certain color, and we want to find the shortest distance between any two
differently-colored discs. For this, let B and B be two discs in $ of different colors
such that their distance is the smallest among all distances between two differently-
colored discs in S. Let the colors of Bi, B be "red" and "green" respectively. Let y be
the point on [x, x] equidistant from B and Bj. We claim that y Vor (S), for otherwise
there would exist another disc Bk such that d (Xk, y)- rk < d (x, y)- r d (x, y)- ). If

Bk is colored red, then arguing as above we would obtain d (B, Bk)< d (Bi, B), i.e. a
shorter distance between a red and a green disc. Similarly, if Bk is colored green, then
we would have d(B, Bk) < d (B, B), again a contradiction. Finally, if Bk is of another
color, then both d (B, Bk) and d (Bj, Ik) are smaller than d (B, Bj), again a contra-
diction.

Thus y e Vor (S), and similar arguments to those used above imply that f(y) is
the minimum of all p(e), for edges e of Vor (S) separating cells of different colors.
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This shows that the shortest distance between two differently-colored discs in S is
simply the smallest of the values 2p(e), taken over all edges e of Vor (S) separating
two differently-colored cells.

We next consider Problem IV listed in the introduction. For this we apply
Kirkpatrick’s algorithm [Ki2] for fast searching in planar subdivisions to the subdivision
of the plane into Voronoi cells. This algorithm applies in our case since each Voronoi
cell is star-shaped with respect to the corresponding disc center. The additional
pre-processing cost in only O(n) (after Vor (S) has been constructed), and then one
can find the Voronoi cell containing any specified point in time O(log n).

Using the Voronoi diagram Vor (S) has enabled us to solve some of the problems
noted in the introduction, but not all of them. In particular, we would like to use these
methods for solving the second part of Problem III (that is, to find the differently-colored
disc nearest to any given disc in S), and for solving Problem IV. Concerning Problem
III, we note that in some special cases straightforward generalizations of the techniques
presented above can be used to solve this problem. This is the case for example if
each color class has a constant size. Note also that the following partial solution to
the second part of Problem III is available in general: Consider the subgraph H of
the dual graph D* of Vor (S) defined so that xi and xj are adjacent in H if and only
if (they are adjacent in D* and) Bi and Bj have the same color. Let P be a connected
component of H (i.e. a "clustering" of discs having the same color). Then the shortest
distance between some disc whose center appears in P and a differently colored disc
can be found by tracing all Voronoi edges which separates a disc in P from a disc
with a different color, using the same technique given above. In many applications
partial results of this form are sufficient.

6. Computing the area of a union of discs. Let us consider next another interesting
application of the generalized Voronoi diagram for discs. Let S be a set of n possibly
intersecting discs in the plane, and let K denote the union of all discs in S. The problem
at hand is to compute efficiently the area of K. We will show that, once the generalized
diagram Vor (S) has been computed, the area of K can be computed in linear time.
More specifically, we will show that K can be decomposed in linear time into O(n)
disjoint subparts, each being either a circular sector or a quadrangle, so that the area
of each such subpart can be readily calculated, and will be assumed to require constant
time to calculate. This gives us the stated linear time bound.

Suppose that Vor (S) has already been computed. We partition each cell V(i) of
Vor (S) into subcells as in 4, by connecting each vertex in V(i) to xi by a straight
"spoke". Evidently there are overall O(n) such subcells. We will make use of the
following simple lemma.

LEMMA 6.1. For each Bi S, we have V(i)
Proof Let y V(i)if)K, and suppose that y Bj for some Bj in S. Since y V(i)

we have

d(xi, y)- ri <-- d(x2, y)- t) =<0,

so that y B too. Q.E.D.
Let U be a subcell of some cell V(i). The boundary of U consists of two spokes

connecting xi to two Voronoi vertices Ul, u2, and of a unique Voronoi edge e separating
V(i) from an adjacent cell V(j) and connecting Ul and u: (if e is an unbounded edge,
Ul or u2 may lie at infinity). Suppose without loss of generality that x lies at the origin.
By the preceding lemma, U 0 K in polar coordinates is

U K {(r, O): O <= O <= 02, 0<- r<- min (ri, e(O))},
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where Ok is the orientation of the spoke connecting xi to /k, k 1, 2, and where e(0)
is the length of the segment at orientation 0 connecting xi to e.

It is now plain that U fq K can be decomposed into at most three subparts, each
of which is either a circular sector (whose area is readily calculable) or a sector of the
form

A={(r, 0): O’<-O<-O",O<=r<=e(O)}.

Although the area of such a sector can be easily calculated by straightforward integra-
tion, the formula giving this area is somewhat complicated and involves trigonometric
and logarithmic terms. However we can avoid explicit calculation of the area of such
sectors as follows. Let A be such a sector, and let y, y’ be the two endpoints of the
portion of the corresponding Voronoi edge e within A. Note that e separates the cell
V(i) containing A and an adjacent cell V(j), so that when V(j)71K is decomposed
into its subparts, one of them will consist of another sector A’ bounded by e and by
the two segments xjy, xjy’. Hence, instead of computing the areas of A, A’ separately,
we can compute directly the area of A A’, which is simply the quadrangle xiyxy’.

We have thus shown that K can be decomposed into O(n) subparts, each being
either a circular sector or a quadrangle. It is also plain that this decomposition can
be accomplished in linear time by a simple traversal of the Voronoi diagram, once the
diagram has been calculated. Hence we have:

THEOREM 6.1. The area of the union of n arbitrary discs can be calculated in time
O(n logz n ), as the sum of O( n circular sectors and quadrangles.

Remarks.
(1) It is also conceivable that this area could be calculated efficiently by some

sweeping technique. This is suggested by the fact that the number of points of
intersection of pairs of circles in S, which lie on the boundary of K, is O(n) (indeed,
each such point lies on one of the O(n) edges of Vor (S), and each of these edges can
contain at most two such points). Thus if we could perform a sweep in which only
those intersection points are traced, while the other O(n2) "inner" intersection points
are ignored, we could obtain the area of K as the sum of the areas of O(n) vertical
strips, each bounded by an upper and a lower circular arc. However, we do not know
how to achieve this without calculation of the associated Voronoi diagram.

(2) A recent result of Spirakis [Sp] gives a Monte-Carlo algorithm for calculating
the area of K in expected linear time.

7. Conclusion. In this paper we have introduced the notion of generalized Voronoi
diagram for a set of n possibly intersecting circles in the plane, described an O(n log2 n)
algorithm for constructing this diagram, and presented several applications of this
diagram, for detecting intersections and calculating proximities on one hand, and for
calculating the area of the union of these circles on the other.

Other properties of these generalized Voronoi diagrams deserve study. Some
additional problems concerning applications of this diagram have been noted in 5.
Another interesting problem is to find efficient techniques for dynamic maintainance
of the generalized Voronoi diagram of a set S of circular objects, when one or more
objects move continuously along specified trajectories, e.g. along straight lines. An
efficient solution of this latter problem would facilitate efficient procedures for checking
a prescribed motion of a robot system for collisions; the current alternative is to apply
an appropriate static collision-detecting procedure, as described in 5, to a sequence
of configurations of the system, sufficiently close to each other, along the specified
trajectory.
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It would also be useful to generalize the techniques described in this paper to the
case of a set S of objects other than circles, e.g. general convex bodies, or special
forms of convex bodies, such as "cigar-shaped" displacements of straight segments,
etc. A major problem in attempting such generalizations is that if (as we would like
to do) we allow objects in S to intersect each other, then the corresponding Voronoi
diagram may contain up to O(r/E) cells (consider e.g. the case of n straight segments
intersecting each other at O(r/2) points). Note here that it is a remarkable property of
circular bodies that the size of their Voronoi diagram is always linear, even though
they can cut each other into O(n2) regions. A final open problem is whether the
generalized Voronoi diagram for n circular discs can be constructed in time O(n log n)
(even in the simpler case in which the discs are disjoint from each other).
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POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND
UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION*

ERICH KALTOFENf

Abstract. Consider a polynomial f with an arbitrary but fixed number of variables and with integral
coefficients. We present an algorithm which reduces the problem of finding the irreducible factors of f in
polynomial-time in the total degree of f and the coefficient lengths of f to factoring a univariate integi’al
polynomial. Together with A. Lenstra’s,.H. Lenstra’s and L. Lovfisz’ polynomial-time factorization algorithm
for univariate integral polynomials [Math. Ann., 261 (1982), pp. 515-534] this algorithm implies the following
theorem. Factoring an integral polynomial with a fixed number of variables into irreducibles, except for the
constant factors, can be accomplished in deterministic polynomial-time in the total degree and the size of
its coefficients. Our algorithm can be generalized to factoring multivariate polynomials with coefficients in
algebraic number fields and finite fields in polynomial-time. We also present a different algorithm, based
on an effective version ofa Hilbert Irreducibility Thebrem, which polynomial-time reduces testing multivariate
polynomials for irreducibility to testing bivariate integral polynomials for irreduciblity.

Key words, polynomial factorization, polynomial-time complexity, algorithm analysis, Hensel lemma,
Hilbert irreducibility theorem

1. Introduction. Both the classical Kronecker algorithm [17, p. 10] (see also van
der Waerden [28, pp. 136-137]) and the modern multivariate Hensel algorithm (cf.
Musser [26], Wang [29], Zippel [35]) solve the problem of factoring multivariate
polynomials with integral coefficients by reduction to factoring univariate integral
polynomials and reconstructing the multivariate factors from the univariate ones.
However, as we will see in 3, the running time of both methods suffers from the fact
that, in rare cases, a number of factor candidates obtained from the univariate factoriz-
ation which is exponential in the input degree may have to be tried to determine the
true multivariate factors. In this paper we will present a new algorithm which does
not require exponential-time in its worst case. But before we can state our result
precisely, we need to clarify what we mean by input size. We will assume that our
input polynomials are densely encoded, that is all coefficients including zeros are listed.
Hence, the size of a polynomial with v variables, given that the absolutely largest
coefficient has digits and the highest degree of any variable is n, is of order O(I( n + )).

Let v, the number of variables, be a fixed integer. We will show that the problem
of determining all irreducible factors of v-variate polynomials is polynomial-time
(Turing-, Cook-) reducible to completely factoring univariate polynomials. Recently,
A. Lenstra, H. Lenstra, and L. Lovfisz [22] have shown that factoring univariate rational
polynomials is achievable in polynomial-time. Therefore, our result implies the follow-
ing theorem. Factoring an integral polynomial with a fixed number of variables into
irreducibles, except for the constant factors, can be accomplished in deterministic
polynomial time in the total degree and the size of its coefficients. Our algorithm is a
multivariate version of an algorithm due to H. Zassenhaus [34], which, instead of
leading to an integer linear programming problem, as is the case for Zassenhaus’
algorithm, leads to a system of linear equations for the coefficients of an irreducible
multivariate factor.

* Received by the editors March 15, 1983, and in revised form April 9, 1984. This work was partially
supported by the National Science Foundation under grant MCS-7909158 and by the Department of Energy,
under grant DE-AS02-ER7602075.
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address: Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.
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In Kaltofen [12] we have already established a polynomial-time reduction from
multivariate to bivariate polynomial factorization. However, our new algorithm is less
complex. On the other hand, the results in Kaltofen [12] imply a polynomial-time (m-,
Karp-) reduction for irreducibility testing, which our new algorithm does not provide.
This older algorithm (cf. 7) is based on an effective version of a Hilbert Irreducibility
Theorem [11] (see also Franz [5]), an idea which since has been used successfully in
von zur Gathen [7] to construct a probabilistic algorithm for factoring sparse multivari-
ate polynomials with a growing number of variables, and in Chistov and Grigoryev
[3] to provide another polynomial-time reduction from bivariate to univariate integral
polynomial factorization.

If one does not fix the number of variables, our definition of input size may not
be appropriate since the input size then grows exponentially with the number of
variables. Although our algorithm remains polynomial in the expression l(n + 1)v, our
size measure only applies to dense inputs and for sparse polynomials our algorithm
is of exponential complexity in the number of variables. Unfortunately, in the.sparse
case little is known about even the space complexity of the answer under these
conditions. In 8 open problem corresponds to this question.

The question arises whether our algorithm is of practical importance. Unlike in
the univariate case, in the multivariate Hensel algorithm the factors of the reduced
univariate polynomial are almost always the true images of the multivariate factors,
in which case no exponential running time occurs. This empirical observation can be
explained by a distributive version of the Hilbert Irreducibility Theorem (cf. 3) but
there seems to be no known guarantee that one can always avoid bad reductions in
polynomial-time. However, we like to point out that so far we know of no class of
polynomials for which our polynomial-time algorithm could perform better than the
standard multivariate Hensel algorithm. In this connection we state open problem 2
in8.

In this paper we only consider the problem of multivariate polynomial factorization
with integral coefficients. However, the presented algorithms can be generalized to
coefficient domains such as algebraic extensions of the rationals as well as finite fields.
Besides outlining the necessary ideas in 8 we refer to the papers by Chistov and
Grigoryev [3], Landau [19], von zur Gathen and Kaltofen [8], and Lenstra [20] and [21].

We shall briefly outline the organization of this paper. Section 2 establishes our
notation and some well-known facts about polynomials. Exponentially bad cases for
both the Kronecker and the multivariate Hensel algorithm are then constructed in 3.
In 4 we introduce some well-known preliminary transformations on our input poly-
nomials and also establish that these transformations are polynomial-time reductions.
The main algorithm is presented in 5 including the necessary arguments for its
correctness. Its complexity is analyzed in 6. In particular we show that the size of
all intermediately computed integers stays within polynomial bounds. An effective
version of the Hilbert Irreducibility Theorem and its applications to the factorization
problem are discussed in 7. We conclude in 8 by raising 3 open problems.

2. Notation. By Z we denote the set of the integers, by Q the set of the rational
numbers and by C the set of the complex numbers. Zp denotes the set of the residues
modulo a prime number p. If D is an integral domain, D[x,..., x,] denotes the set
of polynomials in x,..., x over D, D(x,..., x,) its field of quotients; degx, (f)
denotes the highest degree of x in f D[x,..., x,], deg,l. (f) the highest total

Our algorithm remains even polynomial in some slightly sharper input size measures such as l(d +
1) (do + 1) where di is the degree of the ith variable.
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degree of monomials in x and x2 in f, and deg (f)= degx,,...,xo (f) the total degree of
f. Thus, deg (f) is the maximum of all exponent sums of monomials in Xl, , xv with
nonzero coefficients in f The coefficient of the highest power of xv in f is referred to
as the leading coefficient of f in x and will be denoted by ldcfxo (f). Notice that
ldcf (f) D[x1, Xv_l]. We call f monic in x if ldcf (f) is the unity of D. As is
well known, D[x,..., x,] is a unique factorization domain (UFD) provided that D
is a UFD. In this case the content off D[x,. , xv] in x, conto (f), is the greatest
common divisor (GCD) of all coefficients of f(x,) as elements in D[Xl,’’’, X_l].
Notice again that contxo (f) D[Xl,’’’, x,_]. The primitive part off in xv is defined
as

ppxo (f) fcont (f)"
and we call f primitive in x if f= PPxo (f). We also note that the total degree of a
factor of f is less than or equal to the total degree of f The infinity norm of
f C[Xl,’’’, x], the maximum of the absolute values of the complex coefficients of
f, will be denoted by [j. The square root of the sum of squares of the absolute values
of the coefficients of f the square norm of f will be denoted by [f[2.

l-1Let f(x)-alx+al_Xv +...+ao and g(x)=bmx+...+bo with ai, bj
D[Xl,. , x_]. By Sylxv (f, g) we denote the Sylvester matrix of f and g,

al al- ill ao
al at_ a2 a ao

al al_

b b-i b bo
b,, b_

a ao

bo

bm bm-1 bo_

where the empty entries are assumed to be 0 (there are m rows with coefficients of f
and rows with coefficientsof g and the matrix has l+ m columns). Its determinant
is the resultant of f and g with respect to x and will be denoted by

res,o (f, g) det (Syl, (, g)).

In order to be able to manipulate with monomials in a short way we adopt the
following vector notation: .k-- (k,. ., kv), .0-- (0,. ., 0), y.k__ yk,.., yko, .k +./--
(k, + ll," ", ko + l,), .k <= .l if, for all i, ki --< li and finally I.kl-- kl’+" + k, if .k ->_ .0, and
-oo otherwise. By () we denote the binomial coefficient n!/(rn!(n-rn)!).

3. Exponential cases for the Kronecker and Hensel algorithms. We only consider
bivariate polynomials though the constructions easily generalize. First, we discuss some
exponential cases for the Kronecker algorithm. This algorithm transforms the bivariate
polynomial f(z, x) into f(y)=f(yd, y), d =max (deg (f), deg (f))+ 1. Since the
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degree in z or x of any factor g(z, x) of f(z, x) is less than d, g(y)- g(ya, y), which
is a factor of f(y), can be used to retrieve g(z, x) in a quick and unambiguous way.
Kronecker’s algorithm proceeds in transforming all univariate factors of f(y) back to
bivariate factor candidates for f and then tests whether any candidate is a true factor.
However, it clearly requires time exponential in the degree off in the case where f is
irreducible, but f splits into linear factors. It is easy to construct such f’s, as we do
below, by working backward from f(y).

Example 1.

f(y) (y-4)(y-3)(y-2)(y- 1)(y+ 1)(y+ 2)(y+ 3)(y + 4)

y8 30y6 + 273y4_ 820y2 + 576.

Set d =3" f(z, x)= zgx2-30z2+273xz-820x2+576 which is irreducible.
Kronecker’s algorithm has to refute 127 factor candidates to determine irreducibility
off.

Set d 5" f2(z, x)= x3z-3Oxz + 273x4-820x-I 576 which is irreducible because
degz (f)= 1. This condition can always be enforced by choosing d large enough and
yields exponential cases of arbitrarily high degree.

Example 2. Let n (I] k_- Pi) --2 with pi the ith prime number. Letf3(z, x) x" z2,
which is irreducible since n is odd. We obtain f3(y)=y"(1-y"+2) where 1-y"+

factors into 2k- cyclotomic polynomials (cf. van der Waerden [28, p. 113]). Since n
is of order O(eklgk) (cf. Hardy and Wright [10, 22.2]) the number of possille factor
candidates cannot be polynomial in n.

The abundance of univariate factors usually disappears as soon as we choose a
slightly different evaluation. For example,

and

f(3X3, X) 9x8- 270X6 + 819X4- 820X2 + 576

f2(2x5, x) 2x -60x6 + 273x4- 820x + 576

are both irreducible. In Kaltofen 12] we have used a similar evaluation for polynomials
with three variables which resulted in a deterministic reduction to bivariate factoriz-
ation. There we also conjectured that it is highly probable that substituting 2xd or 3xd

for z in f(z, x) already preserves the irreducibility of f However, to prove that a
multiplier of polynomial length definitely works seems difficult, and we have only
succeeded in showing this for the multivariate to bivariate reduction (cf. 7, Theorem
3).

In order to give exponentially bad inputs for the multivariate Hensel algorithm
we need an irreducible polynomial f(y,..., y, x) such that f(0,..., 0, x) has all
linear factors. Such a polynomial is quite easy to obtain and the following example
demonstrates the construction of a polynomial which has all linear factors for various
evaluation points.

Example 3.3. Let f(y, x) have degy (f)_-< 3 and

f(- 1, x) (x 2)(x 1)(x + 1)(x + 2) x4 5X2 "" 4,
f(O, x) (x 1)x(x + )(x + 2) x4+ 2X X

2 2x,

f(1, x) (x 2)(x 1)x(x + 1) x4- 2X X2 + 2x,
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and f(2, x) x4+ 2. By interpolation f(y, x) Q[y, x] is determined uniquely, namely

f(y, x) x4 + (2y3- 3y2- 3y + 2)x + (_y3 2y2+y 1)x2

+(-9.y+3y+3y-2)x-y+2y-y.
We can also remove the rational denominators, namely

X
4 + (12y 18y2- 18y + 12)x + (30y 72y2 + 42y 36)x2

+ (-432y + 648y2 + 648y 432)x 432y + 2592y2 2160y.

Since f(2, x) is irreducible, so is f(y, x), but

f(-1, x) (x- 12)(x- 6)(x +6)(x + 12),

f(O, x) (x-6)x(x +6)(x + 12),

f(1, x) (x- 12)(x-6)x(x +6).

The above construction obviously generalizes for arbitrarily high degrees but the
number of unlucky evaluation points (i.e. those integers b for which f(b, x) splits into
linear factors) seems bounded by the degree in y. The classical Hilbert irreducibility
theorem states that for any irreducible polynomial f(y, x)e Z[y, x] there exists an
integer b such that f(b, x) remains irreducible. It can be shown that the ratio of unlucky
points to the size of the interval, from which the points are taken, tends to zero as the
size of the interval goes to infinity (cf. D6rge [4]). The reader is referred to Kaltofen
[14, Appendix B] for a short bibliography on the Hilbert Irreducibility Theorem.
Unfortunately, we do not understand the distribution of unlucky evaluation points of
small size. Open problem 2 in 8 refers to this question.

4. Initial transformations. In this section we present an algorithm which transforms
the problem of factoring the polynomial f(zl,’", z,,, x) to factoring a polynomial
f(Yl," ",Y,,, x) such that f is monic in x, f(0,. , 0, x) is squarefree, i.e. each of its
irreducible polynomial factors occurs with multiplicity 1, and both deg (f) and log (]J])
are polynomially bounded in deg (f) and log (Ill)- For simplicity we only consider
finding a single irreducible factor of f. In Lemma 2 we will state a uniform coefficient
bound for all possible factors of f which is of polynomial size in deg (f) and log
Therefore, in order to obtain the complete factorization of f in.to irreducible factors
in polynomial-time we can apply our algorithm recursively to the co-factor of the
irreducible factor.

We wish to emphasize that this version of our algorithm can be improved sig-
nificantly, e.g. by resolving the recursion mentioned above. However, here we are most
interested in the theoretical result, namely that the algorithm works in polynomial-time.
For this reason we also allow ourselves to present rather crude upper bounds in our
complexity analysis. We also do not consider the influence which the underlying data
structure used to represent multivariate polynomials could have on our algorithm
performance. Furthermore, we will formulate the asymptotic complexity as a function
in the total degree rather than the maximum degree of individual variables. Since the
number of variables is fixed, both notions for the degree are codominant.

The following algorithm computes a squarefree factor of the primitive part of the
input polynomial. It then applies two classical transformations to this squarefree factor
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to make the polynomial monic and squarefree also when evaluated at 0 for the minor
variables.

ALGORITHM
[Given f(z,..., zv, x) Z[z,..., zv, x], this algorithm constructs an irreducible
factor (z,..., z, x) Z[Zl,’.., z, x] of f by preconditioning f and calling
Algorithm 2.]
(1) [Test for univariate case’]

IF cont (f) or pp(f) is univariate THEN factor it by a univariate factoriz-
ation algorithm and return one irreducible factor, ELSE perform steps (S)
through (E2).

(S) Determine a primitive squarefree factor g(z, , z, x) offby a squarefree
decomposition algorithm such as Yun’s algorithm [32] or Wang and Trager’s
algorithm [30].

(M) [Transform g into a polynomial s monic in x:] n <-degx (g);

C(Zl, ", ZV) <-" ldcf,(g)

S(Zl,’’" Zv, X)<-" C(ZI,’’" Zv)n-l Zl,’’’ Zv,
C(Zl,’’’, Zv

[Notice that s is monic in x, an irreducible factor of which can be back-
transformed to an irreducible factor of g (see step (E2)).]

(T) [Find good integral evaluation points Wl," , w such that s(w,. , wo, x)
is squarefree.]
FOR ALL integers W with {Wi] [(2n- 1)/2 degz, (s)], _-< i_-< v, DO

Test whether S(Wl,..., w, x) is squarefree. If so, exit loop.

f(y, ., y, x) s(y + w, ., yv + w, x).

(R) Call Algorithm 2 given below to find an irreducible factor g(y,. ., y, x)
off(y,’’’ yo, x).

(E). [Recover a possibly nonmonic factor (z, ., zo, x) of f(z,. ., zv, x).]

(El) g(z,. ., z, x)g(z- w,. ., zo- w, x).

(E2) (Zl," ", z, x)-pp,(g(zl,. ", z, c(z, ., zv)x)). [q

We shall first prove the correctness of the above algorithm. Obviously, if
g(y, , y, x) divides f then g(z, , z, x) divides s(z,. , z, x). The proof for
the correctness of the transformations in the steps (M) and (E2) is quite easy and can
be found in Knuth [16, p. 438, Exercise 18]. We first must show that step (T) will yield
good evaluation points.

LEMMA 1. Let s(z,..., z, x)6 Z[z,..., zv, x] be monic of degree n in x and
squarefree. Then there exist integers w with Iw, l<= [(2n- 1)/2 degz, (s)], <= i<= v, such
that s(w,. ., Wy, x) is squarefree in Z[x].

Proof Let d deg (s) for <=i -< v. Since s is squarefree, its discriminant

A(z, , z) rest, s, 0

(cf. van der Waerden [28, p. 86]). Since A is the given resultant, it follows that
degz, (A)--<(2n-1)d for l<=i<=v. If we write A(z,...,z) as a polynomial in the
variables z2," ", z with coefficients in Z[z], not all these coefficients can be zero. Let
u(z) be one particular nonvanishing coefficient. Since deg (u)<_-(2n- 1)d there exists



POLYNOMIAL FACTORIZATION 475

an integer Wl with Iw,l [(2n- 1)/2d] and U(Wl) 0, Therefore A(Wl,Z2,""" gv)0
and the lemma now follows by induction on the number of variables.

We now briefly discuss that the above algorithm is of polynomial complexity in
deg (f) and log (Ifl) provided that this is also true for Algorithm 2. To obtain a
squarefree factor g off, we can use any of squarefree decomposition algorithms referred
to in step (S), all of which employ polynomial GCD computations. Furthermore, any
of the available GCD algorithms such as the primitive remainder, subresultant or the
modular algorithm (cf. Brown [1]), or the EZGCD algorithm by Moses and Yun [25],
takes for a fixed number of variables polynomially many steps in the maximum degree
of the input polynomial and the size of its coefficients. That this time bound extends
to the squarefree factorization process is shown, e.g., in Yun [33]. Of course, deg (g)
deg (f) in step (S), and a bound for Ig[ can be determined by the following lemma.

LEMMA 2. Let g,. ., g,,, C[x,..., xo], let f= gt g and let n deg (f),
n == n. en

= = 2

with c<g2.44949 (cf. Gel’fand [9, pp. 135-139]).
Therefore lel That the steps (M) and (T) take polynomial-time is

quite easily established. As a matter of fact, some of the GCD algorithms used for the
squarefree decomposition of f in step (S) already provide the points w,. ., w of
step (T) as a by-product. Step (M) produces a substantially, yet polynomially, larger
output compared to its input g. (For example

deg(s)-<_ndeg(g) and ]sl=<(deg(g)+

cf. Lemma 7.) Step (T) again may produce a larger result, but ]fl is clearly polynomial
in the size of s. (For example

IJ vdeg(s) deg (s) deg (s)2deg()ls[
see also Lemma and Lemma 4.)

We wish to remark that step (M) could be entirely avoided by modifying Algorithm
2. However, these modifications would complicate the complexity analysis and for the
reasons discussed above we shall retain the monicity condition on f during Algorithm
2. The matter becomes more manageable if the coefficients are in a finite field. Some
details to this case can be found in von zur Gathen and Kaltofen [8].

Step (El) is the counterpart of the transformation of step (T). Step (E2) is similar
to step (M), but also involves a content computation. Both steps can obviously be
performed in time polynomial in deg (g) and log (Ig[).

5. The main algorithm. In this section, we shall discuss an algorithm which
computes an irreducible factor of a polynomial f(y,..., Yv, x), monic in x with
f(0,..., 0, x) squarefree, in polynomial-time in deg (f) and log (If[). We will also
prove the proposed algorithm correct. The analysis of its complexity is deferred to the
next section. The algorithm first computes a multivariate Taylor series approximation
of a root of f for x. It then finds the minimal polynomial for this root by solving a
linear system in the coefficients of this polynomial.

ALGORITHM 2.
[Input: f(y," , y,, x) Z[y, , y, x] monic in x such that f(0,. , 0, x) is
squarefree. Z can be an arbitrary UFD and Q its field of quotients. Output: An
irreducible factor g(y, , yo, x) e Z[y, , y, x] of f]
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(F) [Factor f(0,. ., 0, x):] n - degx (f).
Compute an irreducible factor t(x) of f(0,. ., 0, x); m - deg (t).

[Let/3 be a root of t. In the following, we will perform computations in Q(/3),
whose elements are represented as polynomials in Q[/3] modulo t.]
(N) [Newton iteration. For purposes of later analysis and reference, we emulate

the Newton iteration by a Hensel lifting algorithm. Let J be the ideal in
Q(/3)[yl,’’’, yo] generated by {Yl,""", Yo}. The goal is to construct

a(y,,." ",yv) , , ak.(fl)y, t’, where a.k()eQ(/),
i=0 I.kl=i

for j 1, 2, such that

f(Y,, ", Yo, aj(y, y)) =- 0 mod fi+l,

i.e. no monomials in Yl,"" ", Y with total degree less than j / occur on
the left-hand side of the given equation.]
Rewrite f(Yl," ", Y, x) Y..k>=gf.k(X)y. "k, where f.k(X) Z[x]. [Notice that
fg(x) =f(0, ., 0, x) and, since f is monic and degx (f) n, deg (f.k) < n
for I.k[-> 1.]
[Set order for approximation:] d degy,.....y (f); K d(2n- 1).
[Initialize for Hensel lifting:]

agfl; gg.(x)x-fl; hg(x)fg.(x)/gg(x)6Q(fl)[x].

FOR ALL .k with l<ll < K DO steps (N1) and (N2). [The .k must be
generated in an order such that I. 1 is nondecreasing. We will compute
polynomials g.(x) and hv(x)e Q(/3)[x], .k>-.0, satisfying

(2)

(3)

(NI) b.k(X) f.k(X) . g.(x)h.k_.(x).

(N2) [Step (N 1) and (1) lead to

gg.(x)h.(x) + hg(x)g#(x b#(x)
with g#(x), h#(x)Q(#)[x], deg(g.)=<deg(gg)-l=0, deg(h.)<=
deg (hg)-1 n-2. In the Hensel lifting algorithm, (2) is accom-
plished by the extended Euclidean algorithm (cf. Knuth [16, p. 417,
Exercise 3], but since deg (g.)=0 we can use direct formulas:]

b.k(), h.k(X)_b.k(X)--hf(x)g.k(X)a.kg.k(X)f,(fl), g(x)

[Assign approximate root:] c o<-i.1; a.%Y" for 0-<j=< K.
(L) [Find minimal polynomial for c :]

[Compute powers of a :]
mod J+.FORi0,...,n-1 DO ac

FORIm,...,n-1 DO
Ld(I+n-1).
With a=- c mod J+l try to solve the equation

I--1

+ y. u,(y,, yo).=- o moa
i=0
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(4)

for polynomials ui(yl," ", y,) Q[Yl, ", Yo] such that degy,...,y (ui) -<- d.
Let ui(yl,’’’, y,,)= o__<ll__<d U...y" and let

i) f.j y..
0llL

Then (3) leads to the linear system

1--1

a X X
i=o ol,ld

for0 I1 L,j 0,. ., m in the variables u,., 0,. ., I 1, 0 I1
d. [There are I(d) unknowns in m() linear equations. (Cf. Lemma 4.)]
IF (4) has a solution (which, as we will prove below, is then integral and
unique) THEN

I--1

g(Yl, Yo, x) x’ + E u,(yl, y)x’
i=0

and EXIT. [We will also show that then g is an irreducible factor of
[At this point, the above FOR loop has not produced a solution to (3). In
this case, f is irreducible.] g

Notice that L, the order of the approximation needed, grows with I, the possible
degree ofthe minimal polynomial. Hence we could improve our algorithm by increasing
the order of the approximation within the loop on I in step L instead of computing
the best approximation eventually needed a priori in step (N). Also, a complete
factorization of f9 may exclude certain degrees for g. For example, if f9 factors into
irreducibles of even degree, then g cannot be of odd degree. (Cf. Knuth [16, p. 434
and 4.6.2, Exercise 26].)

We shall now prove the correctness of the above algorithm. We first show that
step (N) computes a root ar(yl,’’’, Yv) off(yl,""", yv, x) modulo jr+l. The poly-
nomials g.k(X) and h.k(X)Q(fl)[x], .k>-O., must satisfy (1) and thus (2). We now note
that g(/3) 0 and h(/3) f(/3). The second equation follows from the fact that if
fl, flE,’.",fl, are the roots of f(x) then h(x)=l-I,=E(X-fl,) and hence h(fl)=
[I=2 (fl-fl)=f’(fl). Therefore the unique solution of (2) with deg (g.k) 0 is a.k
b.k(fl)/f(fl). If we now solve (3) for h.k(X), we get

h.k(X) b’k(x) hg(x)g’k(’X)
gg(x)

which is a polynomial in x since b.k(/3)--hg.(fl)a.k =0, and is of degree at most n-2.
As we will see in 6, the solution for (3) with deg (g.k) < deg (g) and deg (h.k) < deg (h)
is uniquely determined by a linear system in n unknowns, whose coefficient matrix is
the Sylvester matrix of g(x) and ho.(X), the determinant of which in our case happens
to be equal to f6(/3).

We now conclude that

because

f(Yl, yo, atc(yl, yo))=-O mod jK+l

(X--., a.ky’k)(., h.k(X)y’k)=--f(yl,’’’,yo, x) modJtc+l.
0<=l.kl<=n 0=<l.kl__<K
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The polynomial g(Yl,’", Yv, x) is constructed in step (L) such that

g(Yl," ", Yv, CL(Yl, ", Yv)) -= 0 mod jr+.

We will now prove that g must divide f Our argument will show that if g does not
divide f, then (3) has a solution for ! < deg (g). One main condition for this to be true
is that our approximation is at least of order L. First, we must prove a simple lemma.

LEMMA 3. Let g(y, , y, x) divide f(y, , y, x) in Z[y, , y, x] and
assume that g(O, ., O, fl 0 in Q(fl). Then

g(y,’",yv, a(yl,’",y))--0 mod

for all j >- with a(y,. ., y) as computed in step (N).
Proof The reason is simply that since x- a(y, , y) divides

f(Yl, ",Y, x) mod fi+l and/3 is a root of single multiplicity, x- a(y, , yv) must

also divide g(y, , y, x) mod J;+. This argument can be made formal but we shall
provide a more indirect proof. Let p be the first index such that

g(y, y, ap(Yl, y)) O modJp+l.

Because p is the first index

g(Yl,’", Y, Ol,p(Yl,’’’, Yv))-= Y Y.k.Y
"k mod jp+l

with at least one Y.k 0. Let h be the cofactor of g, i.e. f gh. Since/3 is a single root,
r h (0, , 0,/3) 0. Therefore

g(y,’",y,ap(yl,’",y))h(y,"’,y,ap(y,’",y))-- y.kr.y"k0 modJP+

in contradiction to ap(yl,... Yv) being the pth approximation of a root of f
THEOREM 1. The first solution of (3) in step (L), as I increases, determines a proper

factor g off in Z[y, , y, x]. This factor is also irreducible.
Proof We show that g must divide f provided its coefficients satisfy (4). The

irreducibility of g then follows immediately from the fact that the minimal polynomial
for the root off(y, , y, x) corresponding to ar also provides a solution to (3) and
hence (4). Let

D(yl, ", y, x) GCD (f(Yl, ", Y, x), g(Yl, ", Yv, x))

and let I degx (g), j degx (D). We shall prove that the condition j < I is impossible.
Assume that this condition is satisfied, i.e. 0-<j < L Let f x" + t,_x-1 +. + to and
g x + ui_ +" + Uo with tl, u,, Z[yl, , y]. Using the extended Euclidean
algorithm (cf. Knuth 16, p. 417, Exercise 3]) we establish the existence of polynomials
gj, Vj Q(Yl, ", y)[x], degx (U) < I-j and degx (V) < n -j, such that

(A) Uf+ V;g D.

It is easy to show that under the given degree constraints these polynomials are uniquely
determined. Therefore we must have a nonsingular coefficient matrix for the linear
system derived from (A) for the coefficients of x, xI+"-- with the unknowns
being the coefficients of U;, V of x. By s we denote the determinant of this coefficient
matrix namely

tn- t2j-+
t._ t(B) s det

uf_ Uj+ U2j_n+

UI_ Uj
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(In fact, sj is the leading coefficient of the jth sub-resultant off and g as polynomials
in x; cf. Brown and Traub [2].) Cramer’s rule implies that sjU, s)V Z[y,..., Yo, x].
Moreover,

and hence

f(Y,’",Yv, aL)-- g(yl,’",Yv, aL)--0 mod

st(y,," ", y)D(yl, ", y, c) =- 0 mod J+’.
However, from Lemma 3 and the fact that g is the polynomial of smallest degree
solving (3) we conclude that D(0,... ,0, fl)#0, which implies with the previous
congruence that

(C) st(yl,...,y)=-O modJ+l.

On the other hand, using (B) we can bound the degree of s by

degyl,...,y (st)<=(I+ n-2j- 1)d =(I+ n- 1)d L

which together with (C) implies that s -0, in contradiction to (B). [3

This concludes the correctness proof for Algorithm 2. In the case that v the
bound K of step (N) and L of step (L) can be improved to [d(2n- 1)/m] (cf. Kaltofen
[13, Thm. 4.1]). However, this improvement seems not to carry over for v_->2, since
Q[yl,""", y] is not a Euclidean domain.

6. Complexity analysis of the reduction algorithm. The goal of this section is to
prove that Algorithm 2 takes, for a fixed number of variables v, polynomially many
steps in deg (f)log (IfI), provided that we can factor f.o in time polynomial in
deg (f.o) log (If.ol).

Step (F). As A. Lenstra, H. Lenstra and L. Lovisz have shown, t(x) can be
computed in at most O(deg (f.o)12+deg (f.o)9 (log If.ol=)) steps [22]. This complexity
bound can be slightly improved using the results of Kaltofen [15].

Step (N). We first count the number of additions, subtractions and multiplications
over Q(fl) (which we shall call ASMops) needed for this step. Then we bound the
absolute value of all elements of Q(/3) which appear as intermediate results. Finally,
we bound the size of all computed rational numerators and denominators, and then
we count the number of rational operations. The most difficult task will be to compute
size bounds.

We can ignore the time it takes to retrieve the polynomials f.k(X) as well as the
execution time for the initializations of step (N). In order to count the number of
times steps (N1) and (N2) are performed, we need the following lemma.

LEMMA 4. There exist

(v+j-1)<=(j+l)v-lv-1
distinct v-dimensional integral vectors .k with I.k[ =j. The number of vectors with I.k[ <=j is

(V+vJ) _-<(j+l).
Therefore, steps (N1) and (N2) are executed at most (K + 1) times. Step (N1)

requires at most O(Kn) ASMops in Q(/3). Clearly this bound also dominates the
complexity of step (N2). Hence a: can be calculated in O(K2n) ASMops.
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We now proceed to compute an upper bound BI for all absolute values of the
coefficients of aK in Q(/3).

LEMMA 5. Letf(x) Z[x] be monic, squarefree, ofdegree n and let g(x), h(x) C[x]
be monic such that f(x g(x) h (x)

a) Then both Ig[, Ihl <= 2"lfl2 <-’x/n + 12"lJ] and if fl is any root off Il < 21fl.
b) IfM is any n- 1) by n- 1) submatrix of the Sylvester matrix ofg and h, then

Idet (M)I < T(f)

c) The resultant of g and h is bounded by 1/S(f)<lres (g, h)l<2T(f) with

S(T) (41fl) (n-l)(n-2)/2.

Proof a) The bound for [g[ and Ihl is the Landau-Mignotte bound translated to
maximum norms [24]. Assume f(x) a,x" +. + ao and let/3 e C with I/3]_-> 21J]. Then

tl-I <1/31" --< a,131"

because IJ -> 1. therefore f(/3) 0. Notice that for this part the monicity of f is not
required.

b) By part a), we know that each entry in the Sylvester matrix of g and h is
bounded by x/n,+ 12"If[. Hadamard’s determinant inequality (cf. Knuth [16, 4.6.1,
Exercise 15]) then gives the bound.

c) Let g(x) (x- /31) (X--ilk) and h(x) (x [3+) (x- 13.). Then

res (g, h) l-I
i=l,...,k’,j=k+l,...,n

and the discriminant off A=HiCj (fl-fl), is an integer not equal 0 (cf. van der
Waerden [28, pp. 87-89]). From a) we conclude that fl-fl] <4]j] for l<-i<j <- n.
Therefore

li<j--k k+li<jn

< Ires (g, h)l(4ls’])
because k(k + n k)( n k <_- (n )( n 2) for <_- k <- n 1. The upper bound
follows from b) and the fact that g and h are monic.

The following lemma estimates the size of a general version ofthe Catalan numbers.
LEMA 6. Let d.k for all v-dimensional vectors k with Ik] and let

d.k Y, d.d,k_.s forl.kl>--2.

Yhs/1

< (4V)l.kld.k kl]’’" kv!

Proof Let G(y,..., yv)= l,kl_>_ d.k,y "k be the generating function for d.k. Then
G(y,, yv)2= G(y,, y)-(yl +. .+ y)

and thus

G(yI, ,yv)__(l__4’l__4(yl__. ....yv)) 1 (2i-2,= i-1](Y’+" "+Y)’
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which yields our formula. Since I.kl!/(kll... ko!) is a multinominal coefficient, it is
less than vI-kl. Similarly the given binomial coefficient is less than 221-kl. li

We are now in the position to formulate and prove the main theorem on the
coefficient growth for the Hensel lifting algorithm. This theorem also resolves the
growth problem left open by Kung and Traub 18] who considered the Newton iteration
for the case that v 1. We actually use a slightly more general approach which we
will also use in 7.

THEOREM 2. Let f(Yl, ",Yv, x) Z[yl, , yv, x] be monic of degree n in x, such
thatfo.(X) f(O, ., O, x) is squarefree. Let fl be an algebraic integer generating a subfield
of the splitting field for fo-. By Z[/3] we denote the ring generated by Z and {} whose
elements are polynomials in fl with integral coefficients of degree [Q(/3):Q]-1. Let
go-(x)ho-(x) =fo-(x) be a nontrivial factorization offo- in (Z[/3])[x] with go. and h-o both
monic in x. Then there exist unique polynomials g.k(X), h.k(X) e Q(/3)[x] with I.kl>_- and
deg (g.k) < deg (g-o), deg (h.) < deg (h-o) such that

Furthermore, let

f(y,...,y,x)=(, g.k(X)y’k)( hk(x)y’k).

_l__r(fl)
res (go-, ho-) R

with R Z, r(/3) Z[/3 ],

and let S(f-o) and T(f-o) be as defined in Lemma 5. Finally, let N(f)=max (n2,nlfl),
and let d.k be as defined in Lemma 6. Then for all .k with I.kl >--

REl’kl-i g.k(X), R21"kl-I h.k(X) (Z[fl])[x]

and, independently of which root off-o we choose,

Ig.l, Ih.l d.k(N(f)S(f-o) T(f-o)) 2l’kl-.

Proof. The existence and uniqueness of g.k and h.k follows from the fact that (2)
has a unique solution with the given degree constraints, b.k being computed as in step
(N1). Now let C.k max (Ig.l, Ih.l, Ifl) and let D.-Ib.l. Since deg (g.)< deg (go-) and
deg (h.k_.)< deg (h-o), we conclude that

Ig.h.k-.l n 1)lg.l Ih.-.l n 1)C.C.k_..

By definition C. => IJq and thus we obtain from (N1)

(A) D.k <= n . C. C.k_..
.o_-<.s_<-, =< I.sl_-< I.kl-

Let /3 denote the coefficient vector (p,,,.. ",Po) of the polynomial p(x)=
P,,x" +’’" +Po. Now if we solve (2) by undetermined coefficients for g.k and h.k we
encounter the Sylvester matrix of g-o and h.o, Syl (g-o, h-o), as the coefficient matrix, namely

(B) (/., ff.) Syl (go-, h.o)=/.,
where (/.k, if.k) denotes the vector obtained by concatenation of the vectors/-o and ff.k.
Using Cramer’s rule for (B) and the fact that

Idet (Syl (g.o, h))l Ires (g-o, h)l
< s(fo)
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(by Lemma 5c), we get the estimate

(C) C.k _--<max (I/I, nO.S(fo.)T(fo.))
(also using Lemma 5b). We now prove our claims by induction on

Case I.kl 1. Since b.k =f.k Z[X], Cramer’s rule applied to (B) yields Rg.k, Rh.k
(Z[fl])[x]. (Notice that/3 is an algebraic integer.) Also D.k----<lj and hence by (C)

C.k --<-- max ([fl, n[flS(fg) T(fo.)) <-- d.kN(f)S(f-o) T(f-o).
Case I.kl> 1. By hypothesis and from (N1) we obtain R21-kl-Zb.ke(Z[])[X].

Cramer’s rule applied to (B) then yields R21"i-ig.k, R21"-h_k (Z[fl])[x]. From (A) and
the hypothesis we also get

D.k <-- n C. C.k_.

<- n(N(f)S(f-o) T(f-o)) 2’-k’-2 ( d.d.k_.)
n(S(f)S(f-o) T(f-o))Zl’kl-2d.k.

By (C) we finally obtain

C. <-max (Ifl, nO.S(fo.)T(fo.))
/,/2

<---- d.k S(f) (S(f)S(f) T(f"))’21"kl-1

<= d.(S(f)S(f-o) T(f.o)) 21-kl-

Since the polynomials g.k and h.k are unique, we can conclude from Theorem 2 that

la.k]<--d.k(N(f)S(f-o)T(fo.)) 21-kl-I for

From Lemmas 5 and 6 we obtain

(5)
<-- B,(f) (4v) s: (nZ[fl(4[fl)"/22"(nlf])")2-’

< (4v)K (2nlj]) 2K"2

assuming that n >-4. Obviously, log (Bl(f)) is polynomial in deg (f) and log (IJ]).
We now demonstrate for the polynomials g.o x-/3 and h.o as computed in step

(N), that

R
Z[fl], with R =res (t(x),f’-o(x)),

res (g.o, h.o)
where is the minimal polynomial of ft. Let f12,""",/3, be the roots of h.o. Then

res (g.o, h-o) IYl (/3 [3i) =f.o(/3).
i=2

There exist polynomials A(x) and B(x) Z[x] such that At + Bf’ R. Thus R/f’-o(
B(B)eZ[/3], which we wanted to show. Now let m=deg(t). By Lemma 5a)Itl-<
x/n+ 12"lf.ol, and using Hadamard’s determinant inequality for the resultant res (t,f’)
we obtain

IRI_-< (x/(m + 1)(n+ 1)2"lfl)"-l(x/nlfl)
(6)

< ((n/ 1)2"If.o[) "+" < (2nlfl) "/2,
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for n_->4. Again, we note that log ([RI) is bounded by a polynomial in deg (f) and
log (Ifl)- From Theorem 2 we can also conclude that

(7) R21-kl-’ a.k Z[/3] for

We now extend our estimates to the powers of aK mod j/+l as well as count the
ASM ops needed to compute the powers of at.

LEMMA 7. Let a Y.o=l.kl=r a)Y"k for 2 <= <= n 1, then

laT l <= (K + 1) (’-l)B,(/) and R21-1-1a’) Z[/3],

with R as defined above. All a(), 2<= i<= n-l, can be computed in O(K2n) ASMops.
Proof It is easy to show that

0 l.kl<_-K, i>_-l,
0_-<.s_-<.k

where there are, by Lemma 4, at most (I.k[ + 1) <= (K + 1) terms under the right-hand
sum. The lemma now follows by induction on i. V!

Therefore we get from (5) for all O<-i<=n-1 and for n_>-4

(8) la)l<-B2(f)=((K + 1)B,(f)) "-’ <23"K(2nlf[) 2K("3-"2).

Lemma 7 also establishes that the common denominator of any rational coefficient
computed throughout step (N) is R2/-. We are now in the position of estimating the
size of any numerator of the rational coefficients of a), -<_ <- n 1. To do this, we
shall state a useful lemma.

LEMMA 8. Let fl be any root of t(x) Z[x], monic, squarefree of degree m. Let A
be a real upper boundfor the absolute value ofany conjugate fl, <-j <- m, of ft. Assume
that for all <-_j <- m

ciflj <-- C with ci 6 Z.
i=0

Furthermore, let D be the absolute value of the discriminant of t. Then

Cm!Am(m-1)/2
[ci[ <- 0 < i<m

cf Weinberger and Rothschild [31, Lemma 8.3]).
In our case, we can choose A 2If.o[, by Lemma 5a), C B(f)R2=- and D >

Therefore, if we bring all rationals computed in step (N) to the common denominator
RK- we have shown that the absolute values of the numerators are bounded by

(9) B(f, m)= RK-B(f)m!(21fo_[) ""-)/ < 2"(2n])", (9)

using (6), (8) and n _->4. Though this bound is quite large, it is of length polynomial
in deg (f) and log (]j). This bound also implies, that all ASM ops are computable in
time polynomial in deg (f) and log (Ifl). Addition and subtraction in Q(fl) means
adding or subtracting the numerators of polynomials in Q[fl] of degree rn-1, after
eventually multiplying them with a power of R to produce a common denominator.
Muitiplication in Q(/3) is multiplication of rn degree polynomials in Q[fl] followed-
by a remainder computation w.r.t, t(/3). Again a common denominator can be extracted
a priori. Any ASM op takes at most O(m2) integral operations.

Step (L). By Lemma 4, it follows that (4) consists of

<m(K+l)p m
K
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equations in

q I
d

<(n-1)(d+l)V-

unknowns. Applying Gaussian elimination to (4) takes O(pq2) rational operations. It
is easy to show that this is the dominant operation count, which, expressed in input
terms, is

(10) O(mnV+ad3v).
()From the previous analysis, we know that all a.a can be brought to the common

denominator R2r- and their numerators, num (-’.ka, then satisfy Inum(aJ)l <
B3(f, m). As can be shown with little effort, all intermediate rationals computed during
the Gaussian elimination process are fractions of subdeterminants of the coefficient
matrix for (4) extended by the vector of constants (cf. Gantmacher [6, Chap. 2]). It is
not necessary to calculate the GCD of the numerator and denominator of a newly
obtained rational since, as can also be shown, the denominator of the row used for
the elimination in subsequent rows divides the numerators and denominators in these
rows after the elimination step. Thus Hadamard’s determinant inequality produces a
bound for the size of any intermediately computed integer which is polynomial in
deg (f) log (Ifl). E.g., one such bound is

B4(f, m)= (x/B3(f, m))q

whose logarithm is by (8) of order

(ll) log (B4(f, m))= O(dV+lvn
Hence, step (L) also takes at most polynomial-time in deg (f) and log (If[). Notice
that (10) and (ll) give a very crude bound for the complexity of the steps (N) and
(L). Since we know that any solution of (4) must be integral of quite a small size, due
to Lemma 2, a Chinese remaindering algorithm could be used to solve (4) (cf. McClellan
[23]) and we believe that this approach will be much more efficient, in practice.

7. Multivariate irreduciblity testing. As we have seen in 5, in order to establish
the irreducibility of the polynomial f by Algorithm 2 we need to factor f.0. Reducibility
of f.0 does, of course, not imply reducibility of f. The following theorem partially fills
this gap by constructing from a polynomial f(yl,... ,yv, x), monic in x with
f(0,..., 0, x) squarefree, a polynomial g(yl, x) in time polynomial in deg (f) and
log (Ill), such that g is irreducible if and only if f is irreducible. Unfortunately, our
approach does not allow us to eliminate Yl. We could include this as an open problem,
but in view of the polynomial-time algorithm for bivariate factorization a solution
appears not to be so significant.

LEMMA 9. Let t(y,...,y)Z[y,...,yo] be a nonzero polynomial. Then
t(yl, cyl, Y3,""", Yo) 0 for an integer c with Icl >-2It I.

Proof. Let ayes.., yeo be a monomial in with a 0. Then t(y, cy,...,y)
contains the monomial b(c)ye+e2y yo where b(c) is an integral polynomial in c
with degree at most el + e2. Since b(c) + ace2 +... it cannot, as a polynomial, be
identical to 0. From Lemma 5a and the fact that Ibl <-Itl we conclude that b(c) 0 for
any integer of the stated size.

THEOREM 3. Let f(y, , yv, x) Z[y, , Yv, x] be monic of degree n in x such
that fo.=f(O, O, x) is squarefree. Let T(fo.) be as in Lemma 5b, and let N(f) be as
in Theorem 2. Furthermore, assume that f(yt,..., yv, x) is irreducible. Finally let
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d degyl,...,y, (f). Then for any integer c with

Icl >- Bs(f) 2(4v)2d (2N(f) T(fo.)2) 4d-

f(y, cy, Y3, Y, x) is irreducible in Z[y, Y3, Y, x].
Proof Let Q[[y, , y]] denote the domain of formal power series in Yl," ",Y

over Q, and let

gc(Yl, Y3, x)=f(y,, cyl, Y3, x).

Then each factor of gc(y, Y3,’’’, X)E Q[[y, Y3,""", y]][x] corresponds to a factor
of f(y, Y2, ", x) Q[[y, y2," ",y]][x] with y2 replaced by cyl. For, if a factor of
g were not obtainable from a factor off, we could present two different factorizations
of g which, when evaluated at y Y3 Yv- 0, would result in one and the same
factorization of g(0,..., 0, x)e Q[x]. But this is impossible due to the uniqueness of
the Hensel lifting procedure as proven in Theorem 2.2 We will show that for an integer
c of the stated size no factor derived fromf in such a way can be an integral polynomial
dividing g. Our plan is the following: We first show that any candidate factor
h(yl, Y2," ", x) off(y, Y2," X) G Q[[Yl, ", yv]][x] contains at least one monomial
bp ,yP-x" with bp 0 and d lPl <- 2d. From it we get a polynomial coefficient of
in h whose total degree in y,..., y equals I.Pl. By choosing c sufficiently large (cf.
Lemma 9) we will be able to preserve this coefficient throughout hc h(y, cy, , x).
Hence such an h contains a monomial in y, Y3, Y oftotal degree IPl > d. Therefore
h cannot be a polynomial dividing g for otherwise its total degree in y, Y3,"" ", Y
could not be larger than d. Let

h(y, ., y, x) Y. b.k,,y.’kx
i=0 .k-->9

be a factor of f(Yl, Y2,’", x) in Q[[Yl,""", y]][x] and let

n-I

6 kxih(y,, Yv, X) 2 .k,,Y."
i=o .k->-9

be its cofactor, i.e. f-hh. We first can assume that

h(0,’", 0, x)= Z bo..,x’e Z[x].
i=0

Otherwise h(yl, cy, Y3,’", X) could not be an integral polynomial for any choice of
C.

Now there must exist at least on b.k,i or b.k,i with

d<[kl-<2d and (b.k,,0orb.k,,#0).
To see this, assume the contrary. Then

b .k, y "kx
i___00_<l.kl____d

6 kxi).k, iY." f(Yl, Yo, X)

since no monomial ay-kx , a a nonzero rational, with d <l.k[-<_2d in the left product
could be canceled by higher terms in the product of the complete expansion of h and
h. Notice that f does not contain a monomial in y of degree larger than d. But this
contradicts the fact that f is irreducible. Without loss of generality we now can assume

owe this argument to Prof. Hendrik W. Lenstra, Jr.
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the existence of a vector p and an integer m such that

b.p,,, 0 with d < I.Pl <- 2d and 0 <_- m <_- I.

Let us consider the coefficient of x in h whose total degree in Yl," ", Yo is I.Pl. Set

btp,m(y, Yv)=

which is a polynomial in Q[Yl,""", Yv] not identical to 0.
We now apply Theorem 2 with/3 1, go(x)= h(O,..., O, x) Z[x] and ho.(X)=

h(0,. , 0, x) Z[x]. First notice that, since f.o is squarefree, 0 R res (go, h.o) Z
and hence 1/IRI--< meaning that we can set S(fo)= 1. Secondly,

bj,,,I <-Ig[ -< (4v)121(N(T)T(fo))21l-1 <_ (4V)2d(N(f)T(fo))4d-1

because of Lemma 6 and Idl I.pl <=2d. Finally,

R2tJ-t-lbj,,Z and R21I-<=R4a- <(2T(fo)) 4d-l,
the last inequality by Lemma 5c. In summary,

0 R4d-l tp,,(y,,..., y) Z[yl, , y]

and

]R4d-1 tp,,l < (4v)TM (2N(f) r(fo)2)4d-1 1/2Bs(f).
From Lemma 9 we now conclude that for any integer c >= Bs(f)

tp,m(y, cy, Y3, Y) # 0.

Therefore h(y, cy, Y3, x) contains a nonzero monomial in Yl, Y3, Yv of total
degree larger than d and cannot be a polynomial factor of f(y, cyl, Y3,"" ", X), as
argued above. Our given bound then obviously works for any factor candidate h.

Our irreducibility test can now be constructed easily by induction. We compute
the integers c,. ., C_l such that for the sequence of polynomials f =f,

f(Y,, Y3,""", x)=fl(Y,, ClYl, Y3,""", X),

f3(Y,, Y4,""", X)=f2(Y,, c2y,, y2, X),

f(y,, X)=fv-,(Y,, Cv_,y,, X),

we have ci->_ Bs(f) for all <_- <= v- 1. Since v is assumed to be fixed and since Bs(f)
is of size polynomial in deg (f) and log (If, I), g can be constructed in time polynomial
in deg (f) and log (130). By Theorem 3, g is irreducible iff is irreducible. On the other
hand, if f h h2 then

g(y,, x)= h,(y,, c,y,, c,_,y,, x)h(y,, c,y,, Cv_lYl, X).

One can prove Theorem 3 for the more general substitution Y2--cy, s being an
arbitrary positive integer. Since the bound Bs(f) grows monotonically in Ifl we can,
in the case that f is reducible, find a bound for c using Lemma 2 such that the given
subsitution maps all irreducible factors of f into irreducible polynomials in one less
variable. Together with a Kronecker like algorithm this then leads to a different
polynomial-time reduction from multivariate to bivariate polynomial factorization. In
the case of v 2 the complete proof is given in Kaltofen [12], which, following the
lines of the proof for Theorem 3, is readily extended to any fixed v. Instead of using
Kronecker’s algorithm one can also apply the multivariate Hensel lifting algorithm by
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Musser [26] with the coefficients in Q(Yl). Since our evaluation guarantees that no
extraneous factors can occur, all computed coefficients must actually lie in Z[y]. A
version of Theorem 3 can also be formulated if the coefficients are from a finite field
(cf. Chistov and Grigoryev [3, Thm. 4]).

The type of substitution Y2 cy is derived from a version of the Hilbert irreducibil-
ity theorem by Franz [5] and Theorem 3 can be regarded as its effective counterpart.
For the classical Hilbert irreducibility theorem, no such an effective formulation seems
to be known. (See open problem 2 in 8.)

$. Conclusion. We have shown how to overcome the extraneous factor problem
during the multivariate Hensel algorithm by approximating a root and then determining
its minimal polynomial, which leads to solving a system of linear equations. Our main
algorithm was formulated for coefficients from a unique factorization domain and
hence can also be applied to polynomials over Galois fields or algebraic extensions
of the rationals. It can be shown that in both cases the algorithm works in polynomial-
time.

In the case of algebraic coefficients we need a polynomial-time algorithm for
univariate factorization. That this is possible is a consequence of the polynomial-time.
algorithm for factoring univariate polynomials over the integers (cf. Landau 19]). One
usually describes an algebraic extension of the rationals by the minimal polynomial
of an algebraic integer generating the field and then reduces the problem to factoring
polynomials with coefficients which are algebraic integers. The ring of algebraic integers
is in general not a unique factorization domain. Therefore we cannot guarantee that
a solution of (4) consists of algebraic integers but one can prove that the numbers are
algebraic integers within an integral quotient (cf. Weinberger and Rothschild [31,
Lemma 7.1 ]).

In the case that the coefficients are elements from a finite field one may not be
able to carry out all transformations of 4. It may happen that good translation points
w do not exist within the coefficient field. Then the coefficient domain has to be
extended to a larger field and thus the factors returned by Algorithm 2 may have
coefficients which are not in the original coefficient field. A simple trick by taking the
norm (cf. Trager [27]) can then be used to determine the irreducible factors in the
smaller field. This approach together with the Berlekamp algorithm (cf. Knuth [16,
4.6.2]) gives an algorithm which works in time polynomial in the total degree of the

input polynomial and the cardinality of the coefficient field, as shown in von zur
Gathen and Kaltofen [8].

We conclude this paper with a list of open problems.
Problem 1. Do there exist a polynomial p(d, v) and an infinite sequence of

polynomials f(x1, Xv) E Z[X1, Xv] with the following property: Any f in the
sequence contains less than p(d(f), v) monomials with nonzero coefficients where

d (f) max {degx, (f)};
i--l,-",v

moreover, there does not exist a polynomial q(d, v) such that any factor off contains
less than q(d(f), v) monomials with nonzero coefficients? In simple words, are there
sparse polynomials with dense factors? See von zur Gathen [7] for a partial positive
answer.

Problem 2. Given any polynomial p(n), does there exist an infinite sequence of
irreducible polynomials f(y, x) Z[y, x], n deg (f), such that for all integers < p(n)
all polynomials f(i, x) are reducible? This problem asks whether there is a strongly
effective version of the Hilbert irreducibility theorem.
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Problem 3. Given a polynomial f(xl,’’’, Xv) Zp[x,..., xv], p prime, can one
determine irreducibility of f in deterministic time polynomial in log (p) deg (f)?

Acknowledgments. The problem of polynomial-time reductions for multivariate
polynomial factorization was brought to my attention by Prof. George Collins. I also
wish to thank Prof. Bobby Caviness and Prof. B. David Saunders for all their support.
The final presentation has also benefitted from the careful remarks of one referee. This
paper could not have been typeset without the help of my wife Hoang.

The examples in 3 were computed on the MACSYMA system.

Note added in proof. A. K. Lenstra has presented another polynomial-time
algorithm for factoring multivariate integral polynomials at the 10th International
Colloquium on Automata, Languages and Programming. Cf. Lecture Notes in Com-
puter Science 154, Springer, Berlin 1983, pp. 458-465.
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OPTIMUM ALGORITHMS FOR A MODEL OF DIRECT CHAINING*

JEFFREY SCOTT VITTERt AND WEN-CHIN CHEN$

Abstract. Direct chaining is a popular and efficient class of hashing algorithms. In this paper we study
optimum algorithms among direct chaining methods, under the restrictions that the records in the hash table
are not moved after they are inserted, that for each chain the relative ordering of the records in the chain
does not change after more insertions, and that only one link field is used per table slot. The varied-insertion
coalesced hashing method (VICH), which is proposed and analyzed in [CV84], is conjectured to be optimum
among all direct chaining algorithms in this class. We give strong evidence in favor of the conjecture hy
showing that VICH is optimum under fairly general conditions.

Key words, analysis of algorithms, searching, information retrieval, hashing, coalesced hashing, data
structures, optimality

1. Introduction. There are many classes of hashing algorithms in use today"
separate chaining, coalesced hashing, linear probing, double hashing, and quadratic
probing, to name a few. (More details can be found in [Knu73].) Comparisons between
hashing algorithms in different classes are often difficult, because each class has its
own assumptions, storage requirements, and tradeoffs. For example, some hashing
algorithms (as in [Bre73]) do extra work during insertion in order to speed up later
searches. In some applications, the preferred class of hashing methods is determined
by the special nature and requirements of the application. The task is then to find the
optimum algorithm within that class.

This paper is concerned with optimum algorithms within one popular class of
hashing algorithmsmdirect chaining without restructuring. This implies that the lists
coalesce. Throughout this paper, we will denote the number of inserted records by N
and the number of slots in the hash table by M’. We assume that there is a predefined
and quickly computed hash function
(1) hash: {all possible keys}-> { 1, 2,. ., M}
that assigns each record to its hash address in a uniform manner. The first M slots,
which serve as the range of the hash function, are called the address region; the
remaining M’-M slots make up the cellar.

Direct chaining works as follows: The search for a record with key K begins at
slot hash (K) and continues through the linked chain of records until either the record
is found (i.e., the search is successful) or else the end of the list is reached (i.e., the
search is unsuccessful). When a record with a key K is inserted, it must become part
of the chain that includes slot hash (K), so that later searches for that record will
succeed.

In this paper we study optimum direct chaining algorithms under the following
model: the records cannot be moved once they are inserted into the hash table (e.g.,
the records might be "pinned" to their locations by pointers to them from outside the
table, or the records might be very large so that moving them is expensive), the relative
ordering of the records in each chain does not change after more records are added,
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and there is only one link field per table slot. This model does not allow restructuring
of the hash table while the table is being constructed.

Under this model, when a record collides with another record during insertion
(i.e., its hash address is already occupied), an empty slot is allocated to store the new
record, and that slot is linked into the chain containing slot hash (K) at some point
in the chain after slot hash (K). We call a record that collides during insertion a
collider. Insertion algorithms in this model can differ from one another only in the
ways that the following two decisions are made:

(1) Which empty slot is allocated to store the collider?
(2) At what point in the chain following slot hash (K) should the collider be

linked?
The measures of performance we use to compare algorithms is the number of

probes per successful search and the number ofprobes per unsuccessful search. In both
cases this is the number of distinct slots accessed during the search. We use the
probability model that the MN sequences of hash addresses are equally likely. For
successful searches, we also assume that each of the N inserted records in the hash
table is equally likely to be the object of the successful search. For insertions and
unsuccessful searches, we assume that each of the M address region slots is equally
likely to be the hash address for the unsuccessful search. In other words, insertions
and searches are assumed to be random.

When there is no cellar, the way in which decision is made is not important, as
far as the average search performance is concerned. In the case in which there is a

cellar, most methods use a statically-ordered available-slot list, in which empty slots
are allocated in some fixed relative order. Performance seems to be best when cellar
slots get higher priority over noncellar slots on the available-slot list. When that is the
case, a collider is stored in an empty cellar slot, if one is available. When the cellar
gets full, subsequent colliders must be stored in the address region. This may cause
collisions with records inserted later. For example, in Fig. 1, LEO collides with
FRANCIS during insertion and is stored in the address region (in slot 10), since there
is no cellar. When GARY is inserted later, GARY collides with LEO at slot 10. Thus
GARY and LEO become part of the same chain, even though they have different hash
addresses. This phenomenon, which we cail coalescing, tends to make search times
longer. Intuitively, it makes sense to give higher priority to the cellar slots on the
available-slot list, because storing a collider in the address region can cause coalescing
to occur during a later insertion.

Several methods have been proposed for handling decision 2, all having the generic
name of coalesced hashing. The original method, late-insertion coalesced hashing
(LICH), was introduced in [Wi159] and analyzed in [Knu73], [Gui76], [GK81], [Vit82b],
[Vit83], and [CV84]. In LICH, a collider is linked to the end of the chain that contains
slot hash (K). The early-insertion coalesced hashing method (EICH) proposed in
[Vit82b] and [Kno84] inserts each collider into the chain at the point immediately after
slot hash K ).

For the special case of standard coalesced hashing (in which there is no cellar)
these two methods are referred to as LISCH and EISCH. An example is given in Fig.
1. The record WEN collides with FRANCIS at slot 1. In the LISCH method illustrated
in Fig. (a), WEN is linked at the end of the chain containing FRANCIS. With EISCH
in Fig. (b), WEN is inserted into the chain at the point between FRANCIS and LEO.
The average successful search time in Fig. l(b) is slightly better than in Fig. l(a),
because inserting WEN immediately after FRANCIS (rather than at the end of the
chain) reduces the search time for WEN from four probes to two and increases the
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I0

DON

WEN

GARY

DAN

Keys: FRANCIS DON LEO JEFF DAN GARY WEN
Hash Addresses: (a)(b) 3 4 3 I0

ave. # probes per succ. search: (a) 13/7 1.86, (b) 12/7 1.71.
ave. # probes per unsucc, search: (a) 17 / 10 1.7, (b) 17 / 10 1.7.

FIG. 1. Standard coalesced hashing, M’= M 10, N 7. (a) LISCH, (b) EISCH.

search time for LEO from two probes to three. The result is a net decrease of one
probe. The expected search performance for EISCH is derived in [CV83] and [Kno84];
EISCH results in faster searches, on the average, than does LISCH.

When there is a cellar, however, LICH performs better than EICH, as illustrated
in Fig. 2. The insertion of WEN using EICH in Fig. 2(b) causes both cellar records
LEO and JEFF to move one more link further from their hash addresses. That does
not happen using LICH in Fig. 2(a).

The varied-insertion coalesced hashing method (VICH) was introduced in [Vit82b]
as a means of combining the strong points of both LICH and EICH without their

(a) LICH
address size 9

FRANC!S

8 ’DON’
4

B SHARON
7 wEN

(11) LEO

(b) EICH
address size 9

(c) VICH
address ize

FRANCIS

DON

SHARON -..
WEN

GARY

JEFF -.,

LEO

Keys: FRANCIS DON LEO JEFF DAN GARY WEN SHARON
Hash Addresses: 3 3 8

ave. # probes per unsucc, search: (a) 18/9 2.0, (b) 24/9 2.67, (c) 18/9 2.0.
ave. # probes per succ. search: (a) 21/8 2.63, (b) 22/13 2.75, (c) 20/13 2.5.

FIG. 2. Coalesced hashing, M’-- 11, M =9, N 8. (a) LICH, (b) EICH, and (c) VICH.
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weaknesses. In VICH, the collider is linked into the chain directly after its hash address
(as in EICH) except when the cellar is full, there is at least one cellar slot in the chain,
and the hash address of the collider is the location of the first record in the chain; in
that case, the collider is linked into the chain directly after the last cellar slot in the
chain. When there is no cellar, VISCH is identical to EISCH. An example of VICH
appears in Fig. 2(c). The analyses of LICH, EICH, and VICH given in [CV84] show
that VICH performs better, on the average, than both LICH and EICH.

In the next section we conjecture that VICH is optimum among all direct chaining
methods, under the model explained above. The main result of this paper is a vote in
favor of this conjecture, showing that VICH is optimum under the above conditions
when cellar slots are given priority on the available-slot list.

2. Search-time optimality of varied-insertion. In this section we investigate the
search-time optimality of VICH among chaining methods that insert records directly
into the hash table. The sizes of the address region and cellar are fixed. We assume
that records cannot be moved once they are inserted. We also assume that the relative
ordering of the records in the chains does not change after more records are inserted.
In other words, the optimization illustrated in Fig. 3(c) is not allowed. Finally, we
assume that there is only one link field per table slot.

The major open question is whether VICH is optimum under this model. We
conjecture that the answer is yes. We will use the term admissible to refer to any direct
chaining insertion algorithm that satisfies the assumptions of the above model.

Conjecture. Varied-Insertion Coalesced Hashing (VICH) gives the optimum
expected search times among all admissible chaining methods, with the probability
assumptions that the MN sequences of hash addresses are equally likely and that
insertions and searches are random.

In this section we give strong support for the conjecture" We show that VICH
uses a greedy method of inserting records, that is, VICH is a locally optimum admissible
method for inserting a single record. For the special case in which there is no cellar,
we show that VICH is not only locally optimum, but also globally optimum. The main
result is showing that VICH is globally optimum among all admissible chaining methods
that give the cellar slots priority on the available-slot list.

In coalesced hashing we typically allocate available empty slots in the order M’,
M’- 1, M’-2, ., which means that the cellar slots are allocated before the address
region slots. However Lemma shows that for any given ordering of the available-slot

() (b)

FRANCIS %, FRANCIS FRANCIS

3 LEO %. 3 LEO 3 LEO --"
4 DON - 4 DON 4 DON

Keys: FRANCIS DON LEO JEFF
Hash Addresses: 3

ave. # probes per succ. search: (b) 9,,/4 2.25, (c) 8,/4 2.0.

FIG. 3. Hash table (a) is an optimum arrangement of the first three inserted records FRANCIS, DON,
and LEO, as far as subsequent searches are concerned. Table (b) pictures the result of inserting JEFF using
VICH. Table (c) achieves better successful search times than (b) by reordering the chain so that DON precedes
LEO. Assuming that the records cannot be moved once they are inserted, there is no optimum arrangement of
the four records in which LEO precedes DON as in (a).
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list, the chains that are formed are the same regardless of which admissible chaining
method is used, except for the order of the individual records within the chains.

LEMMA 1. For any given ordering of the available-slot list and for any admissible
chaining methods, the partition of the inserted records into chains is the same.

Proof. We prove this lemma by induction on the number of records inserted in
the table. Assume that the partition of the inserted records into chains is the same for
all admissible chaining methods after k records are inserted. Let record R (with key
K) be the next record inserted. If R does not collide when inserted, then all admissible
chaining methods insert R at its hash address hash (K). If R collides when inserted,
then all admissible chaining methods link R into the chain containing location
hash (K). Thus the partition ofthe records into chains is still the same for all admissible
chaining methods after k + insertions. This proves the lemma.

It is easy to see that permuting the order of the cellar slots on the available-slot
list does not affect search performance at all. The following lemma shows that the
order of the address region slots on the available-slot list can be permuted among
themselves without affecting the average search performance. The rigorous statement
of the lemma uses the terminology that two hash tables are homotopic if and only if
their chains can be paired off in a 1-1 correspondence so that the search times for the
ith records in two corresponding chains are the same, for each and for any pair of
corresponding chains. The formal definition of homotopic appears in [Vit82a], which
used the notion in connection with deletion algorithms that preserve randomness.

LEMMA 2. For any admissible chaining algorithm, andfor any two orderings of the
address region slots in the same fixed positions on the available-slot list, there is a l-1
correspondence between the two classes of Mrv hash tables obtained by using the two
available-slot lists such that each pair of corresponding tables is homotopic.

Proof. We prove this lemma by constructing explicitly the 1-1 correspondence.
Let al, a2, ’’’, aM and tr(al), cr(a2), ’’’, or(aM) be the two orderings of the
available-slot list. The hash table obtained by inserting k records with hash addresses
hi, hE, "’’, hk using the first ordering of the available-slot list is homotopic to the
hash table obtained by the insertion of records with hash addresses o’(hl), or(hE),
cr(hk) using the latter ordering. For each i, the record in slot in the first table is in
slot r(i) in the second table.

The following definitions are used to prove the remaining results of this section.
A chain of records RI, RE, "’’, Rk, inserted in that order by linking algorithms A,
A2, "’’, Ak, respectively, can be defined as follows: The chain [(R, A)] is the chain
containing R only. Given a chain LI =[[" .[[(R, A)], (RE, A2)], "], (Rk-, Ak-)],
the chain L=[L, (Rk, Ak)] is obtained by linking Rk into LI by using algorithm Ak.
For simplicity, we will use [(R1, AI), ’’’, (Rk, Ak)] to denote L. If a record R is
contained in a chain L--[(RI, AI), ", (Rk, Ak)], then we define Search (R, L) to be
the number of probes required to search successfully for R in L, and Search (L) to be
l<=i<_k Search (Ri, L). We also define loc (R) to be the absolute location in the hash
table of the slot containing R, and b(R, L) to be the number of records that are stored
in slots in the chain L following R, whose hash addresses are either loc (R) or one of
the slots before R in L.

Theorem shows that for successful searches, VICH is locally optimum among
all admissible chaining methods. VICH uses a greedy method of inserting records, in
that each individual insertion is done so as to minimize the resulting average successful
search time.

THEOREM |. Given a record R with key K and a chain L containing location
hash K), an optimum place to link R into L in order to minimize Search L’), where L’



DIRECT CHAINING WITH COALESCING LISTS 495

is the chain obtained by linking R into L, is immediately before the first noncellar slot
following slot hash (K) in the chain, or else at the end of the chain if no such noncellar
slot exists.

Proof. If slot hash (K) is the last slot in L, then all admissible chaining methods
link R immetiiately after slot hash (K). Therefore, we will assume that before R is
inserted, slot hash (K) is not the last slot in L and that record R is stored in a slot
in chain L that follows slot hash (K). Suppose that there are two different methods
A and B that link record R into chain L. Method A links R immediately after the
slot containing R. Method B links R immediately before the slot containing R. Let
LA denote the chain [L, (R, A)] and Ln denote the chain [L, (R, B)]. We will prove
the theorem by showing that

(2) Search (LA) >- Search (Ln),

and that if the slot that contains R is a cellar slot, then

(3) Search (LA) Search Ln ).

Since method A links R into chain L immediately after, the slot containing R
and method B links R into chain L immediately before the slot contining R, we have

(4) Search (R, LA) Search (R, La)+ l;

and

(5) Search (R, Ln)= Search (R1, LA)-b 1.

Formula (5) follows from the fact that R cannot be stored at its hash address, or else
it would not be in the chain L. For those records R’ that are stored in slots following
R in L, and whose hash addresses are loc (R), we have

(6) Search (R’, LA)- Search (R’, Ln)+ 1.

Since the hash address of R’ is loc (R1) and R is linked immediately after R in LA,
it requires one more probe to search for R’ in LA. Note that if R is stored in the
cellar, then there are no records R’ with hash addresses loc (R1). Finally, if R is one
of the remaining records in both chains, we have

(7) Search (R, LA) Search (R, Ln).

This proves (2) and (3), and thus proves the theorem.
The following theorem shows that in the case in which there is no cellar, then

VISCH is not only locally optimum, but also globally optimum.
THEOREM 2. Assume that there is no cellar. For any set of records R, R2, "’’, Rk

thatforms a chain, with the assumption that the Mk possible sequences ofhash addresses
hi, hE, ", hk are equally likely, the average unsuccessful and successful search times on
the chain are optimized by the VISCH (=EISCH) ordering of the records in the chain.

Proof. Lemma shows that the partition of the inserted records into chains is the
same for all admissible chaining methods. Since the average unsuccessful search time
on a chain depends on the length of the chain and not on the ordering of the records
within the chain, then by Lemma l, the average unsuccessful search times are the same
for all admissible chaining methods.

To prove that VISCH is optimum for the successful search case, we need the
following formula. Let L be the chain [(RI, At),..., (Rk, Ak)]; then

(8) Search (L)= k + b(g,, L).
l<ik
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This formula can be proved as follows: From the definition of Search (L), we have

(9) Search L Search Ri, L).
lik

Now consider each record Ri in chain L. If Search (Ri, L) s, then s probes are required
to search for Ri in L. Let R,, ..., Ri_, be the records stored in the slots in L that are
probed while searching for R. The search for R contributes to each of the following
terms" d(R, L), ..., b(R_,, L). It also contributes to the term k in the right-hand
side of (8). Therefore, the search for R contributes s to both sides of (8). This proves
(8).

Now we prove the optimality of VISCH for successful searches by induction on
k, the number of records in the chain. Assume that for a given set of records R1, ,
Rk, with random hash addresses hi, "’’, hk, the average successful search times on
the chain are optimized by the VISCH ordering of the records in the chain. We will
show that VISCH still gives the optimum ordering for the records RI, , Rk+l, where
Rk+l is the next record inserted. The hash address of Rk+l can be any of the M address
region slots, with equal probability. Formally, if we let Lv denote the chain
[(RI, VISCH), ., (Rk, VISCH)] and let LA denote the chain [(R1, A), ., (Rk, A)],
for any admissible chaining method A, then with the assumption of induction

(10) Search (Lv) <-, Search (LA)

we will show

(11) 2
: l--i-k

and

Search ([Lv, (S,,VISCH)])<= E Search (lEA, (Si, VISCH)])

(12) Search ([LA,(S,,VISCH)])<--E E Search ([LA,(S,,A)]),

where S is a record with hash address loc (R) and the symbol under represents
the summation condition "all possible sequences of hash addresses hi, "’’, hk such
that records R1, ’’’, Rk are linked together to form a chain." Inequalities (11) and
(12) combined prove that VISCH is optimum for successful searches.

Inequality (12) is true from Theorem 1, which showed that VICH is locally
optimum. Inequality (11) is shown in the following way by applying (8): If the record
Si is linked into chain Lv immediately after the slot containing R by using VISCH,
then we have

(13) Search ([Lv, (S,, VISCH)])= 2+ b(R,, Lv)+ Search (Lv).

This formula is true, since after the insertion of S, it requires two probes to search
for Si in [Lv, (S, VISCH)], and it requires one more probe to search for those records
stored in slots in Lv that follow R and whose hash addresses are either loc (R) or
one of the slot before Ri in Lv. From (13), the left-hand side of (11) is equal to

(14)
Y E (2+ b(R,, Lv)+Search (Lv))=Y (2k+kSearch (Lv)+ Y th(R,, Lv))
: l--ik : l--ik

Y’, (k + k + Search (Lv)).
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The last equality follows from (8). Similarly, the right-hand side of (11) is equal to

(15) (k+(k+ 1) Search (LA)).

Thus, (11) follows from (10) immediately.
From the above arguments, we conclude that VISCH gives the optimum ordering

of records in the chain that minimizes both the successful and unsuccessful searches
times. This proves the theorem.

The weakness of Theorem 2 is that EICH is also a greedy insertion method, but
with a cellar EICH is definitely not optimum. The next theorem strengthens the previous
results. It shows that when the cellar slots get priority on the available-slot list, VICH
is globally optimum.

THEOREM 3. Assume that the cellar slots are given priority on the available-slot list.
_For any set of records R, R2, "’’, Rk that forms a chain, with the assumption that all
possible hash addresses hi, h2, "’’, hk are equally likely, the average unsuccessful and
successful search times on the chain are optimized by the VICH ordering of the records
in the chain.

Proof We first note that for each chain the hash address of each cellar slot is the
location of the first slot of the chain. Now we show that VICH optimizes the average
unsuccessful search times. Let us assume that the noncellar slots in the chain are in
relative positions p, p2,..., Pa-, Pa in the chain, counting backwards from the end
of the chain. Note that <= p <=. <= p_ <- Pa k, where k is the length of the chain.
The average unsuccessful search time on the chain is

(16) (p,+p,_t+ +p)
a

which can be minimized by letting p 1, P2 2, , p_ a- 1. This means that all
the cellar slots in the chain immediately follow the first slot in the chain. This is feasible,
since the hash addresses of all the cellar slots are the location of the first slot of the
chain. VICH yields the above ordering, and thus minimizes the average unsuccessful
search times on the chain.

To prove that VICH optimizes the average successful search times, we will show
that (a) the optimum placements of the cellar slots in the chain are immediately after
the first slot of the chain, and that (b) the optimum relative ordering of the noncellar
slots is the ordering obtained by using VICH.

(a) Assume that an ordering of records in the chain is obtained by using method
A, in which a cellar slot immediately follows a noncellar slot. Let records R and R2
be the records stored in the noncellar slot and the cellar slot, respectively. We assume
that R is not the start of the chain. Assume also that another ordering of records in
the chain is obtained by using method B, which is the same as that for A except that
R immediately precedes R in the chain. Let LA denote the chain obtained by using
method A, and Ln denote the chain obtained by using method B. It suffices to show that

(17) Search (LA) >= Search Ln ).

Since the hash address of R2 is the location of the first slot of the chain, we have

(18) Search (R, LA)= Search (R2, LR)+ 1.

Also, we have

(19) Search (R, LR)= Search (R, LA)+ 1,
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since the slot containing R2 precedes immediately the slot containing R in LB. For
those records R’ that are stored in slots following Rl in LA, and whose hash addresses
are loc (R1), we have

(20) Search (R’, LA)-- Search (R’, LB)+ 1.

This follows since loc (R2) must be probed to search for R’ in chain LA. For the
remaining records R in both chains, we have

(21) Search (R, LA)= Search (R, .LB).

This shows that the optimum placements of the cellar slots are immediately after
the first slot of the chain.

(b) By the same arguments as those in the proof of Theorem 2, we can prove that
the optimum relative ordering of the noncellar slots is the ordering obtained by using
the VICH method.

From (a) and (b), we conclude that the average successful search time on the
chain is optimized by the VICH ordering of the records in the chain, l]

In order to prove the conjecture that VICH is globally optimum, it suffices to
show that the best way to allocate empty slots for colliders is to have an available-slot
list in which the cellar slots have higher priority than the address region slots. The
conjecture would then follow from Lemma l, Lemma 2 and Theorem 3.

The difficulty with proving the conjecture is due to the many exotic hash algorithms
that must be considered if the cellar slots are not given priority on the available-slot
list. The priorities assigned to slots on the available-slot list might be dynamic, for
example. For that reason, the optimum algorithm in our model could turn out to be
a method that is not practical. We believe that such is not the case. We conjecture that
VICH, which has a very efficient implementation, is optimum in our model.

3. Conclusions and open problems. We have given strong evidence in support of
our conjecture that VICH is optimum among all direct chaining methods, under the
assumptions that the records are not moved once they are inserted, that for each chain
the relative ordering of its record does not change after further insertions, and that
there is only one link field per table slot. In particular, we have shown that the conjecture
is true under the additional condition that cellar slots are given priority on the
available-slot list. Intuition suggests that this extra condition will always be true for
optimum algorithms under the above assumptions, however, determining whether the
conjecture is true in general seems to be quite challenging. If VICH is shown not to
be optimum, it is hopeful that the insights gained from the proof will lead to the
construction of an optimum algorithm.

There are other interesting open problems concerning this model of hashing. One
problem is to study the performance of coalesced hashing in external searching, as
discussed in [Vit82b]. Another problem concerns deletion algorithms that preserve
randomness. Preserving randomness means that deleting a record is in some sense like
never having inserted it. In particular, the formulas for the average search times after
N random insertions intermixed with d deletions are the same as the formulas for he
average search times after N-d random insertions. The formal notion of what it
means to preserve randomness is defined in [Vit82a]. A deletion algorithm for coalesced
hashing is given in [Vit82a] and shown to preserve randomness for late-insertion
standard coalesced hashing (LISCH). The authors have recently discovered deletion
algorithms that preserve randomness for LICH, EICH, and VICH. It seems that in
order to preserve randomness, a deletion algorithm must relocate some records from
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time to time, which may not be possible if the records are "pinned" to their locations
and are not allowed to be moved. Deletion algorithms that do not relocate records
(and do not preserve randomness) should therefore also be studied. It is an open
problem to determine how the average search times are affected by deletion algorithms
that do not preserve randomness.

[Bre73]

[CV83]

[CV84]
[GI(8]

[Gui76]

[Kno84]
[Knu73]

[Vit82a]

[Vit82b]
[Vit83]

[Wi159]

REFERENCES

R. P. BRENT, Reducing the retrieval time ofscatter storage techniques, Comm. ACM, 16 (1973),
pp. 105-109.

W. C. CHEN AND J. S. VIq"FER, Analysis of early-insertion standard coalesced hashing, this
Journal, 12 (1983), pp. 667-676.

Analysis ofnew variants ofcoalesced hashing, ACM Trans. Database Systems, to appear.
D. n. GREENE AND D. E. KNUTH, Mathematics for the Analysis of Algorithms, Birkhauser,

Boston, 1981.
L. J. GUIBAS, The analysis of hashing algorithms, PhD dissertation, Computer Science Dept.,

Technical Report STAN-CS-76-556, Stanford Univ., Stanford, CA, August 1976.
G. D. KNOTT, Direct chaining with coalesced lists, J. Algorithms, 5(1) (1984), pp. 7-21.
D. E. KNUTH, The Art of Computer Programming. Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, MA, 1973.
J. S. VITTER, Deletion algorithmsfor hashing that preserve randomness, J. Algorithms, 3 (1982),

pp. 261-275.
, Implementations for coalesced hashing, Comm. ACM, 25 (1982), pp. 911-926.
, Analysis of the search performance of coalesced hashing, J. Assoc. Comput. Mach., 30

(1983), pp. 231-258.
F. A. WILLIAMS, Handling identifiers as internal symbols in language processors, Comm. ACM,

2 (1959), pp. 21-24.



SIAM J. COMPUT.
Vol. 14, No. 2, May 1985

(C) 1985 Society for Industrial and Applied Mathematics

017

COMPOSING FUNCTIONS TO MINIMIZE IMAGE SIZE*

M. R. GAREY AND D. S. JOHNSON,"

Abstract. We show that, given a collection F of functions from a finite set D to itself, one can, in poly-
nomial time, find a composition f of functions in F for which the size of f (D) is minimized. This is to be
contrasted with the fact that it is PSPACE-complete to determine whether a specific function f is a compo-
sition of functions in F. The running time of our algorithm is O (I D 12 (I D + IF I)), and this bound can be
improved if an appropriately abbreviated representation of F is used. The problem first arose in connection
with the minimization of conjunctive queries for relational databases.

Key words. Computational complexity, algorithms, database theory, minimization

1. Introduction. Let D be a finite set, and let F {fl,f2 fn} be a collection
of (not necessarily one-to-one) functions from D to itself, represented as sets of
ordered pairs. Define F* to be the closure of F under function composition, and let
Fmin min{If (D)I:f E F*}. In this paper we consider the problem of finding a func-
tion f E F* such that If (D) Fmin.

A restricted version of this problem arose in a problem of optimizing queries for
relational databases [2], in which the set D corresponds to the collection of "con-
juncts" in a "conjunctive query" Q, the functions in F are homomorphisms of the
query to itself, and Fmin is the number of conjuncts in the minimum query equivalent
to Q. The set F in this application was determined by the internal structure of the
conjuncts, and hence was constrained in a variety of ways, not all of them easily quan-
tifiable. However, by using this internal structure, [2l was able to derive an algorithm
that computes tmin for such sets, and runs in time O (ID 121Q I), where [Q[> D[
measures the total size of the query Q, taking into account the internal structure of its
conjuncts (the elements of D).

When one turns to the general problem, where arbitrary sets of functions F are
allowed and the elements of D have no internal structure, the possibility of a polyno-
mial time algorithm for finding an f F* with [f (D)I "Frnin seems considerably
diminished. One’s pessimism is further bolstered by the fact that the closely related
problem, "given D, F, and a function f:D--*D, is f F*?" is PSPACE-complete [3].

In this paper we show that, surprisingly, the general problem can be solved in
polynomial time, with a time bound comparable to that for the special case mentioned
above. Our approach is to divide the overall problem into two appropriately formu-
lated subtasks, each involving a specially designed data structure. In {} 2 we consider
the second of these subtasks; in {} 3 we consider the first, and in {}4 we put the two
parts together to obtain an O (]D 12 ([D + F I)) algorithm. We also observe how to
modify the algorithm to take advantage of special properties of the set F, such as
those that hold in the above-mentioned database application.

2. The collapsibility graph. The key intermediate structure needed to solve our
problem is an edge-labelled graph Gc(F), which we shall call the collapsibility graph
for F. The graph Gc(F) has D for its vertex set, and an edge {d,d] if and only if
there is some f F* such that f (d)--f (d’), with the label for that edge being a
description of such a function f. It is not difficult to see that this graph can be

*Received by the editors January 25, 1983, and in revised form November 30, 1983. This paper was
typeset at AT&T Bell Laboratories, Murray Hill, New Jersey, using the troff program running under the
UNIX* operating system. Final copy was produced on December 17, 1984.

’AT&T Bell Laboratories, Murray Hill, New Jersey 07974
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constructed in polynomial time, but we shall postpone the details of its construction
for the next section. For now, let us consider the crucial property of the graph.

LEMMA 1. If D’C_ D is an independent set in Gc(F), then Fmin
Proof. By the definition of Gc(F), if D is an independent set, then, for all f F,

f (D) is also an independent set and If (D)]- z q. Thus, by induction, for all
f F*, the same properties hold. Therefore, for all such f, If (D)]
]D’I, and the lemma follows from the definition of Fmin. U!

In fact, we will see that Fmin equals the size of the maximum independent set in
G(F). Although the problem of finding maximum independent sets is in general
NP-hard, in this case we are more fortunate. The following procedure determines
Fmin and constructs our desired function f, given Go(F). The procedure can be
described in terms of "pebbles."

Collapsing Procedure

1. Assign a pebble to each vertex d of Gc(F).
Let f*-I (the identity function).

2. While there are two pebbled vertices connected by an edge, do the following:
Let f be a function labelling an edge connecting two pebbled vertices,

and set f* -fo f* (the composition of f with f*).
For each pebbled vertex d (in parallel), move the pebble on d to f (d).
Delete all but one pebble from each multiply-pebbled vertex.

LEMMA 2. After executing the "Collapsing Procedure," .the number of pebbles
remaining equals Fmin and f* is a function in F* with f* (D)- Fmin.

Proof. Since f* is a composition of functions in F*, it is itself in F* by defini-
tion. Its image is the set of vertices that are pebbled when the procedure halts. Since
the procedure did halt, these vertices must constitute an independent set in Gc, and
hence Fmin If* (D)[, by Lemma 1. Equality follows by the definition of Fmin,
since, as argued above, f* F*. ra

The time required for performing the Collapsing Procedure can be bounded by
O([D I): The while loop can be executed at most IDI times, since each execution
results in the removal of a pebble. Each execution spends at most O ([D ]) time look-
ing for adjacent pebbled vertices, and then at most O(ID ]) time moving pebbles.
Standard data structures can be used to keep track of pebble locations efficiently. If
one wishes to include the time for reading in the graph Gc(F), the same time bound
holds, since Gc(F) has ID[ vertices, fewer than [D [2 edges, and each edge label is a
function description consisting of D[ ordered pairs of elements of D we assume that
the computer word length is at least log. D[ and hence each element of D can be
described using a single word. In what follows we also assume that random access
memory is sufficiently large that elements of D and F can be accessed in constant
time when needed. If either of these assumptions is violated, our stated running time
bounds will need to be multiplied by appropriate logarithmic factors.

3. The pair-map graph. To complete our algorithm, we must show how to con-
struct Gc(F). In other words, for each pair (d,d3 of distinct elements in D, we must
determine whether there exists a function f E F* such that f (d)-f (d) and, if so,
generate such a function. We can do this using a second labelled graph data struc-
ture, the pair-map graph Ge(F).

The directed graph Ge(F) has a vertex set DxD, with ((d, d3, (e, e3) in the arc
set if and only if there is an f E F such that f (d) -e and f (d) -e’, in which case the
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arc is labelled by such an f. Note that Ge(F) has ID 12 vertices and at most
outgoing arcs per vertex, for a total size of O(ID 121FI , and that Ge(F) can be con-
structed in time proportional to this size, given descriptions of the functions in F as
sets of ordered pairs.

Given the pair-map graph, the existence of a function f E F* with f (d)=f (d9
can easily be determined in time proportional to the size of Ge(F), merely by doing a
breadth-first search from the vertex (d,d’), looking for vertices of the form (e,e). If
one is found, the path from (d,d9 to it can be at most O(ID 12) arcs long, so the
desired function f can be computed by O(ID 12) composition operations, for a total
time of O(ID I). Since this must be done for every pair (d,d9 of distinct elements of
D, the overall time for constructing Gc(F) in this straightforward manner is
O(IO 14(IO1+ IF I)).

However, we can be more efficient than this. Suppose that we start at the ver-
tices of the form (e,e) and work backwards, thus determining all vertices that can
reach such a vertex during just one pass over Ge(F), i.e., in time O(ID I"l l). w
can also avoid unnecessary recomputations of function compositions. The idea is to
label each vertex (d,d), as it is encountered, with a function fa,a’ that collapses d and
d’. Initially, vertices of the form (e,e) are labelled with the identity function. Sup-
pose now that (e, e9 is labelled, and we encounter a new vertex (d,d’) in our backward
search by traveling back along the arc a ((d, dg, (e, eg) from (e, eg. If fa is the label
of arc a in Ge(F), then the label of (d,d9 is fa,a’-’fa* fe,e’. This reduces the total
amount of time to compute all the edge labels for Gc(F) to at most O (ID l) for each
vertex in Ge(F), or a total of O(ID 13), for an overall time of O(ID I’ (ID + IFI)) to
construct Gc(F).

4. Special case efficiency. Given the procedures specified in the last two sections
for constructing the collapsibility graph Gc(F) and using it, we conclude that the
problem of determining Fmin and finding an f E F* such that If (D)I =Fmin can be
solved in time O ([ D 12 ([D + IF [)). Assuming iF > [D [, the overall running time
is dominated by that for constructing Gc(F), since the collapsing procedure of 2 only
takes time O (ID 3).

In this section we observe how the construction of Gc(F) can be modified to take
advantage of certain properties of the set of functions F, such as those encountered in
the already mentioned database application of [2]. In that application, the functions
in F obey the following restriction (among others):

(R). If f, f’ are distinct functions in F, then f (a) =f’(a) implies f (a) -a.

Restriction (R) implies that, if the functions of F are considered as sets of ordered
pairs, then for any two distinct elements a,a’ of D, the ordered pair (a,a’) can occur in
at most one of the functions of F. Thus Fl < o =, and the more functions there
are, the more likely they are to leave a large portion of their domain untouched. We
can take advantage of this last observation by using a more concise representation for
the functions in F. So far, we have considered each to be a set of [DI ordered pairs,
for a total of O <l z)I. I) storage space. We can save some of this space, without any
loss of information, by deleting all pairs of the form (e,e). This can be done in time
O(IO ]’IF I), which will sti be dominated by the times for the later parts of the algo-
rithm. Let [S denote the size of the resulting representation of F. Note that restric-
tion (R), mentioned above, implies that Is I--o

We now show how we can construct Ge(F) in time O(]D I.Is I) using this new
representation, and thus convert any savings in storage to savings in running time
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(and, at the same time, obtain a tighter bound on the size of Ge(F)). We begin by
constructing a set S of triples (f,d,d’), where f E F, d E D, and f (d)--d’ d. This
takes time O([S 1) given the concise representation of F. In constructing these triples,
we use a bucket-sort technique [1] to partition them into sets Sa, d D, where Sa
consists of all those triples with d as second component. Assuming that the original
description of F had its pairs ordered by first component, with all the pairs for the
first function preceding all those for the second, etc., this partition can also be created
in time O(IS I). In addition, we can assume that each set Sa is ordered by its first
components.

Then, to determine all the arcs leaving the vertex (d,d9 in Ge(F), all we need do
is merge the two ordered sets Sa and Sa, (in linear time ]), and read off the results.
If (f,d,e) occurs adjacent to (f,d’,eg, we know there is an arc from (d,d9 to (e,e)
that we can label with f. If the first is missing, there is an arc from (d,d9 to (d,e9
labelled by f; if the second is missing, there is an arc from (d,d9 to (e,d9 labelled by
f. If both are missing we skip function f entirely, since it is the identity on d and d’,
which only results in a self-loop in Ge(F). (The removal of loops from Ge(F) does
not interfere with construction of Gc(F) from Ge(F).)

The total time for constructing and labelling all arcs out of the vertex (d,d in
Ge(F) is thus 0 (ISdl + ISa,[). Summing over all pairs (d,d), we obtain the claimed
overall time bound of O([D I.Isl). Since, as we observed in the previous section,
Gc(F) can be constructed from Ge(F) in time proportional to ID 13 plus the size of
Gc(F), this means that we can construct Gc(F) within time O (Io I(Io = / Is I), and
this becomes the bound on the overall process of finding a function f F* with

If (D)[-’Fmin. The savings in time is the same as the original savings in space for
storing F: we replace a factor of D I" FI by sI.

In the database application, where Is l-o(Io this reduces the overall run-
ning time to 0(11913), which is comparable to the time claimed in [21, although the
running time there was expressed in terms of the internal structure of the elements of
D, and F was only generated implicitly. If F were generated explicitly in that applica-
tion, and then the current algorithm applied, the resulting hybrid procedure, although
quite different from the original one in that paper, would have precisely the same run-
ning time. It would also be more general, since, by relying less on the internal struc-
ture of the elements of D (the conjuncts), the class of queries it can handle expands to
all those queries whose self-homomorphisms obey restriction (R) above and can be
constructed efficiently.

Another restriction that holds in [2] says that every element of F* is either in F
or else the composition of two functions in F. This imposes further structural restric-
tions on Ge(F), but we have been unable to use it to obtain an improvement in the
overall running time of the algorithm. We leave such improvements, both in the res-
tricted case and the general one, to ambitious readers.
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SHIFF-REGISTER SYNTHESIS (MODULO in)*

J. A. REEDS" AND N. J. A. SLOANE"

Abstract. The Berlekamp-Massey algorithm takes a sequence of elements from a field and finds the
shortest linear recurrence (or linear feedback shift register) that can generate the sequence. In this paper
we extend the algorithm to the case when the elements of the sequence are integers modulo m, where m is
an arbitrary integer with known prime decomposition.

Key words. Berlekamp-Massey algorithm, shift-register synthesis, linear recurrences

1. Introduction. The Berlekamp-Massey algorithm used in decoding BCH codes
also solves the following problem: given a sequence So, S,. , Sn-i of elements from
a field, find the shortest linear recurrence (or linear feedback shift register) that will
generate the sequence [1, Chapt. 7], [21]. The algorithm can be used to decode other
codes [18]-[20], [23], [27], [32], is related to the Euclidean algorithm and the computa-
tion of Pad6 approximations [6], [7], [22], [34], and has been extensively studied [2],
[8]-[10], [13], [26], [33], [35]. W. F. Lunnon, in an unpublished manuscript [17], has
pointed out that a version of the quotient-ditterence algorithm 12], 14], 15] can be
used to find the shortest linear recurrence which generates a given sequence of complex
numbers. This is not as efficient as the Berlekamp-Massey algorithm, although it has
the advantage of being easier to remember, at least in its simplest form. Games and
Chan 11 ] give a fast algorithm for finding the shortest linear recurrence in the special
case of a binary sequence of period 2k. Nevertheless, in spite of this extensive literature,
it appears that until now noone has extended the Berlekamp-Massey algorithm so as
to find the shortest linear recurrence that will generate a given sequence of numbers
modulo m, where m is an arbitrary (but known) integer. (For the case when m is
unknown, see [24,[25].) In this note we describe such an algorithm. The original
algorithm [1], [21] fails in this case because not all numbers have inverses modulo m,
and other versions--such as those involving the Euclidean algorithm [32J--fail because
certain polynomial rings are no longer principal ideal domains.

There are several obvious applications of the new algorithm, for example in
certifying random number generators (see the discussion in [29]), or in decoding BCH
codes defined over the integers modulo m (see [3], [4], [28], [30], [31]).

Section 2 establishes our notation for linear recurrences, and 3 uses the Chinese
remainder theorem to reduce the problem to the case when rn is a prime power. The
algorithm itself is given in 4 and its justification in 5. The final section contains an
example.

Gustavson 13] has analyzed the complexity of the Berlekamp-Massey algorithm,
and the complexity of our algorithm is essentially the same. If the modulus m is fixed,
O(n2) steps are required to synthesize a sequence of length n. Changing from a sequence
modulo p to a sequence modulo p increases the number of steps by a factor of e.

2. Linear recurrences and linear feedback shift registers. Our notation follows
Massey’s description [21] of the Berlekamp-Massey algorithm, and some familiarity
with that paper would be helpful (although not essential) in reading this one. Let R
be a commutative ring containing the unit element 1, and let R* denote the set of all

* Received by the editors May 17, 1983, and in revised form March 13, 1984.

" Mathematics and Statistics Research Center, Bell Laboratories, Murray Hill, New Jersey 07974.
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units (or invertible elements) of R 16]. The sequence So, SI, Sn-l, where all Si R,
is said to obey a linear recurrence of length l, or to be generated by a linear feedback
shift-register of length l, if there are elements ao 1, a i," ", at R such that

(1) a,Sj_,=O forj=l,...,n-1.
i=0

It is convenient to express (1) in terms of polynomials from R[x]. Let a(x)=
ao+ alx+" "+ atx, S(x) So+ Sx+. .+ Sn_lX"-l. Then (1) is equivalent to

S(x)a(x) b(x) (mod x"),
(2)

a(O) 1,

for some polynomial b(x) R[x] of degree =<1- 1. Thus the length of the recurrence
or shift register is />-max {deg a(x), +deg b(x)}, and in fact there is no loss of
generality in assuming that max {deg a(x), + deg b(x)}. We write A (a(x), b(x))
and define L(A)= max {deg a(x), + deg b(x)}. By convention deg (0)=-.

3. The Chinese remainder theorem. In our problem R is the ring Zm Z/mZ of
integers modulo m, where m-> 2 is a given integer whose factorization is known. We
wish to find an algorithm which, when presented with a seqtence So,’", S,_, all
S Z,,, will find a linear recurrence A (a(x), b(x)) that generates the sequence, i.e.,
satisfies (2), and has minimal length L(A). By the Chinese remainder theorem 16]
it is enough to solve the problem for the case when the modulus is a prime power.
For suppose rn I-Ii p’, ei >- 1, where the p are distinct primes, and assume that for
each we have found a minimal length recurrence (a()(x), b()(x)), of length l say,
that generates the sequence So, , S,_l modulo p,. By the Chinese remainder theorem
we can find a pair (a(x), b(x)) with

a(x) a(i)(x), b(x) =- b(’)(x) (mod

for all i, of length =max {1}, and it is straightforward to show that (a(x), b(x)) is a
minimal length recurrence generating So," ", $,-1 modulo m.

4. The algorithm. Given So, S, , S,_ R, where R Zpe, p prime, e >- 1, we
wish to find a linear recurrence A (a(x), b(x)) of minimal length L(A) satisfying
(2). The key idea is to consider not just (2) but the following more general problem.
For all r/--0, 1,. ., e- l, find pairs An (an(x), bn(x)) such that

(3)
S(x)an(x =- bn(x
an(O)=p n,

(mod x"),

and L(An) n is minimized.
Our algorithm is an iterative procedure that, for all 0 <- k <- n, 0 <- r/< e, calculates

pairs
A(ng) (a(ng)(x), b)(x))

satisfying

S(x)a)(x) b)(x) (moO x),
(k)(o) =pn

and minimizing L(A)). Let pU,k(O<= unk-< e) be the highest power of p dNiding the
coefficient of xk in

S(x)a)(x)- b)(x).
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(If this coefficient is zero we take U/k --e.) Then at the kth step in the iteration, the
following property holds for all 0<_-r < k:

(Pr) For all 0_-< g < e, either

(4) L(A(+1))..g L(A(g)

or else there exists an h =f(g, r) with

(5) g+Uhr<e,

(6) L(A+l)) r+ 1-L(ah)),
(7) L(A(’+I)> L(A(gr))
(This property is the analogue for our problem of the conditions that Berlekamp gives
in [1, p. 183, eq. (7.314)] and Massey gives in [21, p. 123, eqs. (ll)-(13)].) Given this
data, our algorithm calculates A(+l) and f(, k) 0</< e, such that P holds. The
quantities L(A)) also obey the inequalities

(8) L(a(k)An+l) <= L(A <= L(A+l)

We can now state the algorithm. (A more compact version, suitable for computer
implementation, is given at the end of this section.)

The algorithm (theorem-proving version). Given So, S1,’’’, S,_l, all Si R Zpe,
we wish to find a pair A= (a(x), b(x)) such that S(x)a(x)--b(x)(mod x"), a(0)= 1,
and the length l= L(A)= max {deg a(x), +deg b(x)} is minimized.

Step O. We start the algorithm with k 0, and for each rt 0, 1,. ., e- define

a?)(x)=p ", bn)(x)=0, a(n’)(x)=p ", bnl)(x)=pnSo,

and ai) (ai)(x), b).., , , ()), for i=0, 1. Let So 6p for 6 R* 0<= e <= e (if So=0 set
6=1 and e=e). Then L(A))= 0, and L(AI)) if r/+e<e or =0if rt+e=> e. We
also define

0,o=6, U,o=r/+e ifr/+e<e,

0,o=1, U,o=e ifr/+e>_-e

(these values are consistent with (9) below). Finally we set f(r/, 0)= 0 for all ft.
The following step is carried out for each k 1, 2,..., n- 1.
Step k. This produces Ak+l) For each r/= 0, e we perform the following

calculations. Define 0.k R* and 0 < unk < e by

k)(x) =-- b)(x) + Onkp ""Xk (mod xk+l).(9) S(x)a n

(Onkp", is the current discrepancy in the notation of [21].)
CaseI Ifunk=esetAk+l) ,k)

Case II. If U/k < e define

(0)

so that 0 =< g < e, and put

()

(12)

g e Unk

f(/, k) g.

There are now two subcases.
Case IIa. If L(Agk)) --0 we set

(k+l) ,,(k)
__

(0, Onkpu’kxk).
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Case lib. If L(A(gk)) > 0 then for some 0=< r < k we have

(13) L(A()) < L(,.g )) L(a(gk)).
r is the time of the most recent length change in the sequence L(A(e,)), L(A(g)),
From (5), (6) and (13) it follows that

(14) L(A(gk)) L(A(+’)) r+ L(A(h))"g

where h f(g, r) and

(15) g+Uhr<e.

From (10) and (15), Uhr<--_ U,k. Thus the power of p from the past can be used to
annihilate the power of p in the current discrepancy, and we define

(16) a n(k+)(x) a(nk)(x)- OrtkO-lr pUnk--Uhxk--ra(hr)(x ),

(17) b(+"(x) b(x) 0,0-
(k+ h(k+l)and (k+l) (a )(x) (x)). Then

S(x)+)(x) h+l)(x) (mod x+),

This concludes Step k.
At the end of Step n-1 the algorithm terminates and the desired pair A=

(a(x), b(x)) is given by A)=(a")(x), b")(x)).
The initial values of ACk) are as follows. Let S Sp, w.here S R* 0 < e < e,

0 or 1. Then

(18)

(19)

and

A (pn, 0), L(A)) O,

a())={1 for r/ <- e- eo-1,a() (p’, pnSo) L(. _," 0 for r/_>-e-eo,

(20)
(p", pnSo)

a= (p’,p’(So+S,x))’r/

eo+e --1(pn_pn- S*o) S* x, So)

for e-

for 0 _-< rt -<- eo- el- 1,
for eO- el <= rt <= e- e l.

The algorithm as presented above calculates and saves various intermediate
quantities not needed in subsequent steps. The following is a more streamlined version
that needs to remember only O(e) intermediate quantities, some of which are poly-
nomials.

The algorithm (computer-implementation version). Given So, Sl,’’ ", Sn-l, all Si
R=Zpe, this algorithm produces a pair A=(a(x),b(x)) such that S(x)a(x)=
b(x) (mod x"), a(0)= 1, and the length l= L(A)= max {deg a(x), + deg b(x)} is
minimized.

StepO. For each =0,1,...,e-1 set

a,(x) p", b(x) O, a (x) p’, o, tx) pSo,

and find 0n and u,, 0n e R*, 0 _-< u, -< e, such that

S(x)an(x)- b(x) Onp", (mod x).
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The following step is carried out for each k 1, 2,. ., n- 1.
Step k. There are three parts.
First, for each g=0, 1,. ., e- l, if L(aeW(x), bew(x)) > L(ag(X), bg(x)), set

ag’d(x) ah(X), o,d
lg g

bgld(x)=bh(x), rg-- k-l,

0= 0,

where h e- Ug.
hneW(X).nW(x) and b,(x)=,Second, for each =0,1 ...,e-1 set an(x)=a,

Third, for each 0, l, , e- l, find 0" and u,, 0n 6 R*, 0 u, e, such that

S(x)a,(x)- b,(x) O,p"xk (mod xk+).
Set g e-1-u,. Then (I) if u, e set

an ix)= an(x), b(x) bn(x);
or (IIa) if u. e and L(ag(x), bg(x))=0, set

n (x)= an(x), o n tx)= bn(x)+ Onp".xk;
or (lib) if u. e and L(ag(X), bg(x)) 0, set

a-neWrtx an(x On( od)-’p".-"’xk-%ag’d’tx),"

bnew(x)n bn(x On( o’d)-’p".-"’aXk-rog’-’d(x).
At the end of Step n the algorithm terminates and the desired pair (a(x), b(x))

is given by (aeW(x), bW(x)).
The variables in this version of the algorithm are related to those in the Original

version as follows. At the conclusion of Step k we have, for each ,
(an(x), bn(x))= (a)(x), b)(x)),

neW(X), beW(X)) (a(k+l)(x) (k+l)(x))

If

then

g g, e- un e- Ur/k

(r+’)(x) b(gr+’)(x))},r, max {r: r < k and L(a(g")(x), b(g")(x)) < L(ag
old Ohrng

/,/ld hrn
where h f(g, r,).

5. Proof of correctness. It is convenient to denote the set of all pairs (a(x), b(x))
satisfying

S(x)a(x)=- b(x) (mod xk),
(21)

a(0) =p"

by g(k) and to let

N(k)= {(a(x) b(x))" S(x)a(x) =- b(x) + Opnxk (mod Xk+l) for some 0 e R*}
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-() andfor 0<<e. Note that if (a(x)b(x))g(k) then (pa(x),pb(x)),,,+,
(a(x), b(x)) is in 3 for some u, 0 < u < e" while if u=e then (a(x), b(x))
Fuhermore, from (9),

(22) A) g) a().

The proof that the algorithm works is based on two lemmas. The first is a
generalization of [21, Lemma 1] and pa of 1, Thm. 7.42].

> and (c(x) d(x))e- where n+u<e, thenLEPTA g (a(x), b(x))

(23) t(a(x), b(x))+ t(c(x), d(x)) k.

Proo Working modulo xk we have

S(x)a(x) b(x), S(x)c(x) d(x)+ @xk-l,
for OeR* so

(24) b(x)c(x)-a(x)d(x) Opxk-la(x) Opxk-la(O) Op’+Xk-’,

which does not vanish. Therefore the degree of the left-hand side of (24) is at least
k- 1. But

deg (b(x)c(x)-a(x)d(x))max {deg (b(x)c(x)), deg (a(x)d(x))}
(25)

t(a(x), b(x))+ t(e(x), d(x))-
as required.

A pair (a(x), b(x)) is said to have minimal length in ,g{k} if (a(x), b(x))e g{k}

and if L(a(x), b(x))L(a’(x), b’(x)) holds for all (a’(x), b’(x))e . The second
lemma shows how Lemma can be used to verify that a paicular pair has minimal

length.
LEMMA 2. Suppose in addition to the hypotheses ofLemma that equality holds in

(23). en (a(x) b (x)) has minimal length in
This is an immediate consequence of Lemma 1. We can now justify the correctness

of the algorithm.
THEOREM For all k O, n and O, e- a{k) has minimal length

in

Proof The proof is by induction on k. The induction hypothesis is that, when

beginning Step k,

propeies Po, PI,"" ", Pk- hold (see (4)-(7)); and

Ar) has minimal length in ) for 0 r k, 0 g < e.

In Step k we compute Uk etc. from (9) and form .A+). To establish the induction
we must show that, at the end of Step k, propey Pk holds, i.e.,

(Pk) For all 0 < e, either

(26) L(A)) L(A))

or else

(27)

(28)

(29)

L(A+)) k + l-L(A(gk)),
L( A(k+l)) > L(A(nk)

and that

:,(k+l) for 0 <..,A(k+) has minimal length in
_ =<e.
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The initialization, proving P0 and the minimality of A and , is straightforward
and we omit the details.

Suppose we are in Step k, and Case I obtains. Then (26) holds, and A(k+) has
minimal length by induction.

Supose we have Case IIa. We first establish Pk. We may assume (26) does not
hold. Then

and, from (9),

L(A(gk)) O, A(gk) (pg, O),

S(x)pg-- OgkPu*kXk (mod xk+).
This implies that pe-g _-p+U,k divides each of So," ", Sk_ and Sk Op- for some
0 R*. Let Si p+",kS* for < k. Using (9) again, and remembering that a(nk)(O) p’,
we have

xk-I k} pn{pl+Unk(S8 d-" d- S*k-I )d- OpUgk--gx { d-" "}
(30)

=- b(nk)(x) + Onkp%kxk (mod xk+l).
Since L(A(n+) k+ > L(A(nk),

deg b(nk(x) <- k-1.

Equating coefficients of xk in (30), and using (10), we obtain

olp
+Unk + Op gk+’O--e+ +Unk Onkp Unk

for some a R. Since Onk is a unit, it follows that p does not divide p,g+,-e+ i.e.

rl + Ugk < e, which is (27).
Next we show that (28) follows from (27). In fact we shall show that (27) implies

(31) L(A+))=max {L(A)), k+ L(A(gk))}.
From (16), (17), (14) we have

L(A+)) =< max {L(A)), k-r+ L(A(hr))}
max {L(Ak)), k + L(A(gk))}.

But the reverse inequality follows from Lemma 1, using (22), and establishes (31). The
minimality of A(+)._ now follows from (27), (28) and Lemma 2.

Finally, suppose Case IIb obtains. To establish Pk we may assume (26) does not
hold, and so, from (16), (17),

i,e.

(32)

k- r+ L(A(h)) > L(A(k)),

k + > L(A)) + L(A(gk)),

using (14). Consider the polynomial

(k)(x){S(x)a(gk)(x) b(gk)(x)} a(gk)(x){S(x)a(nk)(x)--b)(X)}(33) q(x)=an

(34) a(gk)(x)b)(x)- a)(x)b(gk)(x).

Then, just as in (25),

deg q(x) <- L(A(k)) + L(A(k)) < k, by (32).
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On the other hand, from (33),

(35) q(x)=(p’+ ")(OkpU.,Xk+ ")--(p+" ")(O,kpU’,X+ "),

containing only terms of degree >_-k. Therefore q(x)is identically zero. But the coefficient
of x in (35)is

Okp+% O,p+"
and so

(36) r/+ u g + u,k.

Equation (27) now follows from (10). The remainder of the proof is the same as in
Case Ia.

6. An example. As an example we find the shortest linear recurrence that can
produce the sequence So= 6, S 3, S= 1, $3-5, $4= 6 modulo 9. The computation
is displayed in a pair of tables indexed by (k, r/), k --0, 1,..., 5 and r/= 0, I. The first
table shows the pairs (a’(x),b(x)). The second table shows the quintuples
(!, u,k, O,,.f(rl, k), Case), where l= L(a’)(x), b(,)(x)), and Case is one of I, lla, or

Ilb, indicating which case holds in the computation of (a+(x), b+l(x)). From the
last line of Table 1, the shortest recurrence satisfied by the sequence is

S,,+4Sn +7S,,.2+S,, 3=0, n>-3.

TABLt:.

k 0

2
3
4
5

r/= 0

(I,0)
(!,6)

(I +4x, 6)
(I +4x, 6+4x2)
(I +4x, 6+4x2)

+4x + 7x2+ x3, 6+x

(3,0)
(3,0)
(3,0)

(3+4x2,0)
(3+4x2, 0)

(3 +3x2+5x3, 3x2)

TAB Lt, 2
(!, u,,, 0,,,.I’( rl, k ), case)

k 0

2

4

r/= 0

(0, i, 2, 0, *)
(!, I, 1,0,11b)
(I,0,4, I, lla)

(3,2, I,*, I)

(3, 0, 8, I, lib)
(3,*,*,*,*)

(0,2, 1,0,*)
(0, 2, !,*, I)

(0, i, 1,0, lib)

(2,2, I,*, I)

(2, 0, 4, 1, llb)
(3,*,*,*,*)

Means "’does not apply"

Acknowledgment. We thank the referee for some very helpful comments.

REFERENCES

I] I:,. R. BI:Ri.I..KAMI’, Algebraic (’oding Theory, McGraw-Hill, New York, 1968.
12] |:.. R. II.RI.i:KAMI’, E. M. FRI’.I)Ri(’KSI’.N ANI) R. C. PROTO, Minimum conditions for uniquely

determininR the Renerator o.la linear .sequence, Utilitas Math., 5 (1974), pp. 305-315.



SHIFT-REGISTER SYNTHESIS 513

[3] I. F. BLAKE, Codes over certain rings, Inform. Control, 20 (1972), pp. 396-404.
[4] ., Codes over integer residue rings, Inform. Control, 29 (1975), pp. 295-300.
[5] W. A. BLANKINSHIP, Solution ofsimultaneous linear diophantine equations, Algorithm 288 in Collected

Algorithms from ACM, 2 Vols., Association for Computing Machinery, New York, 1978.
[6] R. P. BRENT, F. G. GUSTAVSON AND D. Y. YUN, Fast solution of Toeplitz systems of equations and

computation of Padd approximants, J. Algorithms, (1980), pp. 259-295.
[7] A. BULTHEEL, Recursive algorithms for nonnormal Padd tables, SIAM J. Appl. Math., 39 (1980),

pp. 106-118.
[8] P. H. CHEN, Multisequence linear shift register synthesis and its application to BCH decoding, IEEE

Trans. Commun., COM-24 (1976), pp. 438-440.
[9] B. W. DICKINSON, M. MORF AND T. KAILATH, A minimal realization algorithm for matrix sequences,

IEEE Trans. Automat. Control, AC-19 (1974), pp. 31-38.
[10] J. F. DILLON AND R. A. MORRIS, On a paper of Berlekamp, Fredricksen andProto, Utilitas Math., 5

(1974), pp. 317-321.
11] R. A. GAMES AND A. H. CHAN, A fast algorithm for determining the complexity of a binary sequence

with period 2n, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 144-146.
12] W. B. GRAGG, The Pad. table and its relation to certain algorithms of numerical analysis, SIAM Rev.,

14 (1972), pp. 1-62.
13] F. G. GUSTAVSON, Analysis of the Berlekamp-Massey feedback shift-register synthesis algorithm, IBM

J. Res. Dev., 20 (1976), pp.204-212.
14] P. HENRICI, Quotient-difference algorithms, in Mathematical Methods for Digital Computers II, A.

Ralston and H. Wilf, eds., John Wiley, New York, pp. 35-62.
[15] W. B. JONES AND W. J. THRON, Continued Fractions: Analytic Theory and Applications, Addison-

Wesley, Reading, MA, 1980.
[16] S. LANG, Algebra, Addison-Wesley, Reading, MA, 1971.
[17] W. F. LUNNON, Linear recurring sequences over the complex numbers, unpublished manuscript, 1970.
[18] R. J. MCELIECE, The Theory of Information and Coding, Addison-Wesley, Reading, MA, 1977.
19] F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-Holland,

Amsterdam, 1977.
[20] D. M. MANDELBAUM, A methodfor decoding ofgeneralized Goppa codes, IEEE Trans. Inform. Theory,

IT-23 (1977), pp. 137-140.
[21] J. L. MASSEY, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory, IT-15 (1969),

pp. 122-127.
[22]. W. M. MILLS, Continued fractions and linear recurrences, Math. Comp., 29 (1975), pp. 173-180.
[23] N. J. PATTERSON, The algebraic decoding of Goppa codes, IEEE Trans. Inform. Theory, IT-21 (1975),

pp. 203-207.
[24] J. B. PLUMSTEAD, Inferring a sequence generated by a linear congruence, in 23rd Annual Symposium

on Foundations of Computer Science, IEEE Press, New York, 1982, pp. 153-159.
[25],Inferring sequences produced by pseudo-random number generators, Ph.D. dissertation, Computer

Science Dept., Univ. California, Berkeley, 1983.
[26] M. K. SAWN, Minimal torsion spaces and the partial input/output problem, Inform. Control, 29 (1975),

pp. 103-124
[27] D.V. SARWATE, On the complexity ofdecoding Goppa codes, IEEE Trans. Inform. Theory, IT-23 (1977),

pp. 515-516.
[28] P. SHANKAR, On BCH codes over arbitrary integer rings, IEEE Trans. Inform. Theory, IT-25 (1979).

pp. 480-483.
[29] N. J. A. SLOANE, Encrypting by random rotations, pp. 71-128 of Cryptography (Proc. Workshop on

Cryptography, Burg Feuerstein, Germany, March 29-April 2, 1982), Lecture Notes in Computer
Science 149, Springer-Verlag, New York, 1983.

[30] E. SPIEGEL, Codes over Z,,, Inform. Control, 35 (1977), pp. 48-51.
[31], Codes over Z,, revisited, Inform. Control, 37 (1978), pp. 100-104.
[32] Y. SUGIYAMA, M. KASAHARA, S. HIRASAWA AND T. NAMEKAWA, A methodfor solving key equation

for decoding Goppa codes. Inform. Control, 27 (1975), pp. 87-99.
[33] K. K. TZENG AND G. L. FENG, Shift-register synthesis for sequences, preprint.
[34] L. R. WELCH AND R. A. SCHOLTZ, Continuedfractions and Berlekamp’s algorithm, IEEE Trans. Inform.

Theory, IT-25 (1979), pp. 19-27.
[35] N. ZERLER, Linear recurring sequences and error-correcting codes, in Error Correcting Codes, H. B.

Mann, ed., John Wiley, New York, 1969, pp. 47-59.



SIAM J. COMPUT.
Vol. 14, No. 3, August 1985

(C) 1985 Society for Industrial and Applied Mathematics
002

ALPHABETIC MINIMAX TREES*

DAVID G. KIRKPATRICKf AND MARIA M. KLAWE

Abstract. This paper concerns the following problem. Given vertices vl, , v, with weights wl, ,
construct a t-ary tree with leaves v,..., vn in left to right order, such that if li denotes the length of the
path from v to the root for each i, the maximum of wi + l is minimized. A linear algorithm is presented
for the case where all the weights are integers, and this is used to obtain an O(n log n) algorithm for the
case of general weights. Moreover it is shown that the minimax value obtained is bounded above by
2 + logt (Y. t(w,)). This result has applications in the study of the effect of fan-out constraints in logical circuits.

Key words, optimal weighted tree, minimax tree, alphabetic tree, t-ary tree, linear algorithm, upper
bound, fanout reduction in logical circuits

1. Introduction. A rooted tree is called a t-ary tree if every internal vertex has
exactly sons. It is easy to see that the number of leaves in a t-ary tree must equal
mod (t- 1). In this paper we deal with the following problem, which we will refer

to as the alphabetic minimaxproblem. Given vertices v, , vn with weights Wl, , wn
for n an integer equal to mod (t- 1), construct a t-ary tree with leaves Vl," ", v, in
left to right order, such that if li denotes the length of the path from vi to the root for
each i, the maximum of w + I is minimized. We call this value the minimax value,
and denote it by P(Wl,. ", wn). An equivalent version of the problem is to consider
weighted t-ary trees in which the weight of each internal vertex is + the maximum
of the weights of its sons. In this formulation we are trying to construct a weighted
t-ary tree with leaves v,. , v, in left to right order, such that the weight of the root
is minimized. As well as developing an efficient algorithm for constructing the optimal
t-ary tree, we will establish tight upper bounds for the minimax value in terms of
WI, Wn.

One practical situation where this problem arises is where w represents the height
of the vertex v, i.e., the length of the longest path leaving v,, in an acyclic directed
graph. In this case the minimax value obtained is the minimum possible height of a
vertex v in the acyclic directed graph if v is the root of a t-ary tree which has Vl, , v
as its leaves in that order. Via this interpretation, our results on alphabetic minimax
trees can be applied to obtain a bounding fan-out algorithm for circuits which preserves
edge crossing constraints, while not increasing size and depth by more than constant
multiplicative factors. We will describe this application in more detail towards the end
of this section.

Similar problems concerning constructing t-ary trees which are optimum under
various criteria have arisen in searching, sorting, coding theory and many other fields.
Most of the research has concentrated on the problem of minimizing weighted path
length, i.e., Y wl, for both the unordered case where the leaves v are allowed to occur
in any order, and the alphabetic case, where, as in our problem, the left to right order
of the leaves is specified. In 1952 Huffman [10] gave a simple O(n log n) algorithm
for constructing a t-ary tree which minimizes weighted path length in the unordered
case. For the alphabetic case of weighted path length, in 1959 Gilbert and Moore [3]
gave an O(r/3) dynamic programming algorithm for constructing binary trees. A more

* Received by the editors July 6, 1982, and in revised form March 13, 1984.
f Department of Computer Science, University of British Columbia, Vancouver, British Columbia,

Canada V6T W5.
Department of Computer Science, IBM Research, San Jose, California 95193.
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efficient dynamic programming algorithm using only O(r/2) time was presented by
Knuth [13] in 1971, and later that year Hu and Tucker [9] gave an algorithm which
can be implemented to run in O(n log n) time.

The unordered version of the minimax problem was first considered by Golumbic
[4] in 1976, who showed that an adaptation of Huttman’s algorithm constructs the
optimum minimax tree. For the alphabetic minimax case, it is not hard to see that
dynamic programming will work for any t, though it may be O(rl3) at worst. For 2
or 3, the existence of an O(n log n) algorithm follows as a consequence of the extension
of the Hu-Tucker algorithm to a more general setting by Hu, Kleitman and Tamaki [8].

In this paper we give an algorithm for the alphabetic minimax problem which
runs in linear time when all of the weights are integers. We are also able to reduce the
problem of general weights to at most log n integer problems, thus obtaining an
O(n log n) algorithm for the alphabetic minimax problem for any t. Moreover, if
desired, by solving k versions of the integer problem one can approximate the solution
to a general alphabetic problem with error at most 1/2k-. The integer version of the
algorithm for binary trees is very simple, and easy to prove correct. In contrast, the
Hu-Tucker algorithm, though not as complex as it appears at first glance, is quite
unintuitive, and even after various simplifications [7], [2], [8], its proof remains far
from obvious. Generalizing our integer algorithm to t-ary trees inevitably introduces
some additional complexity in the proof of correctness, but conceptually, the simplicity
of the binary case is retained.

In addition to the development of algorithms for the weighted path length and
minimax problems, significant attention has been paid to establishing upper bounds
on the optimal values in terms of the weights w,-.., wn. Upper bounds for the
unordered and alphabetic weighted path length problems are due to Shannon 15] and
Gilbert and Moore [3] respectively. A slightly different and tighter type of bound for
the binary case of the latter problem was later obtained by Kleitman and Saks [12],
as a consequence of determining which order of weights results in the greatest weighted
path length for alphabetic binary trees. Golumbic [4] proved that the optimal value
for the unordered minimax problem is strictly less than +logt ( (w’) given that all
the wi are integers. A proof of the same bound for general weights can be found in
Hoover, Klawe and Pippenger [6]. In this paper we prove that the alphabetic minimax
value is strictly less than 2+logt (Y. t(w’). Combining this with the Kraft inequality
(i.e., the (easily proved) lower bound of logt (Y (w’) for the unordered minimax value)
shows that the difference between the alphabetic and unordered minimax value is at
most 1. We are also able to prove a slightly tighter bound of the Kleitman and Saks
variety.

In [6] Hoover, Klawe and Pippenger exploit Golumbic’s result for the unordered
minimax problem to obtain a bounding fanout algorithm, referred to here as the HKP
algorithm, with the following properties. Given any acyclic directed graph G with
fan-in bounded by s, p inputs and q outputs, the HKP algorithm constructs a func-
tionally equivalent graph G’, which has fan-out bounded by as well as fan-in bounded
by s, p inputs and q outputs. Moreover G’ satisfies Size (G’)-<_ (1 +(s- 1)/(t- 1)) Size
(G)+(q- 1)/(t- l) and Depth (G’)_-< (1 +log s) Depth (G) +logt q, where the size of
a graph is defined to be its number of vertices and the depth is the length of its longest
path from an input to an output. Viewing an acyclic directed graph as a model of a
logic circuit, where vertices represent gates and edges represent the wires connecting
gates, size corresponds to the cost of building a circuit and depth to the circuit’s time
delay. The motivation for the HKP algorithm is that since different technologies impose
widely differing constraints on fan-out, it is of interest to know that any logic circuit
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can be converted to one of bounded fan-out without multiplying either size or depth
by more than a constant factor. Unfortunately, using the HKP algorithm, even if G is
planar the new graph G’ may be very far from planar. Since circuits, although not
necessarily planar, have highly constrained edge crossings, it seems desirable to have
a bounding fan-out algorithm which will preserve these constraints. The HKP algorithm
uses the Golumbic tree construction to replace vertices with too high fan-out by t-ary
trees. By using our algorithm to construct alphabetic minimax trees instead, one can
obtain an algorithm preserving crossing constraints. In particular, if G is planar then
G’ will be planar also. The bound on the increase in size is as before, and the bound
on depth becomes Depth (G’) -< (2 + log, s) Depth (G) + log, q. Thus by preserving
crossing constraints one pays a price of at most in the multiplicative depth factor.
Proofs of these bounds are entirely analogous to those for the HKP algorithm
in [6].

In the application above, and in applications in general, the number n of weights
will not necessarily be equal to mod (t-1). By adding the appropriate number of
dummy weights equal to - to the end of the list of weights, our algorithm can be
applied without affecting the upper bound on the minimax value, but as we will
illustrate in 5 this technique does not necessarily construct the optimal tree when
n # mod (t-1). Let us define a sub-t-ary tree to be a rooted tree in which every
vertex has at most sons. Motivated by our results for t-ary trees, Coppersmith, Klawe
and Pippenger [1] obtained similar results for sub-t-ary trees. In addition to giving a
linear algorithm for integer weights, they prove that the sub-t-ary alphabetic minimax
value is bounded by +log, (2 Y tcw,)). In turn, inspired by some of their ideas, we
were able to simplify our algorithm and the proof of our upper bound (Corollary 3.1.3)
for integer weights.

In the next section we present local criteria which can be used to choose a set of
adjacent leaves to be siblings in a tree without increasing the minimax value. Section

3 exploits these criteria to obtain the integer algorithm and proof of the upper bound.
In 4 we extend these results to general weights, and in 5 we present examples
indicating that our results are best possible in various ways.

2. Right locally minimal t-tuples. In this section we introduce the concept of a
right locally minimal t-tuple, and prove that if the weights of adjacent leaf vertices
form a right locally minimal t-tuple then there is some optimal minimax tree in which
these vertices are siblings. In the next section we will use this result to obtain an
algorithm which constructs optimal minimax trees for the case of integer weights. Right
locally minimal t-tuples will also be essential in the proof of upper bounds on the
minimax value.

In general it will be more convenient to deal directly with an ordered list of weights
rather than an ordered list of weighted vertices. We remind the reader that for the
entirety of this paper, except where explicitly noted, we assume that the number n of
weights (or leaf vertices) in the initial list is equal to mod (t- 1). If W w,. , w,
is such a list of weights, we will use both P(W) and P(w,..., wn) to denote the
alphabetic minimax value for this list of weights. Thus, in other words, P(W) is the
minimum value of the root of a weighted tree, whose sequence of leaf weights is
w,. ., w,. Moreover, we say that a tree T is an optimal minimax tree for W if the
root of T has weight P(W), and the sequence of leaf weights of T is W. We use the
term t-tuple to refer to a sequence of consecutive weights, and we speak of merging
a t-tuple to form a new weight w to refer to the introduction of a new vertex v with
weight w, such that the sons of v are the vertices whose weights form that t-tuple. Let
W=wl,...,w be a list of weights. For 1-<_i<_-n-t+l we define rmax(W,i)=
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max { wi+j: 0 <_-j _-< t- }. With this definition we are now ready to define a right locally
minimal t-tuple which we abbreviate by r.l.m, t-tuple. We say that wi, w+,. ., wi+t-l
are a r.l.m, t-tuple in W if the following three criteria are satisfied"

(1) l<-i<-_n-t+l.

(2) For each k such that max{1, i-t+l}_-<k-<i-1 we have r max W, k) ->

r max W, i).
(3) If <= n then wi+t >= + r max W, i).

Thus a r.l.m, t-tuple is just a t-tuple of weights whose collective maximum forms a
local minimum among the t-tuples which intersect it, and moreover the collective
maximum of every intersecting t-tuple to its right is greater by at least 1. Notice that
if n => then it is always possible to find a r.l.m, t-tuple in a list of n integer weights,
since it is easy to check that the rightmost t-tuple which has the minimum collective
maximum over all t-tuples in the list must be a r.l.m, t-tuple. This is not true for general
weights as can be seen by considering the list 1,1/2, 1/2, for 2.

The next theorem indicates the importance of right locally minimal t-tuples in
constructing optimal minimax trees. We say that a subtree S of a tree T is maximal
if the root of S is a son of the root of T.

THEOREM 2.1. Let Vl,’’’, v,, be a list of vertices whose weights form the list
W w,. , wn, and suppose w,. ., wi+t-l is a r.l.m, t-tuple in W. Then there exists
an optimal minimax tree for W in which v, v+t- are siblings.

Proof. The proof is by induction on n. The case n is obvious since then i=
and clearly v,. ., v, must be the sons of the root of any minimax tree for W. Thus
assume n > and that the theorem holds for any list of weights of size less than n. Let
T be an optimal tree for W with leaves v,. ., vn, let S be the maximal subtree of T
with v as a leaf, and let j be maximal such that vj is a leaf of S. If j >_-i+ t-1 then
we can apply the inductive hypothesis to the leaves of S to obtain an optimal tree S’
on the same leaves, such that v,. -, vi+,_ are siblings in $’. Now by replacing S by
S’ in T we obtain the desired optimal tree. Thus we may assume j < + t-1. Let R
be the maximal subtree containing v+,_ as a leaf, and let rn be minimal such that
is a leaf of R.

We first consider the case that both S and R have at least leaves. Let h(S)
[h(R)] be the maximum of the weights of the rightmost [leftmost] leaves of S [R].
We will assume that h(S) > h(R); a symmetric argument, with v/t-l playing the role
of vi, applies to the case h(R)> h(S). We construct a new optimal tree T’ as follows.
First merge v,. ., v+t_ as the sons of a new vertex v which takes /)i’S position in T.
Now for i+ <-k_-< m- place vk+t-t in vk’s position in T. Finally, the subtree R is
replaced by an optimal subtree R’ with the same leaves as R except that the leftmost
t-1 leaves have been removed. Figure illustrates the construction of T’ from T.

We now show that if u is a father of v in T for any k with i<= k =< rn-1, then
the weight of u in T’ is no greater than the weight of u in T. To do this it suffices to
show that w(u), the weight of u in T, is at least one greater than the weight of the
vertex which replaces v in T’. First suppose that u is the father of v. It is not hard
to see that since wi,. , w+t_ is a r.l.m, t-tuple, we must have w(u)>- + h(S). Now
since h(S) => h(R) ->_ w+, >- + r max W, i), and w(v) + r max W, i), this shows
that w(u)_-> + w(v). If u is the father of Vk, where + 1--< k_<-j, then again it is easy
to see that w(u) >= + h(S) >= + h(R) >= + Wk+,-. Finally, if u is the father of Vk,

where j + _--< k =< m- then Vk must be a maximal subtree of T. In this case u must
be the root of T and so obviously w(u)>-1 +

If S I-R] has less than leaves then vi [v/,_] must be a son of the root of T. In
this case it is even easier to see that T can be restructured so that v,..., v+,_ are
siblings without increasing the weight of the root.
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T

FIG.

3. Integer weights. In the previous section we observed that every list of at least
integer weights has at least one right locally minimal t-tuple. Thus for any list of

integer weights Wwe can construct a tree as follows. Find a r.l.m, t-tuple wi, , wi+t_,

replace this t-tuple by the weight / r max W, i), and continue recursively. Theorem
2.1 guarantees that any tree constructed in this manner will be optimal for W. Since
an integer list may have many different r.l.m, t-tuples, it is sometimes possible to
construct many different optimal minimax trees by this technique, but in any case we
see that r.l.m, t-tuples do yield an algorithm in the case of integer weights. By choosing
the r.l.m, t-tuples appropriately we will see that the algorithm can be implemented to
run in linear time. Before introducing our algorithm, we show that r.l.m, t-tuples can
be used effectively to prove upper bounds on P(W).

3.1. Upper bounds. For any weighted list W w,. ., w, where n _-> t, we define
G(W) E<-_s<_-,-,+t trmax(Wd)"

LEMMA 3.1.1. Let w, , w+t_ be a r.l.m, t-tuple in a list W w, , w, with
n >- 2t- 1, and let X be the list obtained by deleting w, , w+t_ from Wand inserting
(in wi’s position) a new weight w + r max W, i). Thus X is the list x, ,
where xk wk for <- k <- l, x w, and x w+,_ for + <- k <- n + l. Then
G(X) <-_ G(W).

Proof We first observe that without loss of generality we may assume that t-<_ <_-

n-2t+2, since if not, let M= +max {w" <-i<-n} and consider the lists W’ and X’
formed by adding t- new weights of size M to each end of W and X respectively.
Then w,. ., w+,_ is a r.l.m, t-tuple in W’, and G(X’) <= G(W’) implies G(X) <= G(W)
since G(W’) G(W) G(X’) G(X) (2t-2)tM. Since _-< _-< n -2t + 2 it is straight-
forward to confirm that

G(X)=G(W)- trmax(W’k)/ E trmax(X’k)"
i-t+l<=k<=i+t-1 i-tq-lki

As wi+, _-> w, it follows that r max (X, i)= r max (W, i+ t-1) and hence it suffices to
show that

E trmax(W’k) E trmax(X’k).
i-t+ k<--i+t-2 i-t+ <=k<=i-1
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By the definition of a r.l.m, t-tuple, we know that rmax (W, i)-<
min{rmax(W,k),rmax(W,k+t-l)} for i-t+l<=k<-i-l. Moreover, since
rmax{W,j) >=wi+,>=w for i+l<=j <=i+t-l, it follows that rmax(X,k)=
max{rmax(W,k),rmax(W,k+t-l)} for i-t+2<-k<=i-1. Hence we have
trmax(W’k)4c" trmax(W’k+t-I) trmax(X’k)d rmax(W’i) for i- + 2-< k-< i- 1. Finally note that
rmax (X, i-t+ 1) max {rmax (W, i-t+ 1), rmax (W, i)+ 1} and hence
trmax(W’i-t+l)h-l(trmax(W’i))trmax(X’i-t+l)4rl rmax(W’i). Combining all this we have

E (W,k) (W,i-t+l)

__
(W,i)

i-t+l<=ki+t-2

q- rmax(X’k) @(l__2)trmax(W,i)

E (X,k)

as desired. 13 i-t+l<=k<--i-i

COROLLARY 3.1.2. If W is a list of integer weights of length at least then m w) <_

tG( W).
Proof. Let T be a tree with leaf weight sequence W which is formed by repeatedly

merging r.l.m, t-tuples, let r be the root of T, and let xl," ’’, x, be the sons of r in
left to right order. Applying Lemma 3.1.1 sufficiently often shows that max{w(x)" l<=J<=t}

G(w(xl), , w(x,)) <= G(W). The proof is completed by observing that P(W) <=
w(r) +max {w(xj)" <=j-< t}. 71

COROLLARY 3.1.3. If W," ’’, W, are integers then P(wl," ", w,) <
2 + log, ( i-<_j<_-, t ws))

Proof It is easy to see that Yl<_-S_-<,-,+! tmax(Wo)< l<_-j_-<- l(w)" Combining this
with Corollary 3.1.2 and taking logarithms with respect to yields the desired upper
bound on P(wl," ", w,). U

Corollary 3.1.2 actually yields a slightly stronger upper bound which we present
in the next corollary.

COROLLARY 3.1.4. Let tol,’’’, to, be the integer weights wl,’", w, rearranged
’’, t<’)), where rI=into descending order. Then P(w,

[(n-t+l)/t].
Proof. It is not hard to see that if W’= w’l," , w, is any rearrangement of the

weight list W=wl,...,w, such that w,=to for l<-j<=[(n-t+l)/tJ and w’,=to,,
<’,). Combining this with Corollary 3.1.2 completesthen G(W) < G(W’) < E

the proof. 13

3.2. The algorithm. We now concentrate on presenting a linear algorithm for
constructing an optimal minimax tree for a list of integer weights. The basic idea in
our original algorithm was to perform a right to left scan on the initial list of weights
until a r.l.m, t-tuple was encountered, merge the weights in the r.l.m, t-tuple to form
the appropriate new weight, back up sufficiently far to ensure that no new r.l.m, t-tuple
would be missed, and continue the right to left scan. By proving that one never had
to back up more than 2t weights, we were able to bound the running time by kn, where
k is a constant independent of t. Inspired by an idea in an algorithm for a related
problem due to Coppersmith, Klawe and Pippenger [1], and changing our direction
of scan from left to right, we were able to modify our algorithm slightly so that back- ps
are unnecessary. As a result the proofs of correctness and the bound on the running
time are somewhat simpler. The idea which simplified our algorithm is that it is possible
to "fill in valleys" in a sequence of weights without increasing the minimax value.
More precisely, we have the following lemma.
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LEMMA 3.2.1. Let W Wl, W and suppose there exist 0 < s < and <-_ n s 1
such that

max {wi+j: 1 =<j<= s}-<_min {wi, w+s+l}.

Let W’ be the list Wl, ", w, Z+l, ", z+s, wi+s+l, , wn, where

z+j min { w, wi++l} for 1 <=j <= s.

Then P(W’) P(W).
Proof. Let T be an optimal minimax tree for W, and suppose u is the father of

a leaf with weight wi+ for some j with <-j -< s. Since s < either the leaf with weight
w or the leaf with weight w++ must be a descendant of u, and hence increasing w+
to min {w, wi/s/} cannot increase the weight of u. [-1

Before presenting the actual implementation we give an intuitive description of
how the algorithm functions. We maintain a list of the weights of the current set of
vertices which have been created, but whose fathers have not been created yet. A
pointer divides this list into two sublists, those weights which have been processed (to
the left of the pointer), and those which have not (the pointer points to the head of
this sublist).

We use Lemma 3.2.1 to ensure that the list ofprocessed weights forms a nonincreas-
ing sequence. Thus when we examine a new weight to be processed, if it is greater
than the last processed weight we attempt to fill in a valley, raising as many processed
weights as necessary to the new weight. If this should turn out to be more than t- 1,
of course Lemma 3.2.1 does not apply, but in this case, because all weights are integers,
it is easy to see that the last processed weights must be a r.l.m, t-tuple. Thus in this
case we merge them to form a new weight which is placed at the head ofthe unprocessed
weight sublist. If on the other hand, the new weight is not greater than the last processed
weight, we simply move the new weight to the end of the processed weight sublist by
moving the pointer to the right.

Each time Lemma 3.2.1 is used, as many as t- weights might have to be updated,
and if we actually did this, although the algorithm would run in linear time, the constant
would depend on t. However, since the sequence of processed weights form a descend-
ing step function, it is only necessary to store the positions and values of the weights
where steps occur. Moreover, since an update at a step means that that step is
permanently obliterated, each weight can represent a step at most once, and hence the
number of changes made is bounded by n + (n 1)/( 1), the total number of vertices
in the tree.

3.2.2. Implementation. To avoid handling special cases we add a dummy weight
to each end of the list of weights wl," , w, and initialize a doubly linked list called

LIST to hold this extended list. We use the variable PTR to represent the pointer into
the doubly linked list of weights, and use W(PTR) to denote the weight in the list to
which the pointer is pointing. The integer variables TOTAL and COUNT keep track
of the total number of nondummy weights in the list and processed weight sublist
respectively. We initialize PTR to point to wl, the first non dummy weight, and initialize
TOTAL and COUNT to n and 0 respectively. The descending step function of weights
is stored in two arrays, WT and POS, forming a double stack which is accessed by an
integer variable, TOP. The bottom entry of the (WT, POS) stack contains the leftmost
weight and position of the step function, and the remaining entries from bottom to
top store the weights and positions of the steps from left to right. The (WT, POS) stack
is initialized to hold the entry (oo, 0).
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INTEGER WEIGHT ALGORITHM

/* initialization *!
LIST:=oo, w,. -, w,,,
PTR points to w:
TOTAL := n
COUNT:= 0;
TOP:= 1:
WT (TOP):=
POS (TOP):= 0:
WHILE TOTAL

IF W (PTR)<WT (TOP) THEN DO;
/* pointer weight is processed and step function is extended to include
this weight and position */
TOP:= TOP+ 1;
WT (TOP):= W (PTR);
POS (TOP):--- COUNT+
move PTR right
COUNT:= COUNT+
END:

ELSE DO:
/* check whether last processed weights are a r.l.m, t-tuple */
WHILE (WT(TOP)<W(PTR) AND POS (TOP)>COUNT-t

+!) DO:
LASTPOS:= POS (TOP):
TOP:= TOP- I;
END;

/* if not, pointer weight is processed and step function is updated *!
IF WT(TOP)->_W(’PTR) THEN DO:,

IF WT(TOP)> W (PTR) THEN DO;
TOP:= TOP+ !:
WT (TOP):= W (PTR):
POS (TOP) := LASTPOS:
END;

move PTR right;
COUNT :-- COUNT+
EN.D:

/* if so, merge the last processed vertices to form a new weight */
ELSE DO;

/* delete the last processed weights from LIST *!
/* and update the step function if necessary */
DELETE weights in positions COUNT-t+I,...,COUNT from
LIST;
IF POS (TOP)
COUNT:= COUNT- t;

/* add a new weight which is the weight of the father */
/* of the vertices whose weights have just been deleted, */
/* and point PTR at it *!
INSERT WT (TOP}+ in LIST on the left of PTR:
move PTR left;
TOTAL :-- TOTAL- + I:
END:

END;
END:

/* output the minimax value P(w,’.’, wn) */
OUTPUT W(PTR}
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3.2.3. Correctness. It is easy to check that the variables COUNT and TOTAL
function as they are supposed to, and that the value of TOP is always at least 1. Also
because of the dummy o weights at the head and tail of the doubly linked list, it is
not hard to verify that PTR is never moved right when it points at the tail (thus the
tail dummy weight is never processed), and the head dummy weight is never deleted.
By induction one can easily prove that at all times we have o WT (1)> WT (2)>

> WT (TOP), 0 POS ,(1), and POS (2) <. < POS (TOP) <_- COUNT
whenever COUNT_-> 1. For current values of weights on the left of PTR (i.e. processed
weights) we use the (WT, POS) stack as follows. If 0 <_-j <= COUNT, let I(j)=
max {i: <_-/<_-TOP, POS (i) <_-j}. Then the weight in position j is WT (I(j)). To see
that the output of the algorithm is indeed P(w,..., w,), it suffices to note that
whenever the values of processed weights are increased, the minimax value is not
increased (Lemma 3.2.1), and whenever weights are merged, those weights form a
r.l.m, t-tuple and hence by Theorem 2.1 the merge cannot increase the minimax value
either. As a final observation we note that the two statements involving the temporary
variable LASTPOS can be deleted without affecting the execution of the algorithm.
Their only purpose is to make the algorithm easier to follow.

3.2.4. Timing analysis. In any pass through the main while loop, either the pointer
moves right or a t-tuple of weights is merged to create a new weight. During the
execution of the algorithm exactly (n-1)/(t-l) new weights are created, and the
pointer moves right past a weight at most once. This shows that the total number of
passes through the main while loop is bounded by n+2(n-1)/(t-1). Each pass
through the inner while loop causes an entry to be popped from the (WT, POS) stack.
Since each weight can be an entry in the (WT, POS) stack at most once, the total
number of passes through the inner while loop is bounded by n + (n 1)/( ). Finally,
it is obvious that the number of deletions must be bounded by the total number of
weights, i.e., n+(n-1)/(t-1). Combining all this, and observing that all other
operations are done at most once during each pass through the main while loop, it is
obvious that the algorithm runs in linear time, and the constant is independent of t.

4. General weights. For W Wl," ", wn and a any real number, let W(a) be the
list W a ],. ., [w, a ]. Moreover for -< <_- n let ai wi- [wiJ. Since [w a +
a>-w for any a and w, it is clear that P(W(ai))+ai>-_P(W) for each i.

LEMMA 4.1. Let j such that P(W(aj))+ aj=min {P(W(a))+ ai: <- i<- n}. Then
P(W) P(W(aj)) + a and the optimal tree for W(a) yields an optimal tree for W.

Proof. First we show that P(W(a)) + a <- P(W) for some i. By the remark preced-
ing the lemma, this implies that P(W)-P(W(a))+a. By definition P(W)=
max {w + l: 1-<_i-< n}, where li is the length of the path from the leaf with weight w
to the root in a tree T which is optimal for W. Choose such that P(W) w + l. Let
T’ be the weighted tree obtained from T by changing each leafweight Wk to Wk a + a
and adjusting the weights of internal vertices as necessary, and let w’ be the weight of
the root of T’. Clearly P( W(ai)) + a, <- w’=max { [Wk ai + ai + lk} <- w + l P( W),
since for each k, we have Wk ai] + a, + lk Wk + lk ai] + a, <-- wi + li ai] + ai
w+ l.

Now suppose S is any optimal tree for W(aj) and let S’ be the tree obtained by
replacing each leaf weight Wk--aj by Wk and adjusting internal weights as necessary.
To see that S’ is optimal for W it suffices to show that its root has weight at most
P(W(a)) + a, but this is obvious since we increased each leaf weight by at most a.
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The preceding lemma shows that the problem reduces to finding the value of
for which P( W(ai))+ ai is minimal, and solving the problem for the (integer) weight
list W(a).

Let b,..., b, be the numbers a rearranged into ascending order (this can be
done in O(n log n) time), and let bo b,-1. It is easy to verify that P(W(bo)) >-
P(W(bl)) _-> P(W(bE)) ---->’’" ----> P(W(b,)) and that P(W(bo)) P(W(b,)) 1. Let j be
the smallest such that P(W(bi))= P(W(bo))-I. Since P(W(bi)) is an integer for
each i, it is easy to see that P(W(bj))+ bj is the smallest of the values P(W(b))+ b.
Using binary search to find j, one solves at most O(log n) integer weight problems,
thus yielding an O(n log n) algorithm for constructing an optimal t-ary tree given
general weights.

The same technique can be used to obtain arbitrarily close approximations to
P(W). Let Wk be the list r2kWl]/2k, ., [2kw, ]/2k. Obviously P(Wk) P(W) >-
P( Wk)- 1/2k, and since there are at most 2k distinct values in the sequence [2kwi]/2k

[[2kw]/2kJ, one can find P(Wk) by solving at most k + integer weight subproblems.
We now extend the proofs of the upper bounds on P(Wl,’", w,) to general

weights. As above, let j be the integer such that P(W(b)) / b is the smallest of the
values P( W(b)) + bi. Upper bounds on P(W(b_l)) imply corresponding upper bounds
an P(W). We illustrate this in the proof of the following proposition. The same
technique can be used to extend Corollary 3.1.4 to general weights but we leave the
details to the reader.

PROPOSITION 4.2. For any list W= w,. ., w, we have

P(W)<2+logt(__<i__<,,t(w’))"
Proof If ai_-< b_l then [w-bj_] [wi]. Moreover, since bl,’" ", bn is a rear-

rangement of a,. , a, into ascending order, if ai > b_l then in fact a >_- b and hence
[wi-b_] [wJ + w-a+ <-w-bi+ 1. From this it is clear that for any we
have [w- bj-1 ]- 1 + bj <- wi. Now

tP(W) tP(W(bi))+b tP(W(b_t))-l+b < t2 t[w,-b-t]-+b

by Corollary 3.1.3. Combining all this yields tP(W)< t2 w,) as desired.

5. Examples. In this section we present examples which show that our results are
in some sense best possible. The first example shows that the upper bounds on
P(w,. , w,) given in Corollaries 3.1.2, 3.1.3 and 3.1.4 are tight. The second example
illustrates the limitations of local criteria in determining which t-tuples should be
merged to form an optimal tree in the case of general weights. One of the surprising
things about this second example is that it suffices to consider lists of weights in which
all but of the weights are integers, and the other weights are multiples of 1/2. Our
final example illustrates the problems which occur when n # mod (t- 1).

Example 5.1. For M, N and k positive integers we define W(M, N, k) to be the
list of weights w,..., w,, where n=tk+t--1, w=M if i=0modt, and w=-N
otherwise. It is not hard to see that P(W(M,N,k))=M+k+I. Clearly

(w)G( W(M, N, k)) tktI l+k showing that Corollary 3.1.2 is tight, and l_-<i_-<,
tk-ltM+(t--1)(tk-+l)t-v. Thus for any e>0, if N is large enough we have

t<w,)< tM+k-+ e, which shows that Corollary 3 1.3 cannot be improved. Sincel<=in
17

k-I and to- M for <= i<_- r/, obviously Corollary 3.1.4 is tight also.
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Example 5.2. By a local merging criterion we mean a set of conditions concerning
a sequence of weights, in which a particular t-tuple is specified with the following
properties. The length of the sequence is a function of t, and whenever a list of weights
has a sequence satisfying the conditions then there is some tree which is optimal for
that list in which the specified t-tuple of the sequence is merged. Thus the concept of
right locally minimal t-tuple is a local merging criterion. The next example will show
that there is no local merging criterion such that every list of general weights has a
subsequence satisfying the local merging criterion. More precisely, the following
example gives two arbitrarily long lists of weights which are locally indistinguishable,
yet have fundamentally different optimal tree structures.

For n let W(n) be the list Wl," , wn such that wi= for i- t-l, wi=
for -< n l, and wn . Let us consider the lists W(tk) and W(tk t(t 1)) for
any integer k 3. Using the techniques of 4 it can be shown that for each of these
lists, the optimal tree is unique. However, in the optimal tree for W(tk) the weights
Wl," ", wt must be merged, whereas in the optimal tree for W(tk- t(t-1)) they are
not. Figure 2 shows the optimal trees for W(tk) and W(tk- t(t--1)) when t- k 3.

3 3

FIG. 2

Example 5.3. We conclude with some remarks concerning the case when the
number of weights, n, is not equal to mod (t- 1). There are (at least) two possible
ways to extend the definition of t-ary tree to this case. One is that at most one internal
vertex does not have exactly sons, and the other is that the number of internal vertices
in the tree is exactly [(n-1)/(t-1)]. In general these definitions lead to different
values of P(W) as is illustrated in Fig. 3 for the list 1, 1, 1, 2, 1, 1, 1, 2 with =4. One
can observe that no matter which definition is used, there is an optimal tree in which
every internal vertex with fewer than leaves has only leaves as sons. In spite of this
it does not seem to be easy to decide which sets of leaves should have a father with
fewer than sons. For example the list 2, 1, 1, 2 with 3 shows that adding the
appropriate number of dummy - weights at one end will not succeed in general.
This is illustrated in Fig. 4.
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SOLVING UNDIRECTED GRAPH PROBLEMS ON VLSI*

SUSANNE E. HAMBRUSCHf AND JANOS SIMON*

Abstract. We study VLSI solutions to the connected component problem on networks that have area
too small to store all the edges of the graph for the entire computation. We give lower bounds on the time
needed to solve this problem on such networks, as well as an optimal algorithm. The lower bounds use a
new prooftechnique combining adversary strategy, information flow, and Kolmogorov complexity arguments.
The lower bounds obtained for the connected components problem hold for a number of other undirected
graph problems.

Key words. VLSI complexity, lower bound techniques, information theoretic arguments, graph problems

1. Introduction. The potential use of VLSI technology for direct hardware
implementation of algorithms has motivated much recent research in parallel computa-
tion and in the design of special purpose chips tailored to a particular problem
[AA], [BK], [GKT], [LS], [T]. In this paper we study to the connected componentproblem
(ccp), which is a paradigm for many other graph problems. We consider solutions on
chips of small area, i.e., area too small to store all the edges of the graph explicitly
within the chip for the entire computation. The assumption is interesting for both
upper and lower bounds: for algorithms because small area may mean that actual
implementation of the design could be attempted; and for lower bounds, because our
solution yielded a new proof technique.

Many lower bounds on the quantity AT2 for VLSI chips have been obtained,
using information flow arguments [BK], IT], IV]. Our results are also obtained by
measuring information transfer across a cut in the chip. However, previous arguments
[AA], [LS], IT], IV] are essentially static: by considering the location of the initial data
on the chip and the structure of the problem, the bound on the information trffnsfer
can be obtained, either by counting the number of input-output pairs [AA], IT], IV],
or by counting the number of such pairs together with the number of machine
configurations (as in the crossing sequence proofs of [LS]). In both cases, the counting
is done at the beginning of the computation. We note that there are proofs using similar
static localized information arguments that yield lower bounds on the complexity of
on-line computations [P], [PSS]. It would be desirable to extend these techniques to
the dynamic case, and to be able to talk about localized information during the
computation. This could yield more precise lower bounds, lower bounds for unrestricted
computations, and, in general, a handle on intermediate states of computation. Our
results are a first step in this direction. We consider information transmission in chips
of small area, that cannot contain all the information (or all the input) at any given time.

Applying the information transfer technique to undirected graph problems yields
AT2= /(n2(log n)2) [J]. This lower bound is tight within factors of log n for chips of
f(n2) area: [H 1] presents an algorithm for the ccp that achieves AT2 O(nE(log n)8)
on a network of O(nE(log n)2) area. (A similar result can also be found in [NMB].)
For chips of small area the lower bound of ATE=(nE(log n)2) is far from optimal.
For example, on networks of O(n) area, the time required to read r/2 inputs is f/(n),
which gives AT2= f/(n3).
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Our lower bound technique combines adversary, Kolmogorov complexity, and
information flow arguments. We obtain lower bounds for verification problems (i.e.,
given a solution to the problem and a graph, verify that the solution is the correct
solution for the given graph). In general it seems to be harder to prove lower bounds
for verification problems than for problems where the solution must be computed and
multiple outputs are produced. We show that the lower bounds for the verification
problem also hold for the original problem.

We examine several forms of input for a graph: adjacency matrix, adjacency lists,
and an unordered sequence of edges. We show that the form of input is crucial for
the performance of the algorithm. In this paper we only consider when oblivious chips;
i.e., the environment, rather than the chip, determines the moments in time at which
the input is given to the chip. Networks of area large enough to store all the inputs
before and during the actual computation are not sensitive to the when obliviousness
of the model. This does not hold for all problems solved on networks of small area:
while the performance of the algorithms presented in [KL] does not depend on when
obliviousness, efficient algorithms for undirected graph problems seem-to be harder
to find in the when oblivious model. Furthermore, for undirected graph problems we
prove stronger lower bounds for the when oblivious model. Algorithms for the ccp
and other graph problems on both VLSI models can be found in [AK], [GKT], [H1],
[NMB] and [LV].

For every when oblivious chip of o(n2) area, we prove that there exists a graph
in the class of adversary graphs for which we can obtain a lower bound on the time
needed to process this graph. We show that a certain amount of time must elapse
between successive input sequences, because there will always be a segment on the
chip that has an information deficiency about the input, supplied to it. The next wave
of input must then wait until enough information flows into the deficient segment. For
networks of O(n) area having constant width and input in the form of adjacency lists
or edges, we prove that for some n vertex graph, the time elapsing between two
consecutive input sequences is at least l"/(n). Since there may be n input sequences,
we have T 1/(n2), and AT2 1-/(n5), which can be achieved by the algorithm presented
in this paper. We first apply our lower bound technique to chips of O(n) area, and
then show how to extend the results to chips of O(nrn) area, rn o(n).

The paper is organized as follows. In 2 we describe the VLSI model and the
different forms of input for graphs. Section 3 contains the lower bound results. We
first prove the lower bounds for the verification problem of the cop and show that a
lower bound on the time needed to solve the verification problem of the cop on a
network of O(n) area is f(lq2/k), when the network can be circumscribed by a rectangle
of size k n/k, <-k <--n 1/2. We generalize this technique to obtain lower bounds on
the time for networks of O(nm) area. We then show that the connected component
problem is at least as hard as its verification problem. Thus a lower bound on the
verification problem is also a lower bound for the ccp. We conclude this section with
lower bound results for an approximate verification problem. In 4 we present an
optimal algorithm for the ccp.

2. Model of computation and forms of input. In a number of recent papers ([BK],
[CM], [LS], [T]), parallel models suitable for VLSI implementation have been developed
and refined. Our model follows Thompson’s grid model IT].

(1) Each processing element (PE) of the chip contains r registers, r constant, and
is able to execute a simple set of instructions. Each register consists of log n bits, where
n is the number of vertices in the graph.
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(2) A PE is connected to a constant number of other PE’s. The PE’s operate
synchronously.

(3) The chip communicates with its environment through the input/output ports
(I/O ports). Since we are interested in the information flow requirements ofthe problem,
and not in the information flow requirements based on the I/O restrictions of the chip,
we assume each PE on the chip can read input and produce output.

(4) Each input is read once, and each output is generated once.
(5) The chips are when and where oblivious. A chip is when and where oblivious

when the time and locations at which the inputs arrive (and the outputs are generated)
are independent of the input data. On a when oblivious chip the time elapsing between
the reading of two successive input waves is fixed by the environment of the chip and
is the same for all successive input waves.

(6) In one time unit a PE can either transmit the content of one of its registers
to an adjacent PE, or it can perform an operation on its registers. When computing
the area of a chip, we consider a PE to occupy unit area, and a wire to have unit width.

Within the VLSI literature two approaches, the bit- and the word-oriented
approach, have been used when defining time and area. We next discuss these and
justify our assumptions. Parallel time is the number of steps required to generate all
the outputs. In the bit-oriented model one step is a time pulse of length -, in which
one bit can be sent across a wire of width A, and where r and A are technology
dependent constants. This definition is used in a number of papers dealing with lower
bounds and with problems that require operations on bits [BK], [T], [V].

This paper uses the word-oriented model, where one step is a cycle. In one cycle
log n bits can be sent from one PE to another PE or a local computation within a PE
can take place. In our model a PE has length lo and width lh, where lo <- lh and

lv" lh r log n. Each connection consists of at most lv bit-carrying wires in the vertical,
and at most lh bit-carrying wires in the horizontal dimension. Hence, a connection
between two PE’s in the vertical dimension contains lv/A bit-carrying wires, A _-< Iv<-_
(r log n)/, and a cycle consists of -A log n Iv time pulses. The assumption that the
PE’s operate synchronously prevents the PE’s from sending the content of a register
faster along the horizontal dimension than the vertical one. Word-oriented models are
used in most algorithms for VLSI networks that perform operations on entire registers
rather than on bits of the registers [AK], [GKT], [H2], [KL], [LV].

All the lower bounds developed in this paper measure time in terms of cycles.
This makes it easier to compare our results to existing upper bounds, and it eliminates
implementation-dependent factors of log n’s. The issue of whether time is proportional
to the wire length (synchronous versus diffusion model) is avoided. We count one
cycle for the communication between PE’s, and the lower bounds hold in both models.

The area is the space necessary to lay out the PE’s with their interconnections on
a small, constant number of parallel layers. Strictly speaking, a PE has O(log n) area,
interconnections may have O(log n) width, and transmitting the contents of a register
may take several time pulses. In order to achieve a cleaner presentation, we look at
cycles instead of time pulses, and consider the area of a register, not that of a bit, as
a unit. Thus, processors have O(1) area, and wires have unit width. This is analogous
to the count of register operations in the sequential model, and makes it possible to
compare parallel and sequential performance.

Three common representations, for a graph are: adjacency matrix, adjacency lists
and unordered edge list. When the graph is given to the chip in form of an adjacency
matrix it reads the n rows of the matrix. Let PE,..., PE,, be the m processing
elements receiving inputs, V be the vertex set, V {1, 2,..., n}, and E be the set of
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edges. If (i, j) E, <j. When the graph is given in the form of adjacency lists the edges
are read in lexicographic order; i.e., if PEi reads (ui, vi) and PE+I reads (u+1, v+),
then u < Ui+l, or, u u+ and v < Vi+l. Thus PE reads the ((j- 1)m + i)th edge of
the list of edges in lexicographic order in the jth input sequence, _<- < m, _<-j _-< e/m,
where e is the number of edges in the graph. When the graph is given in the form of
an unordered edge list (hereafter called input in the form of edges) the edges (i,j) are
read into the chip in arbitrary order. See Fig. 2.1. In this paper we primarily discuss
input in the form of adjacency lists and edges. We refer to [H1] for algorithms with
input in the form of an adjacency matrix.

input

1.
2.
3.
4.
5.

3

jacen

11100
11111
11111
01110
01101

adjacency lists edges

FIG. 2.1. The input sequences for the 3 forms of input (m 5).

A chip receiving the input in the form of adjacency lists or edges reads only e

inputs, as compared with n2 inputs for the adjacency matrix. Every graph represented
in the form of a matrix or lists has a unique description, while different input sequences
can describe the same graph when represented in the form of edges. Graphs given in
the form of an adjacency matrix allow the PE’s of the chip to know before the
computation what inputs they will read (e.g. PEi reads the ith column). This is no
longer possible when the graph is given in the form of lists or edges, since the inputs
PE receives depend on the graph in the first case and are arbitrary in the second case.

3. Lower bound results. We prove lower bounds on the time needed to solve
undirected graph problems on when oblivious chips of small--o(nE)marea, when the
graph is given in the form of adjacency lists or edges. In this paper we only deal with
the connected component problem (i.e., two vertices are in the same connected
component if and only if there is a path between them), but the results extend to many
other problems (e.g., biconnectivity, bridgeconnectivity, minimum-cost spanning tree).
The proof technique combines adversary, Kolmogorov complexity, and information
flow arguments, and the lower bounds obtained hold also for verification problems.

3.1. The verification problem. In the verification problem of the ccp we are given
as input an encoding of a solution to the ccp and a description of a graph G. We have
to determine whether or not the connected components of graph G are those specified
in the solution and produce a 0/1 answer. The minimal length of an encoding describing
the solutions to the ccp is n log n, and n log n bits are sufficient (e.g., describing the
components by component numbers, as in 4, requires n log n bits).
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Verification is easy when input is given in the form of an adjacency matrix. In
[H1] we show how to verify in time O(n) on a network of O(n) area. This time is
optimal for a network of O(n) area. We show that the verification of the ccp is harder
when input is given in the form of adjacency lists or edges. We first define the class
of adversary graphs used in the proofs.

An adversary graph G*=(V*, E*) consists of n/6+ connected components,
where n/6 components consists of a single edge, and one component is a connected
subgraph on the remaining 2n/3 vertices, which we term the filler graph. See Fig. 3.1.

4: 9

6 ;10

3

24

5

23
2-vertex

comlnents ftller graph

FIG. 3.1. An adversary graph with 24 vertices.

Let the vertex set V*= {1, 2,..., n}. Each one of the n/6 edges representing a
2-vertex-component is incident to an even numbered vertex between 2 and n/3 and a

vertex between n/3 + and n/2. The first n/3 odd numbered vertices and the vertices
between n/2+ and n are the v.ertices of the filler graph, which is one connected
component. Formally, E* is defined as {(2i, xi)ll <= <- n/6, n/3 + <= xi <- n/2, x xj

for ij}t_J E’. Let Vx={2i+llO<-i<n/6}LJ{n/2+l, .,n}. Then E’, the edges of
the filler graph, are a subset of Vx Vx so that the subgraph induced by E’ is connected.
The filler edges will be used to "fill up" input sequences, i.e., make them sufficiently
long for the lower bound argument. The edges representing 2-vertex-components are
the ones of interest for the adversary.

Kolmogorov complexity, also known under the term descriptional complexity,
measures the minimal number of bits needed for descriptions. We refer to [PSS] for
formal definitions. We use Kolmogorov complexity to measure the length ofthe minimal
encoding describing the connected components of the adversary graphs. The next two
lemmas formalize the intuitively obvious fact that at least an log n bits must be used
to encode an adversary graph, for some c > 0.

LEMMA 3.1. There are at least 2nln different adversary graphs G*, for some

constant t, and thus at least an log n bits are needed to encode all different adversary
graphs.

Proof. There are (n/6)! ditterent ways to choose the n/3 2-vertex-components,
which is at least 2""l" for some constant a. Thus encoding all adversary graphs with
ditterent 2-vertex-components (without counting the bits needed to encode the filler
graph) requires at least an log n bits, and the lemma follows. [3

It does not immediately follow that the chip will need cn log n bits of its registers
for the encoding, since the chip may use the fixed network configuration in the encoding
of the solution (e.g. use the indices of the PE’s or the interconnection pattern or the
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fact that a given register is not used in the encoding). While an encoding of the solution
of length an log n is input, the chip is allowed to modify (and, possibly compress) the
solution before the graph is being input. But it still must be able to distinguish between
the 2’nlgn different solutions, each one describing an adversary graph with different
connected components. In Lemma 3.2 we show that for chips of O(n) area there
cannot be sufficiently clever encodings of the input solution on the chip" at least
a’n log n bits of the registers are needed to distinguish between all different solutions,
for some constant c’.

Our notion of an "encoding" is a very generous one: an encoding is setting some
registers of some PE’s to a given value. The length of the encoding is the sum, over
the PE’s used, of the number of bits used in their registers. Thus, we do not count
unused bit portions in registers, or PE’s unaffected by the encoding process. This
implies that we can distinguish whether a PE is used or not in the encoding without
using a bit to specify this fact. (One may think, for example, of a situation where all
registers are initially set to 0, then the encoding is given to the selected PE’s. All PE’s
can remember, in their control, whether or not they received a part of the encoding.)
Thus, less than n bits of the "encoding" may specify 2 configurationsmif there are
2 processors, a single bit will do. While this may be unrealistic (after all, a finite
control does use area), we are proving lower bounds, and our results show that the
recognition problem is hard, even if such unnatural encoding tricks are used.

LEMMA 3.2. Let N be a chip of O( n) area that reads a minimal length encoding.
Let the length of the encoding be an log n. Then in order to be able to distinguish between
all 2nlgn different encodings, at least a’n log n bits of the registers of the PE’s of the
chip are needed, for some constant a’.

Proof. For simplicity assume the chip has n PE’s and each PE has one register
(r 1). If the network has cn PE’s, for some constant c, or r > l, the results will hold
with different constants.

Assume the chip needs at most s bits to store the (possibly modified) encoding
on the chip. The number of different configurations specified by bits when the locations
of which bits are to be used can be changed is (nlgn)2i.i Thus, the total number of
configurations when at most s bits are allowed to be used is i=o ("lg")2, which is
less than ("g")2s+l when s <-_ (n log n)/2. (If s > (n log n)/2 the lemma is trivially true.)
In order to satisfy ("g")2s+l _-> 2 ’nlgn, We need s >-_ a’n log n, for some constant

3.2. Networks of O(n) area. We will now give the lower bound for networks of
O(n) area that solve the verification problem of the ccp. In the lower bound proofs
we make a constant number of cuts through the chip and then choose a particular
section S of the chip. After having stored (and possibly modified) the solution read
as input, we start reading the edges of the adversary graph in the form of adjacency
lists or edges. The adversary graph will be such that all the edges representing
2-vertex-components are fed into section S in a constant number of input sequences.
Since section S can hold at most half of the information needed by the 2-vertex-
components during the verification process, an information exchange between the PE’s
in section S and the PE’s outside section S has to occur. In order to be able to continue
reading the edges of the filler graph (after having read all 2-vertex-components) and
to correctly verify the connected components, a certain time has to elapse between the
reading of two consecutive input sequences. This will give the lower bound on the time.

We first present the bound for input given in the form of edges. Note that in the
lower bound arguments we measure the exchange of information in bits, but in the
final results we express the time in terms of cycles (as described in 2).
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THEOREM 3.3. Let N be a network of O(n) area that can be circumscribed by a
rectangle of size k n/k, <-k<-_n /2. Then solving the verification problem of the ccp
on N with edges as input requires time (n2/k), or, expressed in terms of the edges of
the graph, time l(e/k).

Proof. W.l.o.g. assume the network has n PE’s. (If the network has cn PE’s, for
some constant c, the proof below will hold, provided we multiply the appropriate
constants by c.) Consider the adversary graphs G* whose minimal length encoding of
the input solution describing the n/6 2-vertex-components requires crn log n bits on
the chip, 0< c < 1. According to Lemma 3.2 such graphs exist. Assume the input
solution has been read and stored in the chip using cn log n bits.

Let r be the constant denoting the number of registers in each PE. Make
max (2r/a 1, 12r- l) cuts through the network such that each cut is of length O(k)
and each section between two cuts contains min (c/2r. n, l/12r, n) PE’s. See Fig. 3.2.

FIG. 3.2. The cuts through the chip.

It is always possible to make such a cut: PE’s lying on the cut are counted either to
the section to the left or to the right of the cut depending on the number of PE’s in
the section left of the cut. Each section between two cuts can hold a total of
min (a/2. n log n, 1/12. n log n) bits. Let S be an arbitrary section.

Consider first the case when 2r/a > 12r. Then a <-, and section S has a/2r. n
PE’s and can hold a total of a/2. n log n bits. In the extreme case all the a/2. n log n
bits available in section S contain bits of the encoding describing the input solution,
which contains the connected components of the edges representing 2-vertex-
components. Thus at least a/2. n log n bits of the encoding describing the input
solution are stored outside section S.

In a constant number of input sequences all the edges representing 2-vertex-
components are read into section S, while the PE’s outside section S will read edges
of the filler graph. Since there are n/6 2-vertex-components and section S contains
a/2r. n PE’s, r/3a input sequences are needed to read all the 2-vertex-components
into section S.

We first give the intuition behind the proof. During the entire verification process
an encoding ofthe input solution has to be compared with an encoding ofthe connected
components of the graph read as input. We expect that while for some of the edges
representing 2-vertex-components and read into section S verification might be easy
(i.e., their verification can be done without knowing anything about the part of the
input solution stored outside section S), other edges will need to know something
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about the part of the encoding stored outside section S. We are able to verify at most
half of the 2-vertex-components without knowing anything about the encoding stored
outside section S. The communication needed between section S and the rest of the
chip will cause the delay. More formally, we argue as follows.

There exist adversary graphs G* such that their 2-vertex-components generate in
section S at least a/2. n log n bits that have to be compared with the a/2.n log n
bits stored outside section S, which are part of the encoding of the input solution.
Assume by contradiction that fewer than a/2 n log n bits are generated from section
S. Then there exist two adversary graphs G* and G2* with different 2-vertex-components
where the sequence of bits that flows out of section S or into section S is the same.
Thus the chip cannot distinguish between G* and G2* and will produce the wrong
answer for one of the graphs.

The verification process of the 2-vertex-components does not have to be finished
by the time the (r/3a+ 1)st input sequence is read. This input sequence (and all
subsequent input sequences) consists of edges of the filler graph only. But at the time
the (r/3c + 1)st input sequence is read, section S has to contain t/2r, n log n "free"
bits; i.e., bits that can be used to store the edges of this input sequence.

Recall that k is the width of the circumscribing rectangle. Thus, at most k
connections can cross each cut, and in one cycle at most 2k log n bits can leave or
enter section S (k log n bits for each side). Let be the uniform delay between two
successive input sequences. Altogether, the first r/3a input sequences generate
a/2. n log n bits initially stored in section S. Those bits either have to leave section
S, or wait for the corresponding bits from outside section S before they can be reused.
Thus, at the time the (r/3a + 1)st input sequence is read at most 2r/3c. k. t. log n of
the t/2.n log n bits generated in section S can be reused. Section S contains only
a/2. n log n bits, and in order to have a/2r. n log n "free" bits to store the new input
sequence we need:

r
-n log n-2kt log n + n log n <
2 3a =n log n.

The only variable in the inequality that is not fixed is (a and r are constants,
and k is fixed by the network). When distributing the amount of time it takes to "free"
a/2r. n log n bits evenly among the r/3a time intervals (each one of length t) elapsing
between the reading of two input sequences, we obtain a lower bound on t. We need
c/2r, n<=2r/3c k. in order to be able to read the (r/3c+ 1)st input sequence,
which gives t= F(n/k). Thus T =l(n2/k), or fl(e/k). This concludes the proof in
the case when 2r/a > 12r.

Consider now the case when 12r>-_2r/a. Then a>= 1/6 and section $ contains
1/12r. n PE’s and can hold a total of 1/12. n log n bits. In this case we need to read
2r input sequences to feed all the 2-vertex-components into section S. Since
1/12 n log n < a/2 n log n, more than half of the bits of the encoding of the input
solution describing the connected components of the 2-vertex-components are stored
outside section S. By an argument similar to the one used in the first case we obtain
T f(n2/k), or l(e/k). [3

Our argument used the fact that the algorithm was where oblivious in a crucial
way. One could dislike the idea of using where obliviousness in such an inimical
fashion: one can easily agree with the idea of the chip’s environment having control
of where the input will be read, but one does not expect the environment to act as an
adversary. The lower bound, however, does not depend on a possibly bad definition.
Consider a more realistic model" the input given in the form of adjacency lists, with
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the edges arriving into the input ports in lexicographic order. Now, clearly, the
environment is not an adversary, yet the same bounds hold, as we show below.

THEOREM 3.4. Let N be a network of O(n) area that can be circumscribed by a
rectangle of size k n k, <-_ k <= n /2. Then solving the verification problem of the ccp
on N with input given in the form of adjacency lists requires time (nE/ k), or, expressed
in terms of edges (e/ k).

Proof. We will show how to find a section S and an adversary graph G* so that
all the edges representing 2-vertex-components are fed into section S in a constant
number of input sequences. Again, as in the proof of Theorem 3.3, the filler edges will
be used to fill up input sequences and are read by the PE’s outide section S. One has
to be more careful with the selection of the filler edges and the order in which all the
edges are input, since the lexicographic ordering of all the edges has to be preserved.

Make the cuts through the network as in Theorem 3.3. Let S be the section
containing PEn/2. Let il, i2,’’’, in be the indices of the PE’s in section S, 8=
min (a/Er, l/12r). Thus section S contains PEi, , PEn , PEi.. In the first input
sequence PEi, reads the edge (2, x), PE the edge (4, x),..., PE, reads the edge
(2n, xn). The edges (2i, x) are the first 8n edges of the adjacency list representing
2-vertex-components. See Fig. 3.3, where section S contains PEI, PEs, PE7, PEn/2-1,
PEn/E," ", and the input for the first n/2 PE’s in the first input sequence is given.
(PEi - (x, y) stands for PEi reads the edge (x, y).)

PEF_I7 ["] PEn

PEn

rE2.- (3,y), PE (3,Y2), PE (3,y3)
YEs.- (4,r z)
ee (5,y 4)
PE (6,x3)
eel.- (7,y9, VEg-- (7,r6),

Y5<Y6<...<Yn/z.5
PEn/2.. (8,x ,)
rE,,/2 (10,x9

Y l<Y2<Y3

PEn/2-2 (7,Yn/2-5)

n/3+l <- x <- /2, xi g’x for i-k
n/’2+1

FIG. 3.3. Section S for input in the form of adjacency lists.

Let ip and ip/l be two consecutive indices of PE’s in section S; i.e., all PEk with
ip < k < ip+l are outside section S, <- p _-< n 1. If ip < ip+l l, PEp+I, , PE ip/-l,

which are the PE’s outside section S, have to read edges of the filler graph. They read
ip+l-ip-1 edges adjacent to vertex 2p+ 1. (Recall PEep reads the edge (Ep, xp), and

PE/ reads the edge (2(p+ 1), Xp+l).) Note that ip+l- ip- <-_ n/2. Hence, vertex 2p+
of the adversary graph may need to be adjacent to n/2 vertices y with y > 2p + 1. The
adversary graph allows us to supply the PE’s outside section S with the right number
of filler edges adjacent to vertex 2p + 1.
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If ip ip+l- 1, vertex 2p + is adjacent to no other vertex. In this situation we
actually need to change our definition of the class of adversary graphs. The filler graph
consists then of a number of singleton vertices and one big connected component.
Nevertheless, the same result holds. Note that PEt,. , PEi,_ read the edges adjacent
to vertex 1, and that PE i.+1, ", PE,, read the edges adjacent to vertex 28n + 1.

The succeeding input sequences are formed in the same way: each time the next
8n edges of the adjacency list representing 2-vertex-components are read into section
S, while the PE’s outside section S read the edges of the filler graph as described above.

After all the 2-vertex-components have been read into section S, the f/(n2) edges
(i, xi) of the filler graph, > n/3, < x, remain to be read. The same argument as used
in the proof of Theorem 3.3 yields T=fl(n2/k) for chips of O(n) area with input
given in the form of adjacency lists.

3.3. Networks of O(nm) area. The result of the previous theorems can be general-
ized to networks of O(nm) area that have O(np) PE’s. The area determines the amount
of information that can flow in and out of section S in one time pulse, the number of
PE’s determines the number of input sequences required to read n2 inputs.

THEOREM 3.5. Let N be a network of O(nm area containing O(np PE’s, that can
be circumscribed by a rectangle of size k x nm/k, <- k <- (nm) l/2, m o(n), p o(n),
m >-_ p. Then solving the verification problem of the ccp on N with input given in the form
of edges requires time fl(n2/pk). When input is given in the form of adjacency lists the
time required is fl(n2/(p2k)+ n/p).

Proof. For chips containing O(np) PE’s, p > o(1), it is no longer true in our model
that an encoding of the solution on the chip requires an log n bits of the registers of
the PE’s. (The use of the indices of the PE’s in the encoding or the use of the fact
that some bits are not used in the encoding allows the chip to encode with fewer
bits.)

When the graph G* is given in the form of edges consider a section of the chip
containing a/2r. n PE’s. Such a section S contains a/2. n log n bits and by Lemma
3.2 at most half of the information about the encoding of the solution can be stored
in S. The "other half" of the encoding is stored outside section S. Even when the
"other half" is encoded by the PE’s outside section S using o(a/2, n log n) bits (using
"unnatural" encodings), at least a/2. n log n bits must cross the boundary of section
S. Section S is obtained by making max (2pr/a- 1, 12pr- 1) cuts through the network
so that each section between two cuts contains min (a/2r. n, 1/12r. n) PE’s. Input all
the edges representing 2-vertex-components into section S in a constant number of
input sequences. Choose G* as in the proof of Theorem 3.3 and obtain T=
fl(n2/np n/k)=fl(n2/pk),l<-_k<-(nm) /2, when the input is given in the form of
edges.

Consider now the case when the graph G* is given in the form of adjacency lists.
Again, as in the proof of Theorem 3.4, it must be possible to feed the PE’s outside a
section S with filler edges while preserving the lexicographic ordering of the input
edges. Let PE and PEk/, be two succeeding PE’s in section S, k < ik+ and for no
ip, ik < ip < ik+, PEep is in section S. In Theorem 3.4 we never needed to fill in more
than n/2 edges adjacent to one vertex between PEi and PE+,. Assume PEnp/2 to be
in section S, then we must now be able to fill in np/2 edges between PE and PE+,.
Since it is not possible to have np/2 edges adjacent to one vertex, we define the
modified adversary graph G*m.

G*,, consists of n/6p 2-vertex-components and a filler graph on n-2n/6p=
n(1-1/3p) vertices. E*,,={(i(p+ 1),x,) <=i<=n/6p, n(p+ 1)/6p<x,<-_n}t.J E’. Let
Vx be the set of vertices greater than n(p + 1)/6p not used in the 2-vertex components.
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Then E’{((i-l)p+i+j, xo) I-<i<-n/6p,O-<j<-p-l,xo Vx}u Vxx Vx. Between
two succeeding 2-vertex-c’mponents (i(p + 1), xi) and ((i + 1)(p + 1), xi+) in the
adjacency list we can have the edges adjacent to (i+ 1)(p+ 1)- i(p+ 1)- =p vertices.
This allows us to fill up the input sequences correctly (each one of the p vertices can
be adjacent to at least n/2 vertices with higher index not used in the 2-vertex-
components). It can be shown that t/p. n log n bits are needed for the encoding of
the 2-vertex-components 0f G*.

Make cuts through the network, so that each section between two cuts contains
t/2pr, n PE’s. Choose as section S the section containing PE,,p/2. By applying the
ideas of Theorems 3.3 and 3.4 we obtain l-l(n/kp). Since nip time pulses are needed
to read all the input sequences T=tl(n2/np n/kp+n/p)=II(n2/p2k+n/p), which
proves Theorem 3.5.

Note that for p > O(1) the lower bound achieved for input in the form of adjacency
lists is weaker than the one for edges. But we do not know of an algorithm that achieves
a better time when the input is in the form of adjacency lists than when input is in
the form of edges.

The reader may want to compare our results with those reported in [J], where a
different technique, based on "mutual information transmission" arguments (as in [JK]
and [Y]), was used to obtain lower bounds for the ccp on a different VLSI model. The
important difference between the models used in [J] and ours is that the model in [J]
assumes that the information about the previous input sequence is completely processed
at the time a new input sequence is read. Under this assumption our lower bounds
hold also for input in the form of an adjacency matrix. In our model, a different
approach is necessary for a lower bound proof for input in the form of an adjacency
matrix. In [H ] we show that verification for input in the form of an adjacency matrix
can be done in O(n) time on a binary tree network of O(n) area.

3.4. Verifying is no harder than computing. In a sequential model of computation,
verification of problems with unique solutions is never harder than computing, since
one can always verify by computing the actual solution and comparing it with the
given input solution. In a parallel setting, this argument does not hold" both the input
solution and the computed solution will be scattered among different processing
elements. Nevertheless, we show that the lower bounds obtained for the verification
problem of the ccp hold also for the ccp; i.e., computing the connected components
is at least as hard as verifying them. For all networks solving the ccp we assume that
the solution describing the connected components can be stored entirely within the
network; i.e., length of the solution -< A.log n, where A is the area of the network.
This seems to be a reasonable assumption. There are graphs where the connected
components cannot be determined until all the input has been read, and a description
of the connected components formed so far has to be stored in the network in order
to solve the ccp correctly. For example, networks of O(n) area that output the connected
components in form of an n x n adjacency matrix have to keep a description of the
connected components of length O(n log n) bits in the network before generating the
matrix.

Assume network N computes the connected components. We show how to
construct a new network No that verifies the connected components and whose time
and area requirements differ from network N only by a constant factor. Network No
uses N as a subnetwork.

THEOREM 3.6. Let N be a network of area A, A [l(n), that solves the ccp in time
T. Then there exists a network No of area O(A) solving the verification problem of the
ccp in time 19(T).
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Proof. Network N has area A and produces the solution to the ccp in form of
an encoding E in time T. Since A-f(n) we can assume that one PE produces at
most log n bits of the solution.

Let (A, T, Eo) be the class of networks solving the verification problem of the
ccp in time O(T) on a network of area O(A) when the input solution is given in the
form of the encoding Eo. We show that this class is not empty and outline how to
construct a network Nv that uses network N as a subnetwork.

Network No contains the same number of PE’s and the same interconnections as
network N, and each PE contains an additional register. Let the encoding of the
solution read by the network No be of the same form as the encoding of the solution
generated by the network N; i.e., Eo- E. Input the bits of E into those PE’s of the
network N that will contain the corresponding output bits of the solution of the ccp
generated by the algorithm for the ccp. After storing the input solution in the additional
register run the algorithm for the ccp. When all the output bits have been generated
by the algorithm compare in each PE the generated encoding with the encoding given
as input and set a flag in the PE in case of inequality.

Assume w.l.o.g, that PEI produces the 0/1 answer to the verification problem.
Then PE produces a 0 if one (or more) flags have been set to 0. Let each PE that
contains a set flag send the value of its flag to PE. If two or nore flags meet at a PE
on the path to PE, the "and" of all the incoming flags is produced and send to PEI.
(Since each PE is connected only to a constant number of other PE’s, this step takes
constant time.) It can easily be shown that in any network No, where each PE is needed
at some point during the computation, the number of steps required to generate the
connected components is larger than the longest shortest distance between any two
PE’s. Thus the area (and the time) to determine the answer to the verification problem
does not increase the time (and area) needed to solve the ccp by more than a constant
factor, and the theorem follows.

3.5. Approximate verification. We show that the lower bounds proven hold even
if the verification is allowed to be approximate" given as input an encoding of the
solution and a graph G the answer to the verification problem is if and only if G
contains at most n vertices that are in different connected components than the ones
specified in the solution (i.e., a is produced if the connected components of G are
"close" to the ones of the given solution). For input in the form of edges we have
0_-< < l, and for input in the form of adjacency lists we have 0 <_- < 2/3. We present
the lower bound proof for networks of O(n) area (the extension for networks of O(nm)
area is straightforward).

In the proof we consider first the adversary graphs G* containing n/6 2-vertex-
components as defined in 3.1, and assume t < 1/3. We then outline how to modify
the adversary graphs so that the lower bounds hold for _-> 1/3. For each adversary
graph G* define a class of approximate graphs H* as follows. Let V* be the set of
vertices used in the 2-vertex-components of G*. Then H*- {C,IG contains at most
n vertices Xk, Xk V*, in different connected components as in G*}. Thus the connected
components of G H* differ from the ones of G* only in the 2-vertex-components.

THEOREM 3.7. Solving the approximate verification problem of the ccp on a network
of O(n) area, which can be circumscribed by a rectangle of size k xn/k, <-k<-n /2,
requires time (n2/k) when the input is given in the form of edges or adjacency lists.

Proof. Assume G* is an adversary graph with n/6 2-vertex-components and
< 1/3. Graph G contains at most n vertices that are in 2-vertex-components in

G*, and in different connected components than in G*. Thus G and G* agree on
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at least n/6- 8/2. n n(1/6- 8/2) 2-vertex-components. Let h (1/6- 8/2). Then
there exist G and G * such that an encoding of the An 2-vertex-components contained
in both graphs requires h’n log n bits, for some constant h’. Make a constant number
of cuts through the chip so that each section contains h’/2. n log n bits. Choose an
appropriate section S and input all the An 2-vertex-components that are in G as well
as G * into section S in a constant number of input sequences. Again, as in the proof
of Theorems 3.3 and 3.4, at least half of the bits of the encoding describing the input
solution (i.e., the connected components of G) of the An 2-vertex-components are
stored outside section S. Using the same technique as in the proof of Theorems 3.3
and 3.4 we obtain T=fl(n2/k) when 8< 1/3.

When using adversary graphs with n/6 2-vertex-components we need < 1/3 in
order to have enough 2-vertex-components that are in G as well as in G *. We have
to modify the adversary graphs to achieve the same lower bounds for _-> 1/3. Consider
first input in the form of edges. Each graph consisting of k/(2k/ 1).n 2-vertex-
components and a filler graph of 1/(2k/ 1). n vertices can be used as an adversary
graph, k_-> 1. As long as <2k/(2k+ l) we obtain the same lower bounds, and for
large enough k we can get arbitrarily close to 1.

When the input is given in the form of adjacency lists a slightly more complicated
adversary graph is needed. The filler graph has to contain edges that can be interleaved
with the 2-vertex-components in order to maintain the lexicographic ordering. (Recall
the odd/even construction in 3.1 and how it is used in Theorem 3.4.) Furthermore
the filler graph has to contain 2(n) vertices not used in the interleaving process. A
graph consisting of k/(3k+ 1). n 2-vertex-components, which has k/(3k+ 1). n ver-
tices in the filler graph used in the interleaving process and 1/(3k+ 1). n vertices in
the filler graph used to make up a large number of input sequences, can also be used
as an adversary graph, k->l. As long as 6<2k/(3k+ 1) we obtain the same lower
bounds, and for large enough k we can get arbitrarily close to 2/3.

4. An optimal linear array algorithm. In 3.2 we showed that a lower bound on
the time needed to solve the ccp with a when oblivious algorithm on a network of
O(n) area with constant width is f(n2), or, in terms of the number of edges in the
graph, f(e). This lower bound can be achieved: We present an algorithm solving the
ccp on a linear array of n PE’s in O(e) time when the input is given in the form of
adjacency lists or edges. The algorithm produces output in the form of a vector C of
size n. Ci, the component number of vertex i, is the smallest vertex in the connected
component containing vertex i, {1, 2,..., n}. The basic idea of the algorithm is
similar to the ones used in ([H1], [LV], IS]).

In the linear array PEi is connected to PEi_ and PEi+, provided they exist,
-_< _-< n. Each PE contains 7 registers" Register C of PE holds the current component

number of vertex i; register X and Y hold initially an input edge (x, y), later the
current component number of vertex x and vertex y, respectively. The remaining 4
registers are used as auxiliary registers during the algorithm. The network is initialized
with every vertex being a component by itself: i.e., the value of register C of PEi is
initialized to i.

After reading an input sequence of n edges, each PE contains an edge (x, y).
Algorithm CONNECT-LA then determines the current component number of the
vertices x and y. Edges with C Cy are deleted. If C Cy and Cx < Cy, the algorithm
merges the components Cx and Cy by replacing every occurrence of Cy by C. We
denote this by Cy - Cx and call it a change (similar for C > Cy). In order to merge
components simultaneously we need to update the change in PE before sending it
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through the linear array, <-i =< n; i.e., the component number of the vertices x and
y in PEi is updated to the component number the vertices x and y have after the
changes in PEI,’’’, PEi_ have been processed.

Algorithm CONNECT-LA avoids problems of congestion on the communication
paths by letting all PE’s of the linear array send information either to the PE to the
right or to the PE to the left.

Since parallel algorithms are harder to read and understand than sequential ones,
the algorithms should be designed such that one gets an understanding of what goes
on in the algorithm, at a sufficiently high level of abstraction, without getting lost in
implementation details, such as the exact information flow in the network. The following
algorithm is written as a sequence of basic building blocks (bbb’s), where each bbb can
be thought of as a subroutine call. The primitive bbb’s are a parallel assignment
statement and information transmission statements.

Each bbb selects a subset of the PE’s of the network to execute the next action,
and specifies the type of action to be executed. A program written as a sequence of
basic building blocks looks very much like a sequential program-. We give a very
informal description of the bbb’s needed in the algorithm, and refer to [H ] for details
and more complex bbb’s.

A bbb is either a condition followed by a command and its arguments, or a condition
followed by the delimiter begin, a number of bbb’s and the delimiter end. The condition
selects the PE’s of the network that will execute the statements between the hegin and
end delimiter of the bbb, or the single command that follows the condition. Its function
is similar to the boolean guards of Dijkstra’s guarded commands [D]. Each PE has a
unique processor number (PEnr), which is known to itself. (We also assume that each
PE knows the PEnr of the PE’s to which it is directly connected.) The condition selects
PE’s by describing the range of their PEnr, but it may also contain boolean expressions
containing register names of the PE’s; (e.g., (1 _-< PEnr <-_ n) & (X Y) selects all PE’s
with a PEnr between and n where register X and Y have the same value).

The SET command is the parallel assignment statement. For example, (1 -<_ PEnr <-

n) SET ((X, Y), (0, 0)) sets in each PE with PEnr between and n registers X and Y
to 0. In the following algorithm we only need a simple form ofinformation transmission:
sending the content of registers of a PE to its right or left neighbor PE. For example,
in (1 <= PEnt <- n- 1) SEND ((X, Y), PEnt+ 1) the PE’s with the PEnr between and
n-1 send the content of register X and Y to their right neighbor, and it is stored
there in register X and Y. The DCL command used in the algorithm is a nonexecutable
command, which lists the registers of the PE’s used during the algorithm.

Algorithm CONNECT-LA;
//CONNECT-LA solves the ccp on a linear array of n PE’s; register C holds the
//current component number, registers X and Y hold the current input edge //

<- PEnr <- n) DCL C, X, Y);
1. Initialization

//every vertex is a component by itself
(1 <_- PEnr <- n) SET (C, PEnr);

2. repeat until all edges have been read
2.1. //read the next n edges //

(1 <= PEnt <- n) READ (X, Y);
2.2. //determine the current component number of the vertices

//and the changes //
DET-COMPNR-LA;
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//remove the edges that do not merge components and let
//register X contain the larger of the two component numbers

<- PEnt <- n) begin
(X Y) SET ((X, Y), (0, 0));
(X < Y) SET ((X, Y), (Y, X));
end;

2.3. //update the changes
RIPPLE ((X, Y), _-< PEnt <= n);

2.4. //merge components
MERGE-LA;

endrepeat
end CONNECT-LA;

Algorithm DET-COMPNR-LA determines the current component number of
vertex X and vertex Y. The current component number of each vertex is sent through
the linear array, and a PE containing vertex k records the current component number
of vertex k when it passes through.

Algorithm DET-COMPNR-LA;
//each PE sends the current component number of the vertex associated
//with the PE to all the other PEs in the linear array

<--_ PEnr <-_ n) begin
DCL (C, X, Y);
DCL LOCAL (FX, FCX, BX, BCX)
end;

//store each vertex and its current component number in the auxiliary
//registers; the values in (BX, BCX) get sent backwards, the values
//in (FX, FCX) get sent forwards

<- PEnr <- n) begin
SET ((FX, FCX), (PEnt, C));
SET ((BX, BCX), (PEnr, C));
end;

for i=l to n do
(1 <-_ PEnt <- n) begin

(X BX) SET (X, BCX);
(X= FX) SET (X, FCX);
Y BX) SET Y, BCX);
Y FX) SET Y, FCX);

end;
//send the entries forwards and backwards in the linear array

<-- PEnr <_- n SEND ((FX, FCX), PEnr+ );
(2_-< PEnr <- n) SEND ((BX, BCX), PEnr- 1);

endfor;
end DET-COMPNR-LA;

//record the current component
//number of the vertex when the
//appropriate entry passes through

After each PE knows the current component number of the vertices of its input
edge, it decides whether or not it contains a change. In order to send the changes
through the network and merge components simultaneously, the changes have to be
updated first: When merging the components the ith change x- y of PEi will arrive
at all PE’s after the changes 1,. ., i- 1. Thus if the changes 1,. ., i- change the
component number of vertex x to x’, x’< x, we need to update in change x to x’,



542 SUSANNE E. HAMBRUSCH AND JANOS SIMON

before sending out change i. (Similar for vertex y.) The updating is done by letting
the changes "ripple" to the right in the linear array and is described in Algorithm
RIPPLE. For example, the changes 3 2, 4 3, 5 4, 5 2, 2- 1, and 5- 3 stored in
PE, PE2, PE3, PEa, PEs, and PE6, respectively, are updated to 3 2, 4 2, 5 2, 2 2,
2- 1, and 1. More details about the RIPPLE routine can be found in [H2].

//Update X and Y of the ith change to the index of the component
//X and Y are in after the i-1 preceding changes have been processed
filet U and V be two auxiliary registers
Algorithm RIPPLE ((X, Y), _-< PEnt <- s) <- PEnr <- n) begin

DCL (X, Y);
DCL LOCAL U, V);
end;

(1 _-< PEnr <- n) SET ((U, V), (X, Y))" for i= to n do
//the ith change is updated, continue updating" change i+ 1,..., n
(1 _<- PEnr <- n- 1) SEND (( U, V), PEnr+ 1);
+ <--_ PEnr <- n) begin

//the jth change merges two components already
//merged by the preceding changes

case of:
(U=X) & (V=Y) SET(X,Y) //changeXYinto Y-Y
//in the changes j + 1,. ., n it is already recorded that X
//and Y get merged; every occurrence of X is changes into Y
V- X) SET V, Y) //change U- V into U- Y
(V= Y) NULL;
(U- Y) SET (Y, V) //change X Y into X- V
(U=X) & (V> Y) SET ((U, V,X, r), (V, Y, V, r))

//change U- V and X Y into V Y
(U=X) & (V< Y) SET ((U, V,X, Y), (Y, V, Y, V))

//change U V and X Y into Y- V
end ease;
end; endfor; end RIPPLE;

After the updating the changes are sent out to all the PE’s in the network such
that change arrives at each PE after change i-1, and we merge the components.
Assume change x y arrives at PEt. If the ,content of register C of PEt equals x, it
gets changed to y.

Algorithm MERGE-LA;
//send the ith change from PEi to PE; activate change when it
//arrives at PE and send it through the linear array to merge components

<- PEnr <- n) begin
DCL (C, X, Y);
DCL LOCAL (AX, AY);
end;

(1 _-< PEnr <- n) SET ((AX, AY), (0, 0));
for i= to 2n do

2.1. //activate the change currently at PEi
(PEnr= l) & (i<-n) SET ((AX, AY), (X, Y));

2.2. //test if a component number needs to get changed and
//send the activated change to the next PE
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<= PEnr <-_ n) & (AX O) begin
(C=AX) SET (C, AY);
SEND ((AX, AY), PEnr+ 1);
end;

2.3. //send the changes not yet activated towards PEI
(2<-PEnr<-_n-i+l) SEND ((X, Y), PEnr-1);

endfor;
end MERGE-LA;

THEOREM 4.1. Algorithm CONNECT-LA solves the ccp in time O(e) on a linear
array of n PE’s when the graph is given in the form of adjacency lists or edges, which is

optimal.
Proof. When Algorithm CONNECT-LA reads the ith input sequence it has com-

puted the connected components given by the previously read (i l) n edges. It merged
two components C’ and C" if and only if it had read an edge (x, y) such that Cx C’
and Cy- C" right before the merge was performed. Thus Algorithm CONNECT-LA
computes the connected components correctly.

Each one of the steps 2.1-2.5 of the algorithm can be done in O(n) time. It can
be shown by induction that Algorithm RIPPLE correctly updates the changes" and
j of the change ij of PEg are updated to the component number of the component
they are in after the k-1 preceding changes have been performed. Since at most e/n
input sequences are read, and the time between the reading of two input sequences is
O(n), the O(e) time bound follows.
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Abstract. We consider the problem of storing items from a totally ordered set in a search tree so that
the access time for a given item depends on a known estimate of the access frequency of the item. We
describe two related classes of biased search trees whose average access time is within a constant factor of
the minimum and that are easy to update under insertions, deletions and more radical update operations.
We present and analyze efficient update algorithms for biased search trees. We list several applications of
such trees.
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1. Introduction. The following problem, which we shall call the dictionary problem,
occurs frequently in computer science. We are given a totally ordered universe U. We
wish to represent sets $

_
U in such a way that the following access and update

operations are efficient"

access (i, S)" If item is an element of set S, return a pointer to its location.
Otherwise return a special null pointer.

insert (i, S): Insert item into set $. We allow an insertion to take place only
if is not initially an element of $.

delete (i, S)" Delete item from set S. We allow a deletion only if is initially
in S.

In addition to access, insert and delete, the following more radical update
operations are often useful"

join (R, $)" (two-way join). Return the set consisting of the union of R and
$. This operation destroys R and S, and is allowed only if every
item in R is less than every item in S. (Thus a join can be
regarded as the concatenation of the sorted sets R and $.)

join (R, i, S): (three-way join). Return the set consisting of the union of R, {i}
and S. This operation destroys R and S, and is allowed only if
every item in R is less than and every item in S is greater than
i.

split (i, $)" Split S into three sets: P, containing all items in S less than i;
Q, containing if S (three-way split) and nothing if i $

(two-way split); and R, containing all elements in $ greater than
i. This operation destroys S.

One kind of data structure that efficiently supports these operations is a search
tree. A search tree is an ordered tree (Appendix A contains our tree terminology)
containing the items of a set in its leaves, in left-to-right order, one item per leaf. In
order to facilitate the access operation, we must also store auxiliary items, called keys,
in the internal nodes. (Appendix B discusses the placement, use and updating of keys.)
To access an item, we start at the root of the tree, compare the item being accessed
with the key(s) in this node, go to a child determined by the outcome of the com-
parison(s), and continue in this way until reaching a leaf. This leaf contains the item
if it is in the tree. With this access method, the time to access an item is proportional

* Received by the editors March 15, 1983, and in revised form March 7, 1984. Research partially
supported by the National Science Foundation under grant MCS 82-03238.

* Computer Science Department, University of Wisconsin, Madison, Wisconsin 53706., AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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to the depth of the leaf containing it, if we assume a fixed upper bound on the degree
of a node.

If the search tree satisfies an appropriate balance condition, then the height of
the tree, and hence the worst-case access time, is O(log n) , where n is the number of
items in the set. For a comparison-based model of computation, one can prove a lower
bound of f(log n) on the worst-case access time; thus balanced trees have a worst-case
access time within a constant factor of the minimum. Kinds of balanced trees include
height-balanced trees [2], [20], two-three trees [3], B-trees [6], weight-balanced trees
[27], red-black trees 12] and many others. These kinds of trees all have the additional
property that each of the update operations can be carried out in O(log n) time.

In many applications of search trees, the access frequencies are different for
different items. In such a situation we would like to bias the search tree, so that the
more-frequently needed items can be accessed faster than the less-frequently needed
ones. In order to treat this problem formally let us assume that each item has a
known weight w, > 0 representing the access frequency. A measure of the average access
time is

(d,+ l)

’ WiiS W

where W ,s w, is the sum of the weights of the items in the set and d, is the depth
in the search tree of the node containing item i. Our goal is to make the total weighted
depth Y.,s w,di as small as possible while preserving the ability to update the search
tree rapidly. We call this the biased dictionary problem. It is natural in this problem to
allow an additional operation for changing the weight of an item"

reweight (i, w, S): Redefine the weight of item in set S to be w.
In this paper we shall propose two kinds of trees, which we call biased search

trees, for solving the biased dictionary problem. Our results provide not only specific
kinds of search trees, but also a general methodology for converting almost any class
of balanced search trees into a similar but more general class of biased search trees.
In addition to developing new ideas, the paper extends and refines ideas first presented
earlier in preliminary form [7], [8].

The paper contains five sections. Section 2 reviews relevant previous work. Sections
3 and 4 define and analyze the properties of two kinds of biased search trees. Section 3
describes biased 2, b trees, which are analogous to 2, 3 trees and B-trees. Section 4
describes biased binary trees, which generalize a particular kind of red-black tree 12]
sometimes called a symmetric binary B-tree [5]. Section 5 summarizes our results and
discusses several applications and related work. Appendix A contains our tree ter-
minology. Appendix B describes the arrangement of the keys in a search tree, their
use for search and their updating.

2. Previous research. Several known results bear on the biased dictionary problem.
The first and most important is a standard theorem of information theory.

THEOREM A 1]. Consider any search tree Tfor a set S. If every node of T has at
most b children, then the total weighted depth ,s w,d, is at least W,,s p, log b (l/p,),
where p,-- w,/ W.

In light of Theorem A, our goal is to devise classes of search trees with the property
that d, O(log(W w,)) for each item i, since any such search tree has minimum average

If f and g are functions of a nonnegative real number x, we write "f(x) is O(g(x))" if there are
positive constants cl and c2 such thatf(x) -< cg(x) + c2 for all x. We write "f(x) is f(g(x))" if g(x) is O(f(x)).
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access time to within a constant factor. We shall call O(log(W/wi)) the ideal access
time of item i. If all item weights are equal the ideal access time for every item is
O(log n) and any balanced search tree has ideal access time for all items.

Much previous work deals with the case of a static search tree. Suppose we are
given a fixed set S whose items have known weights and we want to construct a search
tree of exactly minimum total weighted depth. We call such a search tree optimum.
Knuth [19] (see also Yao [33]) has given a dynamic programming algorithm that
computes an optimum search tree among binary trees containing one item per internal
node (instead of one item per leaf). Knuth’s algorithm runs in O(n2) time and allows
for the possibility that weights are given not only for the items in the set but also for
the gaps between items; these gaps correspond to the possible ways to search for an
item not in the set.

An algorithm of Hu and Tucker 17] (see also Garsia and Wachs 11 ], Hu, Kleitman
and Tamaki 16], and Hu 15]) finds an optimum search tree among binary trees with
one item per leaf, assuming no weights are given for the gaps. (This is a special case
of the problem solved by Knuth.) The Hu-Tucker algorithm runs in O(n log n) time
and resembles Huffman’s algorithm 18] for computing an optimum binary prefix code.
Fredman [10], Mehlhorn [24] and Korsch [21] have proposed O(n)-time algorithms
that construct binary search trees whose total weighted depth is within a constant
factor of minimum.

None of these algorithms is satisfactory in the dynamic case, since they require
Completely restructuring the tree (spending l(n) time) each time an update occurs.
Several authors have proposed classes of biased search trees that are easier to update.
Baer [4] gave a heuristic for rebalancing biased weight-balanced search trees, but he
gave no theoretical results, and indeed his trees do not have ideal access time in the
worst case. Unterauer [32] described a class of biased weight-balanced trees that have
ideal access time, but he did not analyze the worst-case time required for updates.
Mehlhorn [26] described a class of biased search trees based on weight-balanced trees,
called D-trees. D-trees have ideal worst-case access time and require
O(min {n, log (W’/wo)}) time for insertion, where Wo is the weight of the smallest item
and W’ is the total weight of all the items in the set after the insertion. Mehlhorn [25]
subsequently showed that a weight change in a D-tree can be performed in
O(log (max { W, W’}/min {wi, w’i})) time, where w, w, W, W’ are the old weight of the
reweighted item, the new weight of this item, the old total weight and the new total
weight, respectively. Kriegel and Vaishnavi [22] proposed another version of biased
search trees with time bounds similar to those of Mehlhorn.

The kinds of biased search trees we propose here are simpler than those proposed
by Mehlhorn and Kriegel and Vaishnavi. They also have faster running times for
insertion, deletion, join and split. (Mehlhorn does not consider join and split; Kriegel
and Vaishnavi’s bound for split is the same as ours but their bound for join is worse.)

3. Biased 2, b trees. Our first class of biased search trees generalizes 2, 3 trees [3].
A 2, b tree is a search tree each of whose internal nodes has at least 2 and at most b
children, where b is any fixed integer greater than two. We define the rank s(x) of a

node x in a 2, b tree recursively by

s(x):{ Jig w] if x is a leaf containing item i,2

+ max {s(y)ly is a child of x} if x is an internal node.

We denote log2 x by lg x.
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This definition implies that if y is a node other than the tree root and x is its parent,
then s(y) <= s(x) 1. We call y major if s(y) s(x)-1 and minor if s(y) < s(x)-1.
By convention the root is major. A locally biased 2, b tree is a 2, b tree satisfying the
following property, which constrains the environment of minor nodes-(see Fig. 1).

FIG. 1. A locally biased 2, 3 tree. Leaves are rectangles, internal nodes are circles. Numbers inside leaves
are weights. Numbers to the left of nodes are ranks" those above nodes (in parentheses) are credit counts. For
clarity the items in nodes are omitted.

Local bias. Any neighboring sibling of a minor node is a major leaf. (We say the
tree is locally biased at the minor node.)

A 2, b tree is balanced if every leaf has the same depth. (Our definition of a
balanced 2, 3 tree coincides with the usual definition of a 2, 3 tree.) In the case of
equal-weight items, a 2, b tree is balanced if and only if it is biased; if all weights are
one, the rank of a node is its height in the tree.

Our first results show that biased 2, b trees have ideal access time for all items.
If x is a node, let w(x) be the total weight of the items in leaves that are descendants
of x; that is, w(x) equals wi if x is a leaf containing item i, and w(x) equals Y {w(y)ly
is a child of x} if x is an internal node.

LEMMA 1. For any node x, 2sx)-_-< w(x). Ifx is a leaf, 2s<x)-< w(x) < 2x)+.
Proof. By induction on s(x). If x is a leaf, the definition s(x)= Jig w(x)J implies

2’<= w(x)< 2x)/. If x is an internal node with a minor child, x has a major child,
say y, that is a leaf, and 2<’)- 2s<y)-< w(y) <= w(x). If x is an internal node with no
minor children, x has at least two major children, say y and z, and 2s<x)-l=
2Y)-+2z-l<- w(y)+w(z)<=w(x). [3

LEMMA 2. If X is a leaf of depth d containing item i, d < lg (W/wi)+ 2.

Proof Let r be the root of the tree. Since the rank increases by at least one from
child to parent, d<=s(r)-s(x). By Lemma 1, lg W=lg w( r) >- s( r) and lg w(x)<
s(x)+ 1. Combining inequalities gives the lemma. [3

THEOREM 1. A biased 2, b tree has ideal access time for all items.

Proof Immediate from Lemma 2. [3

In our analysis of the running times of the update operations on biased 2, b trees,
we shall use amortization. That is, we shall average the running time of individual
update operations over a (worst-case) sequence of updates. In order to make the
analysis as concrete as possible, we introduce the concept of credits (called chips in
[7], [8]). A credit represents one unit of computing time. To perform an update
operation, we are given.a certain number of credits. Spending one credit allows us to
perform O(1) computational steps. If we complete the operation before running out
of credits, we can save the extra credits to use on future operations. If we run out of
credits before completing the operation, we can spend previously saved credits. If we
can perform a sequence of operations without running out of credits during the process,
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then the number of credits allocated to each operation gives an upper bound on its
amortized running time. We call this upper bound the amortized time of the operation.

Notice that if this analytical technique is successful, then any sequence of update
operations requires actual time at most a constant times the sum of the amortized times
of the individual operations; a later operation may require more actual time than its
amortized time, but only if a corresponding amount of time was saved in earlier
operations. Some algorithms, such as the path compression method of maintaining
disjoint sets [31], exhibit the opposite behavior: early operations can be slower-than-
average but only if the time lost is made up in later operations.

In the case of biased 2, b trees, we shall keep track of credits saved from previous
operations by storing them in the trees. In particular, we say a biased 2, b tree satisfies
the credit invariant if every minor node y with parent x contains s(x)- s(y)- credits.
(See Fig. 1.) Note that this definition is consistent with a major node having no credits;
in particular a single-node tree needs no credits. For each update operation we shall
give an upper bound on the number of credits needed to perform the operation,
assuming that the initial trees satisfy the credit invariant and requiring that the final
trees satisfy the invariant. It is important to remember that the credits in a tree are
only a conceptual device to aid in the running time analysis and neither appear in the
data structure nor affect the actual implementation of the update algorithms.

We first consider (two-way) join, since all the other update operations can be
defined in terms of this one. We shall describe an algorithm that joins two trees with
roots x and y and returns the root of the resulting tree. The algorithm is recursive and
consists of three main cases, two of which are symmetric (see Fig. 2).

to) x
(b)

/l/kxx,.

(c)Z

FIG. 2. Join algorithm for locally biased 2, b trees. Triangles denote subtrees. (a) Case (terminate). (b)
Case 2 (recurse). Join right child u ofx to y, forming v. (c) Subcase 2a (v has rank less than x). Attach v as
right child ofx in place of u. (d) Subcase 2b (v has same rank as x). Attach children of v as children ofx. Split
x if it has more than b children.

Case I. s(x)= s(y), or s(x) > s(y) and x is a leaf or s(x) < s(y) and y is a leaf.
Create and return a new node with nodes x and y as its two children.

Case 2. s(x)> s(y) and x is not a leaf. Let u be the right child of x. Remove u
as a child of x and recursively join the trees with roots u and y, producing a single
tree, say with root v.
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Subcase 2a. s(v)<= s(x)- 1. Attach v as the right child of x and return x.
Subcase 2b. s(v)= s(x). In this case v has exactly two children. Attach these as

children of x (to the right of the other children of x) and destroy v. Node x has now
gained a child. If x now has no more than b children, return x. Otherwise split x into
two nodes with [(b+ 1)/2J and [(b+ 1)/2] children, respectively. Create a new node
w with these two nodes as children and return w. The two nodes resulting from the
split have the same rank as x; the rank of w is one greater.

Case 3. s(x)< s(y) and y is not a leaf. This case is symmetric to Case 2.
Note. When node x is split in Subcase 2b, it is not necessary to divide its children

approximately fifty-fifty; it is sufficient that each new node have at least two
children.

The first thing we must verify about this algorithm is its correctness. An easy
induction argument shows that the algorithm produces a 2, b tree whose root has rank
max {s(x), s(y)} or max {s(x), s(y)}+ 1; in the latter case the root has exactly two
children. This verifies the assertion at the beginning of Subcase 2b. A similar induction
based on the following observations shows that the algorithm produces a biased 2, b
tree given two biased 2, b trees as input:

Case 1. If x is minor in the new tree, y is a leaf, which means that the new tree
is locally biased at x; similarly if y is minor.

Subcase 2a. If v is minor in the new tree, u was minor in the old tree and the
old left sibling of u, which is now the left sibling of v, is a major leaf, giving local bias
at v. On the other hand, if the left sibling of v is minor in the new tree, it must be the
case that u is a leaf of rank s(x)- 1. But then Subcase 2b would have occurred instead
of Subcase 2a. Thus the new tree is locally biased.

Subcase 2b. If the left child of v is minor, the right child of v is a leaf, which

can only happen if the children of v are u and y and the latter is a leaf. If the left
sibling of u in the old tree is minor, u is a leaf of rank s(x)- 1, and in this case also
the children of v are u and y. It follows that the tree existing after x gains a child but
before x splits is locally biased. Splitting preserves local bias, which means that the
final tree is locally biased.

Thus the join algorithm is correct. We shall prove by a similar case analysis that
if we allocate Is(x)-s(y)l+ credits to the join, we can perform the join while
preserving the credit invariant. Thus the join requires O([s(x)-s(y)l) amortized time.
To carry out the analysis, we assume s(x)>= s(y). (The case s(x)< s(y) is symmetric.)
We begin the join with s(x)-s(y)+ credits in hand.

Case 1. We need one credit to build the new tree and s(x)-s(y) credits to

establish the credit invariant on y, for a total of s(x)-s(y)+ 1.
Case 2. We acquire s(x) s(u) credits from u, giving us a total of2s(x) s(y)

s(u). We need max {s(u), s(y)}-min {s(u), s(y)}+ to recursively join the trees with
roots u and y.

Subcase 2a. We need one credit to build the new tree and s(x)- s(v)- to place
on v. If s(y) >= s(u), we use a total of s(y)- s(u)+ s(x) s(v)+ <- 2s(x) s(y)- s(u),
since s(V) >- s(y) and s(x) > s(y). If s(y) < s(u), we use s(u)- s(y)+ s(x)- s(v)+ <-

2s(x) s(y)- s(u), since s(x) > s(u) and s(v) >= s(u).
Subcase 2b. We need one credit to build the new tree. We need no credits to

place on the new children of x, since as children of v they already have the proper
number of credits. Splitting x preserves the credit invariant. (Local bias implies that
both nodes resulting from the split have rank s(x).) Thus, we use a total of
max {s(u), s(y)}-min {s(u), s(y)}+2 credits. The analysis in Subcase 2a shows that
this is at most 2s(x)-s(y)-s(u).
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Summarizing our analysis, we have the following theorem:
THEOREM 2. The two-way join algorithm is correct and runs in O(Is(x)-s(y)l)

amortized time on two trees with roots x and y.
There is a useful alternative formulation of this theorem. We say a tree with root

x is cast to rank k if it satisfies the credit invariant and has k- s(x) additional credits
on its root. If x and y are the roots of two trees cast to a rank k> max (s(x), s(y)},
then Theorem 2 implies that we can join these trees using no extra credits, producing
a single tree cast to rank k.

We can describe the behavior of the join algorithm as follows (see Fig. 3): Traverse
the right path ofthe tree rooted at x and the left path ofthe tree rooted at y concurrently,
descending rank-by-rank, until arriving at a leaf in one path or at two nodes of equal
rank, one in each path. Merge the traversed parts of the paths, ordering nodes in
decreasing order by rank. If the traversal stops at two nodes of equal rank, say k,

FIG. 3. A join. Only right path of left tree, left path of right tree are shown. Numbers beside nodes are
ranks. Node indicated by arrow is created by join.

either make them both children of the previous node on the merged path, if the previous
node has rank k / 1, or else make them children of a new node with rank k / l, whose
parent is the previous node. Starting from the bottom of the merged path and working
up toward the root, split nodes as necessary until reaching a node with no more than
b children. This description implies the following worst-case time bound for join:

THEOREM 3. Consider a join of two trees with roots x and y such that the rightmost
leaf descendant of x is u and the leftmost leaf descendant ofy is v. The worst-case join
time is O(max {s(x), s(y)}- max {s(u), s(v)}) O(log W/(w_ + w+))), where Wis the
total weight of the items in the new tree, w_ w(u), and w/ w(v).

Note. The worst-case time for a join can be either larger or smaller than its
amortized time.

Let us now consider the other update operations, beginning with three-way join.
We can implement a three-way join as two successive two-way joins. Theorems 2 and
3 give the following time bounds:
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THEOREM 4. Consider the three-way join of a tree with root x to a leafy and to a
tree with root z. The amortized time for the join is O(max {s(x), s(y), s(z)}-min {s(x),
s(y), s(z)}). The worst-case time for the join is O(max {s(x), s(y), s(z)}-s(y))-
O(log (W/wi)), where W is the total weight of the items in the new tree and is the item
in node y.

Note. The worst-case join time is the same as the access time for item in the
new tree and never exceeds the amortized join time.

A split can be implemented as a sequence of (two-way) joins. Let us first consider
splitting at an item already in the tree. Let x be the root of the tree to be split and
y the leaf containing item i. The split will proceed up the path from y to x, accumulating
a left tree of items less than and a right tree of items greater than i. Initially y is the
previous node, the parent of y is the current node, and the left and right trees are empty.
The split consists of repeating the following general step until the root is the previous
node (see Fig. 4):

General step. Delete every child of the current node to the left of the previous
node. If there is one such child, join it to the left tree; if there are two or more such
children, give them a new common parent and join the resulting tree to the left tree.
Repeat this process with the children to the right of the previous node, joining the
resulting tree to the right tree. Remove the previous node as a child of the current
node and destroy it if it is not y. Make the current node the new previous node and
its parent the new current node.

LEFT RIGHT
TREE TREE

uO NEW PREVIOUS NODE

ufz2 LEFT RIGHT
TREE TREE

NEW NEW
LEFT RIGHT
TREE TREE

FIG. 4. One step ofsplit algorithm. Node u is the current node, v the previous node, u, u2, the children

of u, q the root of the tree that is joined to the left tree and the root of the left tree.

This algorithm is obviously correct. To establish its amortized time, let u be the
current node, v the previous node, q the root of the tree containing children of u that
is joined to the left tree, and the root of the left tree. An easy induction shows that
s(v) >-s(l). Suppose we begin the current execution of the general step with both the
left and the right tree cast to rank s(v)/ 1. The following argument shows that with
2(s(u)-s(v))/ 5 additional credits, we can carry out the general step and finish with
both the left and the right tree cast to rank s(u)/ 1. If we place at most two new credits
on q and s(u)-s(v) new credits on l, we can join q and to produce a new left tree
cast to rank s(u)+ 1, since either s(q)= s(u) (if u has two more children to the left
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of v) or s(q)<-s(u) and q has s(u)-s(q)-1 credits on it already (if u has one
child to the left of v). Similarly we need s(u)-s(v)+2 credits for the right join. One
new credit accounts for the O(1) time required for the rest of the general step, giving
a total credit count of 2(s(u)-s(v))+5.

Summing over all executions of the general step, we obtain:
THEOREM 5. The amortized time to split a tree with root x at leafy is O(s(x) s( y)

O(log W/ wi)), where W is the weight of all the items in the tree and is the item in leaf
v. Each o.f the (up to) three resulting trees is cast to rank s(x)+ 1.

Splitting at an item not in the tree is just like splitting at an item in the tree, except
that the initial execution of the general step is slightly different. Let x be the root of
the tree, an item not in the tree, i- and / the largest item in the tree less than and
the smallest item in the tree greater than i, respectively. And let y be the handle of i,
which is defined to be the nearest common ancestor of the leaves containing i- and
+. To split the tree, we combine all children of y containing items smaller than i; the
result becomes the original left tree. We combine the remaining children of y (those
containing items greater than i) to form the original right tree. Then we make y the
previous node and its parent the new current node and repeat the general step as before.

THEOREM 6. The amortized time to split a tree with root x at an item not in the
tree is O(s(x)-s(y))-O(log(W/(wi-+ wi/))), where y is the handle of i, and i-, +

are as defined above. Each of the (up to) two resulting trees is cast to rank s(x)+ 1.
Unlike join, split does not have a logarithmic bound on its worst-case running

time. However, as we shall see at the end of this section, we can get a good bound on
the worst-case split time by strengthening the bias property and changing the
implementation of join to maintain this stronger property.

We can implement each of the remaining update operations as a combination of
a split and a join: an insertion is a two-way split followed by a three-way join, a
deletion is a three-way split followed by a two-way join, and a weight change is a

three-way split followed by a three-way join. The next theorem gives the amortized
time of these operations.

THEOREM 7. The amortized time to perform an insertion of item into a tree is

O(log W’/min{wi-+ wi/, wi})), where W’ is the weight of the tree after the insertion and
i- and + are the largest item smaller than and the smallest item larger than i, respectively.
The amortized time to perform a deletion of item from a tree is O(log(W/wi)), where
W is the weight of the tree before the deletion. The amortized time to perform a weight
change on item in a tree is O(log(max{ W, W’}/min{wi, w})), where W, W’, wi, w’i are
the weights of the tree before and after the update and the weights of before and after
the update, respectively.

Proof Consider an insertion. The two-way split takes amortized time
O(log (W/(wi-+ w/)), where W is the weight of the original tree, and produces trees
cast to a rank of at least [lg(max {w-, w/})J. The three-way join thus requires
O(log (W’/min {wi-/ w/, w})) additional amortized time. This gives the bound for
insertion, since W <- W’. The three-way split beginning a deletion requires O(log W wi)
time; the two-way join completing it takes O(1) additional amortized time since the
trees resulting from the split are cast to the same rank. This gives the bound for deletion.
The three-way split beginning a weight change also requires O(log W wi) amortized
time and produces trees cast to a rank of at least Jig wJ. The three-way join completing
the weight change thus requires O(log (max {W, W’}/min {w, w})) additional amort-
ized time. This gives the bound for weight change. q

Remark. In practice it may be useful to design customized implementations of
insert, delete and weight change, rather than expressing them in terms of join and
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split. We leave this as a (nontrivial) exercise; the algorithms so obtained are more
complicated than those using join and split.

The data structure we have described and analyzed is a good one if amortized
running time is the complexity measure of interest. We shall now describe a modification
appropriate if worst-case per-operation running time is important. A globally biased
2, b tree is a 2, b tree with the following property, which is stronger than local bias
(see Fig. 5)"

Global bias. Any neighboring leaf of a minor node y with parent x has rank at
least s(x)- 1. (We say the tree is globally biased at y.)

Io

FIG. 5. A globally biased 2, 3 tree. Weights are inside leaves, ranks are to left of nodes.

Since any globally biased 2, b tree is locally biased, globally biased 2, b trees have
ideal access time. The following version of the join algorithm will join two globally
biased 2, b trees with roots x and y into a single globally biased 2, b tree and return
the root of the new tree. (See Figs. 2 and 6.)

(a)

(b)
ECESSARY)

(C)
CESSARY)

FIG. 6. Case 4 of global join algorithm (equal ranks, nonterminating). (a) Right child of x, left child of
y joined to form z. (b) Rank of z less than x. Attach z as right child of x, fuse x and y, split if necessary. (c)
Ranks of z and x equal. Fuse x, z, y" split if necessary.

Case 1. s(x)>= s(y) and x is a leaf, or s(x)<-s(y) and y is a leaf. Create a new
node u with nodes x and y as its two children and return u.

Case 2. s(x) > s(y) and x is not a leaf. Proceed as in Case 2 of the join algorithm
for locally biased trees.

Case 3. s(x) < s(y) and y is not a leaf. Symmetric to Case 2.
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Case 4. s(x) s(y) and neither x nor y is a leaf. Let u be the right child of x and
v the left child of y. Remove u as a child of x and v as a child of y. Recursively join
the trees rooted at u and v, producing a single tree, say with root z. If s(z)<s(x),
attach z as the right child of x; otherwise (s(z)= s(x)) attach the two children of z
as (right-most) children of x and destroy z. Fuse x and y into a single node. If this
new node has no more than b children, return it; otherwise split it and return a new
node whose two children are the results of the split.

We shall refer to the join algorithm for locally biased trees as local join and to
the version for globally biased trees as global join. We can describe a global join
iteratively as follows (see Fig. 7): Traverse the right path of the left tree and the left

io

FIG. 7. A globaljoin. Nodes on spliced path must be split if necessary, working bottom-up. Node indicated
by arrow is formed by fusing two nodes, one from each tree.

path of the right tree concurrently, descending rank-by-rank until reaching a leaf in
one of the paths. Merge the traversed parts of the paths, ordering nodes in decreasing
order by rank and fusing any two nodes of equal rank. If the traversal stops at two
leaves of equal rank, say k, do not fuse them but instead either make them children
of the previous node on the spliced path, if the previous node has rank k + l, or else
make them children of a new node with rank k / whose parent is the previous node.
Proceed back up the merged path, splitting every node with more than b children.

As with a local join, a global join of trees with roots x and y produces a 2, b tree
whose root has rank max {s(x), s(y)} or max {s(x), s(y)}+ l; in the latter case the
root has exactly two children. The following discussion shows that the new tree is
globally biased. Let the left tree and the right tree be the original trees with roots x
and y, respectively. Consider the tree produced by applying the global join algorithm
without doing any splitting. We call this the fused tree. The only possible nodes at

which the fused tree might not be globally biased are minor nodes along the spliced
path; let v with parent u be such a node. Node v has leaf descendants in either the
left tree, the right tree, or both; is either a node, say q, in the left tree, a node, say
r, in the right tree, a node produced by fusing two nodes, say q from the left tree and
r from the right tree, or a new node with two children (at least one of which is a leaf),
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say q from the left tree and r from the right tree. If q exists, its left neighboring leaf
in the left tree has rank at least s(u)-1 and is the left neighboring leaf of v in the
fused tree. Similarly if r exists, its right neighboring leaf in the right tree has rank at
least s(u)-1 and is the right neighboring leaf of v in the fused tree. Suppose q does
not exist. Then v is a minor node in the right tree. Let g with parent f be the node on
the right path of the left tree such that s(g) <- s(v) < s(f). (If g does not exist the fused
tree is globally biased at v.) Then s(u)<= s(f), which when combined with the fact that
v is minor (s(v)+ < s(u)) implies that g is minor in the left tree. Thus the neighboring
leaf of g, which is the neighboring leaf of v in the fused tree, has rank at least s(u)- 1.
A similar argument applies if r does not exist. Thus in any case the fused tree is
globally biased at v. Splitting preserves global bias; thus the tree resulting from the
join is globally biased.

THEOREM 8. The global join algorithm is correct. Furthermore the worst-case time
bound given in Theorem 3 for localjoin holds also for globaljoin. Thus a globaljoin runs
in O(log (W/(w_+ w/))) worst-case time, where W is the total weight of both trees, w_

is the weight of the rightmost item in the left tree, and w/ is the weight of the leftmost
item in the right tree.

Proof. The discussion above verifies correctness; the time bound follows immedi-
ately.

TrEOREM 9. A three-way join of globally biased 2, b trees, implemented as two

successive global joins, has the same worst-case time bound as given in Theorem 4 for
three-way local join. Thus a three-way join takes O(log W/wi)) worst-case time, where
W is the total weight of the joined tree and wi is the weight of the item inserted between
the two trees.

Proof. Immediate from Theorem 8.
We can split a globally biased 2, b tree exactly as we did a locally biased 2, b tree,

using local joins rather than global joins to build up the left tree and the right tree
generated by the split. Below we shall verify that this method results in a globally
biased tree, and also get a bound on the running time of the operation. Let u be the
current node, v the previous node, q the root of the tree containing the children of u
that are to be joined to the left tree, and the root of the left tree. (See Fig. 4.) The
analysis is simplified by the assumption that the subtrees rooted at q and are not
empty and v is not a leaf in the original tree.

We want to verify by induction that after the entire split the resulting left and
right trees are globally biased. The .induction hypothesis is that the leftmost path
descending from is in the original tree (except possibly for itself), and that the tree
rooted at is globally biased. The tree with root q is globally biased by construction,
and its rightmost path (possibly excluding the node q itself) is a path in the original
tree. Since v is not a leaf in the original tree, its left sibling cannot be minor. This
implies that s(q)= s(u)- or s(q)= s(u). We know by the earlier discussion of split
that s(l) <-_ s(v) < s(u). Combining these inequalities gives s(l) <- s(q). The join of the
trees with roots q and proceeds down the rightmost path from q until reaching the
first node such that is a leaf or s(t) -<_ s(l). Because of global bias, each node above

is major, and must also be major unless is a leaf. Thus the rank’ decreases by
each step down the tree, and either s(l)= s(t) or one of or is a leaf. (The important
point is that the join does not continue down the left-most path of as it normally
might.) At this point and become siblings, and the join terminates (after splitting
nodes back up the merged path). We can now verify that our induction holds for the
new left tree just created. The leftmost path of this tree is that of the original tree
except possibly for the top node (which is new only if s(q)= s(r)). We have already
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said that the nodes above must be major. The other nodes on the original rightmost
path descending from q also have global bias because they have the same adjacent
leaf on the right that they used to have, namely the leftmost leaf of I. This shows that
the new left tree is globally biased.

It also follows from this discussion that the number of steps taken by the join is
O(s(q)-s(l)), because (as mentioned above) the join only traverses down the right
path of q until it reaches t. (It does not then propagate down the left path of l.)

To obtain a time bound for split, let us consider the joins that form the left tree.
Let q, q2," qk be the roots of the successive trees joined into the left tree, let ui for

<- k be the current node when the tree with root qi is joined with the left tree, let
l for i k be root of the left tree after the tree with root q is joined (thus
l-ql), and finally let x be the root of the tree to be split and y the node at
which the split starts. The discussion above implies that s(q)-s(l)<-_s(ui)
s(u+) - s(q+) <- s(u+) for i- k- and that the join of the trees with roots

q+l and li takes O(s(q+)-s(l)) time for <_- i<-k 1. For 2<_- i<-_k l, this bound is
O(s(u+l)-s(u)) by the inequalities above. Consider the case i- 1 We have ll- ql.

If s(q) >- s(u) l, then s(q2)-S(ll)<-S(UE)-S(U)+ 1. If s(q)<s(u)-l, then q is
a minor child of ul, and the rightmost leaf descendant of q2 has rank at least s(ul)- 1.
Thus the join of trees with roots q and q2 takes O(S(qE)-S(U))= O(S(UE)-S(U))
time. We conclude that for <-i k-l, the join of trees with roots li and q+ takes
O(s(u/)-s(u)) time. Summing over i, we obtain a bound of O(s(x)-s(y)) on the
total time to form the left tree. The same argument applies to the right tree. Thus we
have the following theorem"

THEOREM 10. The worst-case time to split a globally biased 2, b tree rooted at x,
starting at a node y, is O(s(x)-s(y)). If y is a leaf containing item i, the time is
O(log(W/w)). If y is an internal node, the time is O(log(W/(w_+w+))), where w_

and w+ are the weights ofthe items in the left and right neighboring leaves ofy, respectively.
If we implement each of .the operations insert, delete and reweight as a split

followed by a global join, we obtain from Theorems 8-l0 the following time bounds"
THEOREM 1. The worst-case time to insert an item into a globally biased 2, b tree

is O(log W wi_ + wi+)) + log (W’/wi)), where the various parameters are defined as in
Theorem 7. The time to delete an ite.m is O(log(W/w)+log(W’/(wi_+wi+))). The
time to change the weight of an item is O(log (W/wi)+log (W’/w)).

Remark. Based on the time bounds we have derived, the choice between locally
and globally biased trees does not seem to be clear-cut but depends upon the application.

We conclude this section by describing a way to build a globally biased 2, b tree
of n items in O(n) time. The idea is to form n single-leaf trees, one per item, and join
them one-at-a-time, left-to-right, into a large tree, initially empty. To join a single leaf
x with the current tree, we use a bottom-up method. We start at the rightmost leaf of
the tree and walk up until finding the maximum-rank node, say v, such that s(v) - s(x).
If v is the tree root, we create a new root with two children, v and x, and stop. If v
is not the tree root, we compare s(p(v)) to s(x). If s(p(v))- s(x)+ l, we make x the
rightmost child of p(v) and split nodes up the right path as necessary. If s(p(v))>
s(x)+ l, we create a new node with two children, v and x, and replace v as a child
of its old parent by the new node. (See Fig. 8.)

This bottom-up join method obviously maintains global bias. To obtain a bound
on the total time for all n- joins, we note that, except for O(1) time per join, each
step taken by a join either decreases the number of nodes on the rightmost path of
the current tree or splits a b-node (a node with b children), thereby reducing the
number of b-nodes by one. A single join can only increase the number of nodes on
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FIO. 8. Bottom-up join of a single item with a globally biased 2, 3 tree.

the rightmost path by one and can only increase the number of b-nodes by one. It
follows that the n-1 joins require a total of O(n) time, and we have the following
theorem:

THEOREM 12. Repeated single-node, bottom-upjoins will construct a globally biased
2, b tree in O( n) actual time.

Note. Theorem 12 does not include time corresponding to the credits necessary
to establish the credit invariant on the constructed tree (if we are using locally biased
trees); the number of credits needed depends upon the relative weight of the items
and is not bounded by any function of n. (Consider a tree containing two items with
weights and 2k for k arbitrarily large.)

Remark. Local join and global join as we have described them each consist of a
top-down pass (for merging) followed by a bottom-up pass (for splitting). However,
if b => 4 either form ofjoin can be implemented in a one-pass, purely top-down fashion
by preemptively splitting nodes with b or more children during merging.

4. Biased binary trees. In practice, implementations of balanced tree data struc-
tures are plagued by a multiplicity of cases, making the resulting code lengthy, opaque
and hard to prove correct. In this section we shall describe a class of biased search
trees whose update algorithms are relatively easy to program and have a manageable
number of cases. We shall only sketch proofs of algorithm correctness and time bounds,
since the proofs use exactly the same techniques as in 3.

A locally biased binary search tree is a full binary search tree (every internal node
has exactly two children), each of whose nodes x has an integer rank s(x), such that
the ranks have the following properties"

(i) If x is a leaf, then s(x)= [lg w(x)J.
(ii) If node y has parent x,s(y)<=s(x); if y is a leaf, s(y)<-s(x)-l.
(iii) If node y has grandparent x, then s(y)<= s(x)-1.
(iv) Local bias. A node is minor if the rank of its parent is at least two greater

than its own rank and major otherwise. Let y be a minor node with parent x. If y is
the left child of x, either the sibling of y or the left child of that sibling is a leaf of
rank s(x)-1. If, in addition, x is the right child of its parent and has the same rank
as its parent, then either the sibling of x or the right child of that sibling is a leaf of
rank s(x) 1. A symmetric condition holds ify is the right child of its parent. (See Fig. 9.)

9

I0

(4)

FIG. 9. A locally biased binary tree.
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Biased binary trees are a binarized version of biased 2, 4 trees; if we take a biased
binary tree and condense into a single node all adjacent nodes of the same rank, we
obtain a biased 2, 4 tree. (See Fig. 10.) Biased binary trees generalize symmetric binary
B-trees [5], which have been described as red-black trees [12]. In the case of equal
weights, we obtain the red-black representation of a biased binary tree by calling an
edge red if parent and child have the same rank and black if their ranks differ by one;
in this case all nodes are major. If we want to be colorful we can in the general case
call an edge blue if it joins a minor child with its parent; then we can call biased
binary trees red, black and blue trees.

Ca)

FIG. 10. Correspondence between biased 2, 4 trees and biased binary trees. (a) 2-node. Rank of node is
s. Roots of subtrees denoted by triangles have ranks less than s. (b) 3-node. There are two possible binarized
forms. (c) 4-node.

All the theorems presented in 3 for biased 2, b trees hold for biased binary trees,
since we can regard biased binary trees as just a representation of biased 2, 4 trees. In
particular biased binary trees have ideal access time for all items. In the remainder-of
this section we shall give algorithms for joining and splitting biased binary trees. The
correspondence with biased 2,4 trees is somewhat loose because there are two rep-
resentations of a 3-node.

We begin by presenting an algorithm for join. If x is a node, we denote the left
child of x by l(x) and the right child of x by r(x); if x is a leaf, l(x)-- r(x)= null. By
promoting a node we mean increasing its rank by one. The algorithm uses two functions,
tilt left (x) and tilt right (x), whose behavior is as follows:

tilt left (x): If both children of internal node x have the same rank as x,
promote x and return x. Otherwise if the right but not the left
child of x has the same rank as x, perform a single left rotation
at node x (see Fig. 11) and return the new parent of x (the
old right child of x). In all other cases merely return x.

tilt right (x): Symmetric to tilt left (x).

RIGHT ROTATION

FIG. 11. A single rotation at node x.
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Remark. If x’ is the node returned by tilt left (x), then the leaf descendants of x’
in the new tree are exactly the leaf descendants of x in the old tree. Also, x’ and its
right child have different ranks. Achieving the latter condition is the purpose of the
tilt left operation.

The join algorithm consists of a function local join (x, y) that returns the root of
the tree formed by joining the trees with roots x and y. The function local join (x, y)
is defined by the following cases (see Fig. 12):

Case 1. s(x)= s(y), or s(x)> s(y) and x is a leaf, or s(x)< s(y) and y is a leaf
Create and return a new node with left child x, right child y and rank max {s(x), s(y)} +
1.

Case 2. s(x) > s(y) and x is not a leaf. Replace x by tilt left (x). Let z be the
right child of x. Define the new right child of x to be local join (z, y) and return x.

Case 3. s(x)< s(y) and y is not a leaf. Symmetric to Case 2.

(a)

(b)

JOIN (x2,Y)

FIG. 12. Join algorithm for locally biased binary trees. (a) Case 1. Terminate. (b) Case 2 with x not a

right-leaning 3-node. Promote x ifx a 4-node. Replace right child ofx by the join of this child and y. (c) Case
2 with x a right-leaning 3-node. Rotate left at x. Replace right child of root by the join of this child and y.

We can verify the correctness of this algorithm as follows. The function call local
join (x, y) returns a tree whose root has rank max {s(x), s(y)} or max {s(x), s(y)}+ 1.
Furthermore if Case 2 occurs and a promotion takes place (which happens if s(x)>
s(y), x is not a leaf, and s(x)= s(l(x))= s(r(x))), then in the next call, which is local
join (r(x), y), Case 2 also occurs but neither a promotion nor a rotation takes place,
by properties (ii) and (iii). Thus local join (r(x), y) returns a node of rank s(r(x)).
Similarly if Case 3 occurs and a promotion takes place, the next call localjoin (x, l(y))
returns a node of rank s(l(y)). It follows that if the original call localjoin (x, y) returns
a node, say x, of rank max {s(x), s(y)}+ 1, both children of z have rank less than s(z).
An inductive case analysis using this fact shows that local join is correct.

To establish a time bound for local join we can use the same credit invariant for
biased binary trees that we used for biased 2, b trees; a count of credits as in 3 proves
Theorem 2 for biased binary trees. Theorems 3 and 4 for biased binary trees follow
immediately. Although we have defined local join recursively, it is easy to give an

iterative, purely top-down version. We leave this as an exercise.
We can use the same split algorithm on biased binary trees that we used on biased

2, b trees and the number of cases is much reduced. To split a tree at a leaf x, we

initialize v (the current node) to be x, and q and r (the roots of the left and right trees,
respectively) to be null. Then we repeat the following general step until v is the root

of the tree (see Fig. 13), where p(v) denotes the parent of node v:
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General step. Case 1. v is the right child of p(v). Let y be the left child of p(v).
If q =null, replace q by y; if q # null, replace q by localjoin (y, q). Replace v by p(v).
Destroy r(v) if it is not the original leaf x.

Case 2. v is the left child of p(v). Symmetric to Case 1.

LEFT RIGHT
TREE TREE

O.NEW CURRENT NODE

NEW RIGHT
LEFT TREE
TREE

FIG. 13. One step of split algorithm.

To split a tree at an internal node x, we proceed as above except that we initialize
q to be the left child of x and r to be the right child of x; in this case neither q nor
r is ever null. The correctness of three-way split and two-way split is immediate.
Theorems 5-7 hold for biased binary trees, as we can easily establish using virtually
the same proofs as in 3. Thus the amortized time bounds derived for biased 2, b trees
hold for biased trees. Note that when a biased binary tree whose root has rank k is
split, the resulting tree(s) all have rank at most k + 1.

As in 3, we can improve the worst-case-per-operation behavior of biased binary
trees by strengthening the bias property (iv). A globally biased binary tree is a full
binary search tree having properties (i), (ii), (iii) and the following:

(iv’) global bias. If y is a minor node with parent x, then any neighboring leaf of
y has rank at least s(x)-1.

We can modify the join algorithm so that it produces a globally biased tree if the
two input trees are globally biased, although the number of cases increases. As in 3,
the idea is to continue the join until finding a leaf, instead of terminating when
encountering two nodes of equal rank. The resulting algorithm globaljoin (x, y) consists
of the following cases (see Fig. 14):

Case 1. s(x)>=s(y) and x is a leaf, or s(x)<=s(y) and y is a leaf. Create and
return a new node with left child x, right child y and rank max {s(x), s(y)}+ 1.

Case 2. s(x)>=s(y) and x is not a leaf. Replace x by tilt left (x). Let z be the
right child of x. Define the new right child of x to be global join (z, y) and return x.

Case 3. s(x) < s(y) and y is not a leaf. Symmetric to Case 2.
Case 4. s(x)= s(y) and neither x nor y is a leaf. If s(r(x))<s(x), let u=x;

otherwise let u r(x). (In either case s(r(u)) < s(x) and s(u) s(x).) If s(l(y)) < s(y),
let v=y; otherwise let v= l(y). Perform global join (r(u),/(v)); let z be the root of
the resulting tree.

Case 4a. s(z)= s(x). Replace r(u) by l(z), l(v) by r(z), l(z) by x, r(z) by y and
s(z) by max {s(x), s(y)}+ 1. Return z.

Case 4b. (s(z) < s(x).
Case 4b(i). u r(x). Replace r(x) by l(u), l(v) by z, l(u) by x, r(u) by y and

s(u) by max {s(x), s(y)}+ 1. Return u.
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(a)

(b)

(d)

(e)

(f)

FIG. 14. Case 4 of global join algorithm (equal ranks, non terminating). (a) Case 4a (s(z)= s(x)) with

u=x, v=y. (b) Case 4a with u= r(x), v=y. Case 4a with u=x, v= l(y) is symmetric. (c) Case 4a with

u r(x), v l(y). (d) Case 4b(i) with v y. Case 4b(ii) with u x is symmetric. (e) Case 4b(i) with v l(y).
Case 4b(ii) with u r(x) is symmetric. (f) Case 4b(iii) with v y and Case 4b(v). Case 4b(iv) with u x is

symmetric. (g) Case 4b(iii) with v= l(y). Case 4b(iv) with u r(x) is symmetric.
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Case 4b(ii). v= l(y). Replace l(y) by r(v), r(u) by z, l(v) by x, r(v) by y
and s(v) by max {s(x), s(y)}+ 1. Return v.

Case 4b(iii). u x and s(x)= s(l(x)). Replace l(v) by z, r(x) by y and s(x)
by s(x) + 1. Return x.

Case 4b(iv). v y and s(y)= s(r(y)). Replace r(u) by z, l(y) by x and s(y)
by s(y) + 1. Return y.

Case 4b(v). u=x, s(x)> s(l(x)), v=y and s(y)> s(r(y)). Replace l(v) by
z and r(x) by y. Return x.

Remark. Cases 4b(i) and (ii) are nondisjoint, as ave Cases 4b(iii) and (iv).
If two cases are possible, the choice can be made arbitrarily.

A straightforward but tedious case analysis verifies the correctness of this
method. With this implementation of global join and with split implemented using
local join, Theorems 8-11 hold for globally biased binary trees. As with local join,
global join can be implemented as an iterative, purely top-down method if desired.
Our last result in this section is an algorithm which constructs a globally biased

binary tree of n items in O(n) time. We use the same approach as in 3; namely, we
begin with an empty tree and successively join each item into the tree, proceeding
left-to-right. To join each new leaf into the tree, we use a bottom-up method. To
simplify the joins, we maintain the invariant that nodes down the right path of the
tree strictly decrease in rank. To give access to the tree, we maintain a pointer to its
rightmost leaf. To join a single leaf y with the tree, we start at the rightmost leaf x
and walk up the tree, replacing x by p(x), until x is the tree root or s(p(x))> s(y).
We thus create a new node with left child x, right child y and rank max {s(x), s(y)} + 1.
If x was the old tree root we are finished. If not, we make the new node the right child
of the old parent of x. Then we perform a tilt left on this old parent and walk up
toward the root, performing a tilt left on each node, until reaching the root or performing
a tilt left that does not cause a promotion. (See Fig. 15.)

FIG. 15. Bottom-up join of a single item with a globall> biased tree.
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The correctness of this method is obvious; the same argument used in 3 shows
that forming an n-leaf tree by n-1 successive bottom-up joins requires O(n) time;
that is, Theorem 12 holds for biased binary trees.

There are many alternatives to the specific update algorithms we have presented
for biased binary trees. By varying the order in which the basic operations of promotion
and rotation are performed, one may obtain a range of different implementations.
Guibas and Sedgewick 12] have explored such variants for the equal-weight case; we
leave it as an exercise generalizing their algorithms to the biased case.

5. Summary, applications and related work. We have presented two classes of
biased search trees. Each has a locally biased and a globally biased version. All our
search trees have ideal worst-case access times for all items. Locally biased search
trees have fast amortized update times, as given in Theorems 2 and 4-7. Globally
biased search trees have fast worst-case update times, as given in Theorems 8-11.

Biased search trees have a number of applications, three of which we list below.
This list is meant to be illustrative, not exhaustive.

1. Dictionaries with access weights. The most obvious application of a biased search
tree is to store a table, such as a name table in a compiler, a natural-language dictionary,
or a telephone directory. If we have a priori estimates of the access frequencies, we
can use these as weights. Alternatively, we can keep a frequency count for each item
and use this as its weight, increasing the count by one each time we access the item.
With this method the time to rebalance after increasing a count is proportional to the
access time, and the time for an insertion is also proportional to the access time, since
an item has an initial count of one.

We can also include weights for unsuccessful searches in this scheme: we assign
to the leaf containing item a weight equal to our estimate ofthe frequency of successful
searches for plus the frequency of unsuccessful searches for items between item i-
and item i; any such unsuccessful search will terminate at the leaf containing item
(or at an ancestor of that leaf if double keys are used; see Appendix B). When a new
item is inserted between items i- and i, we must somehow apportion the weight for
unsuccessful searches between i-1 and to the two new intervals created by the
insertion.

By perturbing the weights, we can guarantee an access time of
O(min {log n, log (W! wi)}) for every item i, thus obtaining the behavior of balanced
and biased search trees simultaneously. To do this, we assign to every item a weight
of 1/n + wi/W. It is not necessary to update the weights of all the items every time n
changes; it suffices to update all the weights whenever n changes by a factor of two.
When amortized over a sequence of insertions and the deletions, the time for updating
weights is O(1) per insertion or deletion.

2. Tries and multidimensional search trees. Suppose the items to be stored are
k-dimensional vectors (or equivalently lists of length k) ordered lexicographically, and
that comparing the corresponding components of two items takes O(1) time. We can
use biased search trees to store collections of such vectors so that access, insertion,
deletion, join and split take O(log n + k) time, either in the amortized sense if we use
locally biased trees or in the worst-case sense if we use globally biased trees. See
Mehlhorn [26] and Giiting and Kriegel [13]. The idea extends to allow the vectors to
have weights measuring access frequencies 14] and to allow partial-match queries [23].

3. Dynamic trees. A number of network optimization algorithms require a data
structure to represent a collection of rooted trees on which we can perform the following
two update operations:
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link (v, w): If v is the root of one tree and w is a node in another tree,
combine the trees containing v and w by adding an edge joining
v and w.

cut (v, w): If there is an edge joining v and w, delete it, thereby breaking
the tree containing v and w into two trees, one containing v and
one containing w.

Using biased search trees we have been able to develop a data structure for such
dynamic trees in which link or cut operations, as well as other operations of interest,
take O(log n) time per operation [28]. We divide each dynamic tree into a collection
of disjoint paths and represent each path by a biased search tree. This data structure
leads to improved running times for several network optimization algorithms. For
example, we are able to find a maximum network flow in an n-vertex, m-edge graph
in O(nm log n) time.

Recently Feigenbaum and Tarjan [9] have developed two additional types of
biased search trees. These are a biased form of B-trees and a biased form of weight-
balanced trees. The biased B-trees have O(logb (W wi)) worst-case access time, where
b is the maximum number of children per node, and have correspondingly efficient
update times. They exist in both locally biased and globally biased forms. Kriegel and
Yaishnavi [22] have proposed a data structure with similar access times but less
favorable update times.

In another related development Sleator and Tarjan [30], [3 l] have devised "self-
adjusting" binary search trees with amortized access and update times similar to those
of biased search trees. The advantage of self-adjusting trees is their simplicity, since
there is no balance condition to maintain. The disadvantages of self-adjusting trees
are that they must be adjusted frequently (even during accesses), and the time bound
for access is amortized rather than worst-case.

Appendix A. Tree terminology. A rooted tree is either empty or consists of a single
node r, called the root, and a set of zero or more rooted trees T1," ", Tk that are
node-disjoint and do not contain r. The roots r,..., rk of T,’’", Tk are the children
of r; r is the parent of rl," ", rk. A node without children is a leaf; a node with at
least one child is an internal node. Two nodes with the same parent are siblings. The
degree of a node is the number of its children.

A path of length 1- in a tree is a sequence of nodes v, v2, ", Vl such that
is a child of vi for <-i< 1. The path goes from v down to V and from v up to D1. A
node v is an ancestor of a node w and w is a descendant of v if there is a path from
v down to w. (Every node is an ancestor and a descendant of itself.) If w is a leaf, it
is a leaf descendant of v. Two nodes are unrelated if neither is an ancestor of the
other.

Let v be any node in a tree T. There is a unique path from the root of T down
to v; the length of this path is the depth of v. The height of v is the length of the
longest path from v down to a leaf. The subtree rooted at v is the tree whose root is
v containing all the descendants of v. The nearest common ancestor of two nodes v
and w is the node of maximum depth that is an ancestor of both v and w.

An ordered tree is a rooted tree such that the children of every node v are totally
ordered. A child x of v is to the left of another child y, and y is to the right of x, if
x occurs first in the ordering of the children of v. If no sibling occurs between x and
y in the ordering, x is the left sibling of y, y is the right sibling of x, and x and y are
neighboring siblings. The first child of a node is its left (or leftmost) child and the last
child is its right (or rightmost) child.
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The ordering of children imposes an order on any two unrelated nodes v and w;
v is to the left of w, and w is to the right of v, if there are siblings v’ and w’ such that
v’ is to the left of w’, v’ is an ancestor of v, and w’ is an ancestor of w. This relation
totally orders the leaf descendants of any node x; the left (or leftmost) leafdescendant
of x is the first leaf in the ordering and the right (or rightmost) leaf descendant of x
is the last. The left path from x is the path from x down to its leftmost leaf descendant;
the right path from x is the path from x down to its rightmost leaf descendant. The
left neighboring leaf of x is the rightmost leaf (if any) to the left of the leftmost leaf
descendant of x; the right neighboring leaf of x is the leftmost leaf (if any) to the right
of the rightmost leaf descendant of x.

Appendix B. Keys in a search tree. Let S be a totally ordered set. A search tree
for S is an ordered tree containing the items of S in its leaves, one item per leaf, in
left-to-right order. In order to use the search tree to access S, we must store auxiliary
items, called keys, in the internal nodes. We shall consider two possibilities. The first
is the single key representation: if x is an internal node with k children, x contains
k- keys, called left keys, one for each child y of x except the rightmost. The key for
y is the largest item in the subtree rooted at y. The second is the double key representa-
tion: in addition to left keys, every internal node x contains a right key for each of its
children y except the leftmost. The key for y is the smallest item in the subtree rooted
at y. Every item in the tree except the largest occurs exactly once as a left key; every
key except the smallest occurs exactly once as a right key. (See Fig. 16.)

FIG. 16. Keys in a search tree. Items are letters in alphabetical order. Left keys appear before colons, right
keys after. A pair of keys kl:k2 consisting of a left key kl and a right key k corresponds to an open interval

of items missing from the tree.

Left keys (or right keys) suffice for searching from the root of a given item i. We
initialize the current node x to be the root and repeat the following step until x is a
leaf. Then either x contains or is not in the tree.

Search step. Select the smallest left key in x no less than i. Replace x by the child
y of x corresponding to this key.

Using both left and right keys expedites unsuccessful searches. If is an item, let
i- be the last item before and / the first item after i. We define the handle of to
be the leaf containing if is in the search tree and the nearest common ancestor of
the leaves containing i- and / if not; in this case the handle contains i- as a left key
and / as a right key. A search for can stop at the handle of i: we terminate the
search when the current node x is a leaf or lies strictly between a left key in x and
the next larger right key. To deal with the case of an item smaller than the smallest
item in the tree or larger than the largest, we maintain a header for the tree containing
its smallest and largest items; then unsuccessful searches for items outside the range
of the tree take O(1) time.

Updating a search tree generally requires a sequence of local rebalancing steps,
each of which changes the structure of the tree. For the binary search trees, considered
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in 4, we need two symmetric rebalancing steps" a left single rotation and a right
single rotation. (See Fig. 17.) A single rotation takes O(1) time.

A

FIG. 17. Updating of keys during a left single rotation at node x. (Right single rotation is symmetric.)

For the search trees whose nodes can have more than two children, considered
in 3, we also need two rebalancing operations" a split, which splits an internal node
into two neighboring siblings, and its inverse, a fuse, which combines two neighboring
siblings into one. (See Fig. 18.) Either a split or a fuse requires O(1) time, assuming
a fixed upper bound on the maximum number of children of a node.

/3
kl k9: klo

D

SPLIT U 1 FUSE

/ kl k2, ks" k6, ks:klo

FIG. 18. Splitting a node x. A left key and a right key move up. Inverse operation is fusing nodes y and z.
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PRIORITY NETWORKS OF COMMUNICATING FINITE STATE MACHINES*

MOHAMED G. GOUDA" AND LOUIS E. ROSIER"

Abstract. Consider a network of two communicating finite state machines which exchange messages
over two one-directional, unbounded channels, and assume that each machine receives the messages from
its input channel based on some fixed (partial) priority relation. We address the problem of whether the
communication of such a network is deadlock-free and bounded. We show that the problem is undecidable
if the two machines exchange two types of messages. The problem is also undecidable if the two machines
exchange three types of messages, and one of the channels is known to be bounded. However, if the two
machines exchange two (or less) types of messages, and one channel is known to be bounded, then the
problem becomes decidable. The problem is also decidable if one machine sends one type of message and
the second machine sends two (or less) types of messages; the problem becomes undecidable if the second
machine sends three types of messages. The problem is also decidable if the message priority relation is
empty. We also address the problem of whether there is a message priority relation such that the priority
network behaves like a FIFO network. We show that the problem is undecidable in general, and present
some special cases for which the problem becomes decidable.

Key words, bounded communication, communicating finite state machines, communication progress,
communication protocols, deadlock detection, message passing, priority channels, priority systems,
unboundedness detection

1. Introduction. Networks of communicating finite state machines have proven
extremely useful in the modeling [4], analysis 1], [2], [23], and synthesis [14], [25] of
communication protocols and distributed systems. However, most previous work (cf.
[1]-[4], 14], 18], [23]-[25]) has focused on FIFO networks, i.e. networks where each
machine receives the messages from its input channel based on the well-known
First-In-First-Out discipline. In this paper, we consider instead priority networks where
messages are received based on a fixed, partial-ordered priority relation. There are
two practical reasons to consider this class of networks:

(i) In a number of existing communication protocols and distributed systems,
messages are actually received based on a fixed priority relation rather than a FIFO
discipline. (For example, INTERRUPT messages have a higher priority over sequenced
messages in the packet layer of X.25 [21 ].) It is more appropriate to model and analyze
such systems using priority networks than FIFO networks.

(ii) In many cases, it is possible to select some fixed priority relation such that
the resulting priority network behaves like a FIFO network. (For example in 7, we
show that the Call Establishment and Clear procedures of the Binary Synchronous
Protocol [12], which are usually modeled by a FIFO network, can be modeled by a
priority network.)

In this paper, we consider a network of two communicating finite state machines
that exchange messages over two unbounded, one-directional channels. Each machine
has a finite number of states (called nodes) and state transitions (called edges). Each
state transition of a machine is accompanied by either sending one message to the
output channel of the machine or receiving one message from the input channel of
the machine. (Formal definitions are presented later.)

An example of a priority network is shown in Fig. 1. It consists of two machines;
machine M is called the requestor and machine N is called the responder. The requestor

* Received by the editors August 23, 1983, and in revised form January 3, 1984. This research was
supported in part by the University Research Institute, The University of Texas at Austin and the IBM
Corporation.

Department of Computer Sciences, University of Texas at Austin, Austirt, Texas 78712.
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continuously sends a request message and receives a reply message. There are two
types of requests, "regular" and "urgent" (denoted gl and g2 respectively in Fig. 1),
and two types of replies, "regular" and "urgent" (denoted g and g respectively in
Fig. 1). After the requestor sends a gl message, it waits to receive a g’l message; however
it can also send a g2 message in which case it must first receive the corresponding g
message before receiving the g’l message. This implies that g2 and g have higher
priorities than gl and g] respectively. Figure c shows the "state reachability graph"
of the network. Each node in this graph corresponds to one reachable state of the
network, and is labeled by a four-tuple: The first (second) component refers to a node
in machine M (N), and the third (fourth) component refers to the contents of the
input channel of machine M (N), where E denotes the empty channel. Notice that
the only next state after [3, 1, E, glg] is [3, 3, E, gl], and .not [3, 2, E, g]; this is because
g2 has a higher priority than g.

Initial node

receive g send gl

receive g send g2

(a) Machine M: Requestor

receive 91 receive g2

(b) Machine N: Responder

(c) Reachability graph

FIG. 1. A priority network example.

This model is equivalent, in computational power, to certain classes of extended
Petri nets, in particular those with coloured or priority tokens [6], 16]. However, the
model presented here is more concise (since the channels and their contents are not
modeled explicitly), and so is more convenient to use in modeling communication
protocols and distributed systems.
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Our results focus on the problem of whether the communication of a priority
network is deadlock-free (i.e. the network can never reach a state after which no further
progress is possible), and/or bounded (i.e. the number of reachable states is finite).
We provide decidability/undecidability results for these problems with respect to
restricted classes of priority networks. We consider restrictions on the number of
allowable message types and the size of the priority relation. We also examine the case
where one of the channels is known to be bounded. The results presented here define
sharp boundaries between the decidable and undecidable cases. They also depart
considerably from similar results in the literature concerning FIFO networks [2], [18].

The paper is organized as follows. In 2, the model of priority networks is
presented formally. In 3, we show that the problem of’detecting deadlocks and
unboundedness is undecidable even if the machines exchange only two types of
messages. We also consider the case where one of the two channels is known to be
bounded, and show that three types of messages can make the problem undecidable
in this case. (This problem is decidable in the case of FIFO networks [2].) Then in

4, we show that the same problem becomes decidable if only two types of messages
are allowed. In 5, we consider the case of one of the two machines sending one type
of message. We show that the problem is undecidable if the other machine sends three
or more types of messages, and is decidable if the other machine sends two or less
types of messages. (Both problems are decidable in the case of FIFO networks 18].)
However, the latter result can be generalized to the case of three or more messages,
if only two message types are mentioned in the priority relation. In 6, we examine
the simplification (or reduction) of the message priority relation. In particular, we
argue that if the message priority is reduced, and if the network after the reduction is
deadlock-free and bounded, then the network before the reduction is also deadlock-free
and bounded. Moreover, if the priority is reduced to the limit (i.e. all messages are
received on a random basis), then the problems of detecting deadlocks and/or
unboundedness are reduced to the reachability and unboundedness problems of vector
addition systems [10], [11], [13], [19], and so are decidable. In 7, we discuss hbw to
select the message priority relation such that the priority network behaves like a FIFO
network.

2. Priority networks. A message system is an ordered pair (G, <), where G is a
finite, nonempty set of messages, and < is a partial order over G called the message
priority relation. If two distinct messages g and g2 in G are such that (gl, g2) is in <,
denoted by g < g2, then g: is said to have a higher priority than g. The number [G[
of the messages in set G of a message system is called the size of the message system.

A communicating machine M over a message system (G, <) is a finite directed
labeled graph with two types of edges namely sending and receiving edges. A sending
(receiving) edge is labeled send (g) (receive (g)) for some message g in G. One of the
nodes in M is identified as the initial node, and each node in M is reachable by a
directed path from the initial node. For convenience, we assume that each node in M
has at least one outgoing edge; outgoing edges of the same node have distinct labels.
If the outgoing edges of a node are all sending (all receiving), then the node is called
a sending (receiving) node; otherwise it is called a mixed node.

Let M and N be two communicating machines over the same message system
(G, <); the pair (M, N) is called a priority network of M and N.

A state of network (M, N) is a four-tuple Iv, w, x, y], where v is a node in M, w
is a node in N, and x and y are two multisets of messages in G. Informally, a state
Iv, w, x, y] of network (M, N) means that the execution of the two machines M and
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N has reached nodes v and w (respectively), while the input channels of M and N
contain the multisets x and y (respectively) of messages.

The initial state of a priority network (M, N) is [Vo, Wo, E, El, where Vo is the
initial node of M, Wo is the initial node of N, and E is the empty multiset.

Let s v, w, x, y] be a state of a priority network (M, N), and let e be an outgoing
edge of node v or w. A state s’ of (M, N) is said to follow s over e iff one of the
following four conditions are satisfied:

(i) e is a sending edge, labeled send (g), from v to v’ in M, and s’=[v’, w, x, y’]
where y’ is obtained by adding exactly one g to y.

(ii) e is a sending edge, labeled send (g), from w to w’ in N, and s’ =Iv, w’, x’, y]
where x’ is obtained by adding exactly one g to x.

(iii) e is a receiving edge, labeled receive (g), from v to v’ in M, and x contains
at least one g, and s’=[v’, w, x’, y] where x’ is obtained by removing exactly one g
from x, and if v has an outgoing edge labeled receive (g’), where g < g’, then x contains
no g’.

(iv) e is a receiving edge, labeled receive (g), from w to w’ in N, and y contains
at least one g, and s’= Iv, w’, x, y’] where y’ is obtained by removing exactly one g
from y, and if w has an outgoing edge labeled receive (g’), where g < g’, then y
contains no g’.

The last parts of conditions (iii) and (iv) mean that messages are received in
accordance with their priorities; the highest priority available message is received first.
(Unrelated messages can be received in any order.)

Let s and s’ be two states of a priority network (M, N); state s’ is said to follow
s lit there exists an edge e in M or N such that s’ follows s over e.

Let s and s’ be two states of network (M, N); state s’ is reachablefrom s lit either
s=s’ or there exist states s,s2,...,s such that S=Sl, S’=S, and for i=

1,. ., r- 1, s+ follows s.
A state of network (M, N) is reachable if[ it is reachable from the initial state of

(M, N).
A reachable state s v, w, x, y] of a priority network (M, N) is called a deadlock

state iff the following three conditions are satisfied:
(i) Both v and w are receiving nodes.
(ii) Either x E (the empty multiset) or for any message g in x, there is no

outgoing edge, from node v, labeled receive (g).
(iii) Either y E or for any message g in y, there is no outgoing edge, from node

w, labeled receive (g).
If no reachable state of network (M, N) is a deadlock state, then the communica-

tion of (M, N) is said to be,deadlock-free.
Let (M, N) be a priority network over (G, <). The input channel of machine

M (N) is said to be bounded by some positive integer K iff for any reachable state

[v, w, x, y] of (M, N), Ixl(lyl) <= K, where Ixl is the number of messages in the multiset

x. The communication of a network if bounded by K iff each of its two channels
is bounded by K. If there is no such K, then the communication of (M, N) is
unbounded.

3. Undecidable results. In the next two sections, we consider the problem of
detecting deadlocks and unboundedness for three classes of priority networks:

1. The message system is of size less than or equal two.
2. The message system is of size less than or equal two, and one of the two

channels is known to be bounded.
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3. The message system is of size greater than or equal three, and one of the two
channels is known to be bounded.

In this section, we show that the problem is undecidable for classes and 3, and
in 4, we show that the problem is decidable for class 2. These results are interesting
since they depart from the corresponding results for similar classes of FIFO networks.
More specifically, the problem is decidable for classes 2 and 3 of FIFO networks, but
remains undecidable for class of FIFO networks [2].

THEOREM 1. It is undecidable whether the communication of a class priority
network is both deadlock-free and bounded.

Proof. We show that any 2-counter machine T 15] (to be defined later), with no
input, can be simulated by a priority network (M, N) over a message system (G, <)
such that the following three conditions are satisfied"

(i) G {go, gl}, and < {go < g}.
(ii) The communication of (M, N) is deadlock-free.
(iii) The communication of (M, N) is bounded by K iff the values of the two

counters of T never exceed K.
Assume that there is an algorithm A to decide whether the communication of any

such network is deadlock-free and bounded; then this algorithm can decide whether
any 2-counter machine T halts as follows. First, construct from T a priority network
which satisfies the above three conditions. Second, apply algorithm A to this network.
If the answer is "yes", then (from conditions (ii) and (iii) above) T has a finite number
of reachable configurations and its halting can be decided by exploring all the reachable
configurations. If the answer is "no", then (from (ii) and (iii) above) T does not halt.
Since it is undecidable whether any 2-counter machine halts [15], algorithm A cannot
exist. It remains now to describe how to simulate any 2-counter machine by a priority
network which satisfies the above three conditions; but first we define briefly 2-counter
machines.

A 2-counter machine [7], [15] is an offline deterministic Turing machine whose
two storage tapes are semi-infinite, and whose tape alphabet contains only two symbols
Z and B. The first (leftmost) cells in both tapes are marked with Z symbols; all other
tape cells are marked with B (for blank) symbols. Initially, each tape head scans the
first cell of its tape. A nonnegative integer "i" can be stored at a tape by moving the
tape head cells to the right. Each move of the machine increments (decrements), by
one each of the two stored numbers by moving the respective tape head one cell to
the right (left). Each move of the machine depends on whether each of the two stored
integers is currently greater than or equal zero. This is checked by examining the
symbol in the currently scanned cell in each tape: A Z symbol indicates that the integer
is zero, whereas a B symbol indicates that it is greater than zero.

Let T be a 2-counter machine; T can be simulated by a priority network (M, N)
over (G, <), where G= {go, gl} and < {go< g}. Machine M simulates the finite
control of T and N acts as an "echoer" that transmits the contents of its input channel
to its output channel. At certain instances, the number of g messages in the network
will equal 2i’3j, where and j are the two integers currently stored in the counters of
T; a similar encoding technique is used in [15]. The simulation proceeds in phases.
First M will process the number represented by the g messages in its input channel.
After which, in the next phase, N will send them all back so that M can continue
with its next phase. The go messages are used to insure the proper synchronization
between the phases of M and N, and to allow each machine to deduce when there
are no longer g messages in its input channel (this determines when a phase is over).
The details of the simulation can be found in [5].
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THEOREM 2. It is undecidable whether the communication of a class 3 priority
network is both deadlock-free and bounded. The result holds even if the message system
is of size three and the message priority relation has two elements.

Proof. As in the proof of Theorem l, we show that any 2-counter machine T can
be simulated by a priority network (M, N) over (G, <) such that the following three
conditions are satisfied"

(i) G {go, gt, g2}, < ---{go < g, go < g2}, and the input channel of one machine,
say M, is known to be bounded.

(ii) The communication of (M, N) is deadlock-free.
(iii) The communication of (M, N) is bounded by 2K +6 if[ the values of the

two counters of T never exceed K.
Machine M simulates the finite control of T while N acts as a "source" for the

new messages to be added to the input channel of M. The number of gl (g2) messages
in the input channel of M corresponds to the integer stored in the first (second) counter
of T. The go messages are used for synchronization between M and N. Each time M
wants to update the values of its counters it sends a go message to N. (This is the only
type of message M is allowed to send.) On receiving go, N sends six messages; two
of each type. M is now free to update the value of its counters and proceed with the
simulation. Further details can be found in [5]. [3

The proofs of Theorems and 2 show that the property of freedom of deadlocks
and boundedness is undecidable. The same proofs also show that boundedness (by
itself) is undecidable. To show that freedom of deadlocks (by itself) is undecidable,
the proofs of Theorems and 2 need to be modified slightly. The simulation of the
2-counter machine T proceeds as discussed before until T halts, in which case M
enters a special node that has a self-loop labeled receive(g) for each message g in G.
In other words, T halts if[ (M, N) can reach a deadlock. This proves that freedom of
deadlocks (by itself) is undecidable.

4. A decidable case: GI 2 and one channel is bounded. In this section, we show
that detecting deadlocks and/or unboundedness for class 2 priority networks is decid-
able. For the sake of discussion in this section, let (M, N) be a class 2 priority network
over (G, <) where G {g, g2} and < {g < g}, and assume that the input channel
of one machine, say M, is bounded by the positive integer K.

For greater than or equal 0, define A(i) to be the set of all states Iv, w, x, y] of
(M, N), where multiset y contains at most occurrences of message g, or occurrences
of message g. In what follows, we will be interested in the three sets A(0), A(L), and
A(2L), where L=(n+ K +2)* max (m, n), m =the number of nodes in machine M,
and n the number of nodes in machine N.

The possible contents of multiset y in each state Iv, w, x, y] of (M, N) can be
represented by "points" in the space illustrated in Fig. 2. The points of the two gt-g2

axes (or Barrier 0) correspond to the states in A(0). The points between Barrier and
Barrier 0 correspond to the states in A(L). The points between Barrier 2 and Barrier
0 correspond to the states in A(2L).

LEMMA 1. If network (M, N) reaches a state s not in A(L), then starting from s,
M can stay "dormant" and N can progress (sending at most n messages) until (M, N)
reaches a state in A(O).

Proof. Assume that (M, N) reaches a state s not in A(L). In this state, the input
channel of N has at least (n + K + 2)n messages of each type (gl and g_). Then starting
from s, M can stay dormant and N can progress until all occurrences of g or all
occurrences of g2 are completely "depleted" from the input channels of N, i.e. the
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network (M, N) reaches a state s’ in A(0). Notice that s’ can be reached from s after
at least (n + K + 2)n steps (executed by N) since it takes at least that many steps to
deplete all the messages of one type. It remains now to show that N can send at most
n messages during the period from s to s’. This is shown by contradiction.

Number of

g2 messages

in

2L)

,(k,k)

(o,o)

Number of

messages in

Barrier

Barrier

Barrier

FIG. 2. _Possible contents of multiset y in each state v, w, x, y] of M, N).

Assume that during the period from s to s’, N sends n + messages, i.e. N traverses
n + sending edges el," ", e,/l. Two of these edges say ea and eb, must be outgoing
edges of the same node d in N; node d must be in a directed cycle C (of length less
than or equal n) that contains the sending edge ea in N. Also, from the starting state
s Iv, w, x, y], there must be a directed path P, from node w to node d, of length less
than or equal n. Since N can execute at least (n+ K +2)n steps starting from state
s v, w, x, y], and since it can execute that many steps along any directed path starting
from node w, then assume that N executes along path P then along cycle C for K +
times. (This is possible since the length of this compound path is less than or equal
(K +2)n which is less than (n+ K +2)n.) However, along this compound path the
sending edge e is traversed K + times causing N to send K + messages while M
is dormant. This contradicts the assumption that the input channel of M is bounded
by K. [3

LEMMA 2. If network (M, N) reaches a state s not in A(L) and later reaches a
state s’ such that none of the reached states from s to s’ is in A(O), then N can send at

most n messages during the period from s to s’.
Proof (by contradiction). Assume that N sends n + messages during the period

from s to s’, i.e. N traverses n + sending edges el,’", e,+l during this period. In
what follows, we are only concerned with the computation of machine N from s to
s’. Now at state s the input channel of N has at least (n + K + 2)n messages of each
type. Since el is reachable in the ensuing computation (of N) and no intermediate
move of this computation depends on the input channel being devoid of either message
type, there must exist a different computation, beginning at the same point which
traverses el after at most n steps. (This computation is derived from the oiginal
computation by removing all the loops in the computation preceding the traversal of
el.) In a similar manner, the resulting computation can be modified further so that N
can traverse e2 after at most n steps from traversing el, and can traverse e3 after at
most n steps from traversing e2, and so on. In other words, N can traverse these n +
sending edges after at most (n + )n steps from s. Since (n + )n is less than (n + K + 2)n,
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then N can execute that many steps while M remains dormant. If N executes these
(n+ 1)n steps while M remains dormant, the network will not reach a state in A(0)
even though N has sent more than n messages; this contradicts Lemma 1. U

LEMMA 3. Ifnetwork (M, N) reaches a state not in A(2L), then the communication

of M, N) is unbounded.
Proof. Assume that network (M, N) reaches a state not in A(2L), i.e. a state

v, w, x, y] where the contents ofy are beyond Barrier 2. Let point 2, in Fig. 2, correspond
to the state of the network where Barrier 2 is first crossed. Also, let point 1, in Fig. 2,
correspond to the state of the network when it last crosses Barrier up to the time of
point 2. From Lemma 2, at the network progresses from point to point 2, N can
send at most n messages. Hence during this period, M can receive at most n + K
messages and can send at least (n+ K +2)m messages (to increase the contents of its
input channel from L to 2L so that the network can reach point 2). Therefore, as the
network progresses from point to point 2, M must traverse more than m successive
sending edges, i.e. it must traverse a cycle whose edges are all sending edges. Thus
the communication of (M, N) is unbounded. ]

THEOREM 3. It is decidable whether the communication of any class 2 priority
network is both deadlock-free and bounded.

Proof. Let (M, N) be any class 2 priority network as defined at the beginning of
this section. We show that this network can be simulated by a nondeterministic 1-counter
machine T (to be defined), with no input, such that the communication of (M, N) is
bounded iff there exists a constant C where the counter value of T never exceeds C.
(A nondeterministic 1-counter machine is similar to the deterministic 2-counter machine
mentioned in the previous section except that the machine’s moves are allowed to be
nondeterministic, and the machine has a single counter or tape instead of two [7],
[15].) Deciding whether there exists C such that the counter value of a 1-counter
machine never exceeds C in every possible computation is Nondeterministic Logspace
Complete (in the size of the machine) 18]. (Since these devices are essentially nondeter-
ministic pushdown automata many decision problems are decidable [7]. Other related
problems involving 1-counter automata (e.g. equivalence) have been studied. (See e.g.
[8], [9], [22].)) Therefore boundedness of (M, N) can be decided, and so both bounded-
ness and freedom of deadlocks can be decided. It remains now to show how to define
T from (M, N).

The finite control of T is capable of remembering (at any instant):
(i) the current nodes of M and N,
(ii) the current contents of the (bounded by K) input channel of M (these can

be represented by two integers between 0 and K, one integer for each message type),
and

(iii) the current contents of the (possibly unbounded) input channel of N up to
2L messages of each type (these can be represented by two integers between 0 and
2L, one integer for each message type).

T simulates the network (M, N) by choosing nondeterministically to simulate a
move of M or N. Whenever the input channel of N has more than 2L messages of
each type (indicating that the communication of (M, N) is unbounded by Lemma 3)
T enters a state where it continuously increments its counter. Clearly the communication
of (M, N) is bounded itI there exists C such that the counter value of T never exceeds
C in every possible computation.

From the proof of Theorem 3, boundedness (by itself) is decidable for class 2
priority networks. The following theorem shows that freedom of deadlocks (by itself)
is also decidable for the same class.
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THEOREM 4. It is decidable whether the communication of any class 2 priority
network is deadlock-free.

Proof. Let (M, N) be any class 2 priority network as defined at the beginning of
this section. We show that this network can be simulated by a nondeterministic 1-counter
machine T such that the communication of (M, N) is deadlock-free itt T never halts.
Deciding whether any nondeterministic 1-counter machine halts is Nondeterministic
Logspace Complete (in the size of the machine) 18], and so deadlocks can be detected
for class 2 priority networks.

The finite control of T is capable of remembering (at any instant):
(i) the current nodes of M and N,
(ii) the current contents of the (bounded by K) input channel of M,
(iii) the current contents of the (possibly unbounded) input channel of N up to

L messages of each type, and
(iv) a string of length at most n over the messages gl and g2.

T simulates the network (M, N) by choosing nondeterministically to simulate a

move of M or N:
(i) Simulating a move of M. If the move can be simulated without causing more

than L messages of each type to appear in the input channel of N, then the move is
simulated directly. Otherwise, T must first simulate enough moves of N to bring down
the number of one message type in this channel to L-1. However, some of these
moves of N may send messages to M. T does not simulate these moves in the usual
way; instead each sent message is concatenated to the right-hand side of the string in
the finite control of T. By Lemma 2, N cannot send more than n messages until its
input channel is depleted of one type of message. At such a time the simulation can
proceed directly again. After T has executed the above actions, the simulation of the
original move of M can now take place.

(ii) Simulating a move of N. If the string in the finite control is empty, the move
is simulated directly. Otherwise T moves the leftmost message of the stored string to
the bounded channel. (That this may imply executing several moves of N is not

important since only the message sent can affect the execution of M.)
Clearly T can reach a halting state itt (M, N) can reach a deadlock state. [3

In the proofs of Theorems 3 and 4, we have assumed that the bound of the
bounded channel in any class 2 priority network is known. Suppose, however, that
this is not the case. In this case, the bound can be obtained by an unbounded search
(by Theorem this is the best we can hope for) using the simulation procedure in the
proof of Theorem 4. In this procedure, if the bounded channel is not bounded by
some assumed value K, then the simulating 1-counter machine can reach a state where
the bounded channel has K + messages.

5. The case of one machine sending one type of message. Consider a priority network
(M, N) over (G, <), where one machine, say N, sends one type of message, i.e. there
is a message g in G such that each sending edge in N is labeled send(g). The other
machine M is assumed to send any number of message types from G. Let sM denote
the number of distinct message types sent by M. The decidability of the problem of
whether the communication of any such network is both deadlock-free and bounded
depends on the value of sM:

(i) If s4 l, the the problem can be reduced [3], [24] to the problem of"whether
the reachability set of any vector addition system is finite?" which is decidable I11],
[13], [19]. (See the next section.)

(ii) If s4- 2, then the problem is decidable as discussed in this section.



578 MOHAMED G. GOUDA AND LOUIS E. ROSIER

(iii) If sM is greater than or equal 3, then the problem becomes undecidable. This
can be shown using an identical proof to that of Theorem 2.

(These results for priority networks are different from the corresponding results
for FIFO networks. The problem for FIFO network is always decidable, and in fact
Nondeterministic Logspace Complete, regardless of the value of s4 [18].)

THEOREM 5. Let (M, N) be a priority network over G, <), and assume that M
sends two types of messages gl and g2, where g < g2, and that N sends one type of
message. The communication of (M, N) is unbounded iff one of the following two
conditions is satisfied:

A. There are two reachable states s Iv, w, x, y] and s’= Iv, w, x’, y’] such that the
following three conditions hold:

(i) s’ is reachable from s.
(ii) If state s’ is reached from s via a state s"= Iv", w", x", y"],

then [YI > O, where [y[ is the number of g2 messages in y".
(iii) Either (Ix _-< Ix’l and ly, I--< lyl and ly=l < ly-I),

or (]xl,_-< Ix’l and lYll < lYe[ and ]YI-<-]y]),
or ([xl < [x’l and lYl[ <- lYI and lYI <= lY’21),
where

Ixl is the number of messages in x,
lyl (i l, 2) is the number of gi messages in y, and
ly’[ (i 1, 2) is the number of g, messages in y’.

B. There are two reachable states s Iv, w, x, y] and s’= Iv, w, x’, y’] such that the
following three conditions hold:

s’ is reachable from s.
(ii) lY2I lYI 0.
(iii) Either (Ixl-< Ix’l and lY,I < [Y’,I), or (I,,I < Ix’l and {Y,I--< lYI)-
Proof. If part. We show that condition A is sufficient for the communication to

be unbounded. (Proving that condition B is also sufficient for the communication to
be unbounded is similar.) Assume that there are two reachable states s =Iv, w, x, y]
and s’= Iv, w, x’, y’] of (M, N) such that the three conditions in A hold. From i, state
s’ is reachable from s over a sequence of directed edges that form a directed cycle C4
(which starts and ends with node v) in M, and a directed cycle CN (which starts and
ends with node w) in N. From (ii) and (iii), M and N can traverse the same two
cycles any number of times. From (iii), each time the two cycles are traversed, the
number of messages in one channel increases while the number of messages in the
other channel remains the same or increases. Therefore, the communication is
unbounded.

Only ifpart. We show that if the communication is unbounded and condition A
is not satisfied, then condition B must be satisfied. Assume that the input channel of
one machine, say M, is unbounded. Now consider a breadth first expansion of the
reachable states of (M, N), where successors of a state are generated iff they have not
been generated earlier in the expansion (i.e. each state generated is distinct). Since the
set of reachable states is infinite and in particular M’s input chanel is unbounded,
there is an infinite sequence of reachable distinct states So, s,- of (M, N) such that
the following three conditions hold:

(i) So is the initial state of (M, N).
(ii) For i=0, 1,..., s/ follows s.
(iii) For any K, there is a state s" v", w", x", y"] in the sequence such that Ix"l > g.

Because this sequence is infinite, there must be a node pair (v, w), where node v is in
M, node w is in N, and the pair (v, w) is repeated infinitely often in the states of the
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infinite sequence. Since this sequence does not satisfy condition A, it must have an
infinite number of states s"= Iv", w", x", y"] where the number of g2 messages in y"
equals zero. Because there are infinitely many such distinct states, condition B must
be satisfied.

Based on the above theorem, the following algorithm can decide the boundedness
of any priority network (M, N) over (G, <), where N sends one type of message and
M sends two types of messages g and

(i) Let T be a directed rooted tree whose nodes are labeled with reachable states
of (M, N) and whose directed edges correspond to the "follow" relation. Initially T
has exactly one node labeled with the initial state of (M, N).

(ii) while T has a leaf node n’ labeled with a state s’ that is followed by some state
do
if node n’ has an ancestor node n labeled with state s in T such that s and

s’ satisfy condition A or B (in Theorem 5)
then stop: The communication of (M, N) is unbounded
else find all the states Sl,’’ ", sr which follow s’;
add nodes nl," ", nr to T;
label each node ni with state si;

add a directed edge from node n’ to each n in T;
(iii) stop: The communication of (M, N) is bounded.

Two comments concerning the above algorithm are in order"
(i) The above algorithm is guaranteed to terminate. This is because (from the

proof of Theorem 5) every infinite path whose nodes are labeled with distinct states
in tree T must reach, after a finite number of nodes, two nodes whose state labels
satisfy condition A or B.

(ii) The above algorithm can decide boundedness; hence it can be used to decide
both boundedness and freedom of deadlocks. This completes the proof for the following
theorem.

THEOREM 6. It is decidable whether the communication of a priority network, where
one machine sends one type ofmessage and the other machine sends two types ofmessages,
is both deadlock-free and bounded.

Note that the preceding theorem does not address the problem of detecting
deadlocks in an unbounded network. Theorems 5 and 6 can be generalized in a
straightforward fashion to the class of priority networks where one machine sends one
type of message, the other machine sends an arbitrary number of message types, and
the message priority relation is a singleton set. They can also be generalized to class
3 priority networks where the priority relation is a singleton set. Note that the class 3
priority network constructed in the proof of Theorem 2 is such that one machine sends
one type of message and the message priority relation has two elements. Hence, this
is the best that can be done.

6. Priority reduction and the decidability of the random reception discipline. Let
(G, < 1) and (G, <2) be two message systems with the same set of messages. (G,
is called a priority reduction of (G, <1) if[ <2 is a subset of < 1, i.e. for any two messages
g and g2 in G, if g <2 g2, then g <g2.

The next theorem, whose proof is straightforward, states that if the priority of a

message system for some network is reduced, and if the resulting communication (after
the priority reduction) is shown to be deadlock-free and bounded, then the original
communication (before the reduction) is also deadlock-free and bounded.
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THEOREM 7. Let R denote a priority network (M, N) over (G, <), and RE denote
a priority network (M, N) over (G, <2), and assume that (G, "<2) is a priority reduction

of G, < ). Ifthe communication ofR2 is deadlock-free and bounded, then the communica-
tion ofR is deadlock-free and bounded. [3

Theorem 7 is useful itt priority reduction can lead to simpler proofs for freedom
of deadlocks and boundedness. From the discussion at the end of 5, if the priority
relation is reduced to a single element, then the problem becomes decidable for priority
networks where one machine sends only one type of message and for class 3 priority
networks. Also, the next theorem states that if the priorities are reduced to the limit
(i.e. all sent messages are of equal priorities, and so are received on a random basis),
then the problem of whether the communication is both deadlock-free and bounded
becomes decidable.

THEOREM 8 (the random reception theorem). It is decidable whether the communi-
cation of any priority network, with empty message priority relation, is deadlock-free
and/or bounded.

Sketch of the proof. Any priority network (M, N) over (G, <), where < is empty
can be simulated [16] by a vector addition system U such that the communication of
(M, N) is bounded iiI the reachability set of U is finite. Finiteness of the reachability
sets of vector addition systems is decidable [10], and so is boundedness for priority
networks with empty message priority relations. Therefore, the property ofboth freedom
of deadlocks and boundedness is also decidable.

Also, any priority network with empty message priority relation can be simulated
by a vector addition system such that the network can reach a deadlock state iit the
reachability set of the vector addition system contains a predefined finite set of vectors
[16]. The reachability problem of vector addition systems is decidable Ill], [13], [19],
and so is freedom of deadlocks (by itself) for priority networks with empty message
priority relations. [3

It is straightforward to show that Theorem 8 can be generalized to the case of a
priority network with r communicating machines (r greater than or equal 2) provided
that the message priority relation is empty.

7. Achieving the FIFO discipline using priorities. From Theorem (or 2), priority
networks can simulate any 2-counter machine; therefore they can simulate any FIFO
network. In this section, we discuss the following special type of simulation. Given
two communicating machines M and N whose message labels are taken from a finite
set G of messages, is there a message priority relation < such that the priority network
(M, N) over (G, <) "behaves like a FIFO network"? But before we define how a
priority network behaves like a FIFO network, we first need to add more structure to
the concept of a state of a priority network.

As defined in 2, a state of a priority network is a four-tuple Iv, w, x, y], where
both x and y are multisets of messages. We adopt the following convention"

(i) Both x and y are represented as strings of messages.
(ii) When a machine M (N) sends a message g, then g is concatenated to the

right-hand side of y (x) yielding y.g (x. g), where "." is the string concatenation
operator.

(iii) When a machine M (N) receives a message g, then the leftmost occurrence
of g in x (y) is removed.

From (i) and (ii), if a message g is to the left of a message g’ in x or y, then g
must have been sent "before" g’. This implies that the leftmost message in x(y) is the
current "oldest" message in x (y). From (iii), whenever a machine M or N receives
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a message g, it must receive the oldest available copy of this message. Notice that this
convention does not violate the state reachability of a priority network; it merely
indicates for any reachable state Iv, w, x, y], the order in which the messages in x and
y have been sent.

A priority network (M, N) over (G, <) is said to behave like a FIFO network iff
the following four conditions are satisfied for any reachable state Iv, w, x, y] of the
network:

(i) If x g. x’ and v has no outgoing edge labeled receive (g), then v has no
outgoing edge labeled receive (g’) for any other message g’ in x’:

(ii) If y =g. y’ and w has no outgoing edge labeled receive (g), then w has no
outgoing edge labeled receive (g’) for any other message g’ in y’.

(iii) If x =g. x’ and v has an outgoing edge labeled receive (g), then g’< g for
any other message g’ in x’ where v has an outgoing edge labeled receive (g’).

(iv) If y g. y’ and w has an outgoing edge labeled receive (g), then g’< g for
any other message g’ in y’ where w has an outgoing edge labeled receive (g’).

The question "Given M, N, and G, is there a < such that (M, N) over (G, <)
beahves like a FIFO network?" may have a positive or negative answer depending on
the given M, N, and G. For example, the answer for the two machines in Fig. 3 is
"no", and the answer for the two machines in Fig. 4 is "yes". (If the priority network
in Fig. 4 behaves like a FIFO network, then it models the call establishment and clear
procedures for the Binary Synchronous Protocol [12], where

machine M models the primary station,
machine N models the secondary station,
message gl is the "initial inquiry" message SYN SYN ENQ,
message g2 is the "try again" message SYN SYN WACK,
message g3 is the "negative ACK" message SYN SYN NACK,
message g4 is the "positive ACK" message SYN SYN ACK, and
message g5 is the "clear" message SYN SYN EOT.

Unfortunately, the above question is undecidable in general. A proof of this can
be outlined as follows. Simulate any 2-counter machine T using a priority network
(M, N) over (G, <) that behaves like a FIFO network until T reaches a halting state
in which case M and N start to execute the two machines in Fig. 3 (i.e. those whose

Initial node

send gl send g2 receiveglreceive g2

FIG. 3. Two communicating machines whose priority network cannot behave like a FIFO network.

priority network does not, for any <, behave like a FIFO network). Thus T halts iff
there is no < such that (M, N) over (G, <) behaves like a FIFO network. In [5], we
describe a priority network that simulates T while behaving like a FIFO network; this
completes the proof of the following theorem.

THEOREM 9. It is undecidable whether, for any two communicating machines M and
N whose message labels are taken from a set G, there exists a message priority relation
< such that (M, N) over (G, <) behaves like a FIFO network. 17



582 MOHAMED G. GOUDA AND LOUIS E. ROSIER

There are special cases for which the above problem becomes decidable. For
instance, if the communication between M and N, assuming a FIFO discipline, is
bounded (i.e. the number of distinct reachable states is finite), then the problem can
be decided by straightforward state exploration. For example, by examining all the
reachable states of network (M, N), in Fig. 4, assuming a FIFO discipline, one can
deduce that the priority relation < {g < g2, gl "< g3, g < g4} can make the priority
network (M, N) over (G, <) behave like a FIFO network.

+g5 -g5

-g5 +g5

-g4

FIG. 4. Two communicating machines whose priority network with message priority
g4} behaves like a FIFO network (Notation: -g means send g, +g means receive g).

This decidability procedure operates on the reachable state space of the network;
hence it yields exponential complexity. In some other cases the decidability algorithm
needs only to operate on the directed graphs of the two machines yielding polynomial
complexity. One such a case is where the two communicating machines are "compat-
ible" as defined next.

Two communicating machines M and N are called compatible itt the directed
graphs of M and N are isomorphic as follows:

(i) For every sending (receiving) node in one machine, there is a receiving
(sending) node in the other machine.

(ii) Neither machine has any mixed nodes.
(iii) For every sending (receiving) edge labeled send (g) (receive (g)) in one

machine, there is a receiving (sending) edge labeled receive (g) (send (g)) in the other
machine.

If a priority network (M, N) of two compatible machines behaves like a FIFO
network, then its communication is guaranteed to be deadlock-free [4]. Moreover, if
each directed cycle in M or N has at least one sending and one receiving edge, then
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the communication is also bounded [4]. The next theorem states that it is decidable
whether a priority network of compatible machines behaves like a FIFO network. The
decidability algorithm (in the theorem’s proof) operates on the directed graphs of the
two machines yielding polynomial complexity.

THEOREM 10. It is decidable whether for any two compatible machines M and N
whose message labels are taken from a set G, there exists a message priority relation <
such that (M, N) over G, <) behaves like a FIFO network.

Proof. We first present a decidability algorithm for the problem, then prove its
correctness. The algorithm consists of three steps:

(i) Initially, < is the empty set.
(ii) for each receiving node u in M or N, and

for each two distinct messages g and g’ in G
do
if there are two outgoing edges labeled receive (g) and receive (g’) from u,
and if there is a directed path of all receiving edges from the edge labeled
receive (g) to an edge labeled receive (g’)
then add g’< g to the set <

(iii) if the resulting < is a partial order
then stop: (M, N) over (G, <) behaves like a FIFO network
else stop: no <’ can make (M, N) over (G, <’) behave like a FIFO network

Ifpart. Assume that the resulting < of step (ii) is a partial order; we show that
(M, N) over (G,.<) behaves like a FIFO network. Let s=[v, w, x, y] be the first
reachable state, from the initial state, that does not satisfy the definition of "behave
like a FIFO network". Without loss of generality, assume that the problem is with the
v and x components of s. Therefore, state s must satisfy at least one of the following
two conditions:

(i) x g. x’ where x’ contains a message g’ distinct from g, and v has an outgoing
edge labeled receive (g’), and has no outgoing edge labeled receive (g).

(ii) x= g. x’ where x’ contains a message g’ distinct from g, and v has two
outgoing edges labeled receive (g) and receive (g’), and g’< g is not in <.

Since s is the first reachable state that violates the FIFO behavior and since the
two machines M and N are compatible, M and N must have reached s via two
directed paths p and q such that p (a, b, , v) and q (a’, b’, , v’, , w), where
the nodes a’, b’,..., and v’ in N correspond to the nodes a, b,... and v in M
(respectively). Moreover, the directed path (v’,. , w) must consist entirely from the
sending edges which have sent the message sequence x =g. x’. Thus v’ must have an
outgoing edge labeled receive (g). Because of the compatibility of M and N, v must
have an outgoing edge labeled receive (g). Therefore, condition (i) cannot be satisfied.
Also message g’ must have been sent along the path (v’,..., w) in N; it must.be
expected along the corresponding path of all receiving edges in M. Hence g’< g must
have been added to < in step (ii) of the decidability algorithm, and condition (ii)
cannot be satisfied.

Only ifpart. Assume that the resulting < is not a partial order. Assume also that
there is a partial order <’ such that (M, N) over (G, <’) behaves like a FIFO network.
Since <’ is a partial order while < is not, there must be an element g’< g in < but
not in <’. In other words, there must be a node v in M or N with two outging edges
labeled receive (g) and receive (g’), and there must be a directed path of all receiving
edges from the edge labeled receive (g) to an edge labeled receive (g’). Without loss
of generality, assume that this node v is in M. Because (M, N) over (G, <’) behaves
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like a FIFO network, and because M and N are compatible, it is possible that the
network reaches a state s =Iv, v’, E, El, where v’ is the sending node (in N) that
corresponds to the receiving node v in M, and E denotes the empty string. From state
s, N can send a sequence x of messages starting with g and ending with g’ (x g. g’)
guiding the network into a state s’ v, w, x, El. This reachable state s’ violates condition
(ii) which is required for the network to behave like a FIFO network. Therefore, there
is no partial order <’ such that (M, N) over (G, <’) behaves like a FIFO network. D
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ON RESTRICTING THE SIZE OF ORACLES COMPARED WITH
RESTRICTING ACCESS TO ORACLES*

TIMOTHY J. LONGt

Abstract. A restricted relativization of NP, denoted NPB ("), was introduced in [SIAM J. Comput., 13
(1984), pp. 461-487] in the study of positive relativizations on the P= NP question. The NPB (.) restriction
allows nondeterministic polynomial-time oracle machines to query only polynomially many strings in its
computation trees. In this paper we compare the language classes NPn (A), relative to arbitrary sets A, with
the language classes NP (S), relative to sparse sets S, showing that it is not always possible to obtain a class
specified by NPn (A) as an NP (S) class and vice versa. As a corollary to these results, we prove that there
is a sparse set S such that for all tally sets T, S SrN T. This implies that the relationship established in [5]
that for every sparse set S there is a tally set T such that S-NPT cannot be improved to any of the strong
nondeterministic polynomial-time degrees. Finally, we strengthen a result appearing in [4] by showing that
nondeterministic oracle programs for sets B E-A, for k => 2, must search through exponentially many
strings (infinitely often) that are actually in the oracle set when using oracle sets from Y- i. As a consequence,
sparse sets at some :EP level of the polynomial-time hierarchy cannot be used as orcales for sets properly
at the next :EP level.

Key words, oracle machines, relativizations, restricted relativizations, sparse sets, tally sets, polynomial-
time hierarchy

1. Introduction. In [4], Book, Long and Selman introduced a restricted form,
denoted NPn (.), of the standard relativization of NP. For every set A, NPB (A)
consists of exactly those languages L NP (A) for which there i.s a nondeterministic
polynomial time oracle machine M that witnesses L NP (A) and a polynomial q such
that, for all strings x, M queries the oracle for set A about q(Ixl) or fewer distinct
strings on input x. The importance of NPn (.) is due to the fact that it yields a "positive
relativization" of the P ? NP question; that is, NP (.) has the property that P NP
if and only if P (A)= NPB (A) for every set A [4].

Berman and Hartmanis [3] introduced the idea of a polynomially sparse set. (We
will use the term sparse set for polynomially sparse set.) Set S is sparse if there is a
polynomial p such that the number of strings in S of length at most n is bounded by
p(n), for all n. If a nondeterministic polynomial time oracle machine M is using a

sparse oracle set S, then the portion of S that M can query, on any input, contains at
most polynomially (in the length of the input) many strings. On the other hand, if M’
is a nondeterministic polynomial time oracle machine witnessing that a language L is
in NPn (A) for some oracle set A, then the number of strings that M’ queries on any
input relative to A is polynomially bounded in the length of the input. These two
observations suggest that there may be some formal connections between NP (S), for
sparse sets S, and NPn (A), for arbitrary sets A. Further, recent results in Long and
Selman 10] and in Balcfizar, Book and SchiSning [2] not only indicate the importance
of sparse oracles, but they also suggest connections between NP (S) and NPn (A). For
example, it is shown in 10] that if there is a sparse set S such that the polynomial-time
hierarchy relative to S extends to some level properly past A’s, then the unrelativized
hierarchy properly extends to the same level. On the other hand, it is shown in [2] that
if there is a sparse set S such that the polynomial-time hierarchy relative to S collapses
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to some level, then the unrelativized hierarchy collapses as well. Thus, questions such
as "How many proper levels does the polynomial-time hierarchy contain?" can be
relativized by restricting the space of oracle sets to include sparse sets only. The use
of sparse oracles is, in this sense, analogous with the use of NPB (’) in relativizing
questions such as P ? NP and NP ? co-NP.

In this paper we present negative results about the relationships between these
two notions by proving that there is a recursive sparse set S such that NP (S) NPB (A)
for all sets A, and by proving that there is a recursive set A such that NPn (A) NP ($)
for all sparse sets $. These results say that it is not always possible to obtain a class
of languages that is specified by NP (S) (for sparse sets S) as an NPn (A) class (for
arbitrary sets A) and vice versa.

We also obtian a negative result about the relationship between sparse sets and
tally sets (i.e., subsets of { 1}*) in terms of polynomial-time degrees. Hartmanis [5] has
shown that for every sparse set S there is a tally set T such that S--PT. (S NTPT
denotes that S <-NTPT and T <_-Ps, where <_-NTP denotes nondeterministic polynomial-
time Turing reducibility (Ladner, Lynch and Selman [8]).) We show that there is a
recursive sparse set S such that for all tally sets T, S STN T. (S STN T denotes that it
is not the case that S <_-STN T and T_-< STN S, where -<_ ].N denotes strong nondeterministic
polynomial-time Turing reducibility (Long [9]).) Thus, the relationship established by
Hartmanis is close to the best possible for arbitrary sparse sets and polynomial degrees.

Finally, we strengthen a theorem appearing in [4] stating that for each k >- 2, if
C E-A, then C NPn (A) for all A E_1. This implies that all nondeterministic
polynomial-time programs for C must query exponentially many strings infinitely often
when using oracle sets from _. We prove that for each k >-2, if C E-A, then
all nondeterministic polynomial-time programs for C must infinitely often query
exponentially many strings that are actually in the oracle set when using oracle sets
from _. As a consequence, sparse sets at level E, k> 0, of the polynomial-time
hierarchy cannot be used as oracles for sets properly at level +. Of course, it is not
known if there are sparse sets in the polynomial-time hierarchy that are not also in P.

2. Preliminaries. All sets are assumed to be over the fixed alphabet E {0, 1},
with A denoting the string of the length 0. Whenever we define a set over a larger
alphabet, say F {0, 1, #}, for example, it is assumed that strings yF* are coded
over in polynomial time. If A E*, then the cardinality of A is denoted by IIAII. If
A, B E*, then AB {xOIx A} [.J {ylly B}. < denotes the standard lexicographic
order on E*. We will be coding 2-ary, 3-ary and 4-ary predicates as subsets of Y*.
These coding functions will always be denoted (...), and it is assumed that (...)
and all of its inverses are computable in polynomial time.

For any finite set D*, we let c(D) denote an encoding of D over E; i.e.,
c(D) E*. It is assumed that for strings y * and finite sets D

_
E*, computing

c(Dt_J{y}) from c(D) and y and deciding ify D from c(D) and y can both be done
in time polynomial in Ic(D)l+lyl. For any De__ E* and n N (N denotes the natural
numbers) let D<="= {xlx e D and Ixl <-n}. Then, c(D<=") denotes an encoding of an
initial segment of D. A set S E* is sparse if there is a polynomial p such that
[Is<:ll<-_p(n) for all nN. A tally set T is any subset of {1}*. If xE*, then we can
view x as denoting a natural number, denoted nx, in binary notation. For each x E*
and A

_
E*, let tally (x) n and let tally (A) {tally (x)I x A}.

We assume that oracle machines are equipped with the three special states,
QUERY, YES and NO, which have their usual meaning. For any oracle machine M
and set AE*, the notation Ma denotes that M is using A as its oracle set,



SIZE VERSUS ACCESS RESTRICTION OF ORACLES 587

and L(M, A) denotes the language accepted by M relative to A. For each N,
let Pi denote the polynomial pi(n)=ni+i for all nN. MOo),M),M2,...
(NMo, NM , NM2, is an effective enumeration of the deterministic (respec-
tively, nondeterministic) oracle machines that run in polynomial time with polynomial
p bounding the running time of M and NM . Letting D range over finite subsets
of E*, define the set K {(NM, x, c(D), ok)l NM,D(x) accepts in k or fewer steps}. It
is well known that K is an NP-complete set.

For every set A, NP (A) LI L(NM,, A) and P (A) LI L(Mi, A). For each
class of sets , NP (c) LIA NP (A) and P (() LJ Ae P (A). Then, the polynomial-
time hierarchy (PH) is {E/P, IIP, API i N}, where EoP= HoP= AoP= P and for each i>= 0,
/P+I YP (.-./P), II/P+I co-,/P+I {,?IA -./P+I}, and A+ p(E). PH was introduced
by Meyer and Stockmeyer 13] and further developed in Wrathall [ 16] and Stockmeyer
[15]. For every set A_E*, the polynomial-time hierarchy relative to A (PHA) is
(Pi"A," IIai’A, Aai’Ali N}, where EoP’A 1-IoP’A Aoa’A P(A) and for each >= 0, E P’Ai+I

P,aNP (Ea), YI,+l co-E,P+1, and A,P_ P (E,P’A).
We will use several types of polynomial-time reducibilities"

a denotes polynomial-time many-one reducibility (Karp [7])"
"-’att denotes polynomial-time truth-table reducibility (see Ladner, Lynch and

Selman [8]);
_--<SrS denotes strong nondeterministic polynomial-time Turing reducibility (see

Long [9] and Selman 14]);
__< N’c denotes nondeterministic polynomial-time conjunctive truth-table reducibility

(see [8]);
--<Nr denotes nondeterministic polynomial-time Turing reducibility (see [8]).

The definition of -<P,, is well known. For <P,= recall that A<NrPB- if and only if
A e NP (B). The exact definitions of =< ,P, and =<N are highly technical and not necessary
for our purposes. A -< SrN B ifthere is a nondeterministic polynomial-time oracle machine
M that recognizes A when using B as its oracle set. As a consequence, A <-SrN B if and
only if A_<-PB and ,<-PB. Also, if -< is any reducibility, then A--B denotes
A<-B and B<-A.

For any nondeterministic oracle machine M and sets A, B_ *, the notation
A" -<_PB via M denotes that Vx e E*(]x _<- n(M(x) acceptsx e A-<-")). If Ix[ > n,
we do not care what the result of Ms(x) is.

DEFINITION 2.1. For any oracle machine M, any set A and any string x, let
Q(M, A, x) be the set of strings y such that in some computation of M in input x
relative to A, the oracle is queried about string y.

DEFINITION 2.2. For any oracle machine M, any set A, any input string x, and
any integer k>0, let Q(M,A,x,k) be the subset of Q(M,A,x) such that ye
Q(M, A, x, k) if and only if there is a computation of M relative to A on input x that
queries the oracle at least k times, and at the kth time that M enters the QUERY state
in this computation, y is the string on the query tape.

In the computations of a machine M relative to an oracle set A on input x,
Q(M, A, x, l) is the set of strings queried the first time M reaches a query configuration,
Q(M, A, x, 2) is the set of strings queried the second time M reaches a query configur-
ation, etc.

DEFINITION 2.3. For any set A, NPs (A) is the class of languages L such that
L e NP (A) is witnessed by a machine M such that for some polynomial q and all x,
Q(M, A, x)[] _-< q(lx[).

NPa (.) we defined in [4] in the study of positive relativizations of the P ? NP
and NP ? co-NP questions. The major results found there are that P-- NP if and only
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if P (A) NPn (A) for all sets A, and NP co-NP if and only if NP (A) co-NPn (A)
for all sets A. The next proposition is from [4, Cor. 5.6] and will be important for some
of our proofs.

PROPOSITION 2.4. For every set A, NPn (A)
_
P (K 0) A).

In addition to oracle machines and corresponding language classes, we will also
consider oracle transducers and corresponding function classes. A deterministic (non-
deterministic) oracle transducer is a deterministic (nondeterministic) oracle machine
with distinguished accepting states and a distinguished output tape. An oracle trans-
ducer T computes a value y on an input string x using oracle set A if there is an
accepting computation of T on x realative to A such that y is the final content of T’s
output tape. In general, a deterministic (nondeterministic) oracle transducer computes
a partial, single-valued (multivalued) function.

DEFINITION 2.5. For every set A:
(a) PF(A) is the set of all partial, single-valued functions computed by determinis-

tic polynomial-time oracle transducers relative to A.
(b) NPMV (A) is the set of all partial, multivalued functions computed by non-

deterministic polynomial time oracle transducers relative to A.
The next proposition is a straightforward relativization of a result in [4, Prop. 3.4].
PROPOSITION 2.6. For any multivalued function f of one argument, define the

single-valued function g as follows:

c({y[y is a value off(x)})
g(x, 0k

undefined
if [[{yly is a value off(x)}ll <= k,
otherwise.

Suppose f NPMV (A) via oracle transducer T for some set A. Then there are sets

OKCONA and ACC-such that
(a) OKCON NP (A),
(b) ACC7" P,
(c) domain of g P (OKCON0)ACCT-), and
(d) g PF(OKCONA0)ACCT-).
Proof. Letf NPMV (A) via oracle transducer T with running time bounded by

polynomial q. Define the set ACCT to be the set of all accepting configurations of T.
Define the set OKCON$ as follows: (x, c(D), I) is an element of OKCONA, where x
is an input word of T, I is a configuration of T, and D is a finite set, if and only if
there is a computation of T relative to A, starting from configuration I, that outputs
a string y, in q(lx[) or fewer steps, which is not in D. It is easy to verify that ACCT P
and that OKCONA NP (A).

Assume that T has nondeterministic fan-out two, so that every configuration I of
T has at most two successors, left (I) and right (I). The following procedure shows
that g PF (OKCONA0) ACCT-).

begin
input x and 0k"

D:=;
j:=0;
Io := initial configuration of T on x;
while (x, c(D), Io} OKCONA and j <_- k do
begin (, j D *)

I:= Io;
while I ACCT do

ir (x, (D), eft (I))e OKCON
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then I := left (I)
else I := right (I);

D := D U [string on output tape of configuration I];
j:=j+l

end;
ifj<=k

then halt in an accepting state with c(D) on the output tape
else halt in a nonaccepting state

end.

The outer while-loop iterates for at most k + times. Each execution of the inner
while-loop iterates at most q(]xl) times. Thus, the entire procedure runs in polynomial
time relative to OKCON0)ACCr. Using the loop invariant j-IIDll, it follows that
the procedure accepts x and outputs c({y[y is a value off(x)}) if and only if [I{Y[Y is
a value of f(x)} <- k.

Finally, for sparse sets S, we will be interested in the function enums such that
enums(On)=c(S<-n) for all n N. In general, enumsPF(S). By enriching S, it is
possible to obtain an oracle set from which enums can be computed in polynomial time.

DEFINITION 2.7. For any set S, define the set prefix (S)= {(y, 0")] :lz(yz S and
lYZ[ <- n)}.

prefix (S) consists of pairs (y, On) such that y is a prefix of some string in S of
length at most n. It is important to note that prefix (S) is a sparse set whenever S is.

The next proposition uses techniques that appeared in Mahaney 11].
PROPOSITION 2.8. If S is a sparse set, then enumS PF (prefix (S)0) S).
Proof. The following procedure shows that enums PF (prefix (S) S). The idea

of the procedure is to use the set prefix (S) to "guide" the search for elements of S.

begin
input 0
D:=;
tail.of_queue := h
while queue is not empty do
begin

y := head.of_queue;
if y S then D := D [A [y];
if (y0, 0n) prefix (S) then tail.of.queue:= y0;
if (y 1, 0n) s prefix (S) then tail.of.queue := y

end;
output C(D)

end.

First consider the running time of the procedure. The fact that S is a sparse set
implies that there is a polynomial, say p, such that I]S-<-"II _-< p(n) for all n. For each n,
there are at most n. p(n) pairs of the form (y, 0n) such that (y, 0")prefix (S). The
procedure considers each such pair exactly once. Thus, the number of elements placed
on the queue is at most n. p(n) so that the procedure runs in polynomial time relative
to prefix (S)q) S.

Correctness of the procedure follows from the observation just made; namely,
that each pair (y, 0n) prefix (S) is placed on the queue. If y s S<-n, then (y, 0n)
prefix (S). Thus, all y S-<" are added to D. [3
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3. Replacing small oracles with restricted access. In this section we consider two
questions.

1. Suppose that C <-Ps for an arbitrary set C and an arbitrary sparse set $. Is
it the case that C NP (A) for some set A? In this case we are comparing the
reducibility =<" with sparse oracles to the reducibility NPn (.) with arbitrary oracles,
starting with a given =<NTa-reduction to a sparse set.

2. For each sparse set S, is it the case that there is a set A such that NP (S)=
NPn (A)? In this case we are comparing the language classes NP (.) relative to sparse
sets with the language classes NPn (.) relative to arbitrary sets, starting with a given
class NP (.) relative to a sparse set.

The answer to Question is obviously yes since C NPn (C) for all sets C. Thus,
we consider the further possibility that there is always a sparse set A such that
C NPn (A). Theorem 3.2 shows that this is the case, while Proposition 3.1 warns that
A cannot always be the original sparse set S such that B <-Ps.

In [4, Thm. 6.4], a recursive set F is constructed so that NPn (F) NP (F). As
constructed, F is actually a sparse set. Thus, letting S=F and letting C
NP (F)- NPo (F), we immediately have the following proposition.

PROPOSITION 3.1. There exist a recursive set C and a recursive sparse set S such
that C <--NTPS and C : NPn (S).

THEOREM 3.2. For every set C and sparse set S, if C <--_ NTPS then there is a sparse
set S’ such that C NPn (S’).

Proof. Suppose that C _-< Ps via NM for some set C and sparse set S. On input
x, NM can query strings of length at most p(Ixl). Thus, x L(NM, S) if and only if
(NMi, x, enums (0p’(Ixl)), 0p’(Ixl)> K. But we know that enums PF (prefix (S)O)S)
from Proposition 2.8 and also that prefix (S)03 S is a sparse set. Letting S’= prefix (S)03
S and letting p be a polynomial that bounds the running time of deterministic oracle
transducer computing enums relative to S’, the following program shows that C
NPn (S’).

begin
input x;
using oracle set S’, deterministically compute enums (0p’(Ixl))
making only p(p(Ixl)) queries;

if (NMi, x, cHums (0p’(Ixl)), 0p’(Ixl)) g
then accept input x

end.

Theorem 3.2 shows that whenever a set C is <= P-reducible to a sparse set $, then
there is another sparse set $’ such that the -<_ P-reduction of C to S can be replaced
by a NPB (’)-reduction of C to S’.

We now turn to Question 2 and consider the class NP (S) for an arbitrary sparse
set S. It follows immediately from Theorem 3.2 that there is a set A, in fact a sparse
set A, such that NP (S) NPB (A). (Just let A=prefix (S)O)S.) The question under
consideration here is whether there is a set A such that NP (S)= NPB (A). Our next
result states that there is no such set A for arbitrary sparse sets S.

Before proceeding to Theorem 3.3, we consider why NP (S) NPB (prefix (S) 0) $)
for some sparse set S. In general, prefix (S) NP (S) E 1P’s, but prefix (S) P (S). In
particular, for the $ to be constructed in Theorem 3.3, prefix (S) P (S). This implies
that NPs (prefix S) 0) S) will include sets in E.s that are not in EP’s when
NP (S) NPs (prefix (S)O)S). (Since NPa (prefix (S)O)S) P(K 0) (prefix (S)O)S)),
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NP, (prefix S) 0) S) actually contains sets in A.s_,.s when NP(S)
NPa (prefix (S)0)S)).

THEOREM 3.3. There exists a sparse set $ such thatfor all sets A, NP (S) NPa (A).
Proof Assume, for now, the existence of a sparse set $ such that NP (K 03 S)f3

co-NP (K 03 S) NP (S). The construction of S will be discussed later. Let A be an
arbitrary set and consider NPn (A).

Case 1. A: NP (S). In this case, NPn (A) NP (S), since A NPa (A)- NP (S).
Case 2. A NP (S)-co-NP (S). In this case, NPa (A) NP (S), since A

NPa (A)- NP (S).
Case 3. A NP (S) C co-NP (S).
Let L NP (S) NP (K 0) S) CI co-NP (K 0) S). Such an L exists by our assumption

about S. Now suppose that LNP(A). By Proposition 2.4, LP(KO)A). But
P (K0)A)

_
NP(KS)Clco-NP(KO)S), when A NP (S) CI co-NP (S), implying the

contradiction that L NP (K S) f’) co-NP (K 03 S). Therefore, L NP (S) NPn (A)
and NP (S) # NPn (A).

Since Cases l, 2 and 3 cover all possibilities, NP (S) # NP (A), and since A was
arbitrary, NP (S) NPn (A) for all sets A.

Construction of a sparse set S such that NP (K 0) S) f) co-NP (K 03 S) NP (S)
is done by a straightforward modification of the techniques of Baker, Gill and Solovay
[1]. Specifically, this can be done by constructing a sparse set S such that the
set L(S)={xl::ly(lyl=lxlandyS)} is in NP(S) and not in NP(K03S)CI
co-NP (K 03 S). [3

Theorem 3.3 also yields information about the relationship between sparse and
tally sets in terms of polynomial degrees. We use two lemmas, the first of which is
from Selman [ 14, Thm. 13].

LEMMA 3.4. For all sets A and B, NP (A)= NP (B) if and only ifA =-STN B.
Proof Let A and B be arbitrary sets and assume that NP (A)= NP (B). Since A

and/ are both in NP(A) and NP (A)-NP (B), A<-rPB and/-<PB. This implies
that A _-< STN B. Similarly, B <_- STN A.

NOW assume that A--- STN B and let L NP (A). It is easy to verify that L_-<"Aand A _-< STN B imply that L_-<P B. Therefore, L e NP (B) and NP (A)
_
NP (B).

Similarly, NP (B)
_
NP (A) and hence, NP (A) NP (B).

LEMMA 3.5. For all tally sets T, NP (T)= NPo (T).
Proof. NPB (A)

_
NP (A) for all sets A, so in particular, NPn (T)

_
NP (T) for

all tally sets T. Now let Le NP (T) for some tally set T. Observing that enumT PF(T),
the construction used in the proof of Theorem 3.2 can easily be modified to show that
L NPB (T). Thus, NP (T)

_
NPn (T) and NP(T) NPn (T). [3

THEOREM 3.6. There exists a recursive sparse set S such that for all tally sets T,
s

Proof. Applying Theorem 3.3, let S be a recursive sparse set such that NP (S)
NPs (A) for all sets A. If there is a tally set T such that S---N T, then NP (S) NP (T)
by Lemma 3.4. But by Lemma 3.5, NP (T) NPs (T), implying that NP (S) NPB (T).
This is a contradiction to the choice of S, so S STN T for all tally sets T.

It is interesting to compare the negative result of Theorem 3.6 to the positive
relation between sparse and tally sets established by Hartmanis [5]. Reviewing his
construction, let $ be a sparse set and define the set S’ such that #n#i#j#t#d is an
element of S’ if and only if Ix, x, x,. , x, y, y,. , y such that

(a) x, x, x,. ., xi, y, y,. ., y are all in S,
(b) x<x2<.’’<x<x<-y<y<...<y,
(c) Ixl- n,



592 TIMOTHY J. LONG

(d) lYjl n, and
(e) the tth digit of x is d.

(n, i,j and are integers represented in binary.) It is easy to see that tally (S’)--<_NPs
via a nondeterministic polynomial time transducer that, on input tally (# n# i#j# t# d),
nondeterministically guesses x, xl, x2, , xi, yl, Y2, Yj, deterministically verifies
conditions (b)-(e), and then outputs a conjunctive truth-table asking whether each
of X, X, X2, Xi, Yl, Y2, Yj are in the oracle set. On the other hand, S < P tally (S’)tt

To see this, let p be a polynomial such that s <-- p(n), let x d, d:,. , dlxl, where
dk{0,1} for k=1,2,.. ",lxl, for each and j, let F(x,i,j) be the formula
A_klltally(#lxl#i#j#k#dk)tally(S’), and for each k let C(x, k) be the for-
mula tally (#lxl#k- 1# 1# 1#0) tally (S’) v tally (#lxl#k- 1# 1# 1# 1) tally (S’) ^((tally (#lxl#k#l#l#0)tally (S’)) ^ tally (#lxl#k#l#l#l)tally (S’)). Note that
C(x, k) is true if and only if k -II S=xlI.Then, x S if and only if the formula

/k [ C(x, k) ^ V F(x, i, k- i)] is true.
k<=p(lxl) i<k

It follows that S--Ptally (S’). Theorem 3.6 shows that this cannot be strengthened so
that S and some tally set T are in the same strong nondeterministic polynomial-time
degree.

4. Replacing restricted access with small oracles. In this section we consider two
questions analogous to those considered in 3.

1. Suppose that C NPB (A) for arbitrary sets A and C. Is it the case that there
is a sparse set S such that C <-PS?

2. For each set A, is there a sparse set S such that NPB (A)= NP (S)?
For every set C, C NPn (C). Thus, Question is actually asking if every set C

is =< P-reducible to a sparse set. In Theorem 4.4, we prove the existence of a recursive
set C such that CPs for all sparse sets S. This shows that the answer to both
Questions and 2 is no.

The proof of Theorem 4.4 follows the proof of a similar result by Kannan [6]. To
state his result, we neeed the following definitions.

DEFINITION 4.1. A function f is super-polynomial if for each integer k_-> l,
lim,_.o n k/f( n O.

DEFINITION 4.2. A function f(n)>_- n is time-constructible if there is an O(f(n))-
time bounded Turing machine that, on each input of length n, computes f(n) in binary.

PROPOSITION 4.3. [6, Lemma 3]. Iff(n) is a super-polynomial time-constructible
function, then SPACE (f(n)) contains a language C such that C :PTS, for all sparse
sets S.

(In [6], this lemma is actually stated in terms of small (polynomial) circuits. Here
we use the equivalent notion of <_---reductions to sparse sets [3].) Our proof of the
next theorem is a straightforward modification of Kannan’s proof to obtain a recursive
set C such that C Ps, for all sparse sets S, as opposed to C -S, for all sparse
sets S.

THEOREM 4.4. There exists a recursive set C such that C rPsfor all sparse sets S.
Proof. Before proceeding with the details of the construction of C, we establish

some extra notation and assumptions. For the encoding of finite sets, we assume that
there is a polynomial p such that for all finite sets D_E*, Ic(D)[_<
p(i[V[[ +max {]y[:y D}). For each polynomial pj, j N, set S is p-sparse if for all
n N, IIS<-"II <-_ p(n). For all i,j N, define requirement Rj to be that C L(NM, S)
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for all pj-sparse sets $. By satisfying Ria for all i, j N, it will follow that C PS for
all sparse sets S.

The set C is constructed in stages with stage n of the construction determining,
for each x E* such that Ix] n, whether x C or x t. In addition, letting n (i, j, k),
where i, j and k are natural numbers represented in binary, stage n will also try to
satisfy requirement Ria.

Consider, for the moment, requirement Ra with respect to input strings of length
n. Because NMi runs in time Pi, the longest string that NMi can query, on any input
of length n, has length at most p(n). Thus, if NM is using a pj-sparse set S as its
oracle set, then the portion of S that NM can access, on inputs of length n, has size
at most p(p(n)); that is, [[S--<P,(")II <=p(p(n)). By our assumption about the encoding
of finite sets, Ic(S<=P,("))l<-p(p(p(n))+pi(n)). It now follows that requirement Ra
could be satisfied using inputs of length n if, for each string y such that [y[_-<
p(p(p(n))+pi(n)) and such that y=c(D) for some finite set D, there is a string x
such that Ix[ n and such that it is not the case that x C,NM(x) accepts. When
some stage n successfully satisfies requirement Ra, this will in fact be the case.

Finally, let {0, 1}" {xt, x2," , x2-}. We now proceed with the construction of C.

Stage n = (i, j, k)
begin

if p(pj(p,( n + p,( n >-_ 2"
then put all strings of length n into C
else begin
9o := {c(D)] Ic(D)] <-p(p(pi(n))+pi(n)) where

D ranges over finite subsets of *};
forl:=l to2" do
begin

(1) YES:={c(D)[c(D)_9_t and NM(x) accepts};
(2) NO:={c(D)[c(D)9_ and SM(x) rejects};

if [YESI[
then begin

(3) put x into C
(4) /:= NO

end
else begin

put x into C;
:= YES

end
end (, for-loop ,)

end (, else ,)
end.

To see that every requirement Ra is satisfied, fix and j, let k be a natural number
such that for n (i, j, k), p(p(p(n)) +p(n)) < 2", and consider stage n of the construc-
tion of C.

PROPERTY I. For each l, 0<1_-<2", I1,11 -< ll/-ll/2.
Proof. This is obvious since the sets YES and NO partition

_
into two disjoint

subsets and since 9t is then defined to be the smaller of YES or NO. [3

It now follows that 92-= because 119o112p(pj(p,("))+p,(n)) and because
[log2 (119o11)1 + 1--<-2" when p(p;(p,(n))+p,(n))<2".
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PROPERTY II. If c(D) D1-1 and c(D): Dtfor some l, 0<1<_-2", then it is not the
case that xt C:NM (xt) accepts.

Proof Suppose that c(D) Dt_I and that c(D)_ Dt for some such that 0< 1<_-2 ".
c(D)D_I implies that c(D)YES at (1) or that c(D)NO at (2). If c(D)sYES,
then c(D)_ Dt implies that Dl was set to NO at (4) and that x was assigned to C at
(3). Thus, c(D)YES implies that NM(x) accepts and that xt (. Similarly, if
c(D) NO, then NM(Xl) rejects and Xl C.

Each string y such that y-c(D) for some finite set D and such that ly[<_-
P(Pj(Pi(n)) + pi(n)) is in the set Do and not in DE- since DE-= . Thus, for each such
y there is an l, 0< <_-2 n, such that y Dt-i and y Dr. Applying Property II, for each
such y, there is a string x such that Ixl n and it is not the case that x Ce NM(x)
accepts. Thus, requirement Rj has been satisfied using strings of length n and Theorem
4.4 is proved.

COROLLARY 4.5. There exists a recursive set C such that NPB (C) NP (S) for all
sparse sets S.

Proof Use C from Theorem 4.4. Then C NPB (C), but C NP (S) for all sparse
sets S.

Theorem 4.4 and Corollary 4.5 show that it is not always possible to replace a

NPn-reduction to an arbitrary set with a _-<a-reduction to a sparse set, and that it is
not always possible to obtain a class of languages specified by NP (A), using arbitrary
sets A, as an NP (S) class using a sparse set S.

Finally, we conclude this section with some remarks concerning the proof of
Theorem 4.4. First, with careful programming, the construction of C can be done in
exponential space. Second, the proof technique generalizes to any class of reduction
procedures that

(i) always halt,
(ii) are effectively enumerable, and
(iii) for which there is a polynomial bounding the length of strings queried (as a

function of the length of the input).
Thus, there is a recursive set C that is not Turing reducible in polynomial space, for
example, to any sparse set S. This last remark was brought to the author’s attention
by Ker-I Ko.

5. Use of oracles in the polynomial-time hierarchy. In this section we strengthen
two results appearing in Book, Long and Selman [4]. These results are restated here
in the next two propositions.

PROPOSITION 5.1. [4]. For each k _>- 1, NPn (E)= A+I.

PROPOSITION 5.2. [4]. For each k > 2, if C ,-A then C : NPn (E_l).
Proposition 5.2 says that if C E-A for some k-> 2, then for every nondeter-

ministic polynomial-time bounded oracle machine M and for every set A E_1 such
that C-L(M, A), IIQ(M, A, x)ll> p(Ixl) Vor infinitely many x for all polynomials p.
Thus, nondeterministic oracle machines for C must be asking exponentially many
questions infinitely often when using oracle sets from E_l.

Propositions 5.1 and 5.2 will be strengthened by relaxing the NPB constraint as
in the following definition.

DEFINITION 5.3. For every set A, NPpn (A) is the class of languages L NP (A)
for which there is a polynomial p and a nondeterministic polynomial-time oracle machine
M witnessing L NP (A) such that Q(M, A, x) fq All _-< p(Ixl) for all strings x.

Notice that NPp (.) only restricts the number of strings queried that are actually
in the oracle set, while NPB (’) restricts the total number of strings queried. Also, note
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that for sparse sets S, NP (S) NPpn (S) and that for all sets A, NPn (A)
_
NPpz (A)

NP (A).
THEOREM 5.3 For each k > NPpn (2;) AP

k+l"

Proof It is easy to see that A+, c_ NPpn (X) since A+= P (X)
_
NPpn (). To

argue that NPpn ()_ A+, let C NPpB (). Then there is a polynomial p, a
nondeterministic polynomial-time oracle machine NM, and a set A such that
C L(NM, A) and Q(NM, A, x) All _-< p(Ix[) for all strings x. We, will prove that
CA+ by developing a procedure that, on input x, computes the finite set D=
Q(NM, A, x)CIA deterministically in polynomial time using an oracle set from k.

Once D has been obtained, then x C if and only if NM, x, c(D), 0"(ll)} K. Since
k_-> implies that K X kP, testing membership in K can also be done deterministically
in polynomial time using an oracle set from . The simulation just outlined shows
that C A+. This proof technique is used extensively in [4].

Computation of the table D will be accomplished by an iterative process that uses
a multivalued function denoted NEXTAN. NEXTi is defined as follows" For each
input string x of NM, finite set F and natural number n, string y is a value of

NEXTA (x, c(F), 0") if
(1) yA, and
(2) there is a computation of NM on input x such that y is the string on NM’s

oracle tape the nth time that the computation enters the QUERY state and if w is any
string queried in this computation prior to the nth query, then the answer to the query
about w is YES if and only if w F.
NEXT NPMV (A). In fact, NEXTA NPMV (/5) via some nondeterminis-

tic polynomial-time oracle transducer T where E is any set in X-l such that A <-e E.
The set E can be used to verify (1) nondeterministically in polynomial time. Condition
(2) can be checked nondeterministically in polynomial time without using an oracle.

Let g be the function of two arguments in the class PF(OKCON0)ACCr)
obtained from NEXT,M, by application of Proposition 2.6. On input x, the following
oracle procedure, when using oracle set OKCON0)ACCT, computes the set D-
Q(NMi, A, x) fq A deterministically in polynomial-time and then determines if x C
by using K as an oracle set.

begin
input x;
D:=;
for k := to p,(Ixl) do

(3) if g((x, c(D), 0), 0I’11) is defined
(4) then D := g((x, c(D), ok), 0p<lxl)) LI D;

if (NM, x, c(D), 0p’<lxl)) K
then ac’cept
else reject

end.

First consider the running time of this procedure. The for-loop iterates for
times. Each iteration completes execution in polynomial-time relative to OKCON0)
ACCT since g PF (OKCON0)ACCT) and the domain of g P (OKCON0)ACCT).
Therefore, the entire procedure runs in deterministic polynomial-time relative to
(OKCON0)ACCT)0)K. Furthermore, (OKCON0)ACCT)0)KE’. To see this,
note that ACCT P implies that ACCT E for all k >-0, that K NP implies that
K E for all k -> 1, and that OKCON- E since E E

_
and OKCON NP(E)

by Proposition 2.6.
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Now consider the correctness of the procedure. We claim that

(5) D (_J Q(NMi, A, x, j)0 A at the end of k iterations of the for-loop.
j< k

This can be proved by induction on k. When k 0, D U j<__o Q(NMi, A, x, j)(’1A
so that the base case holds. For the inductive step, assume that (5) is true after k-
iterations for the for-loop for some k > 0 and consider the kth iteration of the for-loop.
By the induction assumption,

(6) D contains exactly those strings in A that are queried in computations of
NMi on x relative to A during the first k- times that these computations
enter the QUERY state.

If g((x, c(D), ok), 0p(Ixl)) is defined at line (3), then its value is the set of strings in A
queried the kth time that computations of NM enter the QUERY state, subject to the
constraint that earlier queries are answered YES if and only if the string being queried
is in D. It follows from observation (6) that D= Q(NMi, A, x, k)f"l A at line (3) and
that D j<=k Q (NM, A, x, j) 71A at line (4). (Also, recall that [1Q(M, A, X) f’) All <_-

p([x[).) If g((x, c(D), ok), 0p(Ixl)) is not defined at line (3), then no computations subject
to the same constraint query an element of A the kth time that they enter the QUERY
state. Using observation (6) again, Q(NM,A,x, k)A= so that D=

<-_k Q(NMi, A, x, j) A at line (4).
Thus, (5) holds for all k implying that D= Q(NM, A, x)A when execution of

the for-loop terminates. The correctness of the procedure is thus established and the
proof completed. [3

Theorem 5.3 gives an interesting characterization of A’, for k_-> 2, in terms of
nondeterministic polynomial-time oracle machines. Two corollaries also follow easily
from Theorem 5.3.

COROLLARY 5.4. For each k >= 2, if C ,-A then C V: NPpB(-I).
Proposition 5.2 implies that if the polynomial-time hierarchy extends to some level

k->_2 with AE, then the hierarchy stands at this level because the power of
nondeterminism is necessary for searching through oracle sets when accepting
languages in EP- AP for 2 _-< <_- k. Corollary 5.4 extends this by saying that nondetermin-
ism is necessary for searching for positive information in oracle sets when accepting
languages in Ea- AP for 2 _--< <_-- k.

COROLLARY 5.5. For each k >- 2, if C E-A then C V: NP(S) for all sparse sets
S,_.

It is interesting to consider the contrapositive of Corollary 5.5 that is, if C NP (S)
for some sparse set S Z_I, then C A for k _-> 2.

By noting that SZ_I if and only if prefix (S)Z_I for k>_-2, a much more
direct proof of this corollary suggests itself. Let C L(NM, S). Then x C if and
only if (NM, x, enums(0PJ(Ixl)), 0PJ(ll)) K, and enums (0pll)) can be computed deter-
ministically in polynomial time relative to prefix (S) S. This idea appears in Mahaney
[1 1]. In addition, if C has some type of polynomial self-reducibility property, then
much stronger results may be possible from the hypothesis that C NP (S); namely,
that C belongs to one of the lower levels of the polynomial-time hierarchy. Results of
this type appear in Mahaney and Simon [12].
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AND FINITE AUTOMATA*
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Abstract. The known proofs that the equivalence and containment problems for regular expressions,
regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consider-
ation of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence
is inherent.

Deterministic polynomial-time algorithms are presented for the equivalence and containment problems
for unambiguous regular expressions, unambiguous regular grammars and unambiguous finite automata. The
algorithms are then extended to ambiguity bounded by a fixed k. Our algorithms depend upon several
elementary observations on the solutions of systems ofhomogeneous linear difference equations with constant
coefficients and their relationship with the number of derivations of strings of a given length n by a regular
grammar.

Key words, unambiguous regular expressions, regular grammars, finite automata, finite state transducers,
equivalence and containment problems, homogeneous linear difference equations

1. Introduction. The equivalence and containment problems for regular
expressions, regular grammars and nondeterministic finite automata have been exten-
sively studied in the technical literature. Both problems are known to be PSPACE-
complete [SM], and thus are probably computationally intractable. Several possible
ways to circumvent this intractability have been proposed in the literature. One way
is to restrict attention to grammars, expressions and automata that only denote proper
subfamilies of the regular sets [B], [Mc], [McP], [Z]. However in [H-I, we showed that
the complexity of the equivalence and containment problems does not in general
depend upon the structure of the languages denoted. A second way, proposed in [HRS],
[HI, is to place restrictions on the structure of the grammars, expressions and automata
considered, rather than on the languages they denote.

In this paper we consider the structural restriction that the grammars, expressions
and automata be unambiguous. (Informally, a language descriptor is unambiguous if
each of the elements of the language it denotes can only be obtained in one way.) This
restriction is very natural since strings in a language often have only one meaning,
and one expects that the derivation of a string is attached to its meaning.

We present deterministic polynomial-time algorithms for the equivalence and
containment problems for unambiguous regular expressions, regular grammars and
nondeterministic finite automata. These algorithms are then generalized to deterministic
polynomial-time algorithms for the equivalence and containment problems for regular
expressions, regular grammars and nondeterministic finite automata of anyfixed degree
of ambiguity. Evidence is presented that our results are close to the best possible. For
example, we show that the equivalence and containment problems for regular
expressions, regular grammars and nondeterministic finite automata ofbounded degree
of ambiguity are CoNP-hard.

Section 2 presents the basic definitions, 3 the relevant ideas from the theory of
difference equations, and 4 contains the basic results including the polynomial-time
equivalence and containment algorithms.

* Received by the editors December 6, 1983 and in final form April 10, 1984.

" Computer Science Department, State University of New York at Albany, Albany, New York 12222.

598



EQUIVALENCE AND CONTAINMENT PROBLEMS 599

2. Notation and definitions. We assume that the reader is familiar with the standard
notation and terminology for regular expressions, regular grammars, deterministic and
nondeterministic finite automata, the complexity classes P, NP and PSPACE, and the
concepts of polynomial reducibility, NP-hard problems and PSPACE-hard problems.
Otherwise see [AHU], [AU]. We denote the sets of natural numbers and real numbers
by N and R, respectively.

DEFINITION 2.1. CoNP is the set of all languages over {0, } that are complements
of languages recognizable by nondeterministic polynomially time-bounded Turing
machines. A language is CoNP-hard if every language in CoNP is polynomially
reducible to it.

It is easily seen that a language L over an alphabet 5 is CoNP-hard if and only
if its complement is NP-hard.

Since most of our results are presented in terms of finite automata, we give the
definitions of the relevant concepts for them.

DEFINITION 2.2. A nondeterministic finite automaton M (S, I, 8, s, F), where
(1) S is a finite nonempty set of states;
(2) I is a finite nonempty set of input letters;
(3) 8 is a function from S (ILl{A}) into the power set of S;
(4) s S is the start state; and
(5) F c S is the set of accepting states.
If there is s S for which 8(s, A) is a nonempty subset of S, then the automaton

M is said to have A-transitions. If the machine has no A-transitions, then may be
regarded as a function from S I into the power set of S. If furthermore each 8(s, a)
is a one element set, 8 is regarded as a function from S I into S and the automaton
M is said to be a deterministic finite automaton.

The function t is extended to the domain S I* in the standard manner. The size

of M, denoted by IMI, is defined to equal IS[" [II.
Our definition of the size of M is a bit misleading since it represents the number

of values of (s, a) that must be specified but not the space required for the actual
specification. Our results hold as long as the size of M is bounded by some fixed
polynomial function of IsI and III.

DEFINITION 2.3. Let M (S,/, 8, s, F) be a nondeterministic finite automaton.
The language accepted by M, denoted by L(M), is the set

{wI*l(s w)f"lF}.

A string w is said to be accepted by the automaton M if and only if w L(M).
DEFINITION 2.4. Let M (S,/, 8, Sl, F) be a nondeterministic finite automaton.

By a state transition sequence for M, we mean a finite nonempty sequence
((q, al),""", (q,, a,), q,+), where

(1) (q,, a,)Sx(IU{A}) for <-i<=n;
(2) qn+ S; and
(3) qi+l (qi, a) for =< =< n.

The sequence tr is said to be a state transition sequence for w, where w al an, that
takes Mfrom state ql to state qn+. If q Sl and q,+l F, then the sequence tr is said
to be an accepting state transition sequencefor w. The length of the sequence or, denoted
by Itrl, equals n. (Thus if the automaton M does not have A-transitions, then Itrl- Iwl.)

Let k >= 1. If, for all w L(M), there exist at most k accepting state transition
sequences for w, then M is said to be ambiguous of degree <= k. If M is ambiguous of
degree <-1, then M is said to be unambiguous. If there exists k N for which M is
ambiguous of degree =<k, than M is said to have bounded degree of ambiguity.
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DEFINITION 2.5. Let M( S,/, 8, s, F) be a nondeterministic finite automaton.
The function TRAN-SEQ4 is the function from S N to N defined by:

TRAN-SEQM(s, k) for s S and k N equals the number of state transition
sequences of length k which take state s into an accepting state.

The function ACC-SEQ M is the function from N to N defined by:

ACC-SEQu(k) for k N equals the number of accepting state transition
sequences of length k.

DEFINITION 2.6. The equivalence and containmentproblems for a class C of regular
expressions, regular grammars or nondeterministic finite automata are the problems
of determining, given M, N C, if L(M)- L(N) or L(M)c L(N), respectively.

We also need the following elementary definition from the difference calculus.
DEFINITION 2.7. Let A be a function from N to R. We say that A satisfies a

homogeneous linear difference equation with constant coefficients of degree n if and only
if there exist constants ci R, for _-< _-< n, with c, 0 such that

ci’A(k+i)-O forallk_->0.
i=0

Henceforth, we abbreviate "homogeneous linear difference equations with con-
stant coefficients" by "difference equation".

Analogues of the concepts of unambiguity, ambiguity of degree -<_ k, and bounded
degree of ambiguity can be defined for regular expressions and for the regular grammars.
There exist well-known deterministic polynomial-time algorithms for converting a
regular expression or a regular grammar into a nondeterministic finite automaton that
accepts the same language [AU], [AHU]. These algorithms preserve the properties of
unambiguity, ambiguity of degree <-k and bounded degree of ambiguity. Hence, we
omit further discussion ofthese facts and present our results in terms ofnondeterministic
finite automata.

3. Lemmas on difference equations. We present three elementary lemmas on differ-
ence equations. In 4 and 5 we use these lemmas to prove the correctness of our
deterministic polynomial-time algorithms for equivalence and containment problems.

LEMMA 3.1. Let S be a nonempty finite set. For all s S, let As be a function from
N to R such that

(3.1)
As(k+ 1)=

ts
ds’t" A,(k) for all k>-O,

where d is a real constant for all s, S. Then for all s S, the function As satisfies aS,,

difference equation of degree
Proof. We show how to derive the difference equation for one particular As. The

first step is to obtain SI difference equations of the form

As(k+j)= d At(k) for all k>OS,
tS

one equation for each value ofj between and
The equation for j- is simply the corresponding equation from set (3.1) (i.e.,

the equation whose left-hand side is the particular As under consideration).
The equations for subsequent j are obtained inductively. Given the equation for

As(k +j), replace k by k + to obtain

As(k+j+ l)= ., d At(k+ I)S,
tS
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Then, replace each At(k + 1) using (3.1). The resulting equation is

A(k+j+ 1)= E d{l" A,(k)

where
E

We thus have the desired equation for j + 1.
The derived ISI equations relate the quantities As(k + 1), , and As(k + ISI) with

the sI quantities A,(k) for e S. Standard elimination techniques for systems of linear
equations can be used to eliminate the quantities A,(k) for S-{s}. This is because
there are sI equations and only Isl-1 quantities to be eliminated. The resulting
difference equation is the equation whose existence is asserted in the statement of the
lemma.

The construction in the proof of Lemma 3.1 is a standard construction (see any
text on difference equations). The resulting equation can be used to obtain a "closed
form" formula for As(k). Since this formula has constants which are roots of a
polynomial equation, the formula can not be considered "closed" from a computational
point of view. However, we use the existence of the difference equations only for
proofs and not for computation.

LEMMA 3.2. Let A and B be functions from N to R such that A and B satisfy
difference equations of degrees a and b, respectively. Then the function D from N to R
defined by, for all k N, D(k)= A(k)-B(k), satisfies a difference equation of degree
<= a + b. Hence, iffor 0 <= k <= a + b 1, A(k) B(k), then A k) B k) for all k N.

Proof. We first show that the function D satisfies a difference equation of degree
<=a+b.

By definition for all k-> 0, the function D satisfies the equation

D(k+j)=A(k+j)-B(k+j) forO<=j<=a+b.

Moreover the difference equations satisfied by A and by B allow;
the replacement of any A(k +j) by a linear combination of A(k + i) for 0 =< <-j

provided j => a and
(2) the replacement of any B(k +j) by a linear combination of B(k + i) for0-< i<=j

provided j >-b. Hence, by repeated applications of 1] and of [2] for all k => 0,
a--1 b-1

D(k+j)= 2 a.A(k+i)+ E b.B(k+i)
=0 =0

for all j _>- 0.
As in the proof of Lemma 3.1, elimination of the a + b quantities A(k+ i) for

0 =< _-< a and B(k + i) for 0 -< -< b from the a + b + equations for D(k), ,
and D(k + a + b) yields a difference equation of degree _<-a + b relating D(k), ,
and D(k+ a + b). This equation is the equation whose existence is affirmed in the
statement of the lemma.

Now consider the last statement in the lemma. If A(k) B(k) for 0 =< k -<_ a + b 1,
then D(k)=0 over this range. But since D(k) satisfies an equation of degree <=a+b,
all subsequent values of D(k) must be zero and A(k)- B(k) is zero for all k.

LEMMA 3.3. Let k >- 1. Let A, , and Ak befunctionsfrom N to R such that each
function Ai satisfies a difference equation of degree a. Let c,. and Ck be elements of
R. Then the function A from N to R defined by A(n)= ik=l Ci" Ai(n) for all n N,
satisfies a difference equation of degree <__ki=l ai.
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Proof The proof is a straightforward extension of the techniques used in the proof
of Lemma 3.2.

4. Unambiguous regular {lescriptions. We use the observations about systems of
difference equations in 3 to derive deterministic polynomially time-bounded
algorithms for the equivalence and containment problems for unambiguous regular
expressions, regular grammars and finite automata. For automaton M, let ACCM (k)
represent the number of strings of length k accepted by M. The correctness of our
algorithm is based upon the following fact:

Let M be an unambiguous finite automaton with start state So and with no
A-transitions. Then for all k >_-0,

ACC4 (k)= ACC-SEQ4 (k).

Our algorithms are derived and their correctness is proven by a sequence of
lemmas. The techniques apply directly to automata without A-transitions. However,
we start with more general automata because they are the output of the standard
procedures which produce automata from expressions and grammars. The first lemma
in the sequence allows us to consider just the case without A-transitions.

LEMMA 4.1. There exists a deterministic polynomially time-bounded algorithm that
takes an unambiguous finite automaton M (S, I, 6, So, F) as input and outputs an
equivalent unambiguous finite automaton M’ with no A-transitions and with at most

states.

Proof The existence of such a deterministic polynomially time-bounded algorithm
is implied by the following:

(1) Let -> be the binary relation on S defined by, s --> for s, S if and only
if 6 (s, h Let - * be the transitive reflexive closure of -*. Relations -4 and -->*M
are computable deterministically from M in polynomial time.

(2) Let M’ be the nondeterministic finite automaton (S,/, 8’, So, F’), where 8’ is
defined by, for all sS and aI, 8’(s,a)={t"Sl:lt’S for which s-*t’ and
t" 8(t’, a)}, and F’-{sS[ :ltF for which s->*t}. Machine M’ is unambiguous,
has no A-transitions, and is equivalent to M.

LEMMA 4.2. Let M S, I, 8, So, F) be a nondeterministic finite automaton with no
A-transitions. Let s S. Let k N. Then

TRAN-SEQM(s, k+ I)= as,t’TRAN-SEQM(t,k), whereas.t=l{aIIt8(s,a)}[.
ts

Proof. The proof is immediate from the definition of an accepting state transition
sequence, since by assumption the automaton M has no A-transitions.

LEMMA 4.3. Let n N. For any nondeterministic n state finite automaton M with
no A-transitions, the function ACC-SEQM satisfies a difference equation of degree <-n.

Proofi The equations in the statement of Lemma 4.2 are of the form of Lemma
3.1 ifwe let the set S be the set of M’s states. For all S, let At(k) TRAN-SEQ4 (t, k).
Letting So be the start state of M, Ao(k ACC-SEQ4 (k).

Lemma 4.3 is illustrated by Example 4.10. The reader may want to study this
example before continuing.

LEMMA 4.4. There exists a deterministic polynomially time-bounded algorithm that,
given as input a nondeterministicfinite automaton M S, I, 8, So, F) with no A-transitions
and a string n, gives as output the first n values of ACC-SEQM.

Proofi The obvious way to compute the first n values of ACC-SEQM is:
(1) to first compute the values of TRAN-SEQM (s, 0) for all s S; and then,
(2) to perform an iteration n times in which the values of TRAN-SEQM (s, i-c- l)
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are computed from the values ofTRAN-SEQ4 (s, i) for s, E S by means of Lemma 4.2.
For each s E S,

if sF,
TRAN-SEQM (s, 0)

0 otherwise.

The coefficients as., from Lemma 4.2 have size at most III and the sum has
terms. Since the TRAN-SEQM (s, 0) are at most 1, it follows by induction that the
TRAN-SEQ4 (s, k) are at most (lll" ISl). Thus all values computed during the
algorithm are positive integers whose length in binary is at most n. log2 (1II IsI). Thus,
all multiplications and additions can be accomplished in time polynomial in IMI and
n. Since the number of operations executed during the computation is also bounded
by a polynomial in IM[ and n, the computation can be accomplished deterministically
in time polynomial in M[ and n.

LEMMA 4.5. There exists a deterministic polynomially time-bounded algorithm that,
given as input an n state unambiguousfinite automaton Ml and an n2 state unambiguous
finite automaton M2 both with no h-transitions, gives as output an n l" n2 state unam-
biguous finite automaton M with no h-transitions such that

L(M) L(M,) fq L(M2).

Proof Letting M1 (S1, I, 6, s, F) and M2 ($2, I2, 82, s2, F2), construct

M=(S,/,8, s,F) whereS=SS2, I=ILI12,

6((tt, t2), a)=(a(t, a), 6(t2, a)) for a If-112, S=(SI, S2), and F= FI F2.
The accepting state transition sequences for this machine are precisely those that

project into accepting state transition sequences for M and M2,. so the number of
ways M accepts a string w is the product of the ways Ml accepts w and M2 accepts
w. Because M and M2 are unambiguous, they each accept a string in either zero or
one ways and so M accepts in one way if both M and M2 accept and M does not
accept otherwise. Thus M is unambiguous and L(M)= L(Mt)CI L(M2).

THEOREM 4.6. There exists a deterministic polynomially time-bounded algorithm
that, given as input an n state unambiguous finite automaton Ml and an n2 state
unambiguousfinite automaton M2 such that L(M L(M2) decides ifthe set containment
is proper.

Proof. By Lemma 4.1 the automata M and M2 can be converted deterministically
in polynomial-time into equivalent unambiguous finite automata M and M with no
A-transitions such that M is also an nt state automaton and M is also an n2 state
automaton.

Since L(M)c L(M2) by assumption, the set containment is proper if and only if
ACC-SEQM (k) ACC-SEQM (k) for some k. By Lemma 4.3 the functions ACC-
SEQ4 and ACC-SEQM satisfy difference equations of degrees n and n2, respectively.
Thus by Lemma 3.2 the functions ACC-SEQM and ACC-SEQ4 are equal if and only
if, for all natural k < nl + n2, ACC-SEQt (k) ACC-SEQt (k). By Lemma 4.4 this
can be checked deterministically in polynomial-time.

COROLLARY 4.7. The equivalence and containment problemsfor unambiguousfinite
automata are decidable deterministically in polynomial-time.

Proof. The corollary follows immediately from Lemma 4.5 and Theorem 4.6, since
for finite automata M and M2, L(M)c L(M2) if and only if the language L(MI)
L(M:) is not properly contained in the language L(MI).
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This corollary combines with a result ofGurari and Ibarra [GI] to give the following
result: There is a deterministic polynomially time-bounded algorithm which decides
if two single-valued unambiguous finite state transducers are equivalent.

Finally, let M and M2 be unambiguous finite automata such that L(ME) L(M) #. It is natural to ask the question:
Can a string w L(M2)- L(M) be found deterministically in time polynomial in

The answer to this question is "yes" as shown by the next two theorems.
THEOREM 4.8. There exists a deterministic polynomial-time algorithm that, given as

input an n state unambiguous finite automaton M and an nE state unambiguous finite
automaton ME such that L(M1) is properly contained in L(ME), gives as output a string
w L(M2) L(MI) of minimal length such that [w < n + n2.

Proof. As in the proof of Theorem 4.6, we can assume that the automata M and
M= have no A-transitions. As shown in the proof of Theorem 4.6, the language L(MI)
is properly contained in the language L(M) if and only if there exists a string
we L(M)- L(M) such that Iw < n + n2. Moreover such a string w oflengthj < n + n
exists if and only if ACC-SEQ4, (j) # ACC-SEC42 (J).

Let M (S, I, 8, s, F) and M2 (S2, I, 82, s2, F2) be unambiguous finite
automata with no A-transitions such that L(M2) properly contains L(M1). Let I
{al,. ., a,,} be of cardinality m. The following algorithm, given inputs M and ME,
outputs a string w of minimal length such that w L(M2)-L(M) and [w[ < [S[ +1S2[:

(1) Compute jo= min {jlACC-SEQM, (j)# ACC-SEQ42 (j)}.
(2) x .
(3) ax {Sl} and B, {s}.
(4) If Ixl =jo, then halt with output "x".
(5) For l<-i<-m,

A,,, {s’ e S Ithere exists s e A, for which s’ 6(s, a)}
B,,{t’e Slthere exists te B, for which t’e 6(t, a)}.

(6) For l<_-i<_-M,

d, Z ACC-SEQM (t, jo-Ixl 1) y. ACC-SEQ,,, (s’,jo-Ixl- 1).
t’ Bxa Axa

(7) Letting io be the least such that di O, x xao.
(8) Go to 4.

The algorithm is deterministic and polynomially time-bounded since"
(a) jo < ]SI] +[$2]; and jo can be computed from M and M2 deterministically in

polynomial-time by Lemma 4.4 and Theorem 4.6.
(b) The loop consisting of statements (4), (5), (6), (7) and (8) is executed jo times.
(c) For all s S, t $2 and i, k<-jo, the integers ACC-SEC, (s, i) and ACC-

SEQ, (t, k) can be computed from Ml and ME deterministically in polynomial-time
by arguments analogous to the proofs of Lemmas 4.3 and 4.4. The correctness of the
algorithm follows from the induction hypothesis"

for 0<=j-<_jo, afterj times around the loop consisting of statements (4), (5), (6),
(7) and (8), ]x =j and there exists a string y of length jo-j such that xy
L(M2) L(M ).

THEOREM 4.9. There exists a deterministic polynomial-time algorithm that, given
unambiguous finite automata M and M2 such that L(ME)- L(M2) , outputs a string
w L(M2) L(M) of minimal length.
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Proof. The theorem follows from Lemma 4.5 and Theorem 4.8 since L(M2)-
L(MI) if and only if the containment of L(MI)(q L(M2) in L(M2) is proper.

An example. We present an example of an unambiguous finite automaton M,
together with the computation of the difference equation for ACC-SEQM.

Problem. Find the difference equation for the function ACC-SEQu for the unam-
biguous finite automaton M without A-transitions, with the start state A, input alphabet
{0, 1} and set of accepting states {C} whose state transition function 8 is given by

8(A, 0)={A}, (A, 1)={A,B}, (B, 0)={C}, (B, 1)={C},

(c,o)=, (c, )=.

It is easily verified that L(M) {0, }*. ( }. {0, }.
Step 1. Write the equations from Lemma 4.2.

TRAN-SEQ (A, k+ 1)=2. TRAN-SEQ, (A, k) +TRAN-SEQM (B, k).

TRAN-SEQM (B, k + 1)= 2. TRAN-SEQ (C, k).

TRAN-SEQM (C, k + l) 0.

Step 2. Obtain the equations for TRAN-SEQ (A, k + 1), TRAN-SEQu (A, k + 2)
and TRAN-SEQ4 (A, k + 3) as in the proof of Lemma 3.1.

TRAN-SEQ (A, k + 1) 2. TRAN-SEQM (A, k) +TRAN-SEQ (B, k).

TRAN-SEQM (A, k+2) =2. TRAN-SEQM (A, k+ 1) +TRAN-SEQ4 (B, k+ 1)

--4. TRAN-SEQM (A, k)+2. TRAN-SEQ (B, k)

+ 2. TRAN-SEQ (C, k).

TRAN-SEQM (A, k + 3) 2. TRAN-SEQu (A, k + 2) +TRAN-SEQ (B, k + 2)

2. [4. TRAN-SEQ (A, k)+2. TRAN-SEQt (B, k)

+2. TRAN-SEQ (C, k)]+0

=8. TRAN-SEQu (A, k)+4. TRAN-SEQt (B, k)

+ 4. TRAN-SEQM (C, k).

Step 3. Eliminate TRAN-SEQ (B, k) and TRAN-SEQM (C, k).
In this case, we need only subtract twice the second equation from the third to

obtain

TRAN-SEQ4 (A, k + 3) 2. TRAN-SEQ(A, k+ 2) 0.

Since ACC-SEQ4 (k)= TRAN-SEQM (A, k) for all k >= 0, the difference equation for
ACC-SEQM is

ACC-SEQu(k+3)-2.ACC-SEQ(k+2)=0 fork->_0.

By direct observation, ACC-SEQM(0) ACC-SEQa (1) 0 and ACC-SEQM (k)
2k-1 for k->_ 2, thus satisfying the derived difference equation.

5. Descriptions of ambiguity <=k. For all k >-1, we show that there exists deter-
ministic polynomially time-bounded algorithms for the equivalence and containment
problems for regular expressions, regular grammars and nondeterministic finite
automata of degree of ambiguity =< k.
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The basic idea of this section is that, although ACCM (k) is no longer equal to
ACC-SEQM (k), we can still find a difference equation for ACC of sufficiently low
degree that the ideas of the previous section carry over.

We begin with two observations which help establish the difference equation for
ACCt. The observations are proved in Lemma 5.3.

Observation 5.1. Let k>= 1. Let M =(S,/, 8, Sl, F) be a nondeterministic finite
automaton of degree of ambiguity -< k with no A-transitions. Let SI n. Let -< <= k.
Then there exists an O(n t) state nondeterministic finite automaton Mt constructable
from M deterministically in polynomial-time such that, for all rn N,

ACC-SEQt, (m)= Y
j=l

!. M(rn, j),

where M(m,j) is the number of words of length rn accepted by M by exactlyj distinct
derivations.

Observation 5.2. Let M, k, l, m and Mt be as in Observation 5.1. Then there exist
rational constants Cl,’’’, Ck, depending only on k and not on M, such that, for all
rn N, ACC (m) cl ACC-SEQM, (rn) +. + ck" ACC-SEQ (rn).

LEMMA 5.3. Observations 5.1 and 5.2 are correct.

Proof We first sketch the proof of Observation 5.1.
Let M (S,/, 6, sl, F), l, k and rn be as in the statement of Observation 5.1. The

nondeterministic finite automaton Mt (S’,/, tr’, s], F’), where
(1) S’= S S x. S (0, 1) (0, 1) . (0, 1), i.e. S’ consists of copies of

S, 12 copies of (0, 1);
(2) s=(sl, s,...,sl, a,.. ",att), where aij 1, if i=j and a0=0, otherwise;
(3) F’={(sl,. ., s,, al,. ., at)lwhere s,,. ., si, F and each a0 1}; and
(4) the function 6’ is defined by, 6’((tl, , h, all,’’’, art), a)=

{(ul, , Ul, bl,’’’, btt)]ui 6(t, a), brs if and only if
Clearly, IMll O(2t2" IMI t) O(IMI), since =< k is a constant. Also the automaton

Mt is constructable from M deterministically in polynomial time.
Intuitively, a state of S’ represents the status of derivations of M. The first

components represent the current state of the individual derivations and the subsequent
2 components represent bits which indicate if two individual derivations were ever
distinct. Bits a, are included so as to keep the notation from becoming too obscure
and are always set to 1. The automaton starts with all derivations in the starting state
and all distinct pairs marked as identical by setting the corresponding bits to 0. A
sequence is accepted if all derivations end in an accepting state and all pairs have
been marked as distinct.

By construction, w L(M) if and only if there arej >_- distinct accepting transition
sequences of M for w. In which case, there are (). l! distinct accepting transition
sequences of M for w. This follows since the accepting transition sequences of M for
w correspond exactly to the 1! permutations of the () different combinations of
different accepting transition sequences of M for w. Hence for all n N,

as claimed.
To prove Observation 5.2, we first observe that

k

ACCt(n)= M(n,j)
j=l



EQUIVALENCE AND CONTAINMENT PROBLEMS 607

since the ambiguity of M is bounded by K. This equation together with the k equations
of Observation 5.1 can be used to eliminate the M(n, j) and obtain an equation of the
form required in Observation 5.2.

LEMMA 5.4. There exists a deterministic polynomially time-bounded algorithm that,
given as input a nondeterministicfinite automaton M S, I, , s, F) outputs an equivalent
nondeterministic finite automata M’ with no A-transitions having at most IS states and
degree of ambiguity <-_ the degree of ambiguity of M.

Proof. The proof is identical to that of Lemma 4.1.
LEMMA 5.5. Let k >-_ 1. Let n N. For any nondeterministic n state finite automaton

M of degree of ambiguity <=k with no A-transitions, the function ACCt (n) satisfies a

difference equation of degree o(nk).
Proof. By Observation 5.2, the function ACCM (n) is a linear combination of the

functions ACC-SEQM, , and ACC-SEQk. By Lemma 4.3 and Observation 5.1, the
functions ACC-SEQ, , and ACC-SEQk satisfy ditterence equations of degrees
O(n),..., and O(nk), respectively. Thus by Lemma 3.3, the function ACC (n)
satisfies a ditierence equation of order O(k. n k) O(nk).

LEMMA 5.6. Let k >-1. There exists a deterministic polynomially time-bounded
algorithm that, given as input a nondeterministic finite automatpn M (S, I, , s, F) of
degree of ambiguity <-k with no A-transitions and a string n, outputs the first n values
of the function ACC

Proof. The machines ME described in Observation 5.1 can be constructed, and
the algorithm from the proof of Lemma 4.4 can be used to compute the first n values
of ACC-SEQ4, for _-< _-< k. These values are combined using Observation 5.2 to obtain
the values for ACCt.

LEMMA 5.7. Let k>= 1. There exists a deterministic polynomially time-bounded
algorithm that, given as input an n state nondeterministic finite automaton MI and an
tl2 state nondeterministic finite automaton M2, both of degree of ambiguity <-k with no
A-transitions, outputs an hi’n2 state nondeterministic finite automaton M with no A-
transitions and of degree of ambiguity <-k2 such that

L(M) L(MI) CI L(M_).

Proof. The proof is identical to that of Lemma 4.5.
THEOREM 5.8. Let k >-1. There exists a deterministic polynomially time-bounded

algorithm that, given as input an n state nondeterministic finite automaton M and an

nz state nondeterministic finite automaton M2, both of degree of ambiguity <-k and such
that L(M)c L(M2), the algorithm decides if the set containment is proper

Proof. By Lemma 5.4 we may assume that M and M2 have no A-transitions. Since
L(M)c L(M2) by assumption, the set containment is proper if and only if
ACC, (m) ACCt2 (m) for some m N. By Lemma 5.5 the functions ACCM, and

ACCM2 satisfy difference equations of degrees -<c. nl
k and c. n, respectively, where

c is a constant independent of Mt or of M2. Thus by Lemma 3.2, the functions ACC
and ACCM: are equal if and only if, for all natural numbers m<c. n+c. nk2,
ACCM, (m)= ACCM: (m). By Lemma 5.6 this can be checked deterministically in
polynomial-time.

COROLLARY 5.9. Let k>-1. The equivalence and containment problems for the
nondeterministicfinite automata ofdegree ofambiguity <-k are decidable deterministically
in polynomial-time.

Proof. For finite automata Ml and Mz, L(MI) c L(M) if and only if the language
L(M) f’)L(M2) is not properly contained in the language L(M). Thus the corollary
follows immediately from Lemma 5.7 and Theorem 5.8.
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Finally, we note the following:
THEOREM 5.10. For all k >-_ 1, there is a deterministic polynomially time-bounded

algorithm to decide if a nondeterministic finite automaton is ambiguous of degree <-k.
Proof. Let k-> 1. Let M be a nondeterministic finite automaton. Then M is

ambiguous of degree <_-k if and only if L(Mk+I) , where Mk+l is the finite automaton
constructed from M as in the proof of Lemma 5.3. For a fixed k, this construction can
be accomplished deterministically in polynomial time. It is well known that the
emptiness problem for nondeterministic finite automata is decidable deterministically
in polynomial-time.

6. Extensions that fail. In 5, we extended the results of 4 to k-bounded
ambiguity. It is natural to ask if the results of 4 can be extended further by considering
other classes of finite automata that include the unambiguous automata but do not
include all finite automata. Here we show that two extensions suggested by our earlier
results fail (unless P NP). This provides evidence that our deterministic polynomially
time-bounded algorithms are close to being as generally applicable as possible.

First, we consider the class B of nondeterministic finite automata of bounded
degree of ambiguity. The algorithms of 5 are not directly applicable since the degrees
of the polynomials that bound their runtimes grow unboundedly with k. Unless
P- NP CoNP, no deterministic polynomially time-bounded algorithm exists for the
equivalence problem or for the containment problem for the class B.

THEOREM 6.1. The equivalence and containment problemsfor the class B are CoNP-
hard.

Proof. In [HRS] we showed that the equivalence and containment problems for
regular expressions containing only the operators [_J and are CoNP-complete. Clearly
such expressions are of bounded degree of ambiguity. It is easy to show that there is
a deterministic polynomially time-bounded algorithm that converts a regular expression
containing only the operators U and into an equivalent nondeterministic finite
automata of bounded degree of ambiguity. (The standard constructions for converting
expressions preserve bounded degree of ambiguity.)

The next extension is based on the following definition.
DEFINITION 6.2. Let M be a nondeterministic finite automaton with input alphabet

E. Then STATE(M) equals the number of states of M; and SHORT (M) equals -l,
if L(M)= E*, and equals the length of a shortest string in E*-L(M), otherwise.

In those cases where we have polynomial algorithms, STATE and SHORT are
polynomially related.

THEOREM 6.3.
(1) For all unambiguous finite automata M, SHORT (M) <= STATE (M).
(2) Let k >- 1. Then there exists a polynomial Pk such that, for all nondeterministic

finite automata M of degree of ambiguity <-_k, SHORT (M) _-< pk(STATE (M)).
Proof These assertions follow from the proofs of Theorems 4.6 and 5.8 taking

machine M2 to be the one state machine which accepts all input sequences.
This result is in sharp contrast to the general case described by the following result.
THEOREM 6.4. There exists c > 0 such that, for infinitely many nondeterministicfinite

automata M,

SHORT (M) > 2 S’rA’rEM

Proof. This result is suggested by the work of other authors (see [HI and [N]).
The construction in [SM] used to prove regular expression equivalence PSPACE-
complete can be made into such an example by using an lba which accepts In only
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after making 2 moves. In [H, Prop. 3.9] this is discussed. IN] shows that an exponential
distinguishing sequence is required to distinguish two arbitrary automata, but not to
distinguish one automaton from the automaton which accepts all sequences. However,
we have found a variation on the example given in IN] which proves our result. Because
of [H], we consider the proof to be already in the literature and omit further dis-
cussion.

It is also true that, even for machines with single letter alphabets, there is no
polynomial relationship between SHORT (M) and SIZE (M). An easy variation on
an example in IN] proves this. This is also implied by the proof in [SM] that the
predicate "L(R)= {0}*" is CoNP-complete for regular expressions over the alphabet
{0}.

Theorem 6.3 suggests that some condition on class C of nondeterministic finite
automata such as:

(6.1) For all M 6 C, SHORT (M) _-< STATE (M)

might suffice to insure that the equivalence and containment problems for C are
decidable deterministically in polynomial-time. Again unless P-NP-CoNP, this is
not the case.

THEOREM 6.5. Let C be the class of nondeterministic finite automata that simul-
taneously are of bounded degree of ambiguity and satisfy condition (6.1). Then the
equivalence and containment problems for C are CoNP-hard.

Proof. The class C contains the class of all nondeterministic finite automata of
bounded degree of ambiguity that recognize finite sets. (A sequence accepted by such
an automaton cannot repeat a state and so an accepted sequence of n inputs must
visit n + 1 distinct states and all accepted strings must be shorter than STATE (M).)
Therefore in particular, C contains the set of machines obtained from expressions
involving U and as used in the proof of Theorem 6.1. But this same proof showed
that the equivalence and containment problems for this latter class of finite automata
were shown CoNP-hard. U

7. Relative economy of description. We now contrast three descriptions of regular
sets" the nondeterministic finite automata, the unambiguous finite automata and the
deterministic finite automata. For each pair of descriptions, the economy of description
is exponential. These results extend and complement the results on the relative economy
of description of regular set descriptions in [MF].

THEOREM 7.1. There exists c > 0 such thatfor infinitely many nondeterministicfinite
automata M and any equivalent unambiguous finite automaton N, IN[ > 2 c’lMI,

Proof. The value of c and set of automata satisfying Theorem 6.4 also satisfy this
theorem. To see this, let M be one ofthose automata and N an equivalent unambiguous
automaton. Then by Theorems 6.3 and 6.4 and the definition of equivalence,

STATE (N) => SHORT (N) SHORT (M)

THEOREM 7.2. For all n >-1, there is an unambiguous finite automaton Mn with
n 4-2 states and of size 2 (n 4- 2) such that any equivalent deterministicfinite automaton
Nn has ->2"+ states and is of size _>-2n+2.

Proof For all n ->_ l, M, (S,, {0, 1}, 6,, So, {s,+}), where
(1) S, ={So, s,..., S,+l}; and
(2) 6,(So, 0) ={So}, 6n(So, 1)={So, Sl}, for l<=i<=n 6n(si, O)=6,(si, 1) {si+}, and

.(s.+,, o) .(so+, ) .
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The only way Mn accepts is to stay in state So for some initial string, move to
state s using input 1, and reach a single final state Sn+l after exactly n move inputs.
Thus L(M,,) {0, 1}* {1} {0, 1} and strings can be accepted in only one way.

Automaton M has n + 2 states. An equivalent deterministic automaton must
remember the last n + inputs so as to be able to give the right answer for the current
input and the next n inputs. Hence the deterministic machine needs 2n+l states. [3

The example in the above proof has been known since at least the early 1970’s;
here we add the observation that the M are in fact unambiguous.

The third exponential gap between deterministic and nondeterministic descriptors
is implied by either of the above theorems and has been kn.own for a long time. It is
given in [MF, Prop. 1] where its early history is discussed. This exponential difference
is also the maximum possible because it is achieved as an upper bound by the standard
subset construction. Thus there is no class of regular sets which simultaneously satisfy
the exponential gap between deterministic and unambiguous finite automata and the
exponential gap between unambiguous and arbitrary nondeterministic finite automata.
The possibility of simultaneous nonpolynomial gaps remains open.

Finally, we present one corollary of Theorem 7.1 for context-free grammars.
DEFINITION 7.3. Let G--(N, X, P, S) be a context-free grammar defined as in

[AU]. Then the size of G, denoted by [G[, equals

2 (I w] + 1).
A--wP

COROLLARY 7.4. There exists c>0 such that for infinitely many context-free
grammars G and for any structurally equivalent structurally unambiguous context-free
grammar H,

IH[ > 2 I1.

Proof. The corollary follows from Theorem 7.1, by noting that:
(1) two regular grammars are structurally equivalent if and only if they are

equivalent [HRS];
(2) a regular grammar is structurally unambiguous if and only if it is unambiguous

IT]; and
(3) there is an algorithm for converting a nondeterministic finite automaton M

into an equivalent regular grammar G such that IGI is O(IMI) (see [AU]). [3
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AN O(n logz n) ALGORITHM FOR MAXIMUM FLOW
IN UNDIRECTED PLANAR NETWORKS*

REFAEL HASSINf AND DONALD B. JOHNSON

Abstract. A new algorithm is given to find a maximum flow in an undirected planar flow network in
O(n log n) time, which is faster than the best method previously known by a factor of x//log n. The
algorithm constructs a transformation of the dual of the given flow network in which differences between
shortest distances are equal, under suitable edge correspondences, to edge flows in the given network. The
transformation depends on the value of a maximum flow. The algorithm then solves the shortest distances
problem efficiently by exploiting certain structural properties of the transformed dual, as well as using a set
of cuts constructible in O(n log n) time by a known method which is also used to find the requisite flow
value. The main result can be further improved by a factor of log n/log* n if a recently developed shortest
path algorithm for planar networks is used in place of Dijkstra’s algorithm in each step where shortest paths
are computed.

Key words, flow, maximum flow, planar, network, duality, graph algorithm

1. Introduction. The best algorithms known for solving the maximum flow problem
in capacitated networks with n vertices and m edges run in O(min { n5/3m2/3, nm log n})
computational steps [4], [12], [13]. On planar networks this bound reduces to
O(n2 log n), a bound known earlier for undirected networks [6], since m O(n).

The best bound for general planar networks is O(n3/2 log n). This bound is achieved
by a divide-and-conquer algorithm, due to Johnson and Venkatesan [8], that operates
on recursively subdivided regions of a planar representation of the given network.
More efficient algorithms exist for (s, t)-planar networks, those that can be drawn in
the plane with the source and the sink on a common face. These algorithms run in
O(n log n) steps. One, due to Itai and Shiloach [6], derives from the "uppermost path"
method of Ford and Fulkerson [3]. The other, due to Hassin [5], makes use of the
properties of shortest paths in a planar dual network.

The algorithm of Itai and Shiloach [6] for flows in (general) undirected planar
networks consists of two phases, each of which runs in O(n2 log n) time. In the first
phase a minimum (s, t)-cut is found; in the second a flow with value equal to the
capacity of this cut is constructed. Reif[ 11] has shown how to find a minimum (s, t)-cut
in an undirected planar network in O(n log2 n) time. In this paper we show how to
extend the ideas of [5] so that a shortest path computation in a derived network that
depends on a given feasible flow value yields a flow function of this value for a general
undirected planar network. We then show how to solve this shortest path problem
quickly using a set of cuts which can be constructed by a modification of Reif’s
algorithm. Given a flow value and these cuts, our algorithm runs in O(n log n) time,
thus giving a combined algorithm which solves the maximum flow problem in un-
directed planar networks in O(n log2 n) time.

Our bounds cited above are derived using Dijkstra’s shortest path algorithm (see
[1], [7]) as a subroutine. If the algorithms of Frederickson [2] are used, these bounds
can be improved as will be discussed later. It is interesting to observe that, in the case
of finding flows in (s, t)-planar networks, the algorithm of reference [5] is amenable
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tO improvement using Frederickson’s algorithm, but the "uppermost path" algorithm
is not since sorting can be reduced to the uppermost path computation [6].

2. Definitions and assumptions.
A flow network N is a quadruple (G, s, t, c) where
(i) G V, E) is an undirected graph with n vertices and m edges and, throughout

this paper, is assumed to be given with a fixed planar embedding,
(ii) s and are distinct vertices, the source and sink, respectively, and
(iii) c" E - R+ is a capacity function assigning a positive real to each edge.
We denote an (undirected) edge with endvertices v and w as (v-w). A flow is a

function f:VVR+t.j{0} satisfying f(v,w)=0 whenever (v-w)E, 0<_-

f(v, w) +f(w, v) <- c(e) for every edge e= (v- w) E, and ,o_w) [f(v, w) f(w, v)]-
0 for every vertex v V-{s, t}. The value of a flow f is defined by v(f)=
v-t) [f(v, t)-f(t, v)]. A flow f is a maximum .flow if v(f)>- v(f’) for every other
flow f’. We denote the value of a maximum flow by Vmax where the network referred
to is understood.

A cut C
_
E is a minimal set of edges that disconnects from s. The capacity of

a cut is the sum of the capacities of its edges. A classical result is that the value of a
maximum flow is equal to the minimum over the capacities of all cuts [3].

Without loss of generality we assume that G is triconnected. (If G were not, it
could be triangulated in linear time.) Therefore G has a unique dual Ga= (Va, E’)
which is a graph without loops and multiple edges. (The uniqueness is by virtue
of the fixed embedding.) Let F and Fa denote the set of faces of G and Gd,
respectively.

The following one-to-one correspondences exist: V-Fa, F- Va, and E - E.
For corresponding edges (v’-w’) E and (v- w) Ea, v’ is taken to correspond to v
and w’ to w when w’ follows v’ in the clockwise direction in the face corresponding
to v. For each e Ea we define its length l(e) to be equal to the capacity c(e’) of the
corresponding primal edge e’ E. These definitions give us a distance network Nd=
(Ga, l) corresponding to the given capacitated network N. The procedure for dualizing
planar graphs, including the correspondence between the endpoints of the edges, is
described, for instance, in [9].

3. Finding a minimum (s, 0-cut. We start with a brief description of Itai and
Shiloach’s algorithm.

Let b and b denote the faces in N which correspond to s and t, respectively.
Without loss of generality we assume that b is the exterior face of N. A minimum
cut in N corresponds therefore to a cycle of minimum length enclosing b in N.

Let H (s :1," , :k t) be a shortest (:, :t)-path in N where s is a dual
vertex on b" and sct is a dual vertex on tht, both chosen so as to minimize the length
of II over all shortest paths between such pairs. Call an edge (:-i) H-left if : II
and when traversing II from :s to :t it is incident with :i on the left. Define H-right
edges similarly. These definitions are extended to the edges incident with and :t by
viewing H as extended at each of its two ends by an edge to a new vertex situated
properly within b and tht, respectively. Figure illustrates these concepts. Since Nd

is triconnected and has a fixed embedding, every edge incident with H is either H-left
or H-right but not both.

Since H is a shortest (:s, :t)-path, there exists a cycle of minimum length enclosing
b which intersects II exactly once, and uses exactly one H-right and one H-left edge.
The algorithm of Itai and Shiloach finds such a cycle and the corresponding minimum
cut in the primal network as follows.
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ALGORITHM MIN-CUT (N) [6]
{N is a flow network with dual Nd}
{MIN-CUT (N) is a minimum (s, t)-cut of N}
for i=l,...,kdo

Direct every H-left edge (sci-:) in Nd from :i to : and every H-right edge
(:,- :) from

enflfor
for i-l,...,kdo

Let C,d. in Nd be a minimum -cycle, a shortest cycle that uses exactly one
H-left and one H-right edge, and its H-left edge is incident with :. {It is
easy to see that such a cycle encloses

endfor
return (the minimum (s,t)-cut corresponding to C] for which

I(C]) =min {/(C)li= 1,..., k})
end MIN-CUT

[’I-lefts
H-right edges

FIG. 1. A partial rendition of the dual Nd of some given network N showing a shortest (s, ’)-path II
and H-left and H-right edges.

Given the directing of the edges in the first step, each cycle C in the second step
can be found by splitting vertex sci into :, with the H-left edges, and :’ with the other
edges incident with :, and then finding a shortest (:, :’)-path. When Dijkstra’s
algorithm (see [1], [7]) is used, the time required for finding each of these paths is
bounded by O(n log n). Thus, since k-<_ n, it follows that MIN-CUT(. terminates in
O(n2 log n) time.

Dijkstra’s algorithm has been improved upon recently by Frederickson [2] in the
case where the shortest path problem to be solved is on a planar network. As with
Dijkstra’s algorithm, Frederickson’s results apply when all edge lengths are nonnega-
tive. He shows that a single shortest path computation can be done in O(nx/log n)
time. With O(n log n) preprocessing, each of any number of single source computations
can be done in O(n log* n) time. Thus Itai and Shiloach’s minimum-cut algorithm
can be implemented to run in O(n2 log* n) time. Similar improvements are obtainable
in Reif’s algorithm (discussed below) and in ours.

For simplicity of presentation we shall assume the use of Dijkstra’s algorithm in
each of the results in what follows and then, where appropriate, we shall indicate how
Frederickson’s algorithms can be employed. (As is well known, when computing with
edge lengths from some restricted domains, the running time of Dijkstra’s algorithm
can also be improved. We omit discussion of what can be done in such special cases
except to note that each of our bounds can be improved when finding shortest paths
from a single source to all other vertices is o(n log n).)

Reif[ 11 ] describes a more efficient implementation of Itai and Shiloach’s minimum-
cut algorithm. He observes that if Cd is a minimum :-cycle then, for j l, , i- l,
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there exist minimum -cycles that enclose Ca (that is, have no vertices strictly within
Ca) and, for j i+ 1,. ., k, there exist minimum gj-cycles which are enclosed by Ca.
This observation allows the following divide-and-conquer algorithm, which we state
for our purposes so that it generates a representation for each of the cuts corresponding
to a minimum :i-cycle for each 1,. ., k.

ALGORITHM CUTS (/V) 11 ]
{/V is an undirected planar flow network with nj vertices}
{CUTS (N) is the set of cuts in N that correspond to the cycles in a set of
minimum :rcycles in N], one for each i= 1,..., k}

if k then return({HIMID (N)})
else if kg 2 then return({LOMID (N)} U {HIMID (/V)})

else return({HIMID (N)} U CUTS (Ns(N)) U CUTS (N,(N)))
end CUTS

Here
(i) HIMID (N) returns in O(n 1o$ n) time the cut corresponding to a minimum

:mid-Cycle Of N where II (:s= :,..., :kj :t) and mid= [kff2]. (An algorithm to
do this is obtained from Algorithm MIN-CUT by replacing "for 1,..., k" with
"for [k/2]".) LOMID (N) is similarly defined with mid [kj/2J. (The introduction
of the two "MIDs" corrects a minor error in the original presentation where, in fact,
termination is not assured.)

(ii) The networks Ns(N) and N,(N) are obtained from N-HIMID(N) by
adding a second source vertex s, and a second sink vertex t and then, for each edge
(v-w) HIMID (N) where v is connected by some path to s in N-HIMID (N),
adding (v-t) and an edge (s,-w), replacing multiple edges with a single "super"
edge of capacity equal to the sum of the capacities of the replaced edges. The resulting
network has two connected components; the one containing s is the (s, t)-flow network
Ns(N) and the other, containing t, is the (s,, t)-flow network N,(N).

Let a network N which is an argument to CUTS (.) be at level if it is generated
as a result of prior calls to CUTS (.) applied to N, that is, if it is generated at level
in the recursion. Thus the given network N is at level 0 and no network is at a level

greater than [log (k- 1)], since no (:, :’)-path at level has more than ]V(Ht-)l+
vertices, where [V(II_)[ is the number of vertices in the longest such path at level
l-1, if the simple expedient is employed of inheriting, rather than recomputing, H
for each of N(Ns) and N(Ns) from II for/Vs.

From the construction it is evident that cry, the total number of vertices of networks
at level l, must satisfy

cr_-<ro+ 2q<n+2. 2"=3n.
q=l

Thus, since both LOMID (Ns) and HIMID(Ns) run in O(ng log ng) time, where a
network Ns has ng vertices, the running time of Algorithm CUTS (.) on a given network
N with n vertices, is

[log(k-l)]
o 2

/=0
log n) O(n log n log k)= O(n log2 n).

Then, to find a minimum cut ofthe given network N takes time equal to O(ICUTS
which is surely O(n log n log k) by the timing analysis above. The reader may find a

more thorough exposition of a more complicated proof in the original reference [ 11].
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As indicated above, the result can be improved to O(min{n log n/
n log* n log k, nx/log n k}) when Frederickson’s shortest path algorithms are used.

In the original reference, the set CUTS (N) is not constructed. Instead, only a
minimum cut is found. With respect to our generalization, it must be noticed that in
general some cuts in CUTS (N) are described in terms of "super" edges that represent
sets of edges in some network nearer the root in the execution tree, and not explicitly
in terms ofthe original edges of N. However, we may keep in CUTS (N) the information
necessary to expand any cut to a description in terms of the edges of N.

It in fact is possible to obtain a representation for CUTS (N), which is in terms
of the original edges of N and is O(n) in size, at no asymptotically significant increase
in running time and from which one minimum cut corresponding to rcycle C can
be recovered for each in the order i= 1,. ., k, where a shortest (, ’)-path in the
dual of the given network is II (:-,. ., :k- :). The first step is to record the
execution tree of CUTS (.) applied to N, assigning to the root the cut HIMID (N),
to each of the two tree edges from the root the changes that need to be made to
HIMID(N) to produce HIMID(N(N)) and HIMID(Nt(N)), respectively, etc.,
recording no cuts themselves at tree vertices other than the root. The edges to some
leaves will need changes for both LOMID and HIMID.

This information can be recorded in terms of the "super" edges during the
execution of CUTS (.) applied to N. Then the second step is an inorder traversal of
the labeled execution tree to produce the changes, in II order, in terms of the original
edges of N. This step can be done within the same running time as CUTS (.) since
"super" edges need be expanded at most twice, once when they enter some cut and
once when they leave it or a later cut. If the edges of the cut C, corresponding to the
minimum :-cycle, are placed initially in a search tree, ordered lexicographically on
the edges taken as ordered pairs of vertices, the cuts can be constructed (though not
output) in II order in O(n log n) time by using the changes to modify the search tree
containing the edges of one cut to obtain the next.

4. Finding a maximum (s, t) flow..An algorithm for constructing a flow of value
D, if one exists, in a general (directed or undirected) planar network is described in
[6]. This algorithm runs in O(n2 log n) time and can be used to construct a maximum
flow whenever the flow’s value Vmax is known.

In this section we describe an alternative algorithm which can be applied to
undirected networks if Vmax is known.

We first define a transformation of distance network N as follows:
(i) For each vertex :i H, two vertices ’i and s7 are created.
(ii) Each edge (:i :i+) on II is replaced by two edges (:’- sc’i+) and (7-

each with length equal to l(-:i+l).
(iii) Edges directed from so7 to : with length --Vmax are added for i-1,..., k.

(These are the only directed edges.)
(iv) Every H-left edge (:i- :) is replaced by (s- :) with length equal to l(: :).

Every H-right edge (: :) is replaced by (:7 :) with length equal to l(: :).
(v) Every vertex II is now isolated and may be removed.

The transformation is illustrated in Fig. 2. We denote the transformed graph by
Gt- (Vt, Et) and the transformed distance network by Nt.

Let -< r-<_ k be an index for which it was found that the length of the minimum
sC-cycle was/.)max" For every vertex v V let u(v) be the length of a shortest (:’, v)-path
in Nt. Since the length of every minimum :-cycle in N was found to be at least Vmax,

N has no negative cycles and u(v) is defined for every v.



MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS 617

FIG. 2. A partial rendition of the transformed dual N ofsome given network N showing how the vertices

are split into sc and and new directed edges are introduced.

LEMMA 1. u(sC/’) u(sC,’.’) -/)max for 1,. ., k.
Proof. By construction, U(’r)=0 and U(:’r’)= /)max. Since II is a shortest (:s, :,)_

path there are only two possibilities concerning a shortest (:’r, sc’i)-path:
(i) It reaches : from sc’. In this case the lemma holds immediately.
(ii) It terminates in a sequence of vertices (sclj J). If sc is the first vertex in this

sequence, then u (:,) u(sC) Vmax, since either p r or a shortest (:’r, :)-path reaches
: from :. This establishes that u(sC’) <- U()"J" /)ma

On the other hand, sc can be reached from :’ along edge (sc’- :) and, since
l(:,’.’-:) -Vmax, it follows that u(:)<-u(:.’)-Vmx. The lemma in this case follows
from the last two inequalities.

For every edge (v-e)6 E let us define uvw=-Uwv u(w)-u(v). By Lemma 1,
u(:)- u(:) u(:’)- u(:j’), so that U is well defined for each edge (v- w) Ed as
follows.

(i) For every H-left edge (:a- w) E, uaw utw.
tl(ii) For every H-right edge (v-a) E, uv uo,.

(iii) For every H-edge (- b) Ea, ua

d(iv) For every other edge (/)-w)E, uo=u=u(w)-u(/)).
THEOREM 1. A maximum flow f can be constructed as follows.
For each edge (/)- w) E and associated edge (/)’-w’) E where/) corresponds

with/)’ and w corresponds with w’, let

f(/)’, w’)= max {0, u,} and f(w’,/)’) max {0, uv}.

Proof. The following observations show that f is a flow with value /)max and thus
a maximum flow.

(i) 0 _-< max {0, uow} <-- l( v, w) c( v’, w’).
(ii) For every dual face b Fd-{b s, b’}, With dual vertices v,..., Vq, Vq+ v

in clockwise order and primal vertex a V-{s, t} associated with

q

E u,,+, E (f(b, a)-f(a, b))=0.
i=1 (a-b)E

See Fig. 3.
(iii) Let -Vl,’" ", Vq- be the vertices belonging to b in N in clockwise

order (see Fig. 4). By Lemma 1,

so that

q-1

glvi, vi+l --/)max 0.
i---1
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Vl v3

v5 v4

FIG. 3. Dual face k (v,, v2, vs, v4, %) corresponding to primal vertex a, for the case ck Fa-{d? s, dpt},
where q 5. Primal edges are shown dashed. As described in 2, primal and dual edges that cross correspond.

This implies

E (f(v’, t)-f(t, v’))=/)max"
(t-v’)E

Once the labeling function u( Vt) is obtained, the above construction can easily
be seen to yield a flow function in O(n) time. Thus, it remains to show how to compute
u( Vt) efficiently.

We note before proceeding to this discussion that, when k O(1), the bound in
3 for finding CUTS (N) reduces to O(n log n). In the case when the network is

(s, t)-planar (i.e. k 1), the dual faces b and b’ have a common dual vertex which
can be chosen as : :’ so that only one cycle need be found. In this case the algorithm
is essentially the one described in [5] and the time needed to find both a minimum
cut and a maximum flow is O(n log n) when Dijkstra’s algorithm is used and
O(n,,/log n) when Frederickson’s algorithm is used.

v

FIG. 4. Dual face ,b (Vl, 02, v3, 04, 05) corresponding to primal vertex L Notice that there is no primal
edge corresponding to dual edge v5- vl), since this directed edge was introduced in the transformation ofNa.
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5. Computing distances in the transformed dual network. As above, let a minimum
cut cycle of Nd be a :-cycle for some r, <= r<-_ k. Shortest (’, v)-paths in N can be
computed for every V in O(n3/2) time [10] and thus a maximum flow can be
obtained, as described in the previous section, within this bound. It is not known how
to solve the shortest path problem faster in general in planar networks when /(n) of
the. edges have negative lengths. However, our network N has a structure which we
exploit to obtain the required shortest distances in O(n log n) time, using repeated
applications of Dijkstra’s algorithm, when given a suitable representation of the
minimum :-ycles in N that correspond to the (noncrossing) cuts in the set CUTS (N).

We denote the minimum :-cycles that we obtain in 3 as C where, for each
1,. ., k, cycle C corresponds with the primal cut C. We now define the sets A

and A/ for i= 1,..., k- by the relation

V(C+1) k’( Cti) AT) U A,
where

(i) V(C) is the vertex set of C for i= 1,..., k, and
(ii) the intersection A A T contains only those vertices in C C+ connected

by an edge to some vertex in Ci-Ci+. See Fig. 5. We note that the inverse relation
also holds,

V(C) V(C+I) A-) U A T.

\

I
I

/

FIG. 5. Example ofC and Ci+ in the general case where there may be vertices in common. The set A

is comprised of all vertices of C-Ci+ plus the first and last vertices on C fq C+1. The set A- is comprised
of all vertices of Ci+l-Ci plus the first and last vertices on Cfq

The sets A and &T for i= 1,..., k-1 can be generated in order i= 1,..., k-1
in O(n) time by a traversal of the Reif execution tree as described in 3. This fact
would be immediate if A and AT were defined so that A AT . However, even
though there is overlap, the bound of O(n) can be seen to hold by observing that the
sum over all vertices of the number of times a vertex can repeat within either all the
A+ sets or all the A- sets is bounded by the number of edges in Nt, which is O(n).
Not only can these sets be used, as described in 3, to recover the minimum length
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cycles Cti, they are also of essential use in reducing the complexity of the computation
of the labels u(v) for v V to O(n log n).

NThe cycles C for i-1,..., k divide N into k/l subnetworks No,’’
where, for i--l, k- l, N is the subnetwork bounded by and including C and
Cti/, N is everything outside and including C, and N, is everything within and
including C:. See Fig. 6. Since the intersection of two adjacent subnetworks is a
shortest cycle we obtain the following result.

FIG. 6. Example of subnetworks of N induced by the cycles Ct,, i= 1,..., k. It may be that adjacent
cycles have subpaths in common as shown in Fig. 5.

LEMMA 2. Let v be a vertex in Nt. Then if i< r there exists a shortest (:’r, v)-path
in N which is contained in t,3 j:o,r- N. Similarly, if >= r there exists a shortest ’, v)-path
in N which is contained in [.J j:.kN.

This lemma implies that the computation of u(v) for v V can be restricted to
the subnetwork j--o,- N for v in this subnetwork, and similarly for v in LI j=r,k N.
We confine our detailed discussion to the latter case. The former case is treated similarly.

Let P(v) be a shortest (:’, v)-path. An example is given in Fig. 7, where Pv is
shown as a concatenation of subpaths P, P2, P3, P4, and Ps. In general, for any vertex
v V where v is in N let a normal path be a simple (Sr’r,V)-path P(v)=
(Pr,’", Pq,’", PEq-) such that, for j- r,..., q, subpath P is in N, and, for
j-q / 1,..., 2q- i, subpath P is in Nq_ and uses no edges of negative length. We
require also that q be minimal subject to these conditions. Call q the index of reversal
of P(v). As the following lemma states, for every v there exists a shortest (SO’r, v)-path
that is normal.

LEMMA 3. For any r, , k, for every vertex v in Nt there exists a normal shortest
path P( v).
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Proof. (It may be helpful to consider the example in Figure 7.) Assume that a
shortest path P touches some shortest cycle C corresponding to some member of
CUTS (N). If the last shortest cycle it touched was also Ct, then there is a subpath
of the cycle that can be used to replace the subpath of P whose endpoints are on the
cycle. Then, once P departs from some cycle C into NJ_I, P cannot use a negative
edge because, to do so, it would cross itself and the embedded cycle thus created
(which could not have negative length) could be removed. [3

FIG. 7. Example of shortest (’r, v)-path P(v)=(P, P2, P3, P4, Ps). In this example r= 1, the index of
reversal q 4, and v is in Nt3

We now give an algorithm to compute u(v) for all v in U i=r,k N].

ALGORrrHM INSIDE-LABELS (Nt)
{Given the transformed dual Nt, INSIDE-LABELS (.) produces the labels

u(v) for all the vertices v in t_J i=r,k N]}
{Initialize the labels}
for v in U i= r,k N do u (v) endfor
U(’r)O
{Compute shortest paths in Ctr}
SP (Ctr, {tr}
{Compute shortest paths in the forward direction}
for - r until k do
{Compute shortest paths in N from start vertices in A-}
SP (N, AT)

endfor
{Extend shortest paths in the backward direction}
SP (( (.J ,=r,k N]), +A_)

end INSIDE-LABELS
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In Algorithm INSIDE-LABELS (.), SP (X, W) is a two-step algorithm. The first
step is Dijkstra’s shortest path algorithm applied to network X from which all edges
of negative length have been removed and with whatever u-labels its vertices have,
starting the candidate set with the vertices in W. This is equivalent to running the usual
version of the algorithm from w after deleting the edges of negative length and
augmenting X with a new vertex w and edges (w-v) of length u(v) for each v W.
The second step is to treat the edges of negative length individually as follows. For
edge ("-’) execute the assignment

u(:’) min {u(’), u((’)- Vmax}.

LEMMA 4. Algorithm INSIDE-LABELS (’) computes u(v) correctly for all v
U i=r,k Nti. Whenever a vertex v V(Cti)- A- is expanded in a shortest path computation
on N in the forward loop, no labels change.

Proof. Observe that Dijkstra’s algorithm is applied always to subnetworks without
edges of negative length. The effect of the edges of negative length is obtained explicitly
following each application of Dijkstra’s algorithm.

Give Ctr the name Ntr_!. First, it can be seen that all labels u(v) for v Ntr_! are
computed correctly by the first three lines of the algorithm. Then, let Vh be the set of
all vertices v for which there is a normal shortest (so’r, v)-path P(v)= (Pr,’’’, Ph-l).

Consider first such paths for which h- is the index of reversal (that is, there is
no reversal). Assume that u(v) has been correctly computed by INSIDE-LABELS (.)
for all v Vh when i= h-< k before the beginning of some iteration of the loop that
starts with "for r until k do". Consider a vertex w N, for which there is a normal
shortest (sc’, w)-path P(w)=(P,..., Ph). If We C, then u(w) is already correct by
assumption. Otherwise, w C, and the last vertex x on P(w) that is in N_ and
therefore with correct label u(x), is in A. It follows that the iteration with i= h must
compute u(w) correctly and that no label is changed by an expansion of a vertex in
V(C)-A-. By induction, then, it is shown that u(v) is computed correctly for all
v Vh, r<-h<--k.

A simpler argument is applicable to the segment (Pq,..., Pb), of any normal
shortest path P(v)= (Pr,"" ", Pq,’", Pb) with index of reversal q < b, given as we
have just proved that u(w) is correct for all w for which there exists a normal shortest
path P(w) (P, , Pq) upon completion of the loop that starts with "for - r until
k do". These segtnents contain no edges of negative length. Thus a single application
of Dijkstra’s algorithm suffices and, in fact, the second step in SP can be omitted. The
desired results follow from Lemma 2. [3

When INSIDE-LABELS (.) is combined with a similar procedure to calculate
labels on U i=l.-i N we have a correct procedure for the entire problem. Call this
combined procedure LABELS (.).

From earlier discussions it follows that the running time of LABELS (.) is
O(s log n), where s < nt+i=l,k Ic’,l for There exist networks N
for which y,=,.lc’,l =(n), so LABELS (.) as stated above has a running time of
O(n2 log n).

To improve this bound we give the following refinements in which shortest paths
are computed on the subnetworks Nt-(V(Ct)-A7,), as Lemma 4 permits, and these
subnetworks are produced explicitly by removing and replacing edges in Nt. In
INSIDE-LABELS (.) replace

{Compute shortest paths in Ctr}
SP C’,, {’,.})
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with

{Isolate Ct in Nt}
Nt<-- Nt-{(/)- w)[/2 E Ctr, wJ Ctr}
{Compute shortest paths in Ctr}
SP (Nt,
{Disconnect
N’- Nt-{(v-w)lv, wE Ct},

and replace

for i<--r until k do
{Compute shortest paths in N from start vertices in A-}
SP (N, A-)

endfor

with

for r until k do
{At each iteration, C is disconnected}
{Put into N the edges that enter the proper interior of N from C, and delete

the edges that are incident on some vertex properly within the region bounded
Ci/. Thus, since no edges come into N from the two regions surroundingby

it, SP (.) will compute on N}
Nt(N’{(v-w)lva:,, we: C and within C})

-{(v w)lv E A- w C+ and within C,+}t
{Compute shortest paths in N] from start vertices in A-}
SP (Nt, A?)
{Maintain C+ disconnected}
N’.- N’-{(v-w)lv, wa;}

endfor.

Now, the sum over all forward shortest path computations of the number of
vertices processed in each computation is O(n) since Y.i=r.klA-I is O(n), so these
computations are of complexity O(n log n). The manipulations of N can also be
implemented to run in O(n log n) time over all. This gives us our theorem.

THEOREM 2. Shortest (’r, v)-paths can be computedfor every v E V in O(n log n)
time, given the set CUTS (N).

Frederickson’s shortest path algorithm without preprocessing [2] can be used in
each instance where Dijkstra’s algorithm is used in our algorithm, giving a bound of
O(nx/10g n) overall when given the set CUTS (N).

Theorems and 2, together with the results of 3, imply an algorithm for maximum
flows in undirected planar networks that runs in O(n log2 n) time and O(n) space.
With Frederickson’s improvements, the time bound is O(n log n log* n) when k f(n)
and as small as O(nx/log n log k) when k is small.

6. Acknowledgment. We are grateful to a referee for pointing out an error, now
corrected, in the result of 5.
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AN O(E log E + i) EXPECTED TIME ALGORITHM FOR THE PLANAR
SEGMENT INTERSECTION PROBLEM*

EUGENE W. MYERSf

Abstract. It is an open question in computational geometry as to whether there exists an O(E log E + I)
algorithm to determine the I intersections of a collection of E line segments in the plane. An approach
utilizing a work list bubble sort and a distribution-based search is presented. The resulting algorithm has
O(E log E + I) expected time complexity. In the worst case the algorithm has the same complexity as the
algorithm of Bentley and Ottmann [IEEE Trans. Comput., 28 (1979), pp. 643-647]: O(E log E + I log E).
The algorithm requires only O(E) space and in contrast to prior work, no restrictions are placed upon the
nature of the intersections.

Key words, concrete complexity, computational geometry, scan-line algorithm, work list bubble sort,
distribution-based search

1. Introduction. A recent trend in computer science has been the study ofgeometric
problems in terms of their algorithmic complexity [3], [12], [13], [17]. In particular,
geometric intersection problems have been studied extensively [2], [5], [ 11], 18]. The
results are applicable to many practical problems including computer graphics, auto-
mated printed circuit layout, and computer-assisted architectural design. Efficient
algorithms for the intersection problem treated here provide the basis for faster
hidden-line elimination in the "object-space" framework [8], [16], [19].

The problem to be examined is as follows. Given E line segments in the plane,
list (count) all intersecting pairs. Shamos and Hoey [18] presented an O(E log E)
algorithm to detect whether intersections exist. By extending their technique, Bentley
and Ottrnann [2] demonstrated an O(E log E + I log E) time, 0(I) space algorithm
for listing all intersecting pairs of segments where I is the number of intersections. A
subsequent refinement by Brown [4] reduced the space requirement to O(E). Although
this appears to be an improvement over the naive O(E2) algorithm, it is not the case
when I approaches E2. The problem of designing a definitively superior O(E log E + I)
time, O(E) space algorithm was first conjectured in [18] and is currently open.

An O(E log E + I) expected time algorithm is presented here. The necessary
statistical hypothesis is that the 2E endpoints of the segments are uniformly distributed.
The algorithm’s worst case performance is again O(E log E + I log E). The algorithm
requires only O(E) space. By a direct refinement of the method of Ottmann and
Bentley, A. Schmitt 15] has simultaneously designed an algorithm with the same time
complexity as the one given here. However, his algorithm uses O(I) space and.requires
the more stringent statistical hypothesis that both the segment endpoints and the I
points of intersection be uniformly distributed. The algorithm here achieves the less
restrictive assumption through the novel use of a work list bubble sort to detect
intersections between segment endpoints.

In the next section, the problem statement is formalized and preliminary construc-
tions and definitions are made. Section 3 illustrates the central role of a work list
bubble sort and distribution-based searching in the algorithm presented in 4. The
discussion in 5 highlights a number of subproblems that can be solved in
O(E log E + I) worst-case time.

* Received by the editors July 19, 1982, and in final revised form May 3, 1984. This work was supported
in part by the National Science Foundation under Grant MCS-8210096.

f Department of Computer Science, University of Arizona, Tucson, Arizona, 85721.
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2. Preliminaries. The problem is to find all the intersections of a collection of E
planar line segments, SEGMENT {e, e2," , eE }. Each line segment is specified by
the x- and y-coordinates of its endpoints" e ((_Xe, Ye), (e, 37e)). It is stipulated that in
an O(E) prepass the segment endpoints have been arranged so that the start-point
(_Xe, y) is to the "left" of the final-point (-e, fie), i.e. _Xe < e or _Xe =-re and y--<_

As in the algorithms of Shamos and Hoey [18] and Bentley and Ottmnn [2], the
key conceptualization is to imagine a vertical scan line sweeping from left to right
along the x-axis. The critical events are those moments at which this scan line reaches
the abscissa of a line segment endpoint. Let EVENT (x, x2,’’’, XEv) be the list
obtained by sorting the set of abscissas of segment endpoints into ascending order.
Observe that EV <= 2E as each segment has two endpoints.

For each event, xi, there may be more than one segment having an endpoint at

xi. Such segments will be distinguished on the basis of whether xi is the abscissa of
their start-point, final-point, or both (i.e. vertical segments). Formally, let BEG(i)=
(e,e2,’’’,eBi)) be the list of segments for which X_e---Xi let END(i)=
(e, e:,..., eei)) be the list of segments for which _Xe Xi-- and let VERT(i)=
(e, e:,. , e v)) be the list of segments for which _x x :e. It is further stipulated
that the segments in each of these lists occur in descending order of their start-point
ordinates Ye. Figure illustrates these lists.

Algorithmically, all the lists above can be constructed with a single sort. First
form an auxiliary list consisting of the following 4-tuples. For each nonvertical segment
e introduce the 4-tuples (e, _Xe, 0,--Ye) and (e, 2e, 2,--Ye). For each vertical segment e
introduce the 4-tuple (e, _Xe, 1,--Ye). In O(E log E) time, heapsort this auxiliary list
according to the lexicographical order of the second, third, and fourth components.

EVENT

BEG

VERT

END

SEGMENT

{a,b,c,d,e}

a

C

X X2 X3 X4

(a, b, c) & (f)

ck ck d, e

ck (b) (a) (c,f)

FIG. 1. Fundamental structures.
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Then note that EVENT is the list of second components with duplicate entries removed.
Further note that the list of first components is the concatenation of the lists BEG(l),
VERT(1), END(l), BEG(2),..., END(EV) in the order given. The boundaries of
this partition are easily identified by examining the second and third components.
Thus all the desired lists can be extracted in a final O(E) sweep over the sorted
auxiliary list.

The elements of EVENT divide the range [x, Xev] into the event intervals [Xi, Xi+I]
for between and EV- 1. By construction, the abscissa of a segment endpoint cannot
lie strictly within any of the event intervals. Thus if a segment has a point whose
abscissa is interior to an event interval then the segment is guaranteed to span the
entire interval (i.e., have a point at abscissa x for every x in the interval). The set of
segments spanning the ith event interval is formally defined with the recursive definition:

SPAN(i)= If i=OThenElseSPAN(i-1)U(BEG(i)-END(i)).

Note that for all i, SPAN(i) does not contain any vertical segments.
The algorithm presented here centers on computing the x-order, <x, ofthe segments

for every event x. Intuitively, <x ranks segments according to the order in which they
intersect a scan line at x. For nonvertical segments let me be the slope of segment e
and let ye(x) be the ordinate value of segment e at abscissa x. For vertical segments
let me--cX and let ye(X)--Ye" Formally, the rank of a segment on a scan line at x is
the lexicographical rank of the ordinate value/slope pair (ye(x),

e <xf itt ye(X) < yf(x) or ye(X) yf(x) and me < my.

Figure 2 gives an example of the x-order of a collection of segments. Clearly one can
make analogous definitions for the other x-relations: =, =x,< >, >= and .

C

SEGMENT

{a,b,c,d,e}

a =x,e>x,b>x,d>x,c d >x,,a =x,,e >x,,b >,,,,c

FIG. 2. X-order example.
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In prior scan line algorithms [2], 15], 18] for the planar intersection problem,
the following degenerate situations were explicitly excluded from the problem domain.

(a) Vertical lines.
(b) Multi-segment intersections (three or more segments intersecting at a point).
(c) Infinite intersections (collinear segments that intersect).

In this paper the problem domain is unrestricted. The preceding definitions and all
subsequent results have been designed with these anomalous cases in mind. For
example, the inclusion of slope in the definition of <x differs from prior work. This
additional refinement insures that multi-segment intersections will be properly treated
as collinear and only collinear segments are equal in any (and every) x-order.

A characterization of the conditions under which segments intersect in terms of
the above constructions is now presented. Lemma asserts that segments e and f
intersect if there is an event interval in which e and f satisfy one of three mutually
disjoint conditions. Condition 1.1 characterizes intersections involving a vertical seg-.
ment. Condition 1.2 covers the case in which two nonvertical segments intersect at the
start point of one (or both) of the segments. The main thrust of Lemma is embodied
in Condition 1.3, the exchange predicate, which reflects an observation first made in
[18]. It asserts that any other intersection between nonvertical segments e and f is
characterized by a reversal in the x-order of e andf at the endpoifits of an event interval.

LEMMA 1. Without loss of generality if e andf are not vertical then assume X_e X_f
otherwise assume that e is vertical and iff is also vertical then further assume Y_e Y_f.
Segments e and f intersect if and only if there exists such that

(1.1) e VERT(i) andfSPAN(i- 1)U BEG(i)U VERT(i) and yf(x,)[ye, Ye],
or

or
(1.2) e BEG(i) andf SPAN(i- 1)13 BEG(i) and yf (xi) ye,

(1.3) e,fSPAN(i) and (e<,,f and e>,,+,f or f<x,e and f>xi+le).
Proof. (=>) Suppose e and f intersect at (x, y) and if they are collinear that this

is the point of intersection with smallest abscissa (ordinate for vertical segments). First
consider the case where e and f are not vertical and _x _Xf. If x _x then let be the
integer for which e BEG(i). Observe that yy(xi) yy(x) ye(X) Ye and that xi x
[_xy, 2y] implies f SPAN(i-1)U BEG(i), i.e. Condition 1.2 holds. If x _X then let
be the integer for which x (xi, x/]. Observe that e and f cannot be collinear and
that X(_Xe,,e]’)(X_fi,f] implies e,fSPAN(i). If e<,,,f then ye(Xi)<yf(xi).
Moreover, e and f intersect at x(x,x+l] implies ye(Xi+l)>=yf(xi+l) and me>my
implies e > X,/l f. Similarly e > , f implies e < ,/l f. Thus Condition 1.3 holds.

Now suppose that e is vertical. Let be the integer for which e VERT(i) and
note that x xi and y [Ye, fie]. Iff is not vertical then yy(x) y and x [_xy, y] implies
fSPAN(i-1)U BEG(i), i.e. Condition 1.1 holds. Iff is also vertical then e and f
must be collinear, f VERT(i), and _ys >- _Ye implies ys(x) _yy=y as y is the smallest
ordinate of an intersection point. Thus Condition 1.1 holds.

(<=:) Conditions 1.1 and 1.2 imply e and f intersect at (x, yy(x)). Now suppose
Condition 1.3 is true. If Ye (Xi) yf (Xi) or Ye (Xi+ l) Yf (Xi+) then immediately e and f
intersect. Otherwise e <,f and e > ,/1 f implies ye(x) < yy (x) and Ye (Xi+
That is, e is below f at xi, above f at Xi/l, and both segments span the interval. They
must intersect in the interval [x, x/]. Similarly e and f intersect when f<,,e and
f> Xi+l e.

3. The key methods---work list bubble sort and distribution-based search. Consider
the following simplification ofthe intersection problem. Suppose that EVENT (x, x2)
and that BEG(l)= END(2)= SEGMENT. There is only one event interval and no
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XI X

FIG. 3. A single interval intersection problem.

vertical segments. An instance of a "Single Interval Intersection Problem" is depicted
in Fig. 3. By Lemma it suffices to find the intersections satisfying Conditions 1.2 and
1.3 for the interval [x, x2]. An algorithm is sketched that detects these intersections in
O(E log E + I) time and O(E) space.

As a first step, sort the segments into Xl-order in O(E log E) time. Observe that
segments with equal ordinate values, ye(xl), occur in contiguous sub-lists of this
ordering. Every pair of segments from such a sub-list and only these pairs satisfy
Condition 1.2 of Lemma 1. The sub-lists can be detected in O(E) time and the set of
segment pairs from each sub-list can then be listed in O(I) time where I is the number
of intersections.

It remains to find all the intersections satisfying the exchange predicate (1.3).
Consider the application of a bubble sort to the Xl-ordered segments to obtain the
x2-ordering of the segments. The key observation is that the set of segment pairs
exchanged in performing the sort is exactly the set of segment pairs satisfying the
exchange predicate.

The naive version of bubble sort requires O(E2) time. What is needed is an
O(E + 1) time algorithm where I is the number of intersections or equivalently the
number of exchanged pairs. This can be accomplished with the following work list
variant of bubble sort. Let the current oder of segments be the x-order computed n
the first step. Initialize the work list to be the set of all segments e for which e and its
successor are not in x2-order. While the work list is not empty, perform the following
steps.

(3A) Pop a segment e from the work list. Letfbe its successor in the current order.
(3B) Remove f and the predecessor of e from the work list if present.
(3C) Exchange e and f in the current order and report that they intersect.
(3D) Push the current predecessor of f onto the work list if it and f are not in

x2-order. Push e onto the work list if it and its current successor are not in
x2-order.



630 EUGENE W. MYERS

The validity of the algorithm follows from the fact that at the start of each iteration
the work list consists of those segments for which it and its current successor are not
in XE-order. The algorithm terminates as each iteration strictly reduces the "exchange
distance" to the x2-ordered arrangement of segments.

Steps 3A through 3D can be performed in constant time with the following
structures. Model both the current order and work list as doubly-linked lists in which
each cell contains a pointer to the record modeling the appropriate segment. Let each
segment record contain a pointer to its cell in the current order and a pointer to its
cell in the work list if present, the nil pointer otherwise. In constant time, cells can be
popped and pushed from the work list and an arbitrary cell within the list can be
deleted. Given a cell in the work list (current order) one can reach the corresponding
cell in the current order (work list) via the segment record. The links of the current
order list give current successors and predecessors. Segments are exchanged in this
order by interchanging just the segment record pointers of the relevant adjacent cells.

With these models the work list bubble sort requires O(E / I) time and O(E)
space. The initial work list is formed in an O(E) sweep over the xl-order of the
segments. Steps 3A through 3D are repeated exactly I times as an intersection is
reported in each iteration. Thus the sort proper takes O(I) time. Only O(E) space is
required at any given moment as each segment occurs in the work list at most once.
Note that intersections are not necessarily reported in order of increasing abscissa.
For example, when applied to Fig. 3, the algorithm reports intersections out of order
regardless of the initial state of the work list and its implementation as a stack of queue.

The general intersection problem can be viewed as EV- separate single interval
problems. The algorithm presented here solves these individual problems in increasing
event order. One can imagine the scan-line as jumping from event to event while the
work list bubble sort detects the intersections between jumps. The O(E log E) cost of
determining the initial x-order for each interval problem readily distributes across the
computation: the bubble sort for the ith interval delivers the initial order for the (i + 1)st
interval. Distributing the O(E) cost of computing the initial work list for each interval
problem is more difficult. If during the processing of some interval, a segment comes
to have a successor in the current x-order with which it satisfies the exchange predicate
then the segment must immedately be placed in the work list of the interval in which
the exchange predicate is satisfied. This requires a search for the interval containing
the abscissa of the point of intersection. An O(log E) bisecting search on the ordered
EVENT list could be used. However, a distribution-based search reduces the cost to
O(1) expected time under the assumption that the elements of EVENT are uniformly
distributed in the interval [x, Xev].

Recently, much attention has been given to distribution-based sorting methods
Ill, [6], [7], [10], [20]. The technique sketched here is the search analogue of the
sorting-by-partition method in [10]. Consider evenly dividing the interval [x, xv] into
EV subintervals (buckets) of size A (Xv- x)/EV. Observe that an arbitrary x is in
the bucket [Xl+AH(x),x+A(H(x)+l)) where H(x)= [(x-xl)/AJ. For each /in

[0, EV], let MIN(i) be the ordinal position of the smallest event in the interval
[x+Ai, xv].

MIN( i) min {j xj EVENT and H(xj) >= i}.

For the limiting case, let MIN(EV/ l)= MIN(EV). It is an elementary exercise to
design an algorithm that constructs the vector MIN in an O(E) sweep of the ordered
EVENT list. Under the hypothesis that the events in EVENT-{Xl, Xv} are uniformly
distributed over the interval [x, Xv], the expected number of events in a bucket is
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(EV-2)/EV as there are EV buckets and the EV-2 events are found in a given
bucket with equal probability. Thus the expected value of MIN(i)-MIN(i-1) is
also (EV- 2)/EV for all i.

Suppose segments e and f are known to intersect by the exchange predicate (1.3)
in some event interval. This interval can be found as follows. First determine the
abscissa of the segments’ point of intersection, XINTER(e,f), by analytic means. Let
i= H(XINTER(e,f)). It follows from the construction of MIN that XMxN()- <
XINTER(e,.f)<-XMxN(/I. Thus the event interval, [xi_,xi], in which the segments
satisfy the exchange predicate must have in the range [MIN(8), MIN(8+ 1)]. The
desired event interval can then be found by searching this limited subrange of event
intervals. By the uniform distribution hypothesis the expec.ed number of intervals in
the subrange is (MIN( + 1)-MIN(15))+ <2. Thus by employing a bisecting search
over this subrange, the expected search time is O(1) and the worst case is guaranteed
to be O(log E).

On a floating-point computer the calculation of real quantities is not exact due
to the introduction of rounding errors. When realized on such a machine the search
algorithrn above is correct on,ly if the computation of H is monotonic. That is,
x’>=xH(x’)>=IYI(x) where H is the computed value of H (as opposed to its true
value). If this condition is not met by the host hardware then the computed value of
may differ from its true value. In such instances the index of the desired event

interval will not be in the range [MIN(8), MIN(3+ 1)] and the search will fail. This
weakness can be removed by employing a finger-based seach [9] for resolving bucket
collisions. In this context the search would start at the MIN(8)th event interval (the
finger) and then search right or left for the correct interval in a bisecting fashion. The
expected and worst-case times for the search remain unchanged.

The uniform distribution hypothesis was chosen for simplicity. More generally,
the expected time for the search is O(1)+ E(max (log Ni)) where E denotes "expected
value" and Ni is the number of events in the ith bucket. From [1] it follows that the
search is still O(1) if the underlying density function is bounded, Riemann-integrable,
and has compact support. The N-tree method of Ehrlich [7] could also be used here.
It has the advantage of performing well over a wider class of density functions [20]
(including those with exponentially vanishing tails). Its primary disadvantage is that
it requires O(E2) space in the worst case.

4. The algorithm. The work list variation of bubble sort leads to an efficient
algorithm for the single interval problem. The distribution-based search gives an O(1)
expected time method for determining the event interval in which a pair of segments
intersect. With these methods the planar segment intersection problem can be solved
efficiently. The simple data structures employed in the single interval problem must
be enhanced to meet the more dynamic requirements of the general algorithm. The
extension of these structures and the primitive operations that will be assumed are
described in the paragraphs below.

In the general algorithm, the current x-order contains just those segments spanning
the current event interval. This implies that one must be able to add and delete segments
from this order efficiently. The doubly-linked list model of the current x-order is
extended by superimposing a height-balanced tree (assume an AVL tree) upon it.
Conversely, one may view the current x-order to be modeled as an AVL tree XOT
(X-Ordered Tree) whose symmetric order is explicitly threaded with a doubly-linked
list. As before, each cell in the tree points to its corresponding segment record and
vice versa. The following primitives are assumed.
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Add(e,/)--Add segment e to XOT under the xi-order.
Delete(e)--Delete segment e from XOT.
Exchange(e)--Exchange e and Above(e) in the current ordering of XOT.
Above(e) (Below(e))--The segment immediately above (below) e in the current

ordering of XOT if it exists, A otherwise.
The maintenance of the doubly-linked threads in XOT is an elementary exercise. With
this model Add and Delete are O(log E) operations and Exchange, Above, and Below
are O(1) as before. Note that Exchange destroys any particular x-order. However, the
operation Add(e, i) is only applied when XOT is xi-ordered.

In the general algorithm there are EV-1 distinct work lists, WORK(i), one for
each event interval [x, x+]. The collection of work lists is modeled as an array of
pointers to the first cell of a doubly-linked work list of the form described in 3. The
following primitives are assumed.

Push(e, i)mAdd segment e to WORK (i).
Pop(e,/)--Delete a segment from WORK (i) and return it in e.
Remove(e)--Delete segment e from the work list containing it (if any).

In the previous section it was shown that the primitives in this repertoire can all be
done in O(1) time.

The final primitive is assumed to implement the distribution-based search algorithm
sketched in 3.

Hash(e, f)--A function returning the index of the interval in which e and f satisfy
the exchange predicate (1.3).

The primitive Hash is only invoked with segments e and f that are known to satisfy
the exchange predicate. It follows from the treatment at the end of 3 that Hash
requires O(1) time in the expected case and O(log E) time in the worst case.

The complete algorithm is presented below as Algorithm 1. This algorithm begins
by initializing XOT and every work list to be empty. It then proceeds by processing
the event intervals in left to right order. This iteration constitutes the major loop of
Algorithm and at the start of its ith iteration it is claimed that

(4.1) XOT contains the segments in SPAN(i-l) in x-order.
In each iteration, all the intersections in the current interval are detected and reported.
This task is performed in four steps.

(4A) The segments in BEG(i) are added to XOT. Intersections satisfying Condi-
tion 1.2 of Lemma are reported. After this step XOT contains the segments
in SPAN( l) (_J BEG(i) in x-order.

(4B) The segments in VERT(i) are checked for intersections satisfying Condition
1.1 of Lemma 1. This step has no net ef[ect on XOT.

(4C) The segments in END(i) are deleted from XOT. After this step XOT
contains the segments in SPAN(i) in xi-order.

(4D) The intersections satisfying the event exchange predicate for the current
interval are detected as XOT is bubble sorted into X+l-Order. Note that
after this step XOT satisfies Assertion 4.1 for the next iteration.

In Algorithm 1, each of Steps 4A through 4D appear as minor loops. It is claimed
that before an iteration of any minor loop, the collection of work lists satisfies the
condition"

(4.2) e WORK(j) if[

e and Above(e) satisfy the event exchange predicate in the jth event
interval and j_->i where is the index of the current interval.
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The invariance of this minor loop predicate is maintained throughout the algorithm
by pushing and removing work lists elements to correctly reflect the effect of every
Add, Delete, and Exchange operation on XOT. The critical feature of Assertion 4.2
is that it implies WORK(i)= {e SPAN(i)Ie and Above(e) are not in xi+-order} just
before Step 4D is about to be performed for the ith event interval. Thus the work list
bubble sort performed in Step 4D is correct as WORK(i) is correctly initialized at its
outset.

The specification of Algorithm contains several repeated code fragments that
have been collected into macro definitions. References to these macros are underlined;
their definition follows the algorithm. Keep in mind that macro parameters are passed
by substitution.

ALGORITHM 1. The planar segment intersection algorithm

/* Initialize work lists and AVL tree */
For i<-- to EV Do
WORK(i) <--

XOT<-

/* For each event xi in increasing order do */
For i<-l toEVDo

(4A) /* Add segments in BEG(i) and list their start point intersections */
For e BEG(i) in order Do

Add(e, i)
f<- Below(e)
If f# A Then
Remove(f)
Enter(f)

Enter(e)
Report( e, yg(X,) y,)

(4B) /* Find all intersections with segments in VERT(i) */
For e e VERT(i) in order Do

Add(e, i)
Report(e, yg(x,)e lYe, fie])

For e VERT(i) in order Do
Delete(e)

(4C) /* Delete segments in END(i) */
For e END(i) in order Do
f- Below(e)
Delete(e)
Remove(e)
If f# A Then
Remove(f)
Enter(f)

(4D) /* Find all "event exchange" intersections in [x, X+l] */
While WORK Do

Pop(e, i)
"e and Above(e) intersect"

f*- Below(e)
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Exchange(e)
Remove(Below( e
If f A Then
Remove(f)
Enter(f)

Enter(e)

Macro Report(e, cond)
g Below(e)
While g A and cond Do

"e and g intersect"
g Below(g)

g Above(e)
While g A and cond Do

"e and g intersect"
g Above(g)

Macro Enter(e)
g - Above(e)
If g A and e > min(.e,.g) g Then

Push(e, Hash(e, g))

Algorithm is correct regardless of the class of intersecti,ons present. The correct-
ness and generality of the algorithm follow directly from Lemma and the discussion
above. One subtle point: the macro Report in Step 4A (4B) correctly reports those
segments that intersect with e by Condition 1.2 (1.1) as the segments are contiguous
in XOT’s order and the intersecting pairs are reported only once as e is being entered
into XOT for the first and only time. In Theorem 1, the algorithm is shown to have
the time and space performance claimed at the outset of the paper.

THEOREM 1. Algorithm requires O(E log E + I) expected time when EVENT is
uniformly distributed. Algorithm requires O(E log E + I log E) time in the worst case.
Algorithm requires O(E space.

Proof The initialization of XOT and the work lists at the outset of the algorithm
require O(E) time. As was shown at the time of their introduction, the construction
of all the other auxiliary structures requires O(E log E) time.

The body of Step 4A is repeated once for each segment in a BEG-list. Thus it is
repeated at most E times. The macro Report contains a while loop for which an
intersection is reported in each iteration. The body of the while loop takes O(1) time.
The other primitives in Step 4A take either O(1) or O(log E)time. Thus the total time
taken by Step 4A is O(E log E + I1) time in the worst case where I1 is the number of
intersection reported in the step. Similarly, the total times taken by Steps 4B and 4C
are O(E log E + I2) and O(E log E) respectively.

The body of Step 4D is repeated once for each intersecting pair satisfying the
exchange predicate. All operators are O(1) with the exception of Hash which is O(1)
in the expected case and O(log E) in the worst case. Thus the total cost of performing
Step 4D is O(I4) in the expected case and 0(I4 log E) in the worst case. The total
number of intersections, /, is the sum of I, I2, and I4. Thus the overall performance
of Algorithm is O(E log E + I) in the expected case and O(E log E + ! log E) in
the worst case.

With the exception of the work lists, it is clear that all the data structures involved
require O(E) space. Assertion 4.2 implies that there are at most E- segments in all
of the work lists at any time. This follows as there are at most E adjacent segments
in any ordering and a given segment pair satisfies the exchange predicate in at most
one event interval. Thus Algorithm required only O(E) space. [3
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5. Discussion. The use of the work list bubble sort implies that Algorithm does
not report intersections in increasing order of abscissa. However, this is true only
within each event interval; the intervals themselves are processed in increasing order.
Informally, one may say that the intersections are sorted "with respect to the event
intervals". Thus the intersections can be totally ordered by simply sorting each collection
of intersections reported in each execution of Step 4D. Although this requires
0(I log E) time in the worst case, in practice it should result in some additional
efficiency Moreover, if appropriate a distribution-based method [6], [7], [10] could
be used to solve each sorting subproblem in a total of 0(I) expected time.

If all segments are either vertical or horizontal, then Algorithm performs in
O(E log E + I) worst-case time. Simply observe that no pair of segments satisfies the
exchange predicate. Consequently, no segment will ever be entered into a work list;
the body of Step 4D will never be executed and Hash will never be invoked. But the
O(log E) worst-case performance of Hash is solely responsible for the I log E term
in Algorithm l’s performance. This result was first shown in Bentley and Ottmann’s
paper [2] but was posed as a distinct algorithm. In this paper it is simply a direct
consequence of the general algorithm.

A slight variation of Algorithm gives an O(E log E + I) worst-case algorithm
for yet another restricted intersection problem. Suppose that all segments are con-
strained to have their left endpoints at x. Formally, assume BEG(l)U VERT(1)=
SEGMENT; the END lists are unrestricted. To solve the "single start intersection
problem" modify Algorithm as follows. Replace all references to WORK(i) with
references to a single work list and modify all Pop and Push primitives to operate
exclusively on this one work list. The second parameter of these primitives becomes
superfluous and consequently the one and only call to Hash is removed. Since the
primitive Hash is no longer employed, this modified algorithm must run in O(E log E +
I) time in the worst case. Observe that while XOT is no longer reasonably ordered
in later iterations of the major loop, the algorithm is correct as Add is not invoked
after the first iteration.

In problem instances where the intersection density a I!E2 is high, the following
situation will frequently arise in the course of an event interval bubble sort. An
intersecting pair of segments momentarily become adjacent in XOT and are entered
into some work list only to be removed when .another exchange separates them. The
effort expended by Hash to find the appropriate work list was wasted. Such redundant
searches can be eliminated by introducing a temporary work list, WORKr, which is
empty at the beginning of each bubble sort. During a sort, newly adjacent segments
that intersect in an event interval other than the current one are placed in WORKT.
Only when the given sort is complete are the segments that remain in WORKT
transferred via Hash to their respective work lists. This variation is not asymptotically
superior to Algorithm but does significantly reduce the number of searches for high
density problems.

6. Conclusion. An O(E) space, O(E log E + I) expected time algorithm for the
planar segment intersection problem has been presented. The key techniques are the
use of a work list bubble sort for solving individual event interval problems and the
use of a distribution-based search to seed the work lists for these intervals. The expected
time result still leaves open the question of whether or not a comparison based method
must take O(E log E / I log E) worst-case time. However, several restricted problems
were observed to have O(E log E + I) worst-case algorithms.
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The problem was treated in full generality. Vertical segments, multi-segment and
infinite intersections were all permitted. As Sutherland et al. 19] have observed, these
singularities must be carefully treated in order for the algorithm to be useful in graphics
applications.

It was noted earlier that a sorted intersection list could be produced in
O(E log E / I) expected time under the assumption that the abscissas of the intersec-
tion points are uniformly distributed in each event interval. Such a list readily provides
the basis for a hidden-line computation. The method of Sechrest and Greenberg [16]
suggests that with the use of coherence all computations can be done in 0(I) time
except for the embeddings of locally minimum points.

The algorithm described in this paper performs a one-time analysis on a set of
planar line segments. In many contexts it would be useful to incrementally obtain a
solution. For example if several new edges are added to the problem or if the locations
of some of the existing segments are perturbed, the new solution could be computed
by simply detecting how it differs from the previous solution. This can obviously be
done in O(E) time per input modification by a direct extension of the naive O(E2)
algorithm. The problem of arranging a more efficient incremental algorithm appears
very difficult. If Ie is the number of intersection involving segment e, are O(Ie),
O(/ + log E), or even O(/ log E) incremental methods possible? Rosen 14] has noted
in the context of data flow analysis that highly efficient one-time algorithms do not
necessarily lead to ecient incremental algorithms.
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SCHEDULING FLAT GRAPHS*

DANNY DOLEV AND MANFRED WARMUTH

Abstract. The problem of scheduling a partially ordered set of unit length tasks on m identical processors
is known to be NP-complete. There are efficient algorithms for only a few special cases of this problem. In
this paper we analyze the effect of the structure of the precedence graph and the availability of the processors
on the construction of optimal schedules. We prove that to find an optimal schedule it suffices to consider
at each step only initial tasks which belong to the m- highest components of the precedence graph. This

result reduces the number of cases we have to check during the construction of an optimal schedule. Our
method leads to polynomial algorithms if the number of processors is fixed and the precedence graph has
a certain form. In particular, if the precedence graph contains only intrees and outtrees, this result leads to
linear algorithms for finding an optimal schedule on two or three processors.

Key words, identical processors, profile, optimal schedule, intree and outtree

1. Introduction. The goal of deterministic scheduling is to obtain efficient
algorithms under the assumption that all the information about the tasks to be scheduled
is known in advance. One of the fundamental problems in deterministic scheduling is
to schedule a set of unit length tasks, subjected to precedence constraints, on a system
of identical processors. The precedence constraints between tasks are represented by
a precedence graph, which is a directed acyclic graph. As in [GJ81 we allow the number
of identical processors to vary with time. A profile is a sequence of natural numbers
specifying how many processors are available at each time slot. A schedule for a given
profile is a partitioning of all the tasks into a sequence of sets which does not violate
the precedence graph. The ith set of the sequence is scheduled in the ith time slot (i.e.
interval [i-1, i)). Thus, the cardinality of the ith set cannot exceed the number of
processors which are available in the ith time slot of the profile. A profile is straight
if it has the same number of processors available at each time slot. The breadth of a
profile is the maximum number of processors available at any time slot.

Various aspects of scheduling theory have been studied extensively in recent years
[GL79] and many scheduling problems are known to be NP-complete [U175], [GJ79],
[LR78], [Wa81 ], [GJ81 ], [Ma81 ]. The first NP-completeness result on scheduling with
precedence constraints was published by Ullman [U175]. He showed that the existence
of a schedule of a given length on a straight profile for a collection of unit length tasks
subjected to some given precedence constraints is NP-complete, if the number of
available processors is a variable of the problem. Notice that the breadth of the profile
is not bounded by a constant. The problem remains NP-complete even for certain
classes of precedence graphs [GJS1], [MaS1], [WAS1]. To support the idea that the
breadth of the profile is the main source of NP-completeness we prove in [DW82b]
that scheduling unit length tasks is NP-complete even if the precedence graph has
height one and the profile has one processor available in each slot except for one slot
that has an arbitrary number (see Table 1.1). Polynomial algorithms have been
developed for only a few special cases. The first polynomial algorithm was developed
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TABLE 1.1
The question ofexistence ofa schedulefor a precedence graph ofheight

one and a profile of the below form is NP-complete.

by Hu [Hu61]. It produces an optimal schedule for a straight profile of arbitrary breadth
if the precedence graph is an inforest. Hu’s algorithm produces a schedule according
to the Highest Level First (HLF) strategy, meaning tasks of higher level are chosen
over tasks of lower level and tasks of the same level are chosen arbitrarily. HLF also
produces an optimal schedule for outforests and straight profiles of arbitrary breadth
[Br81]. A restricted version of HLF provides an optimal schedule when the precedence
graph is an interval order [PY79], [GAS2], or if the number of available processors is
two [GAS1]. Recently, polynomial algorithms have been published [GJS1], [WAS1],
[DW82c] for scheduling certain classes of precedence graphs on profiles of fixed
breadth. In [Wa81], [DW82a] it was also shown that scheduling an arbitrary graph on
a profile of fixed breadth is polynomial, if the height of the graph is bounded by a
constant.

The major scheduling problem remaining open is whether the scheduling of an
arbitrary graph of unbounded height is NP-complete or polynomial for a fixed number
(m >_- 3) of processors.

Let m be the breadth of the profile. The median (see 3) of the precedence graph
is defined to be one plus the height of the ruth highest component of the precedence
graph (see Fig. 3.1) and if the precedence graph contains less than m components,
then the median is zero. A task is initial if it does not have any predecessors. The Elite
of the precedence graph is the set of all initial tasks that belong to components that
are higher than the median.

Our main result, the Elite theorem ( 4), states that it is enough to choose tasks
from the Elite of the precedence graph for the first slot of an optimal schedule. If we
do not have enough tasks in the Elite, then we choose tasks according to highest height
from the set of initial tasks that are not in the Elite. After filling the first slot, the Elite
theorem can be applied to the remaining precedence graph and the next slot, and so
on. The theorem restricts the number of cases that need to be considered for constructing
an optimal schedule. Variations of the Elite theorem are the basis for the algorithms
in [WaS 1], [DW82c].

In 5, we generalize results of [Hu61], [Br81], and [GJS1] by applying the Elite
theorem. We show that HLF produces an optimal schedule if the precedence graph
is either an inforest or an outforest and the profile is of a certain type. In 6 we prove
some properties ofgraphs containing only inforest and outforest components (opposing
forests). In 7 we use these properties to develop a linear algorithm for scheduling
an opposing forest on a straight profile of breadth three improving the O(n log n) time
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bound of Garey et al. [GJ81]. Furthermore, we give an O(n log n) algorithm for
scheduling an opposing forest on a profile that has two or three processors available
at any time slot. The algorithm is essentially the one described in [Do80].

2. Basic definitions and properties. A precedence graph G is denoted by a tuple
(V, E), where V is the set of n tasks and E the set of edges of G. A (directed) path
7r of length r in G is a sequence of tasks Xo, , x. such that the edge (xi, xi+), for
0<_-i<= r-1, is in E. We assume that if a task x has to be executed before a task y,
then there exists a (directed) path from x to y in G. Note that G is acyclic.

If there exists a path from x to y, then x is a predecessor of y, and y is a successor
of x. In the case where the longest path from a task x to a task y is the edge (x, y),
we call x the immediate predecessor of y and y the immediate successor of x.

By h(G) we mean the height of G, which is the length of the longest path in G.
For a task x G (i.e., x V) we denote by h(x) the length of the longest path that
starts at x. Note that a task with no successors has zero height. Tasks with identical
height are said to be at the same level.

The graph G’= V’, E’) is a subgraph of G V, E), denoted by G’ G, if V’
_
V

and for all x and y in G’, x is a predecessor of y in G’ if and only if x is a predecessor
of y in G. A subgraph G’ of G is called a closed subgraph if every task in G’ has the
same successors in G’ as it has in G. For two graphs G (V, E) and G’= (V’, E’),
G t.J G’ denotes the graph (VU V’, ELI E’). The graph G (V, E) is composed of
{G,. ., Gr} if these subgraphs (called components of G) are a decomposition of G
into its connected components, that is, each subgraph is a nonempty connected graph
and there are no edges between tasks of different components; therefore, G
A task of G is initial if it has no predecessors. Note that an initial task of G is not
necessarily of maximum height in G. A set of k highest initial tasks is a subset of the
set of initial tasks consisting of some k highest ones; when there are less than k initial
tasks, it contains all of them. Let R be a set of initial tasks of a precedence graph G.
Then G-R is the subgraph of G obtained by removing the tasks of R.

We partition the time scale into time slots of length one. The time interval [i- 1, i)
for -> is the ith time slot. A profile, M, is a sequence of positive integers,
(m, m,, , ma), specifying the number of identical processors, m, that are available
in each time slot i, for i<= <= d (see Table 2.1); d is the length of the profile M. The
breadth of profile M is the maximum number of processors that is available at any
time slot of M. Throughout the paper we denote the breadth of the given profile with
the letter m. The profile of Table 2.1 has breadth three. We call a profile M straight if
m=m, forall l=<i_-<d.

A schedule S for a precedence graph G is a sequence of sets (S)[..- [(S)k such
that:

i) the sets (S)i, for <=i<= k, partition the tasks of G;
ii) if x (S) and y (S)j, for <=i<=j <= k, then there is no path from y to x.
The length of a schedule S, denoted by A (S), is the index of the last nonempty

set in the sequence. A minimum length schedule is called optimal. The schedule S fits
the profile M if the length of S is not greater than the length of the profile and the
cardinality of (S) is not greater than m. The set of tasks (S) gets executed in the ith
time slot, that is I(S)i[ of the mi processors of slot are executing the tasks of (S)
during the time interval [i- 1, i). Note that the length of a task equals the length of a
time slot. We call the schedule S an M-schedule for G.

In a revised version of [GJ81] Garey et al. also obtain a linear algorithm.
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As an example assume we have a set of twelve tasks subject to the precedence
graph G presented in Fig. 2.1. We name the tasks by numbers. Throughout the paper
we always assume that the edges of the graphs are directed downwards. We look for
a schedule for G that fits the profile M (2, 3, 3, 1, 3, 2). The following sequence S is
a valid schedule:

{1,2}1{3, 4, 5}1{6, 7}1{8}1{9, 10, 11}1{12}.
The M-schedule S can be shown as in Table 2.1. Notice that A (S)= 6. In Table 2.2 a
schedule S’ of length 5 is given for the same precedence graph, which is optimal.

1 2 S 4 5
level 2

level 1

level 0
8 9 I0 Ii 12

FIG. 2.1. The precedence graph G.

TABLE 2.1
The schedule Sfor the precedence graph G ofFig. 2.1

and the profile M (2, 3, 3, l, 3.2).

slot 1 2 :3 4 5

P, 4

P

6 8
7

9
I0
ii

TABLE 2.2
The schedule S’ for G and M.

slot 1 2 3 4

P 2 4 6

Pu 3 9

Pa 7 10

rn 3 3 1

5 6

3 2

The ith slot of a schedule S, <-i<- X(S), has mi-](S)i[ idle periods. Such an idle
period corresponds to a processor being idle during time slot of S.

A schedule S is an HLF-schedule for G and M if (S)i, -< i<- A(S), is a set of m
highest initial tasks of the subgraph of G induced by all tasks scheduled in slot of
S or later. Note that in the above example S is a HLF-schedule, whereas S’ is not.
HLF-schedules have the following property. Assume task x is scheduled in slot and
y is scheduled in slot j. If h(x)> h(y), then either i-<_j or there is a predecessor of x
in the jth slot. We say that HLF produces an optimal schedule if any HLF-schedule is
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optimal; that is, if an optimal schedule can be constructed by choosing higher initial
tasks before lower ones and choosing arbtrarily among initial tasks of the same height.

A schedule for G is greedy if whenever there is an idle period in some slot then
this slot contains all initial tasks of the subgraph of G induced by the tasks that appear
in slot or later. It is easy to see that any schedule can be made into a greedy one
without increasing its length; thus there exists greedy schedules which are optimal.

3. The median. In this paper we study graphs that have more than m components
("flat" graphs), where m is the breadth of the profile. We use the notion of the median
to characterize this property of a precedence graph.

DEFINITION. The median of a precedence graph G with respect to a given breadth
m, denoted by (G), is one plus the height of the mth highest component of the
precedence graph.

Thus the graph of Fig. 3.1 has median 3 with respect to m 3. If the graph has
fewer than m components the median is 0. For example, in the graph described by
Fig. 2.1 the median with respect to m 3 is 0.

H(G) L(G)
FIG. 3.1. The decomposition of a graph G into H(G) and L(G); 0 denotes tasks orE(G).

We use the median to partition the components of G into two sets, H(G) and
L(G) (see Fig. 3.1).

DEFINITION. The closed subgraph H(G) consists of all components of height
higher than the median, and L(G) contains all the components that are at most as
high as the median.2 The set of all initial tasks of H(G) is called the Elite of G,
denoted by E (G).

During the construction of a schedule, the median is a dynamic line. When a set
of initial tasks is removed, the median might increase, because some components of
the graph might split into several components. On the other hand, the median can
drop at most by one. If it drops by one, then some initial tasks of L(G) were removed.
If only tasks of H(G) are removed, then the median does not drop. This leads to the
following properties which are used in the current paper and in [DW82c].

All the results of this paper will still hold if we define H(G) to be the closed subgraph that contains

all initial tasks of height higher than the median plus all their successors, and L(G) to be the remaining
subgraph. See also [DW82b].
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Properties of the median:
Ml: There are at most m- components of G having height at least IX(G).
M2: If IX(G)> 0, then there are at least m components of G having height at

least IX(G) 1.
M3: If G has at most m-1 components of height at least h, then IX(G)<-h.
M4: If G has at least m components of height at least h- l, then IX(G)_-> h.
MS: Let R be a set of initial tasks of G. Then IX(G-R)->_ IX(G)- 1.
M6: Let R be a subset of E(G). Then IX(G-R)>=IX(G). Furthermore, H(G-

R)_H(G)-R and L(G-R)_L(G).
M7: Let T be a set of highest initial tasks of L(G). Then H(G- T)_ H(G) and

L(G- T)
_
L(G) T.

MS: Let R be a subset of E(G) and Tbe aset of highest initial tasks of L(G). Then

H(G-(RU T)) H(G)-R and L(G-(RLJ T))_L(G)- T.

The proofs of the properties M1 through M4 follow directly from the definition of
median. The proof of M8 is a simple consequence of M6 and M7. To prove the
remaining properties the following claim is needed.

CLAIM 3.1. Let I be a component ofG and let R be a set of initial tasks of G. Then

h(I)>= h(I-R)>= h(I)- 1.

Proofi The claim trivially holds if h(I)=0. Thus assume that h(I) is positive. The
set R contains only initial tasks of I; therefore, the longest path in I- R is by at most
one shorter than the longest path of I. Thus, h(I-R) >- h(I)-1 and clearly, h(I) >-

h(I- R), which completes the proof.
Proof of MS.
MS. Let R be a set of initial tasks of G. Then IX(G-R)>=IX(G)-l.
M5 is clearly true if IX(G)<_-1. Thus assume that IX(G)> 1. By property M4 we

only have to show that G-R contains at least m components having height at least
IX(G)-2. To do this observe that by property M2 the graph G contains at least m
components of height at least IX(G)-1. By Claim 3.1, h(I-R) >- IX(G)-2 for every
component I of G that satisfies h(I)>-ix(G)-l. Therefore, the subgraph I-R of
G-R has at least one component of height at least IX(G)- 2, and G-R has at least
m components of height at least IX(G)-2.

Proof of M6.
M6. Let R be a subset of E(G). Then IX(G-R)>=IX(G). Furthermore, H(G-

g)_ H(G)-R and L(G-R)_L(G).
The second part of M6 is a simple consequence of the fact that Ix (G R) ->_ IX (G).

Readily this inequality holds if IX(G)= 0. So assume IX(G) is positive. To prove that
IX(G-R)_-> IX(G) we need to show that G-R contains at least m components of
height IX(G)- (see property M4). If I is a component with h(I)<=(G), then I is
in L(G) and therefore I I-R. Also, if h(I)> IX(G), then by Claim 3.1, h(I-R)>=
IX(G). This completes the proof, because by property M2, G contains at least m
components I, satisfying h(I)>= Ix(G)-l, and for each such component I the corre-
sponding subgraph I- R of G-R contains at least one component of height at least
(O)- .

Proof of M7.
M7: Let T be a set of highest initial tasks of L(G). Then H(G- T)_ H(G) and

L(G- T)
_
L(G) T.

Assume that M7 does not hold for some O and T. Then Ix(G-T)< Ix(G), and
by MS, Ix(G-R)= Ix(G)- 1. For the median to drop, T must contain an initial task
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of L(G) of height/x(G) 1. Since T is a set of highest initial tasks of L(G) it follows
that T contains all tasks of L(G) of height/z(G) (which are all initial). Therefore, we
conclude that L(G- T)_ L(G)- T and thus H(G- T)

_
H(G). But this contradicts

the assumption. [3

4. The Elite theorem. In this section we present our main result, the Elite theorem.
Let M (m,, , md) be a given profile of breadth m. The Elite theorem states that
to find an optimal schedule for G it suffices to "look" at the Elite of G. In particular,
if the cardinality of the Elite is larger than m,, then there exists an optimal M-schedule
for G that starts with a subset ofthe Elite. Otherwise, there exists an optimal M-schedule
starting with E (G) and m, -IE (G) highest initial tasks from L(G), choosing arbitrarily
among tasks of the same height.

The Elite theorem enables us to ignore large portions of the graph at each step
of the construction of an optimal schedule. As a special case, the Elite theorem also
implies that if there is no initial task above the median, then HLF produces an optimal
schedule.

Results similar to the Elite theorem were developed in [Wa8 l] and [DW82c]. They
are the basis for several polynomial algorithms which find optimal schedules for certain
restricted classes of precedence graphs and profiles of constant breadth. The Elite
theorem is easily derived from the following theorem.

THEOREM 4.1. Let S be a greedy M-schedule for H(G) not longer than the length
of an optimal M-schedule for G. Letf be the number of idle processors at the first slot of
S. For any set T off highest initial tasks of L( G), there exists an optimal M-schedule S’
for G with the properties:

i) (S’)I (S), 3 T;
ii) if A (S’)> A (S) then S’ has idle periods only in its last slot.
Proof. The proof is by induction on r, the number of tasks of G of positive height.

In the case r 0 the graph does not contain any tasks of positive height and therefore,
all the tasks of G are initial and the theorem obviously holds.

Assume that the theorem holds for every precedence graph of fewer than r+
tasks of positive height and let G be a graph with r+ such tasks. We distinguish
between two cases, according to T’, the set of initial tasks in L(G).

Case IT’[ <f. Thus, the number of initial tasks in L(G) is less than f which is the
number of idle processors at the first slot of S. In this case (S), contains all the initial
tasks of H(G), since we assumed that S is greedy. Furthermore, T T’ and (S) t3 T
is the set of all initial tasks of G. This implies that G contains fewer than tn <= m
components; therefore,/z(G) 0, all the tasks in L(G) are initial and L(G)= T. Thus,
the schedule

s’= ((s), T)I(S)I

for G has the same.length as S, which implies the optimality of the schedule S’ for G
and M.

Case T’l>-f Let A be the length of an optimal M-schedule for G, then by
assumption, A(S)<_-A. Let T be a set of f highest initial tasks of L(G). Denote
--G-((S)II,.] T) and let S* be the schedule obtained from (S)21’’’ ](S)A(S by
removing all tasks not in H(G) and making the resulting schedule greedy. Clearly
A(S*)--< A- 1.

By M8, H(()_ A(G)- (S), which assures that S* contains all the tasks of H(t).
Denote by the length of an optimal schedule for ( that fits/r (mE, md). Since
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A is the length of an optimal schedule for G,
Moreover, the graph G contains fewer than r+ tasks of positive height, because
(S)1 t.J T contains at least one task of positive height. Thus, the inductive hypothesis
can be applied to S*, ensuring the existence of S, an optimal M-schedule for G, with
the property of having idle processors in its last slot in the case A (S) > ;t (S*).

Define S’= ((S) T)IS. We have to prove that S’ is an optimal M-schedule for
G, and that it satisfies ii). Consider the following two subcases:

a) If ;t(S)-< A(S’), then S’ is clearly an optimal M-schedule for G, since by
assumption S is not longer than the length of an optimal M-schedule for G.

b) Otherwise, A(S’)= A(q)+l> A(S). By the definition of S* we get A(S)=>
A (S*) + 1, which implies A(S)> ;t (S*). Now, the inductive assumption guarantees that
S has idle processors only in its last slot. Since (S) U T has no idle processors, this
implies that S’ is an optimal M-schedule for G with idle processors only in its last
slot. This completes the proof.

Now we are ready to prove the basic result of the paper.
THEOREM 4.2. The Elite theorem. Let .G be a precedence graph and M be a profile

of breadth m. Then
i) If E(G) contains more than m tasks, then there exists an optimal schedule for

G and M that starts with m initial tasks of E (G).
ii) If E G) contains m tasks or fewer, then any set ofm highest initial tasks of

G is a first slot of some optimal M-schedule for G.
iii) If E( G)=, then HLF produces an optimal schedule for G and M that has

idle periods only in its last slot.
Proof The proof follows from Theorem 4.1 and the fact that if IE(G)]-< m, then

there exists an optimal schedule for H(G) and M that starts with E(G); otherwise
there exists an optimal schedule which starts with a subset of E(G) of size m. If
E(G) is empty, then H(G) is empty and the empty sequence is an optimal schedule
for H(G).

We will demonstrate the Elite theorem on a few examples. Assume we need to
schedule the precedence graphs of Figs. 4.1 and 4.2 on the profile M (3, 3, 2, 1, 3),
which has breadth three.

In Fig. 4.1, (G)=0 and therefore, in finding an optimal schedule, we start by
choosing m(3) of the four tasks that are above the median. These four tasks are the
Elite of the graph. Not every subset of three tasks of the Elite begins an optimal
schedule. For example, if we choose {1, 2, 3} as the first slot we would not get an

optimal schedule. By the Elite theorem we know that there exists a set of three tasks,
among the tasks in the Elite, that stars an optimal schedule. In G, {1, 2, 5} are such
tasks.

If the precedence graph is the one given in Fig. 4.2, the situation is much simpler:
there exists an optimal schedule, starting with E(G2), and if we remove this set from
the graph we obtain the graph described in Fig. 4.3. The Elite of this graph is empty
(E(G)-) and thus, as we proved in the Elite theorem, HLF produces an optimal
schedule for this graph. Therefore, the tableau T of Table 4.1 describes an optimal
schedule for G, and T2 describes an optimal schedule for the whole graph G2.

LEMMA 4.1. Let G’ be a closed subgraph of G. If the length of any HLF-schedule

for G and M is bounded by A, then the length ofany HLF-schedule for G’ and M is also
bounded by A.

The following results follow from the Elite theorem and Theorem 4.1, and are
useful in showing that HLF produces an optimal schedule for certain classes of
precedence graphs and profiles.
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E(G2)= 1,2,31
M=(’3,3,Z,L,3)
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TABLE 4.1.
The profile schedules for the graph G and G2.

4 5 slot 1 2

8 9 Te" P 1 4
10 P 2 5
II Ps 3 12

6 8
7

LEMMA 4.2. Let h be the length of an optimal M-schedule for G. If h bounds the
length ofevery HLF-scheduleforH(G) and M, then HLFproduces an optimal M-schedule
for G. In particular, if HLF is optimal for H( G), then HLF is optimal for G.

Proof. The proof is by induction on the number of tasks of positive height in G.
The case of no task of positive height is trivial. Assume that the lemma holds for every
precedence graph of up to k tasks of positive height and let G be one with k / such
tasks. Let T be any set of m highest initial tasks of G. Denote by G G-T the
remaining subgraph, and by M’ the remaining profile. It is enough to show that;

a) There exists an optimal M-schedule for G starting with T.
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b) HLF produces an optimal M’-schedule for G’.
Proof of a). If ]E(G)I =< ml, then by the Elite theorem there exists an optimal

M-schedule for G starting with T. Otherwise T
_
E(G), and by assumption it starts

a schedule for H(G) and M of length at most A. Theorem 4.1 implies that it also starts
an optimal schedule for G and M.

Proof of b). The subgraph G’ contains fewer than k + tasks of positive height
because T contains some. Since T starts an optimal M-schedule for G the length of
an optimal schedule for G’ is A- 1. A bounds the length of every HLF-schedule for
H(G) and M. Therefore A bounds the length of every HLF-schedule for H(G)- T
and M’. By property M8 of the median, H(G’) A(G)- T, and thus, by Lemma 4.1,
the length of every HLF-schedule for H(G’) and M’ is bounded by A- 1. Using the
inductive assumption we conclude that HLF produces an optimal schedule for G’ and

5. HLF for inforest and outforest. In this section we study inforests and outforests,
and analyze whether HLF produces an optimal schedule for such precedence graphs.
An inforest (respectively outforest) is a graph in which each task has at most one
immediate successor (respectively one immediate predecessor). HLF is optimal for
specific types of profiles.

A profile M is nondecreasing (resp. nonincreasing) if mi_-< mi+ (resp. mi >= mi+l),
for <=i < d- 1; that is, the number of available processors does not decrease (resp.
not increase) along the profile.

The results obtained in this section hold for more general types of profiles. We
will see that if the profile is nondecreasing or nonincreasing but its amplitude of
variation is bounded by one, then the complexity of the algorithms does not change.

We say that M is a zigzag profile if the following two conditions hold:
i) rn + -> rnj, for all ij such that <_- <_-j <_- d.
ii) mj + _-> mi, for all ij such that -< -<j -<_ d.
If condition i) holds, then M is called a nonincreasing zigzag profile; if ii) holds,

then it is called nondecreasing zigzag profile.
The profile of Table 2.1 is neither a nonincreasing nor a nondecreasing zigzag

profile, since m4-ms---2 and m4--m3---2, respectively. In Table 5.1 we give an
example of a nonincreasing zigzag profile; the profile is M (5, 4, 5, 2, 3, 3, 1). It is a
nonincreasing but not a nondecreasing zigzag profile, since m7-m3----4.

TABLE 5.1
A nonincreasing zigzag profile.

slot 1 2 3 4 ,5 6 7

PI
P
P

P

Three HLF results for forests have appeared in the literature. The first and basic
one is by Hu [Hu61] who showed that HLF produces an optimal schedule for inforests
and straight profiles. Bruno [Br81] proved that HLF is optimal for outforests and
straight profiles. The third result is by Garey et al. [GJ81]; they proved that HLF works
for inforests and nonincreasing profiles in which rn- md 1. We prove that HLF is
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optimal if the precedence graph is an inforest (resp. outforest) and the profile is
nondecreasing zigzag (resp. nonincreasing zigzag). Note that scheduling an inforest
(resp. outforest) on a nonincreasing (resp. nondecreasing) profile is NP-hard if the
breadth of the profile is arbitrary [GJ81 ], [Ma81 ], [Wa81 ] and polynomial if the breadth
of the profile is constant [GJ81], [WaS 1], [DW82c].

THEOREM 5.1. Let G be an outforest and M be a nonincreasing zigzag profile of
breadth m. Then HLF produces an optimal M-schedule for G.

Proof. It suffices to prove the following: let H be an outforest, M be a nonincreas-
ing profile of breadth m; then for any set of rn highest initial tasks of H, there exists
an optimal M-schedule starting with this set. Note that if H contains less than m
initial tasks, then the set of all initial tasks are the only set of m highest initial tasks.

We prove the theorem by applying the Elite theorem and using the inequality

IE(G)l<-m-lml.

The inequality m -< ml holds because M is a nonincreasing zigzag profile of breadth
m. By the definition of H(G), it has fewer than m components. Each component of
H(G) is an outtree having one initial task, and this task is the only task from that
outtree in the Elite of G. This implies that the Elite of G has fewer than m tasks and
(.) holds.

We now prove a similar result for inforests. Let G be a precedence graph; denote
by Gz the subgraph of G obtained by removing all tasks of height zero. Observe that
an optimal schedule for Gz is at least by one shorter than an optimal schedule for G,
since the last slot of any schedule can only have tasks of height zero.

THEOREM 5.2. Let G be an inforest and M be a nondecreasing zigzag profile of
breadth m. Then HLF produces an optimal M-schedule for G.

Proof. Assume to the contrary that the theorem does not hold, and let G be an
inforest with a minimal number of tasks, such that HLF is not optimal (for some
nondecreasing zigzag profile of breadth m). If L(G)# f, then H(G) contains less
tasks than G. Thus, HLF is optimal for H(G), and by Lemma 4.2 it is also optimal
for G. This proves that the minimality of G requires that L(G) , and that G contains
at most m- components.

Let M be any nondecreasing zigzag profile of breadth rn and let )t be the length
of an optimal schedule for G and M. Assume that M has length A. Notice that
mx _-> m- l, i.e., all tasks of G of height zero fit into the last slot of M. The minimality
of G implies that HLF is optimal for Gz and M. But every HLF-schedule for G and
M can be obtained from an HLF-schedule for Gz and M by scheduling all tasks of
height zero in the last slot of M (which was empty) and making the resulting schedule
greedy. The HLF-schedules for G and M are of length A and therefore optimal. This
is a contradiction.

Theorems 5.1 and 5.2 can be further improved using Lemma 4.2. Lemma 4.2 proves
that it is enough to require that only H(G) will be an outforest (resp. inforest) for
Theorem 5.1 (resp. Theorem 5.2) to hold.

The following examples show that Theorems 5.1 and 5.2 are tight. Table 5.2
presents an HLF-schedule for the inforest GI of Fig. 5.1 that fits the profile M
(3, 3, l, l, l) but is not optimal. Notice that M is not a nondecreasing zigzag profile.
Table 5.3 presents a nonoptimal HLF-schedule for the outforest G_ of Fig. 5.2 that
fits the profile M2 (1, 2, 3, 3, 3, 3, 3). Notice that ME is not a nonincreasing zigzag
profile. If one starts with task 3, then it is easy to find an optimal schedule, which is
shorter than the schedule of Table 5.3.
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I 2 8 4

I
8

FG. 5.1

FIG. 5.2

TABLE 5.2
A HLF-schedule for the graph of G

ofFig. 5.1 and theprofileM (3, 3, 1, 1, ).

slot 1 2

Pt i,, 4

P 2 5

TABLE 5.3
A HLF-schedule for the graph G of Fig. 5.2 and the profile

M2- (1, 2, 3, 3, 3, 3, 3).

slot

Pl
Pz
Pa

i 2 3 4 5 7

I 152 4, 6 ,,9,
3 5 7 10

8 ii

6

12
18
14
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6. Opposing forests. We say that a graph is an opposing forest graph if all its
components are intrees or outtrees, that is, it is composed of an inforest and an
outforest. It was shown that HLF is optimal for scheduling an inforest [Hu61] or an
outforest [BrS1] on a straight profile with arbitrary breadth. On the other hand
scheduling an opposing forest on straight profiles with arbitrary breadth is NP-hard
[GJ81 ], [Ma81 ], [Wa81 ].

If the profile is straight and its breadth m is fixed, then scheduling an opposing
forest is polynomial [GJS1], [WAS1], [DW82c]. These algorithms have rather complex
time bounds (m appears in the exponent). We use the results of this section, which
are derived from the Elite theorem, to obtain a linear algorithm for the special case
of straight profiles of breadth three and opposing forests. This improves the O(n log n)
time bound of an algorithm presented in [GJ81] for this case. Our approach also leads
to an O(n log n) algorithm for scheduling an opposing forest on a zigzag profile of
breadth three (either two or three processors in each time slot).

Goyal [Go76] proved that HLF is optimal for series-parallel graphs [LT79] and
straight profiles of breadth two. Since opposing forests are series-parallel graphs, HLF
is also optimal for opposing forests and straight profiles of breadth two. In the case
of scheduling opposing forests we can generalize Goyal’s result to any profile of breadth
two.

THEOREM 6.1. Let G be an opposingforest and M be a profile ofbreadth two. Then
HLF produces an optimal M-schedule for G.

Proof. In case of breadth two H(G) contains at most one component. Therefore,
H(G) is either an intree or an outtree. Note that any profile of breadth two is a zigzag
profile. By Theorem 5.1, Theorem 5.2, and Lemma 4.2 we conclude that HLF produces
an optimal schedule for G. [3

Note that Theorem 6.1 holds also for graphs that are not opposing forests whose
highest component is either an intree or an outtree. It is easy to see that for arbitrary
graphs and zigzag profiles ofbreadth two the Coffman-Graham algorithm [CG72]
produces an optimal schedule. This algorithm corresponds to a restricted version of
HLF. For profiles of breadth three choosing tasks according to highest height does
not necessarily lead to optimal schedules.

For example, HLF does not produce optimal schedules for the graph of Fig. 6.1
and the straight profile of breadth three. Task 8 must be scheduled in an earlier slot
than task 7. But always preferring the outtree tasks does not lead to an optimal schedule
either. We need a criterion that tells us when to prefer outtree tasks over intree tasks.
Such a criterion will be provided by a theorem proven below" If there is an initial
outtree task x of the same height as the whole opposing forest G, then any set of three
highest tasks of G that contains x starts an optimal schedule for G.

Notice that the above criterion does not apply to the graph of Fig. 6.1, since task
8 is not a task of maximum height. In this case, we "flip" the graph. Let GR denote
the graph obtained by reversing all the edges of G. Note that for an opposing forest,
either G or GR contains an outforest task of height h(G).

In the example (Fig. 6.1 and Table 6.1) we can remove the set {12, 17, 18}. Since
we remove this triplet from the reversed graph, we schedule it in the last slot of the
schedule. The remaining subgraph is shown in Fig. 6.2.

Now both the top and the bottom contain an outtree of maximum height. We can
choose either of the sides to continue the algorithm. Assume we choose {9, 15, 16} and

Actually the theorem holds for any series-parallel graph. This can be proven by a simple induction
on the size of the graph using Lemma 4.2.
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11

I 14 15 16 17 18

FIG. 6.1

TABLE 6.1
First step.

sto 1 2 3 4 5 6

P1
P
Pa

17

1 2 9 4 5 6

FIG. 6.2

8

13 14 15 16

TABLE 6.2
Second step.

Pt 9,. 12
P !5 7
Pa 16 18

put them in the next slot from the bottom. We are left with the subgraph of Fig. 6.3.
At this step we have to switch back to the top, because the reversed graph does not
have an outtree of maximum height.

We remove {8, l, 2} from the graph and insert them in the first slot of the schedule.
We now obtain the graph in Fig. 6.4.

The Elite of this graph is empty and therefore by the Elite theorem we know that
HLF produces an optimal schedule for the resulting graph. We complete the schedule
according to HLF filling slots 2, 3 and 4 and obtain Table 6.4.

The above example demonstrates the Flip-Flop algorithm which will be presented
in the next section. A high-level description of the algorithm is given at the beginning
of the next section.
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1 3 4 5 6

7 13 14
FIG. 6.3.

TABLE 6.3
Third step.

slot 1 3 4 5 6

9 19,

15 17
16 18

PI
Pz
P

3 4 5 6 i0

FIG. 6.4.

11

TABLE 6.4
Last step.

sot 1 2 3 4 5 6

P 8 3 6 7 9 I
P 1 4 i0 13 15 17

P 2 5 11 14 1.6 18

The following lemma proves that among tasks of the same height, we can always
schedule tasks of an outtree first.

LEMMA 6.1. Let 5; be an optimal M-schedule for G. Assume that y is an initial task
of an intree component and that x is an initial task of an outtree component, such that
h(x) >- h(y). If yE(S)l and x-(S)l then there exists an optimal M-schedule, S, for G
that starts with x instead of y, that is,

(g)l ((S)l-{y}) U {x}.

Proof. Let crx be a longest path in G that starts with x, and cry the longest path
that starts with y. The path crx is not shorter than Cry, because h(x)>= h(y). The order
of the tasks on these paths is the same order in which they appear in the schedule 5;.

Let k be the first slot in 5; at which the total number of tasks along Cr in slot k and
in all previous slots, is equal to the corresponding number of tasks along Cry. There
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must be such a slot, because S starts with cry and not with crx and the latter is not
shorter than the former. Moreover, no task of cry exists in the slot (S)k, otherwise, k
would not be the first.

Since the component of x is an outtree, every task in crx has at most one immediate
predecessor which is the previous task along the path cry. Similarly, every task along
cry has at most one immediate successor, which is the next task along cry. Therefore,
we can exchange the tasks of cr and Cry which appear in the first k slots, one by one,
respectively. The new schedule obtained is of the same length as S, and none of the
precedence constraints represented by G are violated, simply because every task along
zr moves upward following its only immediate predecessor, and every one along Cry
moves downward preceding its only immediate successor. Since in the kth slot there
is no task of Cry, we can exchange the member of Cry, which is in (S)k, with the last
member of the path Cry that is in a slot of lower index than k. Thus, we have obtained
the desired optimal schedule that starts with the set {(S)I-{y}}U {x}.

In the following theorem we use the Elite theorem to show that the inforest tasks
can be chosen according to height.

THEOREM 6.2. Let 0 be an buttree and I be an inforest. Let x be the root of 0 and
let M be a zigzag profile of breadth three. Then i) or ii) holds.

i) For any set T ofml highest initial tasks ofI there exists an optimal M-schedule
for 0 I starting with T [.J {x}.

ii) For any set T2 ofm highest initial tasks of I there exists an optimal M-schedule
for 0 [_J I starting with T2.

Proof. If H(O I) is an outtree (resp. inforest), then by Theorem 5.1 (resp.
Theorem 5.2) HLF is optimal for H(O [_J I) and M. Furthermore, Lemma 4.2 implies
that HLF is optimal for the whole graph O [_J I and M, and the theorem holds.

Assume that O LI I is a counterexample with the fewest number of vertices. By
the above remarks we know that H(O [_J I) consists of the outtree O and an intree
which we call N. Theorem 4.1 guarantees that if i) or ii) holds for H(O I) and M
then it also holds for O I and M. Thus O t3 1 is not a minimal counterexample unless
L(O I)=f, i.e. I= N.

Let y be the task of N of height zero, and let S be any optimal schedule for
O [.J N and M. Assume y appears in slot k of S and let G’ be the subgraph of O U N
induced by the tasks which are in the first k-1 slots of S. Observe that G’ contains
less tasks than O [_J N. Thus i) or ii) must hold for G’ and M. Since he,(x) hN(x)- 1,
for any task x of N in G’, a set of highest initial tasks from N in G’ is a set of highest
initial tasks of N. We conclude that i) or ii) holds for O U N and M, which contradicts
the minimality of O [_J N. El

The following theorem, which is a consequence of the previous two theorems,
leads to the Flip-Flop algorithm. Note that for any opposing forest G, either G of Gn

contains an outtree task of height h(x).
THEOREM 6.3. Let G be an opposing forest that contains an outtree of height h( G).

Let M be a zigzag profile of breadth three; let x be the initial task of an outtree with
height h( G) and let A be any set ofm highest initial tasks of G that contains x. Then
there exists an optimal schedule that starts with A.

Proof If H(G) is an outforest, then the theorem holds by Theorem 5.1 and Lemma
4.2. Theorem 4.1 implies that it is sufficient to prove the theorem for the case when
L(G) is empty. Thus G consists of an intree and an outtree and we can apply the
previous theorem. If case i) holds, then we are done. Assume ii) holds and let R be
any set of m highest initial tasks of the intree. This starts an optimal schedule for G
and M. Let z be a minimum height task of R. Then A R-{z}LI {x} is an arbitrary
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set of m highest initial tasks of G which contains the root of the outtree. By Theorem
6.1 this set starts an optimal schedule for G and M.

7. The Flip-Flop algorithm. We first give a high-level description of the Flip-Flop
algorithm that produces an optimal schedule for an opposing forest, G, and a zigzag
profile, M, of breadth three. The algorithm has two phases, a Flip-Flop phase and an
HLF phase. In the Flip-Flop phase we deal with the case when G has an intree and
an outtree above the median. We iteratively remove sets of initial tasks from G or
from the reverse graph GR to fill up slots in the schedule we are constructing. To do
this we apply Theorem 6.3, i.e. we remove from G if there is an outtree in G of height
h(G) and from GR if there is an outtree in GR of height h(G). Notice that one of
the two cases must hold and that we always choose a set of highest initial tasks that
contains the root of the highest outtree. The sets of inital tasks removed from G are
put in the first, second, --., time slot, and those removed from GR are put in the
last, second to last,..., time slot.

We stop the Flip-Flop phase and enter the HLF phase as soon as the HLF condition
holds (given below). In the HLF phase we schedule the remaining graph according
to highest-level-first. Our ability to stop the Flip-Flop phase assures the linearity of
the algorithm, because we do not have to keep track of too many components.

The Flip-Flop algorithm produces two sequences of sets. One consists of the sets
which were removed from the top (from G) and the other consists of the set removed
from the bottom (from GR). If the two sequences do not overlap, then we get a valid
schedule for G. In the case of a straight profile we run the Flip-Flop algorithm on a
very long straight profile and then just omit the empty slots between the two sequences
to get an optimal schedule. In this case the Flip-Flop algorithm is linear. For zigzag
profiles another factor of log n is required to find a minimum length valid schedule.

DEFINITION. We say that the HLF-condition holds for the opposing forest G if
there are either only outtree components or only intree components above the median.

LEMMA 7.1. Ifthe HLF-condition holdsfor an opposingforest G, then HLF produces
an optimal schedule for G and any zigzag profile of breadth three.

Proof. Follows from Lemma 4.2, Theorem 5.1 and Theorem 5.2.
The only remaining case in which the HLF-condition does not hold is when the

opposing forest has exactly two components above the median: an outtree, and an
intree with more than one initial task. Note that an intree that contains only one initial
task is a chain of tasks and a chain is also an outtree.

We are now ready to present the Flip-Flop algorithm. The variables /top and ibot
will point to the next empty slot in the corresponding end of the profile M. Initially
they point to the first and last slots of the profile M, respectively. The variable G
represents the opposing forest remaining at the current step of the algorithm. Initially,
G is equal to G, and after each removal of a set of tasks from the graph the variable

becomes the resulting subgraph.

THE FLIP-FLOP ALGORITHM
(*Flip-Flop phase*)
REPEAT
WHILE aot HLF? (G) and,an outtree component is the highest component
of t DO:
BEGIN
Remove the initial task of the highest outtree and any other mitop- highest
initial tasks from G. Add these tasks as slot/top to the schedule S. Increase
/top by one.
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END
IF not HLF? (G) THEN
WHILE not HLF? (R) and an outtree component is the highest component
of tR DO"
BEGIN
Remove the initial task of the highest outtree and any other mibot- highest
initial task from R. Add these tasks as slot ibot to the schedule $. Decrease
ibot by one.

END
UNTIL HL?(G) or HL? (GR)

(*HLF phase*)
IF HLF? (G) THEN continue to fill the schedule S, updating /top by applying
the HLF strategy to G FI.
If HLF () THEN continue to fill the schedule S, updating io by applying
the HLF strategy to FI.

(*check for overlapping of the two sequences*)
IF/top ibot THEN the constructed schedule fits the profile ELSE return failure.

THEOREM 7.1. The Flip-Hop algorithm produces a sched’ule for an opposing forest
G,and a zigzag profile of breadth three. If there is no feasible schedule it returns failure.

Proof. To prove the correctness of the Flip-Flop algorithm it is enough to prove
that if there exists a feasible schedule, then the algorithm will find one. It suffices to
show that all sets of initial tasks that are removed from (resp. R) start some
optimal schedule for (resp. g) and the corresponding profiles. Theorem 6.3 assures
this for the Flip-Flop phase and Lemma 7.1 for the HLF phase.

THEOREM 7.2. The Flip-Flop algorithm can be implemented in time O(n).
Proof. We just sketch how to do this. A more detailed description is given in

[DW2b]. First we outline that with some simple data structures an inforest or an
outforest (and therefore an opposing forest) can be scheduled in time O(n). We keep
the initial tasks of the forest in an array of lists. The ith list contains all initial tasks
of level i. To facilitate the removal of up to three highest initial tasks we remember
the highest three levels that contain initial tasks. After each removal of an initial set
we update the array of lists and redetermine the highest three levels. We conclude that
HLF is linear for any kind of forest. In our algorithm we sometimes remove initial
tasks from the reversed graph according to HLF. This can be handled by keeping dual
data structures for GR. So far we reasoned that the HLF phase is linear.

In the Flip-Flop phase we remove from as well as from R. Thus the heights
of the tasks in G and R might change and we need some more insights in the
algorithm to assure linearity. Observe that if the HLF condition does not hold then
there are at least three tasks in the Elite.. Thus during the entire Flip-Flop phase we
only remove tasks from the highest two components of G which must be an intree
and an outtree. As soon as the outtree splits into several outtrees then at most one of
them will remain above the median and then this outtree will be a highest one.
Components that drop below the median do not need to be considered any more
during the Flip-Flop phase.

It is easy to keep track of the highest outtree vertex in H(() and H(R). But
we also need to remove sets of highest initial tasks from the intree of H(G) and
H(R), even though the heights of the tasks of the intree in H() and H(R) are
changing during the Flip-Flop algorithm. If we remove the highest outtree vertex of
H() (resp. H(R)), then the heights of all intree tasks in H(GR) (resp. H()) drop
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by one. Thus their relative heights in H(t) and H(R) remain the same and we do
not need to update the heights. This completes the sketch of the linear
implimentation.

In the following theorems we show how we can use the Flip-Flop algorithm for
finding optimal schedules.

THEOREM 7.3. The Flip-Flop algorithm implies a linear algorithm to find an optimal
schedule for an opposing forest and a straight profile of breadth three.

Proof. We choose the initial profile to be of length n and run the Flip-Flop
algorithm. The resulting schedule might contain some empty slots in the middle, that
is, after the algorithm terminates /top ibot. By removing the empty slots we get an
optimal schedule.

The proof of Theorem 7.2 does not hold for general zigzag profile, because the
difference in the slots size prevents us from just squeezing the schedule to obtain an
optimal one.

THEOREM 7.4. The Flip-Flop algorithm implies on O( n log n) algorithm to find an
optimal schedule for an opposing forest and a zigzag profile of breadth three.

Proof. We run the Flip-Flop algorithm for different schedule lengths. The legiti-
mate lengths are between n/3 and n; therefore by binary search we can find the shortest
schedule that fits the profile in time O(n log n).

Observe that in Flip-Flop phase only tasks of E() and E(R), respectively, are
removed. Therefore, the algorithm can be easily extended to work for every graph G
for which H(G) is an opposing forest. The basic reason is that tasks that are under
the median will not "pop up" to be above the median, if we remove tasks according
to height from L(G) and L(GR), respectively(see properties M7 and M8 ofthe median).
The correctness proof for this extended algorithm remains the same, using Lemma 4.2.
For the sake of simplicity we restrict ourselves to the case where the whole graph is
an opposing forest. The time complexity for running the Flip-Flop algorithm on a
graph G for which H(G) and H(GR) are opposing forests will be O(n+e), where e
is the number of edges in G. Note that in opposing forests e is O(n).
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ON COMPARABILITY AND PERMUTATION GRAPHS*

JEREMY SPINRADt

Abstract. This paper presents a technique for orienting a comparability graph transitively in O(n2)
time. The best previous algorithm for this problem required (n3) time. When combined with a result in
[SP], we can recognize permutation graphs in O(n2) time, and determine in the same time complexity
whether two permutation graphs are isomorphic. The orientation algorithm can also be used to reduce the
problem of recognizing comparability graphs to that of recognizing transitive graphs. This gives an upper
bound of O(n2"49+) for comparability graph recognition, while the fastest previous algorithms required
(n3) time.

Key words, complexity, algorithms, comparability graphs, transitive orientation, permutation graphs

Background. The transitive orientation problem takes an undirected graph G as
input, and assigns directions to each edge in G so that the resulting graph G’ is
transitive, if such an orientation exists. Previous algorithms for the problem [GH],
[GOL], [PEL] work by orienting a single edge of the graph, and finding other edges
whose orientation is forced. These algorithms have a running time of O(dm), where
d is the maximum vertex degree in the graph, and tn is the number of edges in the
graph. This paper presents an O(n2) algorithm for the orientation problem, where n
is the number of vertices in the graph. The new algorithm orients all edges between
two sets of vertices, and uses a partition refinement scheme to orient the rest of the
edges in the graph.

Some problems seem to be easier to solve for directed graphs than for their
undirected counterparts. For instance, recognizing transitive digraphs seems easier
than recognizing transitively orientable graphs, and recognizing transitive series-parallel
digraphs seems easier than recognizing cographs. However, the problems on undirected
graphs can be solved by applying the transitive orientation algorithm, and then testing
whether the resulting directed graph is in the appropriate class of graphs. The algorithm
presented in this paper reduces the time complexity of the following algorithms"
comparability graph recognition reduces to transitive digraph recognition, from fl(n 3)
[PEL], [GH], [GOL] to O(gl2"49+) [CW], and permutation graph recognition and
isomorphism reduce to the problems for two-dimensional partial orders, from l)(tl 3)
[COL], [PEL] to O(n2) [SP].

Definitions. Definitions of terms not found in this section are standard, and may
be found in [AHU].

A directed graph is transitive if the existence of the edges (x, y) and (y, z) in E
implies the existence of (x, z) in E.

If there are three vertices x, y and z such that (x, y) and (y, z) are edges but (x, z)
is not an edge, there is a transitivity violation involving x, y and z. A directed graph
is transitive if and only if there are no transitivity violations between any trio of vertices.

An undirected graph can be oriented into a directed graph by transforming each
undirected edge (x, y) in E into a directed edge (x, y) or (y, x).

An undirected graph is a comparability graph if it can be oriented into a transitive
graph.
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An undirected graph G is a permutation graph if there is some pair of permutations
of the vertex set P, P: such that there is an edge between x and y in G if and only
if x precedes y in P and P:, or y precedes x in P and P2. Every permutation graph
is a comparability graph; the converse is not true.

We say that two vertices u, v are related if there is an edge between u and v. This
edge may be directed or undirected. If there is no edge between the two vertices, then
u and v are unrelated.

Modular decomposition. The algorithms presented in this paper rely on a technique
called "modular decomposition", which was developed in [SP]. This section gives a
definition of the modular decomposition of a graph. The definitions apply to both
directed and undirected graphs.

In the remainder of the present section, definitions apply to a simple graph
G V, E), where V is the set of vertices, and E is the set of edges.

A module is a subset M of vertices of V with the property that every vertex in
V-M is related to all vertices in M or no vertices in M. Note that between any two
modules there are either no edges or all possible edges (as in a complete bipartite graph).

Let M’ be the graph with vertex set M, and an undirected edge edge between u
and v if and only if there is an edge between u and v in G. M is a connected module
if and only if M’ is a connected graph.

Let M" be the graph with vertex set M, and an undirected edge between u and
v if and only if there is no edge between u and v in G. M is complement-connected
if and only if M" is a connected graph.

Suppose a module M is not connected. M can be partitioned into two modules
M, M: such that no vertex in M is related to a vertex in M2. Therefore, unconnected
modules are called parallel modules, due to the similarity between an unconnected
module and a parallel connection in a series-parallel graph. If M is not complement-
connected, M can be partitioned into M1, M: such that every vertex in Ml is related
to every vertex in M:. Thus, a module which is not complement-connected is called
a series module. A module which is both connected and complement-connected is
called a neighborhood module.

In Fig. 1, module J is a series module, module K is a parallel module, and module
L is a neighborhood module. Every module is exactly one of the types series, parallel
or neighborhood. By definition, a module cannot be both a neighborhood module and
a series or parallel module. A module cannot be a series module and a parallel module;
if the module is not connected, every vertex is one component will be connected to
every vertex which is not in that component in the complement graph, so the module
will be complement-connected.

J K L

FIG.
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It is easy to see that a series or parallel module M can be decomposed into the
connected components of M’ or M". It is more difficult to see how a neighborhood
module can be decomposed.

A module M is a maximal submodule of a neighborhood module N if no proper
submodule of N contains M. In [SP], there is a proof that every vertex contained in
a neighborhood module N is in a unique maximal submodule of N. Thus, the maximal
modules partition the vertex set of N.

The following recursive algorithm can be used to divide any graph G into a unique
tree structure which will be called the modular decomposition of G.

First, consider the module M consisting of the entire graph. If M is a single
vertex, halt; the vertex itself is the modular decomposition of G.

M is either a series, parallel or neighborhood module. Create a node in the
structure labeled with S, P or N, depending on the type of the module.

Let K be a node representing a parallel (series) module, and let M1, M2,’’’, Mi
be the connected components of M’(M"). Find the modular decomposition of each
M, and make these the children of node K.

Let K be a node representing a neighborhood module M, and let MI, M2," ", Mi
be the maximal submodules of M. Find the modular decomposition of each M, and
make these the children of node K.

The result of this process is a tree with the vertices of G as leaves. The structure
is an extension of the tree representation of series-parallel graphs given in [VTL];
series-parallel partial orders are exactly those graphs which have no neighborhood
nodes in their modular decomposition. There are O(n) vertices in the modular
decomposition of a graph.

Figure 2 gives a sample graph with its modular decomposition.

a N

c d d S e f

e -_f a b

FIG. 2

A representative graph of a module M in the modular decomposition is a graph
induced by a subset consisting of a single vertex from each maximal submodule of M.
The representative graph is independent of the choice of representative vertices from
the maximal submodules.

In [SP] and [MS], algorithms are developed which find the modular decomposition
of a graph in O(n2) time. The algorithms in this paper will assume the existence of
the modular decomposition of the graph.

Orienting comparability graphs: An overview. This section presents the outline of
an algorithm which orients comparability graphs into transitive graphs in O(n2) time.
The algorithm performs a postorder traversal of the modular decomposition tree,
orienting each module transitively when given orientations for all submodules. Parallel
and series modules prove to be easy to orient; orientation of neighborhood modules
is accomplished by a partition refinement scheme.
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Lemma 1 allows the problem to be simplified. It says that we only need to find
transitive orientations of each representative graph in the modular decomposition of G.

LEMMA 1. There is a transitive orientation of G if and only if there is a transitive
orientation of every representative graph in the modular decomposition of G.

Proof. Let T be any transitive orientation of G. We can construct a transitive
orientation for the representative graph of any module M as follows. For each vertex
v in the representative graph of M, let r(v) be any representative vertex in the submodule
corresponding to v. An edge is directed from x to y in the representative graph of M
if and only if the edge (r(x), r(y)) is directed from r(x) to r(y) in T. If there were
three vertices x, y, z of the representative graph which had edges directed from x to

y, and from y to z, with no edge directed from x to z, then in T there would be
edges from r(s) to r(y) and from r(y) to r(z), but there would be no edge from r(x)
to r(z). Since T has a transitive orientation, this cannot occur. Therefore, T defines
a transitive orientation of each representative graph in a modular decomposition
of G.

Suppose we are given transitive orientations of each representative graph in the
modular decompositions of G. There is a transitive orientation T’ of G defined as
follows: for each pair of vertices x, y of G, let M be the smallest module in the modular
decomposition of G which contains both x and y; i.e., the first common ancestor in
the modular decomposition tree. Let X be the vertex in the representative graph of
M which corresponds to the submodule of M that contains x, and let Y be the vertex
in the representative graph of M which corresponds to the submodule that contains
y. If there is an edge (x, y) in G, direct the edge from x to y in T’ if and only if the
edge (X, Y) is directed from X to Y in the representative graph of M.

We will show that T’ is transitive. Let u, v and w be any three vertices of G. Let
M be the smallest module of the modular decomposition which contains at least two
of {u, v, w}, and let M’ be the smallest module of the modular decomposition which
contains all three of {u, v, w}. Suppose M contains exactly two of these vertices, let
us say u and v, but M does not contain w. Since u and v are in a module which does
not contain w, both u and v are in the same submodule of M’. There is an edge from
(to) w to (from) v in T’ if and only if there is an edge from (to) w to (from) u in T’.
Therefore, there cannot be a transitivity violation involving u, v and w. If M contains
all three vertices, then M- M’, and any transitivity violation between u, v and w
would imply a transitivity violation in the representative graph of M’, as edges between
these vertices are directed in the same direction as the corresponding vertices in the
representative graphs. Since there cannot be any transitivity violations, T’ must be
transitive.

It is important to note that the procedure described in Lemma to construct a
transitive orientation of G from transitive orientations of every representative graph
in the modular decomposition can be implemented to run in O(n2) time. This can be
done by attaching to each vertex in every representative graph a list of all vertices in
the corresponding module. Each edge (x, y) in each representative graph is examined,
and edges between the two submodules are oriented in the appropriate direction. An
edge between x and y can only be directed once, while examining the representative
graph of the smallest module containing x and y in the modular decomposition, so
the whole procedure takes O(n2) time.

The orientation algorithm works by orienting each representative graph in the
modular decomposition. Vertices and parallel modules are handled trivially; there are
no edges to orient. Series modules are also easy to orient; choose any permutation of
the vertex set of the representative graph, treat it as a total order and orient the edges
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in the appropriate directions. The orientation ofneighborhood modules is more difficult,
and is covered in the next section.

Orientation of neighborhood modules. The only remaining problem in the orienta-
tion of comparability graphs is in the orientation of a neighborhood module in which
all submodules can be thought of as single vertices. A neighborhood module M with
no submodules has a single transitive orientation, up to reversal of all edges, as will
be seen later; this is what makes the modular decomposition useful for the orientation
problem. The algorithm works in two stages; first, the algorithm finds a subset S of
M and orients all edges between S and M- S in directions which are consistent with
a transitive orientation of M. Lemma 2 proves that a transitive orientation of M can
be constructed from this in O(k2) time, where k is the number of vertices in M.

LEMMA 2. Let M be a neighborhood module of comparability graph with k vertices

and only trivial submodules. Let S be a subset ofM such that every edge between S and
M- S is oriented in directions compatible with a transitive orientation of M. M can be
transitively oriented in O(k2) time.

Proof. Partition M into two blocks, S and M-S. We will refine these blocks,
maintaining the property that all edges between blocks are oriented in a manner
compatible with a transitive orientation of M,until all blocks consist of a single vertex.
When the algorithm halts, between each two blocks of the partition are either no edges
or all possibl.e edges, implying that the blocks are modules; therefore, each block must
be trivial when the algorithm halts, and all edges must be oriented. The algorithm for
refinement is presented in more detail in Appendix 1; we will present the general idea
in this section.

A vertex v splits a block B if there are vertices bl, b_ B such that (v, b)6 E, and
(v, b2)C:E.

At any time during this algorithm, a vertex v has attempted to split blocks
containing some set of vertices, and has not attempted to split blocks containing some
other set of vertices. For each vertex v, M can be divided into three sets"

SAMEBLOCK (v). The vertices currently in the same block as v. The algorithm
does not attempt to split the block it is in.

ALREADYSPLIT (v). The vertices in blocks which have been split sometime
previously in the algorithm. These blocks would not be split by v, since v has already
split the block into a subblock of vertices related to v, and a subblock of vertices
unrelated to v.

ACTIVE (v). The vertices which are not in the same block as v, and not in blocks
which have been split already by v. The algorithm will take some vertex v which ha
active vertices, and try to split some block which contains a vertex in ACTIVE (v).

Originally, for each vertex s S, SAMEBLOCK (s) S, ALREADYSPLIT (s), and ACTIVE (s) M- S. Similarly, for any m M- S, SAMEBLOCK (m)=
M-S, ALREADYSPLIT(m)=, and ACTIVE (m)= S. All vertices for which
ACTIVE (v) are kept in a list called SPLITTER; originally, all vertices in M are
placed in SPLITTER.

Any vertex v from SPLITTER is chosen, and is used to split a block which contains
vertices in ACTIVE (v). The algorithm chooses any vertex in ACTIVE (v) and finds
its block B. We divide B into B {b: b B, (b, v) E} and B {b: b B, (b, v) E}.
It is easy to orient all edges between B and B; edges from v to B are already oriented,
so an edge (bl B, b2 B) is oriented from b to b if and only if the edge (b, v) is
oriented from bl to v. If the edge were oriented in the other direction, there would be
a path from b to v, while there is no edge between b and v. Therefore, we maintain
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the property that all edges between blocks are oriented consistently with a transitive
orientation of M.

The algorithm must keep track of which vertices are active for each other vertex.
This requires the following operations after the block B is split by v. All vertices in B
are moved from ACTIVE (v) to ALREADYSPLIT (v). If ACTIVE (v)=, v is
removed from SPLITTER. If B and B2 are both nonempty, the vertices in B are
moved from SAMEBLOCK (b2) to ACTIVE (b) for each vertex b2 B_, and the vertices
in B2 are moved from SAMEBLOCK (b) to ACTIVE (b) for each bl B. Any vertex
w which had an active set and has some vertex inserted into ACTIVE (w) is put
into SPLITTER.

The algorithm continues choosing a vertex v from SPLITTER and splits a block
containing vertices in ACTIVE (v) until SPLITTER becomes empty. Note that for a
vertex v, any other vertex can only move from SAMEBLOCK (v) to ACTIVE (v), or
from ACTIVE (v) to ALREADYSPLIT (v).

The adjacency matrix entry (x, y) is examined at most three times. The first time
(x, y) can be examined is when the block containing x and y is split into a block
containing x, and another containing y, and at this time x is moved from SAME-
BLOCK (y) to ACTIVE (y) and y is moved from SAMEBLOCK (x) to ACTIVE (x).
The entry can also be examined once when the block containing x is split by y; at
this time, x is moved from ACTIVE (y) to ALREADYSPLIT (y). Finally, the entry
can be examined when the block containing y is split by x, and y is moved from
ACTIVE (x) to ALREADYSPLIT (x). Since each entry is examined a constant number
of times, this procedure takes O(k) time.

Finally, we must prove that every block after the call REFINE (S, M- S) consists
of a single vertex; this will show that all edges have been oriented. Suppose a block
B has more than one vertex, and that there are no. vertices in SPLITTER. This means
that for every vertex in M- B, B is a subset of ALREADYSPLIT (v). Thus, no vertex
outside B splits B, so B is a submodule. Since M has no nontrivial submodules, B
cannot exist.

The problem has been reduced to finding a set S such that all edges between S
and M- S are oriented in directions consistent with a transitive orientation of M. The
algorithm creates a "skeleton" of the graph, where each vertex in M- S has an oriented
edge to some vertex x which is unrelated to every vertex in S. This makes it easy to
orient edges between S and M-S, as the orientation must not allow a path between
x and the vertex in S.

We start by choosing an initial edge to orient. Let a and z be any pair of unrelated
vertices in M. There must be some vertex which has an edge to exactly one of {a, z},
or a and z would form a submodule. Without loss of generality, assume there is an
edge (a, b) such that z is unrelated to both a and b. The edge (a, b) is oriented in an
arbitrary direction. We then divide M into three sets:

U. Initially, the subset of M- {a, b} which is unrelated to both a and b. In general,
this is the set of vertices which are unrelated to all vertices which have already been
examined.

R. Initially, the subset of M-{a, b} which is related to both a and b. In general,
this is the set of vertices which are related to all vertices which have already been
examined.

B. Initially, {a, b} U the subset of M-{a, b} which is related to exactly one of
a, b. In general, this is the set of vertices which are related to some, but not all, of the
vertices which have already been examined.

S will be a subset of U, and we orient an edge from a vertex when it is brought
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into B. This edge will be oriented to a vertex which has already been examined, so
the oriented edge will always be to a vertex unrelated to every vertex in S.

We orient the edges between any initial vertex v of B a or b and that vertex of
{a, b} it is related to in the direction which does not allow a path between v and that
vertex of {a, b} which is unrelated to v. Vertices in B are then put in a first in, first
out queue; each vertex is examined in order to bring other vertices into B. We say a
vertex is examined when it is removed from the queue, and a and b are presumed to
be removed from the queue at the beginning of the algorithm.

While the set U is not empty, i.e., there is still some vertex unrelated to all vertices
examined thus far, we perform the following operations. The vertex v at the front of
B’s queue is removed from the queue. We note that there is always an oriented edge
between v and some vertex x such that x has already been examined.

We try to use v to bring new vertices into B. We first look at the relationships
between v and the set R; if any vertex w R is unrelated to v, we bring w into B.
There is an oriented edge between v and x, and x was examined before v and must
be related to w. The edge between x and w can be oriented in the direction which
does not create a path between v and w.

We then look at the relationships between v and U. If there is any vertex w U
which is related to v, we bring w into B, unless there is no vertex in U which is
unrelated to v; in the latter case, U becomes the set S. There is an oriented edge
between x and v, and x was examined before v and must be unrelated to w. The edge
between v and w can be oriented in the direction which does not create a path between
x and w.

Eventually, we find a set S, which would have been the last set of vertices of U
to be brought into B. Note that every vertex in B at this time has an oriented edge to
some vertex which has already been examined, and therefore must be unrelated to
every vertex in S. The only remaining problem is to orient an edge from each vertex
in R to a vertex which is unrelated to every vertex in S.

We call the vertex which removed the set S from U e(S). We note that e(S)
cannot be a or b, since we chose our initial edge (a, b) so that some vertex z was
unrelated to both a and b. Therefore, there must be some vertex which was examined
before e(S) which was unrelated to e(S), as well as some vertex which was examined
before e(S) which has an oriented edge to e(S). Let u(e(S)) be a vertex examined
before e(S) which is unrelated to e(S), and let o(e(S)) be the vertex which was
removed from the queue before e(S), and has an oriented edge to e(S). Note that
we can orient all edges between S and e(S) so as to avoid any path between S and
o(e(S)).

The vertices in S are now put on the queue along with the remaining vertices of
B. We continue as before, examining the vertex v at the front of the queue, and bringing
into B any vertices of R which are unrelated to v. If v is not in S, we can orient an
edge from any vertex w which is brought into B as we did before; there is an oriented
edge between v and a vertex x examined before e(S), and we can orient the edge
between x and w so that there is no path between v and w. If v is in S, we must use
a different procedure, which is described in the following paragraph.

Let v be a vertex in S, and let w be a vertex which has no edge to v, but has edges
to all vertices examined before v. We want to orient an edge between w and some
vertex which was examined before e(S); this will allow us to orient all edges between
w and $. We can orient the edge between e(S) and v so that there is no path between
v and o(e(S)). Once this edge has been oriented, we can orient the edge between w
and e(S) so that there is no path between v and w. Finally, we orient the edge between
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u(e(S)) and w so that there is no path between u(e(S)) and e(S). See Fig. 3 for an
example of this orientation.

e( S) w

u(eo(e(S))

FIG. 3

After this procedure, there will be an oriented edge between each vertex in M- S
and a vertex v which was examined before e(S); v must be unrelated to every vertex
in S. This allows us to orient all edges between S and M-S, and we can use the
procedure REFINE of Appendix 1, described in Lemma 2, to develop a transitive
orientation for the module. Given the orientation algorithm for a module, it is easy to
orient the graph, as was described in the previous section. Since the orientation of the
module can be done in O(k2) time, the entire graph can be oriented in O(n2) time.

A version of this procedure written in pseudocode is given in Appendix 2. Figure
4 shows a sample module M, and shows the skeleton derived from M using this
algorithm. In the example, S {s}, and vertices are removed from the queue in the
following order with the vertex that brought each into B in parenthesis: a(b), b(a),
d(a), e(b), c(d), s(e), r(c).

c c

e---- s e=-

FIG. 4

Recognizing comparability graphs. The O(n2) comparability graph orientation
algorithm does not automatically imply the existence of an O(n2) comparability graph
recognition algorithm. The orientation algorithm assigns an orientation to any undirec-
ted graph G, and says that this orientation is transitive if and only if G is a comparability
graph. The best way known to the author to recognize a transitive graph is to compare
the graph to its transitive closure. The transitive closure can be computed in slightly
less than O(r/2"49+) time [CW]; this is the dominant cost in a comparability graph
recognition algorithm.

Using the reduction described in the previous paragraph, a new algorithm for
recognizing transitive graphs in time f(n) would allow us to recognize comparability
graphs is O(max {f(n), n2}) time. In this section, we will show that the reduction holds
in both directions, i.e., a faster comparability graph recognition algorithm would give
a faster algorithm for recognizing transitive graphs. More precisely, any algorithm for
recognizing comparability graphs in time f(n) would allow us to recognize transitive
graphs in O(max {y(n), m}) time.
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Let G (V, E) be a digraph to be tested for transitivity. Assume [El> 0. Construct
G’, an undirected graph whose vertices are three copies, V, V2 and V3, of V, and two
distinguished vertices s and t. The edges of G’ will be the edges (s, v) and (v3, t) for
each v V, and the edges (v, w2), (v, w3) and (v2, w3) for each edge (v, w) E. We
will prove that G is transitive if and only if G’ is a comparability graph.

Suppose that G is transitive. G’ can be directed in the following fashion: Each
edge (s, v) is directed from v to s, each edge (t, v) is directed from to v, all edges
between V and V2 are directed from V to V2, all edges between V and V are directed
from V1 to V3, and all edges between V2 and V3 are directed from V to V3. Suppose
there are edges from x’ to y’ and from y’ to z’ in the directed version of G’. Any vertex
v’ which has edges both entering and leaving v’ must be in V; therefore y’ must be
in V2. By the orientation of G’, x’ must be a vertex of V such that (x, y) E, and z’
must be a vertex of V3 such that (y, z) E. Since G is transitive, (x, z) E, and there
will be an edge directed from x’ to z’ in the directed version of G’. There cannot be
any transitivity violations in this orientation of G’, so G’ is a comparability graph.

Suppose that G’ is a comparability graph. Let v’ be any vertex V. There must
be some transitive orientation T of G’ in which the edge (v’, s) is directed from v’ to
s, since the reversal of a transitive orientation is also transitive. There cannot be a path
in T between v’ and any vertices V, so all edges between s and V must be directed
from V to s in T. No vertex in V or V3 is adjacent to s in G’, so all edges between
VI and V2 must be directed from V to V in T, and all edges between VI and V3 must
be directed from V to V3. Since IE] > 0, there must be some w’ V3 such that there is
an edge directed from a vertex in V to w’ in T. There cannot be a path between and
a vertex in V in T, so the edge (w’, t) must be directed from to w’. There cannot be
a path in T between w’ and any vertices V3, so all edges between and V3 must be
directed from to V3 in T. There cannot be a path between any vertex V2 and in
T, so all edges between V2 and V3 must be directed from V2 to V3 in T. Consider any
three vertices x, y, z of V. If the edges (x, y) and (y, z) are in E, there must be edges
(X, Y2) and (y, z3) in T. Since T is a transitive orientation of G’, there must be an
edge (x, z3) in T; this can only happen if there is an edge (x, z) in E. If (x, y) and
(y, z) are in E, (x, z) must be in E, so G is transitive.

It should be noted that comparability graph recognition has been used as a
subroutine in recognition algorithms for other classes of graphs. Comparability graph
recognition is used as part of the standard algorithm for permutation graph recognition
(for example, see [GOL2]); a new permutation graph recognition algorithm is described
in the next section. Recognition of comparability graphs is also the slowest part of the
best known algorithm for recognizing circular permutation graphs [RU], so the com-
plexity of circular permutation graph recognition is reduced from O(n3) to O(n2"49+)
using the algorithm described in this paper.

Permutation graphs. There is a more direct result using the orientation algorithm
in the recognition of permutation graphs. A permutation graph is an undirected graph
which can be represented by two permutations P, Q of the vertex set such that there
is an edge between u and v if and only if one of the following two conditions is true:

(1) u precedes v in both P and Q.
(2) v precedes u in both P and Q.
Permutation graphs have been studied by Pnueli, Even and Lempel [PEL], Col-

bourne [COL], and others. Golumbic [GOL2] demonstrates that permutation graphs
can be used to model a number of problems dealing with memory management and
other areas. Previous algorithms to recognize permutation graphs are based on the
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characterization that a graph is a permutation graph if and only if the graph and its
complement are comparability graphs [PEL]. In [DM], there is a proof that a transitive
graph is a two dimensional partial order if and only if the complement graph is a
comparability graph. Therefore, a transitive orientation of an undirected graph G is
a two dimensional partial order if and only if G is a permutation graph.

In [SV], an O(n:z) algorithm is presented for recognizing two dimensional partial
orders. From the argument above, the same algorithm can be aased to recognize
permutation graphs in O(n2) time. The algorithm for recognition of two dimensional
partial orders works by taking a pair of unrelated vertices a and b, and setting a in
front of b in one list. This forces a particular ordering of the vertices in a single
neighborhood module, using a procedure similar to the REFINE algorithm in Appendix
1. In fact, the transitive orientation algorithm in this paper can also be used directly
to solve the permutation graph recognition problem in O(n2) time, as is indicated by
Golumbic [GOL2, Ex. 8, p. 169].

The isomorphism algorithm for two dimensional partial orders which is presented
in [SP] can also be adapted to permutation graphs, to get an O(n2) isomorphism
algorithm. The fastest previous solution to this problem is an O(n3) algorithm presented
in [COL].

The new algorithm makes a postorder traversal of the modular decomposition of
the graphs which are being tested for isomorphism, deterrfiining for each module M
which modules in the other decomposition are isomorphic to M. Assuming that all
isomorphisms of the children of M are known, it is easy to determine which modules
are isomorphic to a series or parallel module M; a module of the same type is
isomorphic if we can pair off isomorphic children, and all children of both modules
are paired. For neighborhood modules, we rely on the fact that there are only two
permutations of the vertex set which represent the module; this reduces the problem
to pairing off children in the same spot in the permutations.

Summary and open problems. We have presented algorithms which improve the
time complexity of a number of problems on comparability graphs; transitive orienta-
tion of comparability graphs, recognition of comparability graphs, recognition of
permutation graphs and isomorphism of permutation graphs. These algorithms run in
O(n2) time, with the exception of the comparability graph recognition algorithm, which
runs in O(n2"49+) time.

We have proved that any improvements in algorithms for recognizing transitive
graphs will give us faster algorithms for recognizing comparability graphs, and vice-
versa. It is not at all clear that these problems are as hard as computing the transitive
closure of the graph. Further research is needed to determine whether the recognition
problems are easier than the computation of transitive closure, or if they have the
same complexity.

In addition, other uses ofthe modular decomposition of a graph may be interesting.
Modular decomposition seems to be a natural way of decomposing transitive graphs,
and can be used both as an aid in developing algorithms, and as a method for storing
large transitive graphs.

Appendix 1. This section gives a detailed specification of the partition refinement
scheme outlined in Lemma 2. The input to this procedure is a pair of sets of vertices
B, B2 such that every edge between Bl and B2 is oriented in a manner consistent with
a transitive orientation of B Ba. If B B is the vertex set of a representative graph
of a neighborhood module in a comparability graph, the output of the procedure will
be a transitive orientation of B U B.
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REFINE (B1, B2)
for each bl BI do begin
SAMEBLOCK (b) := el;
ACTIVE (b) := B2;
ALREADYSPLIT (b):= ;

end;
for each b2 Bl do begin
SAMEBLOCK (b2):= B2;
ACTIVE (b2) := B;
ALREADYSPLIT (b2):= ;

end;
SPLITTER := B [_1B;
while SPLITTER # do begin

v := any vertex from SPLITTER;
splittee := any vertex in ACTIVE (v);
B := the block which contains splittee;
BI:={bB: (b, v) E};
Bu := {be B: (b, v) E};
for each x Bu do

for each y e BR do
if (x, y) e E then

orient (x, y) so there is no path between x and v through y;
for each x Bu do begin
SAMEBLOCK (x):= SAMEBLOCK (x) BR;
if ACTIVE (x) and BR # then
add x to SPLITTER;

ACTIVE (x) := ACTIVE (x) U BR
end;
for each x BR do begin
SAMEBLOCK (x):= SAMEBLOCK (x)-
if ACTIVE (x) and By # then
add x to SPLITTER;

ACTIVE (x) := ACTIVE (x) [_J Bt
end;
ACTIVE (v) := ACTIVE (v) B;
ALREADYSPLIT (v):= ALREADYSPLIT (v) [.J B;
if ACTIVE (v) then SPLITTER := SPLITTER-.{ v};

end;

Appendix 2. The following algorithm finds a set S and orients all edges between
M- S in directions consistent with a transitive orientation of M. Input to the algorithm
is a neighborhood module M of the modular decomposition, and a pair of vertices
a, b such that a and b are related, and some vertex is unrelated to both a and b.

ALGORITHM SKELETON (a, b);
for each v .M do directed (v) := ;
orient edge (a, b) as a --> b;
directed (a) := b;
directed (b) := a
U:= {m s M: (m, a) E, (m, b) E};
R:= {m M: (m, a) E, (m, b) E}
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N(b):={m M-R: (m, b) E};
N(a):= {m M-R: (m, a) E};
for each rn N(b) do begin

orient edge (b, m) as rn-> b;
directed (m) := b;

end;
for each rn N(a) do begin

orient edge (a, m) as a--> m;
directed (m) := a ;.

end;
QUEUE: N(a)tA N(b);
while U do begin

v := vertex at front of QUEUE;
QUEUE := QUEUE- {v};
for each vertex w R do

if (v, w) E do begin
R:=R-{w};
orient (w, directed (v)) so that there is no path between w and v;
directed (w) := directed (v);
append w to QUEUE;

end;
S:=;
for each vertex w U do

if (v, w) E do begin
U:= U-{w};
orient (w, v) so that there is no path between w and directed (v);
directed (w) := v;
append w to QUEUE;
S:=SU{w};

end;
end;
e(S):=v;
orient all edges between e(S) and $ so that there is no path between S and

directed e(S));
u(e(S)) := any x s.t. (x, e(s)) : E, x already removed from QUEUE
while R do begin

v := vertex at front of QUEUE;
QUEUE := QUEUE- {v};
if v S do begin

for each vertex w W do
if (v, w) E do begin
R:=R-{w};
orient (w, directed (v)) so that there is no path between w and v;
directed (w) :-- directed (v);
append w to QUEUE;

end;
end;
if v S do begin

for each vertex w R do
if (v, w) .E do begin
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R:-R-(w;
orient (w, e(S)) so that there is no path between v and w (through e(S));
orient (u(e(S)), w) so that there is no path between u(e(S)) and e(S)

(through w);
directed (w):- u(e(S));
append w to QUEUE;

end;
end;
end;
for each vertex v S do

for each vertex w M- S do
if (v, w) E then

orient (v, w) so there is no path between v and directed (w);
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THE IMPLICATION PROBLEM FOR FUNCTIONAL AND INCLUSION
DEPENDENCIES IS UNDECIDABLE*

ASHOK K. CHANDRA- AND MOSHE Y. VARDI$

Abstract. The implication problem for a class of dependencies is the following: given a finite set of
dependencies, determine if they logically imply another dependency. We show that the implication problem
is undecidable for the class of functional and inclusion dependencies. This holds true even if the inclusion
dependencies are restricted to be binary. It may be noted that the implication problem is known to be
decidable for functional and unary inclusion dependencies and also for inclusion dependencies without
functional dependencies.

Key words, axiomatization, data base dependency, functional dependency, inclusion dependency, recur-
sive inseparability, relational data base, undecidability

1. Introduction. Functional and inclusion dependencies are the most fundamental
database integrity constraints, and they are used in essentially all data models. Their
interaction has recently investigated in several papers [CFP], [FV], [JK].

In order to utilize dependencies in the database design process one needs to be
able to test for logical implication, i.e., does a set of dependencies logically imply
another dependency [Be]. The implication problem is one of the prominent issues in
dependency theory.

It is known that, when only functional dependencies are given or when only
inclusion dependencies are given, the implication problem is decidable [BB], [CFP].
In this note we show that when functional and inclusion dependencies are considered
simultaneously the problem becomes undecidable. (This result was also obtained
independently by Mitchel [M2].) We also show that implication for functional and
inclusion dependencies is reducible to implication for functional and binary inclusion
dependencies, and we study the consequences of the undecidability result on the issue
of obtaining an effective axiomatization for implication.

2. Definitions. A relation scheme U is a finite sequence C,. ., C, of attributes,
which, intuitively, serve as column headings. A tuple over U is a sequence
of the same length as U. A relation R over U is a set (not necessarily finite) of tuples
over U. U is called the scheme of R. If Ci,, , Cim is a sequence of members of U, then

t[ Ci,, Ci] ci,, Ci >,
and

R[ Ci,, Cik { t[ C,, C]" R}.

A Junctional dependency [Co] (abbr. fd) is a statement A,..., Ak B1,’’’, BI,
where k, >= 0 and the A’s and B’s are attributes. A relation R whose scheme includes
A,..., Ak, Bt,..., B satisfies this fd if, for all tuples s, t R, if s[A,..., Ak]
t[A, ., Ak] then S[Bl,. ", BI] t[B, ., BI].

* Received by the editors December 22, 1983.
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An inclusion dependency [Fa] (abbr. ind) is a statement A,. , Ak B,. , Bk,
where the A’s and B’s are attributes. A relation R whose scheme includes A1," Ak,
B, , Bk satisfies this ind if R[A1, ", Akin_ R[B, , Bk].

A relation R satisfies a set D of dependencies if it satisfies all dependencies in
D. A set D is said to imply a dependency d, denoted Dd, if d is satisfied by all
relations that satisfy D. D is said to finitely imply d, denoted Dfd, if d is satisfied
by all finite relations that satisfy D. Clearly, if Dd then also Dfd. But it is shown
in [CFP] that the converse is not always the case. From a practical point of view, finite
implication is the more interesting notion.

The implication problem for fd’s and ind’s is to decide, given a finite set D of fd’s
and ind’s and an fd or an ind d, whether Dd. The finite implication problem is to
decide whether Dyd. In the following section we show that both problems are
undecidable.

3. The main result. The problem that we use for our undecidability proof is the
word problem for (finite) monoids. Recall that a monoid is an algebra with an associative
binary operation and a unit element 1. Let 5: be an alphabet. E* is the free monoid
generated by E. Now let E {ai fli: _-< i-<_ n} be a finite set of equalities, and let e
be an additional equality a =/3, where a,/3, a,/3 E*. We say that E (finitely) implies
e, denoted Ee (Eye), if for every (finite) monoid M and homomorphism h:E* - M,
if h(a) h(fl) for -< i_-< n, then also h(a) h(fl). The word problem for (finite)
monoids is to decide, given E and e, whether Ee (Efe). The word problem for
monoids was shown to be undecidable in [Po] and the word problem for finite monoids
was shown to be undecidable in [Gu]. These results also follow from a recursive
inseparability result of [GL]. Two sets and are recursively inseparable if there is
no recursive set II such that

_
II but and II are disjoint. If and are recursively

inseparable then clearly they are both not recursive.
THEOREM 1. [GL] The set {(E, e):Ee} is recursively inseparable from the set

{(E, e) Efe}, where E ranges overfinite sets of equalities and e ranges over equalities.
THEOREM 2. The set {(D, d):Dd} is recursively inseparable from the set

{(D, d) Dfd}, where D ranges overfinite sets of fd’ s and ind’ s and d ranges over ind’ s.

Proof. We reduce the word problem for (finite) monoids to (finite) implication
of ind’s.

Let E be our alphabet. Let E {ai-/3i: _-< _-< n} be a set of equalities, and let e
be another equality a =/3. We call every prefix of a,/3, ai, or fli, for <-i<_-n, a prefix
(note that the null string A is a prefix, and so is a, etc.). We use a relation R whose
relation scheme has the following attributes:

(1) 3’, for each prefix ,;
(2) X, Y, and Z;
(3) Ya, for each a E;
(4) Za, for each a

Intuitively, the 7’s represent the corresponding elements of the monoid, X and Y
represent arbitrary elements with Z as their product, and the Ya and Za represent
multiplying by a from the right.

The set D consists of the following dependencies:
(1) A,X, Y-Z, andA, Y
(2) A,AA, Y.
(3) A, y, ya

_
A, Y, Ya, for each a E and pair of prefixes y, ya.

(4) A, Z, Za_A, Y, Ya, for each acE.
(5) A, X, Ya, Za

_
A, X, Y, Z, for each a E.
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(6) A, Y,A, Y_A,X, Y,Z.
(7) x, ,

_
x,

The above dependencies ensure that the attributes behave according to the intended
meaning. Note that D does not guarantee uniqueness of the elements that correspond
to the prefixes. We could have added the fd- A, but we did not want to use fd’s
with empty left-hand side, and we are willing to pay for it with some complication in
the reduction.

Finally, the dependency d is cr _/3.
CLAIM. Dd (resp. Dfd) if[ Ee (resp. E fe).
Proofofclaim.
Only-if part. We show that E e (resp. E:re entails Dd (resp. Dsd).

Suppose that E e. Then there is a homomorphism h on .S_,* such that h(ai)= h(i)
but h(a) h(). For a pair x, y of elements in E* we define a tuple tx.y by:

tx,y[),] h(),), for each prefix
t,y[X]=h(x),
tx,y[ Y] h (y),
tx.y[ Ya] h(ya), for each a ,
t,y[Z]= h(xy), and
t,y[Za] h(xya), for each a .

Let now R {t,y: x, y E*}. We leave it to the reader to show that R satisfies D but
not d. If Eye, then in addition we can assume that {h(x): x*} is finite, so R is
also finite.

Ifpart. Assume that Ee, and let R be a relation satisfying D. Let s R. We have
to show that s[a] R[/3]. We now define a homomorphism h of * into the domain
of the relation R, such that h(A)= s[A]. For an element yE*, we define the element
h(y) and show that (h(A), h(y)) R[A, Y] inductively as follows:

(1) h(A) is s[A]. Note that (h(A), h(A)) R[A, Y] by the ind A, A
_

A, Y.
(2) Suppose that we have defined h(y) and showed that (h(A), h(y)) R[), Y],

and let a E. Define h(ya) to be the unique element t[ Ya] for the tuple such that
t[A, Y]=(h(A),h(y)) (uniqueness is ensured by the fd A, Y- Ya). (h(A),h(ya))
R[A, Y] by the ind A, X, Ya, Za A, X, Y, Z.

Next we show that for all x, yE*, we have that (h(,),h(x),h(y),h(xy))
R[A, X, Y, Z]. This is shown by induction on y. We have already shown that
(h(A),h(x))R[A, Y], so by the ind A, Y, A, Y_A, X, Y, Z we have
(h(A), h(x), h(A), h(x)) R[A, X, Y, Z]. Assume now that (h(A), h(x), h(y), h(xy))
R[), X, Y, Z]. Let R be such that t[A, X, Y, Z] (h(A), h(x), h(y), h(xy)). Then by
definition t[ Ya] h(ya). Also by the ind A, Z, Za

_
A, Y, Ya we have that t[Za]

h(xya). By the ind A, X, Ya, Za
_

A, X, Y, Z we have that

(h(A), h(x), h(ya), h(xya)) R[A, X, Y, Z].
We now define a binary operation.on the set {h(x): x E*}. Let x, y E*. The above
argument shows that there is a tuple in R such that t[A, X, Y]= (h(A), h(x), h(y)).
We define h(x) h(y) as t[Z], which is unique by the fd A, X, Y- Z. Furthermore, we
have shown that t[Z] is just h(xy), so it follows that h is a homomorphism on E*.

Now, using the fd’s A, Y- Ya and the ind’s A, 2’, ya
_

A, Y, Ya, it is easy to show
by induction that R satisfies A - y and that s[y]= h(y), for every prefix . In particular,
s[a] h(ai) and s[fli] h(fli). By the ind A, a

_
A, fl, there is a tuple t R such that

t[A, fl]=(h(A), h(ai)). Since R satisfies A-/3 it must be the case that h(cri)= h(fl).
Since Ee, we have that h(a)= h(fl), and since s[a]= h(cr) and s[fl]= h(fl), it

follows that s[a] Rift]. For the finite case, if R is a finite relation, then {h(x): x E*}
is finite, and the rest of the argument is the same.
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COROLLARY. The sets {(D, d): Dd} and {(D, d)" Dyd}, where D ranges over

finite sets of fd’s and ind’s and d ranges over ind’s are not recursive.
The proof above showed that testing whether a set of fd’s and ind’s implies or

finitely implies an ind is undecidable. How about testing (finite) implication of fd’s?
The next theorem shows that this is also undecidable.

THEOREM 3. The set {(D,d)" Dd} is recursively inseparable from the set

{(D, d)" D-fd}, where D ranges overfinite sets of fd’s and ind’s and d ranges over fd’s.
Proof We reduce the word problem for (finite) monoids to (finite) implication

of fd’s. Given E, E, and e we construct the set D of fd’s and ind’s as in the proof of
Theorem 2 with the addition of the attributes a’, /3’, and Y’, and the dependencies
Y Y’, a, a’ Y, Y’, and/3,/3’c_ Y, Y’. The dependency d is t’ /3’.

CLAIM. Dd (resp. Dfd) iffEe (resp. Efe).
Proof of Claim.

Ifpart. Assume E e, and let R be a relation satisfying D. Let s, R such that
s[a’] t[a’]. We have to show that s[fl’] tiff’]. The If Part in the proof of Theorem
2 shows that s[fl] s[a] and t[
Y, Y’, there are tuples s, s_ R such that s[a, a’]= s[ Y, Y’], and s[/3,-/3’] s2[ Y, Y’].
It follows that s[ a’] sift’I, because of the fd Y- Y’. Similarly, t[ a’] t[fl’]. Therefore,
s[fl’] t[fl’].

Only-ifpart. Suppose that E e. Then there are a monoid M and a homomorphism
h"* M such that h(a) h(fl) but h(a) # h(/3). For each element y E M, let y’ be
a new distinct element. We construct R for h as in the proof of Theorem 2 with the
additional clauses"

tx,y[ O’] h a )’,
tx,y[’] h( )’, and
t,y[ Y’] h (y))’.

Clearly, R satisfies D.
Let/Q be an isomorphic disjoint copy of M, and/ the corresponding homomorph-

ism from E*. Again, for each element y hT/, let y’ be a new distinct element, such that
for all x M and y 117/, we have that x’= y’ if[ x h(a) and y =/(a). Let / be
constructed from h in a manner an.alogous to the construction of R from h. We leave
it to the reader to verify that R (_J R satisfies D but not d. Also, if E ye, then we can
assume that R t_J R is finite.

COROLLARY. The sets {(D, d)" Dd} and {(D, d)" Dyd}, where D ranges over

finite sets of fd’s and ind’s and d ranges over fd’s, are not recursive.

4. Reduction to binary inclusion dependencies. An ind A,. , Ak

_
B,. , Bk is

said to be m-ary if k_-< m. The reduction in the previous section uses 4-ary ind’s. It
follows that the (finite) implication problem is undecidable even when restricted to
4-ary ind’s. On the other hand, in [KCV] it is shown that both the .mplication and the
finite implication problems are decidable when restricted to unary ind’s. In this section
we close the gap between those two results by showing that (finite) implication of fd’s
and ind’s is reducible to (finite) implication of fd’s and binary ind’s.

THEOREM 4. There is an algorithm that, given a set D of fd’s and ind’s and an fd
(resp. ind) d, produces a finite set D’ of fd’s and binary ind’s and an fd (resp. a unary
ind) d’, such that Dd if and only ifD%d’ and Dfd if and only if D’ f d’.

Proof. Let all the ind’s in D U {d} be m-ary. Furthermore, we can assume without
loss of generality that the left-hand side and right-hand side of these ind’s contain
exactly m attributes (we can always duplicate attributes to achieve that). We denote
a sequence At,’’’, A, of attributes by A. We view a sequence as a list of elements.



IMPLICATION FOR FUNCTIONAL AND INCLUSION DEPENDENCIES 675

When we enclose the sequence in parentheses, e.g., (A), we refer to it as an element
in the domain of sequences.

We first construct a set F of fd’s and ind’s. We introduce new attributes
X, , X,,, X, and put in F the fd’s X --> X and X --> X. For every ind A B in D [_J d,
we introduce new attributes (A) and (B) and put in F the binary ind’s Ai, (A) Xi,
X and B, (B) X, X, for =< -<_ m. Let - be the ind A

_
B. We define z’ as the unary

ind(A)(B). If z is an fd then we let z’=r. Now we define D’=Ft_J{z" zD}.
CLAIM 1. For all z D {d} we have F {r’} z.

Proof of claim. The claim is trivially true for fd’s. Let " be the ind A B. Let R
be a relation that satisfies F U z’, and let 6 R. We have to show that there is a tuple
sR such that s[B]= t[A]. Since R satisfies z’, there is a tuple s R such that
s[(B)]= t[(A)]. Since R satisfies F there are tuples t, s R such that t[Xi, X]=
t[A, (A)] and s[X,X]= s[B, (B)]. But, since s[(B)]= t[(A)], and R satisfies F, it
follows that t[Ai] s[B]. This is true for _-<i-< m, which proves the claim.

CLAIM 2. For all " D d we have F t3 {’} ".
Proof of claim. The claim is trivially true for fd’s. Let r be the ind A_ B. Let R

be a relation that satisfies F {z}, and let R. We have to show that there is a tuple
s R such that s[(B)] t[(A)]. Since R satisfies F there are tuples t,..., tm R such
that t[A, (A)] t[X, X]. Furthermore, t[Xi] t[Ai], for _-< <_- m, so tl[X, X]
t[A, (A)]. Since R satisfies r, there is a tuple s R such that s[B] t[A]. Again, since
R satisfies F, we can show that there is a tuple s R such that s[X, X]= s[B, (B)].
It follows that tl[X]= Sl[X], so t[(A)] s[(B)]. This proves the claim.

We can now prove the theorem.
Only-ifpart. Assume Dd, and let R be a relation satisfying D’. By Claim 1, we

have that R satisfies D, so by assumption R satisfies d. Since R satisfies F and d, it
satisfies d’ by Claim 2.

Ifpart. Assume D g: d, and let R be a relation satisfying D but not d. We construct
a relation R’ satisfying D’ but not d’. Let U be the sequence of attributes that are
used in dependencies in D U {d}. Let U" be a sequence consisting of all sequences
of length m of attributes from U. We use "," to denote concatenation of sequences.
Rl is a relation on U, U" defined as"

{t" t[U]6R, t[(A)]=(t[A]) for A U"}.

R2 is a relation on X, X defined as

{t" RI[A, (A)] for some A U’}.

Finally, R’ is a relation on U, U’, X, X defined as

{ t" t[ U, U’] R and t[X, X] R2}.

We leave it to the reader to show that R’ satisfies F. Since R’[ U] R[ U], it follows
that R’ also satisfies D. By Claim 2 it follows that R’ satisfies D’. Suppose now that
R’ satisfies d’. Then Claim entails that R’ satisfies d, and consequently that R satisfies
d, contrary to the assumption. Thus R’ does not satisfy d’.

Both parts of the proof work also for the finite case once we observe that the
construction of R’ from R preserves finiteness. [3

COROLIARV. The implication and the finite implication problems for fd’s and binary
ind’s are undecidable.

5. Axiomatization. Parallel to the pursuit for algorithms to test implication is the
pursuit for axiomatization of implication. That is, while it might be impossible to



676 ASHOK K. CHANDRA AND MOSHE Y. VARDI

recursively check whether Dd, it might be possible to recursively check whether a
given proof that Dd is correct. An immediate consequence of the existence of an
axiomatization for a problem is the partial decidability of the problem; one has just
to generate methodically all possible proofs and check for their correctness.

Consider now finite implication for fd’s and ind’s. It is not hard to see that the
set {(D, d): Dyd} is recursively enumerable; just enumerate all finite relations and
check whether they satisfy D but not d. We have shown, however, that this set is not
recursive. It follows that the set {(D, d): Dsd} is not even recursively enumerable.
Consequently, there can be no axiomatization for finite implication of fd’s and ind’s
(an axiomatization for finite implication of fd’s and unary ind’s is described in [KCV]).

The situation with implication for fd’s and ind’s is different. Both fd’s and ind’s
can be expressed by first-order sentences, and implication is reducible to validity of a
first-order sentence. It follows that the set {(D, d): Dd} is recursively enumerable,
and this raises the question whether implication of fd’s and ind’s can be axiomatized.

Casanova et al. [CFP] gave a partial negative answer to this question. They have
shown that there is no k-ary axiomatization for implication of fd’s and ind’s, i.e., there
is no axiomatization where the number of premises in the inference is bounded by
some number k. (In contrast, fd’s alone and ind’s alone are known to have binary
axiomatizations [Ar], [CFP].) In proving this result Casanova et al. assumed that axioms
and inference rules do not introduce new attributes. That is, if 7r is a proof that Dd,
then only attributes that occur in dependencies in D or d occur in 7r. We call such an
axiomatization attribute-bounded (it is called universe-bounded in [Va]). The axiomatiz-
ations for implication of fd’s in [Ar] and for implication of ind’s in [CFP] are both
attribute-bounded. Mitchell [M1], on the other hand, has shown that by dropping the
attribute-boundedness requirement we can get a ternary axiomatization for implication
of fd’s and ind’s.

The question remained open whether there is an attribute-bounded (but non-k-ary)
axiomatization for implication of fd’s and ind’s. (For an example of a non-k-ary
axiomatization see [BV-J, [KCV].) Our undecidability results entail that the answer to
this question is negative. Suppose to the contrary that there is such an axiomatization.
Given a finite set of fd’s and ind’s D, and an fd or an ind d, there are only finitely
many possible proofs for the implication Dd that uses only attributes that occur in
D or d. By checking all these proofs, we can determine whether indeed Dd-contradic-
tion.

Acknowledgment. We would like to thank John Mitchell for noting an error in an
earlier draft.

[Ar]

[BB]

[Be]

[BV]

[CFP]

[Co]

REFERENCES

W. W. ARMSTRONG, Dependency structure ofdatabase relationships, Proc. IFIP 74, North-Holland,
Amsterdam, 1974, pp. 580-583.

C. BEERI AND P. m. BERNSTEIN, Computational problems related to the design of normal form
relational schemas, ACM Trans. Database Systems, 4 (1979), pp. 30-59.

P. A. BERNSTEIN, Synthesizing third normalform relationsfromfunctional dependencies, ACM Trans.
Database Systems, (1976), pp. 277-298.

C. BEERI AND M. Y. VARDI, Formal systems for tuple and equality generating dependencies, this

Journal, 13 (1984),. pp. 76-98.
M. A. CASANOVA, R. FAGIN AND C. H. PAPADIMITRIOU, Inclusion dependencies and their

interaction with functional dependencies, J. Comput. System Sci., 28 (1984), pp. 29-59.
E. F. CODD, Further normalization ofthe database relational model, in Data Base Systems, R. Rustin,

ed., Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 33-64.



IMPLICATION FOR FUNCTIONAL AND INCLUSION DEPENDENCIES 677

[Fa]

[FV-]

[GL]

[Gu]

[JK]

[cv]

[MI]

[M2]

[Po]
[Va]

R. FAGIN, A normal form for relational databases that is based on domains and keys, ACM Trans.
Database Systems, 6 (1983), pp. 387-415.

R. FAGIN AND M. Y. VARDI, Armstrong databasesforfunctional and inclusion dependencies, Inform.
Proc. Letters, 16 (1983), pp. 13-20.

Y. GUREVICH AND H. R. LEWIS, The wordproblemfor cancellation semigroups with zero, J. Symbolic
Logic, 49 (1984), pp. 184-191.

Y. GUREVICH, The word problem for certain classes ofsemigroups (in Russian), Algebra and Logic,
5 (1966), pp. 25-35.

D. S. JOHNSON AND A. KLUG, Testing containment of conjunctive query under functional and
inclusion dependencies, J. Comput. System Sci., 28 (1984), pp. 167-189.

P. C. KANELLAKIS, S. S. COSMADAKIS AND M. Y. VARDI, Unary inclusion dependencies have
polynomial time inference problems, Proc. 15th ACM Symposium on Theory of Computing, Boston,
April 1983, pp. 264-277.

J. MITCHELL, The implication problem for functional and inclusion dependencies, Proc. 2nd ACM
Symposium on Principles of Database Systems, Atlanta, 1983, pp. 58-69.
, The implication problem for functional and inclusion dependencies, Tech. Rep. MIT/LCS/TM-

235, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Feb.
1983.

E. L. POST, Recursive unsolvability of a problem of Thue, J. Symbolic Logic, 12 (1947), pp. 1-11.
M. Y. VARDI, The implication and the finite implication problem for typed template dependencies, J.
Comput. System Sci., 28 (1984), pp. 3-28.



SIAM J. COMPUT.
Vol. 14, No. 3, August 1985

1985 Society for Industrial and Applied Mathematics
013

A LOWER BOUND FOR THE FORMULA SIZE OF
RATIONAL FUNCTIONS*

K. A. KALORKOTI"

Abstract. We establish a lower bound for the formula size of quolynomials over arbitrary fields. Our
basic formula operations are addition, subtraction, multiplication and division. The proof is based on
Neiporuk’s [Soviet Math. Doklady, 7 (1966), pp. 999-1000] lower bound for Boolean functions and uses
formal power series. This result immediately yields a lower bound for the formula size of rational functions
over infinite fields. We also show how to adapt Neiporuk’s method to rational functions over finite fields.
These results are then used to show that, over any field, the n n determinant function has formula size at
least f(/13). We thus have an algebraic analogue to the f(/l3) lower bound for the Boolean determinant
due to Kloss [Soviet Math. Doklady, 7 (1966), pp. 1537-1540].

Key words, quolynomial, rational function, formula size lower bound, computation tree, formal power
series, determinant

1. Introduction. In this paper we provide a method for bounding from below the
formula size of rational functions over arbitrary fields. The basic operations allowed
are addition, subtraction, multiplication and division. The method is based on that of
Neiporuk [5] (also followed by Savage [6]) for Boolean functions. It is quite easy to
adapt Neiporuk’s method if the ground field is finite. Also if attention is restricted
to polynomials and division is not allowed, then there is again a fairly easy adaptation.
The general case presents some difficulties in connection with division and these are
overcome by the use of formal power series.

The results are used to show that the n n determinant has formula size at least
1-(1/3) for any field. We thus have an algebraic analogue to the f(1/3) lower bound for
the Boolean determinant due to Kloss [4].

2. Preliminaries. Throughout k will be a field and X a finite set of indeterminates
over k. As usual the ring of polynomials in X with coefficients from k will be denoted
by k[X] and its quotient field by k(X). The elements of k(X) are sometimes called
quolynomials.

Each r k(X) defines a partial function r: klXl k as follows: put r p q where
p, q k[X] and are coprime. If a kIxl and q(a) 0, then r(a)= p(a)/q(a), otherwise
r(a) is undefined (it will always be clear from the context whether r denotes a
quolynomial or a partial function). Such functions are said to be rational.

DEFINrrION. A formula over k X is any expression obtained by using the
following rules a finite number of times:

(a) w is a formula for all w k t_J X.
(b) (F F2 is a formula whenever F1, F2 are formulae and o {+,-, x,/}.
The size IFI of a formula F is the number oftimes rule (b) is used in its construction.

By observing brackets, F can be reduced in a unique way to obtain a numerator n(F)
and a denominator d(F), both of these being polynomials in X. If d(F) 0, then we
say that F is a formula for the quolynomial n(F)/d(F) k(X). Clearly each re k(X)
has a formula. The formula size L(r) of r is given by

L(r) min {IFIIF is a formula for r}.

* Received by the editors January 4, 1982, and in revised form September 8, 1984. An earlier version
of the paper appeared in the conference proceedings. Automata, Languages and Programming, Ninth
Colloquium, Aarhus, Denmark, July 1982, M. Nielsen and E. M. Schmidt, eds., Springer-Verlag, Berlin, 1982.

? Department of Computer Science, Edinburgh University, Edinburgh EH9 3JZ, Scotland.
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When r is regarded as a rational function, its formula size L*(r) is given by

L*(r) min {L(r’)[r’ defines the same rational function as r}.

Thus L*(r)<-_ L(r) and when the ground field is infinite equality holds (this follows
from the fact that if k is infinite and p k[X] then p(a) 0 for all a kIxl (if and only
if p =0 in k[X] (see Zariski and Samuel [9, Vol. I, p. 38])). When the ground field is
finite, equality may not hold; for example over GF(2) we have

L*(x2 + x) L(O) 0 < 2 L(x2 + x).

The first theorem we prove gives a lower bound for L over all fields and hence for L*
when k is infinite. The second theorem provides a lower bound for L* when k is finite.

Remark. Our definition of a formula for r k(X) allows the possibility of division
by 0. For example (x)+(1/(1/O)) is a formula for x. However we are interested in
minimal size formulae and here division by 0 cannot occur.

In this paper all trees will be rooted and directed with all edges directed towards
the root (in diagrams the root is shown at the top and the leaves at the bottom). Let
/)1, /)2 be vertices of a tree. v is a predecessor of /)2 if (v, /)2) is an edge of the tree. v
is an ancestor of v2 if there is a directed path from v to /)2. The indegree of a vertex
is the number of its predecessors. The subtree of a vertex v consists of/) together with
all of its ancestor vertices and edges. A tree is binary if each nonleaf vertex has indegree
2. It is easy to see that if a binary tree has leaves then it has l-1 nonleaf vertices.

A computation tree over k U X is a tree T such that the set of predecessors of
each vertex is totally ordered (in diagrams the predecessors of a vertex are shown in
increasing order from left to right). Each leaf of T is labelled with an element of k U X.
If /) is any other vertex of indegree d, then v is labelled with a rational function

Rv: k(X)’ k(X). Such vertices are called computation vertices and the number of
them is denoted by C(T). A vertex v involves an indeterminate x if there is a leaf
labelled x which is an ancestor of v. We associate elements of k(X) with some (possibly
all) the vertices of T as follows:

(a) Each leaf is associated with its label.
(b) Let v be a computation vertex of indegree d with predecessors Vl < v2 <" <

/)d. If each vi has an element rie k(X) associated with it and Rv(r,. ., rd)
is defined, then we associate this element with v. Otherwise we do not associate
any element with v.

If r k(X) is associated with a vertex v, then we say that v computes r. If the root
of T computes r, then we also say that T computes r.

Given a formula F over k U X, we can associate a computation tree T over k U X
with F in the obvious way. Each computation vertex of T is labelled with +, -, x
or / and so T is binary. Moreover IFI C(T). Note that if no divisions by 0 occur in
reducing F to n(F) and d(F), then T computes n(F)/d(F).

k[[X]] denotes the ring of formal power series in X over k. The elements of k[[X]]
are expressions of the type

f=Ef
i=0

where f is either 0 or a form of degree (that is a polynomial all of whose monomials
have degree i). fo is an element of k and is called the constant term of f The order of
f, denoted by ord (f), is the least such that f 0 if f 0 and oo otherwise. Addition
and multiplication in k[[X]] are carried out in the obvious manner. Clearly k[X] is
embedded in k[[X]].
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Suppose r e k(X) and we want a lower bound for L(r). It will be convenient for
us to expand r as a formal power series. This, however, is not always possible.
Fortunately, for our purposes, there is little loss in restricting attention to those elements
of k(X) which can be so expanded. We proceed to describe the set of all such elements
more formally.

A power series fe k[[X]] is a unit if there is a g e k[[X]] such that fg 1. In such
a case g is unique and is denoted by f-1. It is easily seen that f is a unit if and only
if ord (f)= 0, that is to say f has a nonzero constant term. Let

ku(X)={re k(X)lp, qe k[X] s.t. r-p/q and q isa unit in k[[X]]}.

Clearly ku(X) is a subring of k(X). Define

P,, k" X -, k[[X]]

as follows: given re k(X), let r=p/q where p, q e k[X] and q is a unit in k[[X]].
Then Px(r)= pq-1. Easily, Px is well defined and is in fact an 1-1 homomorphism, so
it is an embedding.

We now look at the effect of restricting attention from k(X) to ku(X).
DEFINITION. Let r(xl, , x,) e k(X) and al, , a, e k. Then we call

r(x-al,..., x,-a,) the translate or r by a,..., a.
It is easily seen that if k is infinite, then each element of k(X) has a translate in

k"(X). The following is straightforward.
LEMMA 1. Let r, sek(X) with s a translate of r. Then L(r)>-1/2(L(s)-l).
In his method Ne:iporuk partitioned the variables of a Boolean function B into

disjoint subsets. For each subset he used certain transformations on a minimal formula
of B and the number of subfunctions of B induced by assignments to variables outside
the subset to obtain the lower bound. We now proceed to give algebraic analogues of
assignments to variables and of counting the number of induced subfunctions.

From now on Y, Z will be finite sets of indeterminates over k(X), thus X (-I Y
XfqZ=.

DEFINITION. A substitution of k[[ Y]] into k[[Z]] consists of:
(a) A function r" Y k[Z] such that ord (or(y))> 0 for all y e Y.
(b) The unique extension of r to a homomorphism k[[ Y]]- k[[Z]] given by

f(y,,’’’, y,,)-f(o’(yl), cr(yn)).

(See Zariski and Samuel [9, Vol. II, p. 135] where a wider class of substitutions
is defined.)

We define cr on k"(Y) as follows: given r e k(Y), put r=pq where p, q e k[ Y]
and q is a unit in k[[ Y]]. Then r=p/q. Note that as q is a unit it has a nonzero
constant term and so q # 0. Moreover r is well defined and is in k"(Z).

LEMMA 2. Let re k"( Y) and cra substitution of k[[ Y]] into k[[Z]]. Then Py(r)=
Pz(r).

Proof. Let r p/q with q a unit in k[[ Y]]. Since o- is a homomorphism, we have
(q-’)=(q)-’ and so p(q-’)=p(q)-’. [3

A substitution o- of k[[X, Y]] into k[[X, Z]] respects X if o-(x)= x for all x e X
and or(y) e k[[Z]] for all y e Y. Given fe k[[X, Y]] and g e k[[X, Z]], we say that f
represents g with respect toX ifthere is a substitution o- which respects X such thatf g.

Suppose f, g are as above and f represents g with respect to X. We shall need to
have a lower bound for lY in terms of g; this is our algebraic analogue to the counting
of subfunctions in Neiporuk’s argument. If f, g were both polynomials, they could
be regarded as polynomials in X with coefficients from k[ Y] and k[Z] respectively.
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Furthermore they could be written uniquely as

b

f= f(Y)M,(X), g E g,(Z) M,(X),
-=0 /=0

where the Mi(X) are distinct monomials in X and a, b are the numbers of such
monomials in f and g respectively.

Recall that elements q,..., q, of k[ Y] are said to be algebraically independent
over k if the only polynomial P with coefficients in k such that P(ql,’’’, %)=0 is
the zero polynomial. The transcendence degree of a subset S of k[ Y] is the maximum
number of algebraically independent elements (over k) of S. It can be seen that this
number is at most Y]. (In this paper transcendence degrees will always be over k. In
view of this we shall henceforth omit the phrase "over k" and use the abbreviation tr
deg.) The concept is analogous to dimension in vector spaces. Further material is given
by Zariski and Samuel [9, Vol. I] and van der Waerden [8, Vol. I].

With f, g represented as above define

tdx (g)=tr deg {go,’’’, gb}.

NOW f g if and only if f7 gi for 0 <= <= b, and f7 0 for b < <= a. It follows that

But

tr deg {fo,"" ,fb} >-tr deg {go,’’’, gb}.

YI ----> tr deg k[ Y] _-> tr deg {fo," ", fb }.

Thus [YI->- tdx(g) as required.
Unfortunately the inequality (,) is false if k[ Y] is replaced by k[[ Y]] (indeed if

Y[->-2, then k[[ Y]] contains infinitely many algebraically independent elements). The
rest of this section translates the above idea to formal power series in such a way as
to avoid the stated difficulty.

DEFINITION. Let f k[[ Y]] for i I, where f =Y.i=ofj. Let mf minix ord ) if
some f 0 and ms 0 otherwise. Define

td {f]i I} tr deg {f,,.li I}.

Note that this is always at
Given ri k"(Y) for /, define

td {rili I}=td {Pv(ri)li I}.

LEMMA 3. Letf k[[ Y]] and gi k[[Z]]for L Suppose there exists a substitution
o- of k[[ Y]] into k[[Z]] such that f7 g for all L Then

]YI---> td {gili I}.

Proof Let Y {yl,. ., y} and Z {z,. ., z,}. Truncate each f to a polynomial

ff defined by

i=0

where m m. Then, for all i/,

ffi(cr(y,), o’(y.))= gim(zl, z,) 3V hi(z,, z,)

for some hi with ord (hi)> m.
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We claim that

tr deg {f’ili I} >-tr deg {gi,li I}.

For suppose P is a nonzero polynomial such that

P(f’,, f’r) O, i,. "’, I.

Applying tr to this equation, we obtain

(*) P(g,., + hil, g,v,, + hit)--O.
Let H be the homogeneous part of P of lowest degree. Then the left-hand side of (.)
can be written as H(g,.,, , g.,)+ Q where each monomial in Q is of degree greater
than each monomial in H(gil,’’’, gir), the degree being with respect to Z. Thus
H(gi,,’’’, g)=0 and the claim follows.

The result is now proved since Y] tr deg {f’]i I}.
Let f6 k[[X, ] and g k[[X, Z]] and suppose there is a substitution which

respects X such that f g. We can regard f and g as elements of k[[ ][[X]] and
k[[Z]][[X]] respectively. Thus f can be written uniquely as

i=0

where f(X) k[[ ][X] and is either 0 or a form of degree (with respect to X). Let
{Mo(X)]Oj s} be the set of all monomials in X of degree i. Then f(X) can be
written uniquely as

f(X) f(Y)Mo(X
j=0

where f(X) k[[ ]. Similarly for g.
Note that f g if and only if fo go for all 0 and 0j s.
DZINITION. tdx(g) max {td SIS {g[i 0 and 0j s}}.
From the remarks above and Lemma 3 we have
LMMA 4. Let f g be as above. Iff represents g with respect to X, then YI

tdx (g).

3. The results.
TnzozM 1. Suppose f k(X) andf k(X’) for any X’ X. Let X, ., X be a

partition ofX into disjoint subsets and suppose fhas a translate g k"(X). en

L(f) tdx, (g).
i=1

Proof Let T be the tree of a minimal formula for g. Let l be the number of leaves
of T with a label from X and put l== l. Since T is binary we have

(i) c()t-.

Fix and call an indeterminate in X fixed and one which is not in X free.
We now introduce some terminology which will be used in the algorithm below.

Let Z be any set of free indeterminates over k and let T’ be any computation tree
over k X Z each of whose veaices computes some element of k(X, Z). We say
that a computation veex is fixed if it involves at least one fixed indeterminate and
free if it involves only free indeterminates. A computation veaex is mixed if it has
indegree 2 and one of its predecessors is fixed while the other is free. Let v be a mixed
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vertex and let v0, Vl," ", v. be the longest directed path containing v such that Vo is
fixed but not mixed while vl," ", vs are all mixed (clearly such a path is unique). Call
this path the mixed path of v. Let r k(Xi, Z) be the expression computed by v0. Then
vs computes an expression of form (flr+f2)/(f3r+f4) where f k(Z.) for <_- i<=4.
Denote this expression by R(v). If f3=0, define z(v)=2 and otherwise z(v)=3. Let
h(y,z,a, b)=(y+a)/(z+b) where y,z are free indeterminates and a, bk. It is easy
to see that given new free indeterminates yi, z for _-< i<=-r(v), then we can choose
ai, bk for l=<i=<z(v), such that either h(y,z,al, b)r+h(y2, z2, a2, b2) or
h(y3, z3, a3, b3)+ h(y2, z2, a2, b2)/(r+ h(y, z, a, bl)) represents R(v) with respect to
X according as z(v) is 2 or 3. We refer to a, b for _-< -< z(v), as the constants of R(v).

Let M be the set of mixed vertices of T. We apply a sequence of transformation
to T according to the following algorithm:

begin
choose v M;
Z-X-X;
T’ T;
while M # do

begin
let Vo, v,..., v be the mixed path of v;
let ai, b be the constants of R(v) and y, zi be new free indeterminates, =<
i-<__ z(v);
delete the subtree of v and replace it with the relevant subtree from Fig. 1;
if v is a predecessor in T’, then u takes its place;
let T" be the tree thus obtained;
for each vertex in T" order its predecessors either as in T’ or as indicated in
Fig. 1. (If vs was a predecessor, then u inherits its place in the order.);
M- M-{v,. v};
choose v M;
Z Z {y, z[1 <_- =< z(v)};
7" T"

end
end

Let T be the final tree of the logorithm and Zi the set of free indeterminates in

T. By induction on the number of transformations used and the observations above
it is easily seen that T computes some g k"(X, Z) which represents g with respect
to Xi. Thus, by Lemma 4,

(ii) ]ZI >= tdx, (g).

Let Co, c be the number of free and fixed vertices in Ti respectively. Let C2 be the
number of vertices with both predecessors fixed. Since f, and hence g, is not in k(X’)
for any X’c X it follows that l > 0 and so T has at least one fixed vertex. Because
of this and the transformations used it follows that each free vertex is attached to a
mixed vertex and so Co_< c. Each mixed path Vo, v,. ., vs in T has length at most
4 and Vo is either a leaf or a fixed vertex with both predecessors fixed. Thus c _-< 3cz + 31.
Now by induction on li we have c2 <- l- 1. Thus

C(T) Co+ c + c
<-_ 131i 7.
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[(v)

FIG.

(v)

of

The fixed vertices of T all have indegree 2 and the free ones all have four leaves as

predecessors" two labelled with elements of Zi and two with elements of k. Thus
deleting all leaves of the second kind results in a binary tree with li +[Zi] leaves. It
now follows that

This and (ii) yield

This and (i) now yield

l, >- (IZ[ + 6) > 2 tdx, (g).

L(g) C(T) > tdx, (g)- l,
i:l

and the result follows from Lemma 1. [-]

Remark. If f ku(X) then the multiplicative constant in Theorem may be
improved to .

We now deal with rational functions over finite fields.
DEFINITION. Let We__ X and a" X-> k tJ X with a(x) x for all x W and

a(x) k for all x6 W. Given q(x,. ., xn) k[X], define

q(x,, x,) q(a(x,), a(x,)).

Let r=p/q k(X) where p, q k[X]. If q#0 in k[X], then define r =p/q and
call r a W-specialization of r. Two W-specializations of r are equivalent if they define
the same rational function over k. Define

spx_w (r) # (inequivalent W-specializations of r).
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Thus if r, s k(X), define the same rational function then spx-w (r) spx-w (s). Note
also that spx_w (r)<=[kl Ix-wl and if r is defined on at least one point of kIxl, then
spx-w (r) > O.

THEOREM 2. Let f k(X) be defined on at least one point of kIxl and suppose
f
_
k(X’) for any X’c X. Let X, ., X, be a partition ofX into disjoint subsets. Then

L*(f) >- i loglkl spx, (f).
i=1

Proof Let L*(f)= L(g). We make some simple changes to the proof of Theorem
1. Inequality (i) still holds. We replace the transformation trees of Fig. by those of
Fig. 2 where xi for l_<-i<= r(v), are new free indeterminates and alter the algorithm
accordingly. For a given /the tree Ti obtained by applying the algorithm computes
some g k(Xi, Zi) such that any (X- Xi)-.specialization of g, and hence of f, is equal
to some Z-specialization of g (this would not hold if f were nowhere defined). Thus
IZ, >-loglk spx, (f).

FIG. 2

The rest of the proof is the same as that of Theorem l, taking into account that
now co-- 0.

Remark. Neither of the bounds of Theorem and Theorem 2 can grow faster
than IX[ 2. This is an inherent limitation of Neiporuk’s method. An expression which
achieves this order of growth for Theorem is

i= j=i+l

To see this take X; {x} and note that

tdx, (u)>-tr deg {xi+,, ,x.}=n-i.
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Thus

L(u)>- (n-i)=f(n2).
i=-I

It follows that for infinite fields we have L*(u)>=f(n-).
4. An alplieation. Let M (xo) be an n n matrix where the xo are indeterminates

over k. Define det M k[x , x12," ", Xnn] by

det M (- 1)s() I x,,
crS i=

where Sn is the symmetric group of degree n and s(tr) is 0 or according as r is even
or odd.

PROPOSITION 1. L(det M) >= fl(n3), for all fields.
Proof Let Xi {Xl,i, x2,i+l, Xn,i+n-1} for <-- i_-< n, all indices being taken

modulo n. We claim that tdx, (det M)>-1/2n(n- 1) for all i. By symmetry it suffices to
show this for 1.

Let do x ,. . x,, for <_- <j <= n, where denotes a missing term.
There are 1/2n(n- 1) distinct terms do in det M. Moreover the coefficient of do is xix.
The claim now follows. Thus, by Theorem and the remark following it, we have

L(det M) ->_ 1/2n(n 1) f(n3). [-I
i=1

PROPOSITION 2. Let k be afinitefield and det: kn k the determinantfunction. Then

L*(det) >- f(n3).

Proof Partition the indeterminates as in Proposition 1. By a trivial adaptation of
the lemma of Kloss [4] (also followed by Savage [6, p. 105]) we have spx, (det)-->
Ikl’/-’ for each i. The result now follows from Theorem 2. [3

Putting Propositions and 2 together, we obtain
THZORZM 3. Let k be any field and det: k" k the determinant function. Then

L*(det) => f(n3).
We finish by remarking that the best known upper bound for L*(det) is 0(ng")

obtained by Csanky [2] for fields of characteristic 0. The same bound is obtained for
all fields by Borodin, von zur Gathen and Hopcroft [1]. It is also possible to obtain
this bound from the result of Hyafil [3] provided one uses the observation of Strassen
[7] about division as in the paper of Borodin, von zur Gathen and Hopcroft 1].
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ON PARALLEL SEARCHING*

MARC SNIR?

Abstract. We investigate the complexity of searching a sorted table of n elements on a synchronous,
shared memory parallel computer with p processors. We show that f(lg n-lgp) steps are required if
concurrent accesses to the same memory cell are not allowed, whereas O(lg n/lg p) steps are sufficient if
simultaneous reads are allowed. The lower bound is valid even if only communication steps are counted,
and the computational power of each processor is not restricted. In this model, (R)(x/-g n) steps are required
for searching when the number of processors is unbounded. If the amount of information that a memory
cell may store is restricted, then the time complexity for searching with an unbounded number of processors
is O(lg n/lg lg n). If the amount of information a processor may hold is also restricted, then an fl(lg n)
lower bound holds. These lower bounds are first proven for comparison-based algorithms; it is next shown
that comparison-based algorithms are as powerful as more general ones in solving problems defined in
terms of the relative order of the inputs.

Key words, parallel algorithms, parallel computations

1. Introduction. With the advance in microelectronics it becomes feasible to build
parallel machines with thousands of cooperating processors. Yet, practice indicates
that a thousandfold increase in raw computational power does not increase performance
by the same amount. There are two main reasons for that. The first one is that not
every problem admits an efficient parallel solution. The second one is that not every
parallel algorithm can be mapped efficiently onto a realistic parallel computer architec-
ture. Work sharing between many processors generates significant overheads for com-
munication of data and coordination. The study in parallel complexity is dedicated,
to a large extent, to the understanding of these two phenomena.

One useful model for the study of parallel computations is that of a paracomputer.
It consists of many identical autonomous processors, each with its own local memory
and its own program. In addition, the machine has a shared memory and each processor
can in one step access any cell in shared memory.

We obtain successively weaker models by varying the assumptions concerning
simultaneous accesses to shared memory:

(1) Concurrent Read, Concurrent Write CRCW). Both simultaneous reads and
simultaneous writes to the same memory cell are allowed. The effect of
simultaneous actions by the processors is as if the actions occurred in some
serial order (for other possible definitions of CRCW, see [2]).

(2) Concurrent Read, Exclusive Write (CREW). Simultaneous reads are allowed
but a processor can modify a shared memory cell only if it has exclusive
access to it.

(3) Exclusive Read, Exclusive Write (EREW). Simultaneous accesses to the same
shared memory cell are not allowed.

This model can be further weakened in two ways: One can restrict the number
of shared memory cells. One can also restrict the set of processors that have read or
write access to each memory cell. If there is a unique processor that has read access
and a unique processor that has write access to each shared memory cell, then each

* Received by the editors June 15, 1982, and in final revised form February 21, 1984. This work was
supported in part by the National Science Foundation under grant MCS-8203307.

t Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
Present address, Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904,
Israel.
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memory cell represents a unidirectional link that connects two processors. We speak
then of an ultracomputer.

In these models communication both of data and of control information is done
through the shared memory. Thus, studying the relative power of these models is
tantamount to studying the effect of constraints on communication and coordination
on computational power.

We consider the problem of searching a key within a sorted list of n keys. The
binary search algorithm solves this problem in (optimal) sequential time O(lg n). This
can be generalized to a "(p+ 1)-ary" search algorithm that solves the problem in
O(logp/ n) steps with p processors. At each step p comparisons are done that split
the list into p + equal length segments, and the search proceeds recursively within
the unique segment that may contain the key. This algorithm is optimal, so that p
processors speed up searching by a factor of lg (p + 1) only: Searching does not admit
an efficient parallel solution.

Consider now the problem of implementing this parallel algorithm. It turns out
that the speedup can be achieved only if one item of information can be broadcast to
all processors in constant time. On the other hand we show that in the EREW model,
where an item of information can be accessed by one processor only at a time, searching
requires at least (lg n-lg p) steps. Note that no transmission of data is required for
parallel search, but the processors need to coordinate the search at each iteration. It
turns out that the time spent in coordinating the processors offsets exactly the gain
obtained from simultaneous table look-ups.

The f(lg n-lg p) lower bound is valid even if each processor may in one step
do any amount of local processing or transfer any amount of information. The only
restrictions are that at each step a processor may read or write at a unique location in
memory.

This result settles the problem of the relative power of the different shared-memory
machine models. It is known that a p-processor machine which supports concurrent
accesses to the same location in memory can be simulated by a p-processor machine
with no concurrent accesses to the same location in memory with a lg p time penalty
[5]. Our result shows that this simulation is optimal.

Under the same assumptions we prove that the time complexity of searching with
an unbounded number of processors is (R)(/lg n).

The computational model is very strong since there are no restrictions on the
amount of information that can be transmitted in one step. This is remedied by assuming
that a memory cell may contain a unique input value, and that inputs are atomic
entities, so that an input symbol cannot be used to encode the values of several inputs.
A memory cell may also store a symbol taken from a small domain of internal values.
In this model the time complexity of searching with an unbounded number of p,rocessors
is (R)(lg n/lg lg n). Finally, if we impose a similar restriction on the local memory of
each of the processors, then an f(lg n) lower bound is valid, independently of the
number of processors.

The (lg n) lower bound on search implies a similar lower bound for the insertion
problem on a shared memory parallel machine with no concurrent access to the same
memory location. This settles an open problem posed by Borodin and Hopcroft in [2].

The lower bounds for searching with an unbounded number of processors are
proven for comparison-based computations. We also prove that comparison-based

The terms paracomputer and ultracomputer are taken from 10], but are used here in a slightly different

meaning.
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algorithms are as efficient as more general ones in solving problems that are defined
in terms of the relative order of the inputs. We first show that if such a problem can
be solved by comparisons for inputs taken from a subset of values where every possible
permutation of the inputs occurs, then it can be solved by comparisons, using the same
resources, for any input. We next prove that given a paracomputer, one can build a
sufficiently large set of input values where the behavior of each processor at each step
depends only on the relative order of the pairs of inputs it has access to, but not on
their actual values. The last result is proven by an application of Ramsey’s theorem.

The remainder of this paper is organized as follows. The implementation of the
"(p+ 1)-ary" searching algorithm is discussed in the next section. In 3 we prove the
[l(lg n-lg p) lower bound for a simplified version of the searching problem. This is
followed in 4 by a description of an O(x/g n) algorithm for searching in the EREW
model with O(n) processors. In 5 we present the reduction of general paracomputer
computations to computations using only comparisons. This reduction is used in 6
to prove the (l(/1-) lower bound for searching with an unrestricted number of
processors. In 7 we examine the complexity of searching in restricted paracomputer
models. Conclusions and open problems are brought in the last section.

2. Parallel searching in the CREW model, The search problem has several variants,
all of which have essentially the same complexity. For sake of simplicity we consider
the following version.

Range search problem (for a table of size n). Given n + distinct inputs x, , xn, y
such that x <... < xn, find the index such that xi < y < xi+l. (By definition Xo =-c
and x,+ .)

We first determine the complexity of searching in the CRCW and CREW models
of parallelism.

THEOREM 2.1. The range search problem for a table of size n can be solved on a
CREW machine with p processors in time O(lg (n+ 1)/lg (p+ 1)).

Proof The algorithm used is the obvious extension ofbinary search to p processors,
namely (p+ 1)-ary search: p keys are chosen that divide the list of keys into p+
intervals of roughly equal length. These keys are compared in parallel to the searched
key. The comparisons locate the searched key within one of the subintervals, and the
search proceeds recursively within this subinterval. At each iteration the length of the
list is decreased by a factor of p + 1, so that the search ends in lgp+ (n + 1) iterations.
It remains to be shown that each iteration can be implemented in constant time, without
concurrent writes.

Note that the searched key is located within the ith subinterval iff the outcomes
of the comparisons made at processor i-1 and at processor are different. Each
processor can in constant time match the outcome of the comparison it performed
against the outcome of the comparison performed by its right neighbor. The unique
processor that detects the subinterval containing the searched key then updates the
shared information on the search interval. All the processors next read this information,
and proceed to search within the new interval. The complete algorithm is given below.
The syntactic construct

for in S pardo P(i) odrap

indicates parallel execution of the statements P(i) for each value of in the set S.
Variables declared within a parallel loop are private to the processor executing this
instance of the loop.
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SEARCH (y, Y, bot, top)
/*Search for key y in sorted list Xbot,""", Xtop.
We assume that Xbot < Y < Xtop.
Initially bot- 0, top n + l, Xbot =--, Xtop o*/
COILS

p; /*Number of processors*/
Vll"

newbot, newtop;
c,..., Cp+;/*Vector storing outcomes of comparisons*/

begin
cp+ := 1;

while (top >bot + 1) do
for j in 1, p] pardo

vat

i;
/*Compute index of key to be compared*/
i:= bot+j,(top-bot)/(p+ 1);
/*Compare and store outcome*/
c := if y > x then 0 else
odrap;
/*Compute next interval*/
(newbot, newtop) := (bot, (top-bot)/(p + 1));

for j in 1,p] pardo
if c < c+ then

(newbot, newtop):= (bot+j*(top-bot)/(p+ 1),
bot+ (j+ 1)*(top-bot)/(p + 1))

odrap;
(bot, top):= (newbot, newtop)

od;
return (bot)
end

Note that the full power of concurrent reads is not needed to implement this
algorithm. It is sufficient to have a shared memory machine with broadcasting ability:
One (fixed) processor is able to broadcast in constant time one item of information
to all the other processors.

Parallel search in the continuous case was studied by Gal and Miranker in [6],
where a parallel version of the bisection algorithm for root finding is given (the problem
of processors coordination is ignored there). An adversary argument is used there to
show that the policy of splitting at each stage the interval of possible values into equal
length subintervals is optimal. The same argument applies to the discrete case, and
implies the following result.

THEOREM 2.2. Let P be a parallel algorithm that solves the range search problem
for a table of size n, such that at each step at most p values from the table are accessed.
Then the algorithm executes in the worst case at least lg (n + 1)/lg (p + l) steps.

Thus the complexity of searching by comparisons a table of size n with p processors
is (R)(lg (n + 1)/lg (p + 1)), if concurrent reads are supported, both for parallel machines
that support concurrent writes and for parallel machines that do not support concurrent
writes.
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Concurrent reads may occur at several places in the algorithm given in Theorem
2.1:

(i) If the search interval is small, then a key from the searched table may be
accessed by more than one processor.

(ii) All the processors share the searched key.
(iii) After each iteration, all the processors read concurrently the bounds of the

new search interval.
The first type of concurrent reads may be avoided by more careful programming.

The concurrent accesses to the searched key may be avoided by initially distributing
it to all the processors in O(lg p) steps. If concurrent reads are not supported, then
the broadcasting of the next search interval at the end of each iteration will require
(lg p) steps, and the running time of the algorithm for fixed p will be l)(lg n- lg p),
with practically no gain obtained from parallelism. It turns out that this is indeed
the best performance that can be achieved for searching on a parallel machine that
does not support concurrent accesses to the same location in memory: (lg n-lg p)
steps are required, even if we do not account for the distribution of the searched
key.

3. Lower bounds for discrete root finding. We shall prove the ,t(lg n- lg p) lower
bound for the particular case of the range finding problem where the value of the
searched key is fixed. This restricted problem can be reformulated as follows. We
denote by ’ the binary sequence consisting of zeros followed by n- ones. The
index n will be omitted when it can be inferred from the. context.

Discrete root finding (for a sequence of length n). Given a monotonic binary
sequence (x,..., xn) count the number of zeros in it, i.e. find the index such that
(x, ,x.)= Wi.

We first give a more formal definition of the paracomputer model. A paracomputer
consists of p processors P1,’", Pp, q registers R,..., Rq, an input set X, a set of
processor states S, a set of register symbols V X, a time bound T, a subset of n
registers 11, , I, that are used for input, and a subset of k registers O1," , Ok that
are used for output.

With each processor Pi are associated the following (partial) functions.
ai: S{1,..., q} {R, RW}--the access function. The first component of c(s)

yields the index of the register accessed by P when in state s; the second compo-
nent indicates whether the access is a read (R) or a read and write (RW) opera-
tion. We assume w.l.g, that each processor accesses at each step a shared memory
location.

to: S - V--the write function, toi(s) yields the symbol written by P, when in state s.
6i:S V S--the state transition function. If Pi in state s accesses a register

containing v then the new processor state is 6(s, v).

The computation starts with input x stored in register L, a designated initial
symbol 0 V in each of the remaining registers, and each processor P in a designated
initial state si S.

Let (xl, , x,) be the tuple of inputs to the computation. We denote by s(Y)
the state of processor Pi, and by c(Y) the content of register Rj, at step of the
computation with input :. The dependency on will be omitted when it is obvious
from the context.
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We have

0
S --Si,
0

cj xi if Rj Ii,
0 otherwise;

si c) if ,) =(j, R) or a,(s)=(j, RW);
t+l

cj w,(sl) if a,(sl) =(j, RW)
cj otherwise.

We require in the EREW model that the first components of c(s’i) and uj(sj)t be
distinct for any #j. In the CREW model we require that if c(s)=(k, RW), then the
first component of cg(s) is distinct from k for any j # i. In both cases the processor
states and register contents are well defined.

The outputs of the computation are contained at step T in the k output registers.
Thus, a paracomputer H computes the function Fl:X -> Xk defined by

T TFII(X1, Xn) Cjl (), ", Cjk (X),

where R2,,..., R2k are the k output registers.
Note that we do not restrict the size of the alphabet, or the number of processor

states (they may both be infinite).
A function F is finite if it has finite range, say {0,..., k}. Decision problems

are represented by finite functions. For example, the range search problem is associ-
ated with the function RS(xl,...,Xn, y)=max{i" xi<y}, defined on all (n+l)-
tuples of distinct elements that fulfill the condition x <... < xn. The discrete root

finding problem is associated with the function DRF(x,..., xn)=max (i" x=0},
defined on all n-tuples of elements from the set {0, 1} that fulfill the condition

XI" "Xn
Let F" X -{0,.., k} be a finite function. A paracomputer computes a unary

encoding of F if it has n input registers and k+ output registers, and at the end of
the computation with input 2 the only output register that has been modified is the
register with index F(2). If a paracomputer with time bound T computes the finite
function F, then a unary encoding of F can be computed by a paracomputer with time
bound T+ and the same number of processors. It will be more convenient to prove
lower bounds for unary computations, since we have to consider only the indices of
the registers accessed, but not the values stored.

Let H and H’ be paracomputers with the same number of processors and registers,
and the same set of input symbols. Then H and H’ are access .equivalent if for each

ttinput Y, each i, and each t, c(si(Y))= c(s (Y)). If a unary encoding is used, then
two access equivalent paracomputers compute the same function.

Let us introduce the following definitions. The set [a, b]={a, a+ 1,..., b} is
called a segment; we denote by the segment [0, n]. Let 5e {S1," , Sk} be a family
of subsets of . We say that r is a critical point of ow if there exist a set S such that
r Si <=> r Si. Let 0 < rl <" < r be the critical points of the family . The segment
partition defined by consists of the segments [0, rl- 1], [rl, r2--l],’.’, Its, n]. The
segment partition defined by is the coarsest partition of fi into segments that refines
the partition defined by the 2k sets f3 $7’, where e {0, 1}, So S, and S S. In
particular, if is a partition of , then the segment partition defined by O is the
coarsest partition of into segments that refines the partition 0.

THEOREM 3.1. (lg n--lgp) steps are required to solve the discrete root finding
problem for a sequence of length n on an EREW machine with p processors.
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Proof The lower bound results from the lack of a mechanism to distribute
instantaneously information throughout the system. In order to prove it we have to
trace at each step the "information" represented by the state of each processor and
the content of each register in shared memory. We do that at each step for all the
possible input values, thus obtaining a "synoptic" description of the possible computa-
tions.

The information represented by the state of a processor (the content of a register)
consists of the set of input values that could produce this state (content). It is important
to note that the information represented by the content of a register may change even
if this register is not modified, as the fact that no processor stored a new value is
informative in itself. Cook and Dwork show in [4] how such "negative" information
can be used at profit.

With each processor (register) is associated at each step a partition of the input
symbols, according to the distinct states (values) the processor (register) may assume
at this step. The lower bound will be obtained by tracing the evolution of these
partitions, and showing that the number of sets in these partitions cannot grow too
fast. In fact, we shall not trace the partitions that obtain in an actual computation, but
the partitions that would obtain in a computation where there is no "loss of informa-
tion", i.e. a computation where a processor stores a complete account ofthe information
it has whenever it writes in shared memory. These partitions depend only on the access
pattern of the processors.

Rather than counting the number of classes in each partition, it is easier to count
the number of critical points of the partition.

Let II be an EREW paracomputer with p processors, q registers, and time bound
T, that computes a unary encoding of the finite function DRF associated with the
discrete root finding problem for sequences of length n. We define inductively sets
P(i, t), i= 1,...,p, and R(j, t),j= 1,..., q, such that P(i, t)(R(j, t)) contains all the
critical points of the partition defined by processor Pi (register Rj) at step of the
computation.

(i) P(i,O)=th, i=l,...,p.
(ii) R(j, O)--{i} if Rj initially contains the ith input

b otherwise.
(iii) r P(i, t) itt
(a) r P(i, t- 1), or
(b) Pi accesses at step of the computation on input fir the register Rj, and

r6 R(j, t- 1).
(iv) r R(j, t) iff
(a) re R(j, t- 1), or
(b) Pi modifies at step of the computation with input fir the register Rj, and

re P(i, t- 1), or
(c) Pi modifies at step of the computation with input fir-1 the register R, and

rP(,t-1).
These definitions are illustrated in Fig. 1.
CLAIM.
(i) If r P(i, t), then s(ff) s(ff_).
(ii) If r : R(j, t), then c(ff) c(ff_).
_Proof. By induction on t. The claim is obvious for 0. We suppose it holds for

t-1 and prove it for t.
t--1 t--I t--I(i) Since rP(i,t-1), s (r)--S (r-)" In particular, a(s (r))----

a(Sl--(r_)). Let j be the index of the register accessed. If r R(j, t-1) then, by the
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FIG. 1. Evolution ofpartitions over one step. Marks critical points at step marks new critical points
at step t.

inductive assertion, C-’(r)= C-’(r-), SO that

,-1(r), ,-I ,-I

On the other hand, if r R(j, t-1), then r P(i, t).
t-1(ii) As r R(j, t-1), c ()= c (_). Suppose that P modifies R at step

of the computation with input If r P(i, t- 1), then, by the inductive assumption,
t-I t-1s s r- so that

t--l’-’()) ,(s (r-,)) C(r-,)
On the other hand, if r P(i, t- 1) then r R(L t). A similar argument applies if R
is modified in the computation with input _. If R is not modified at step neither
in the computation with input nor in the computation with input

_
then

t--1 t--lCj( r) Cj (r) Cj (r-1) Cj( r-,)"

Let c(t) be an upper bound on the number of critical points.

c( t) =2 IP( i, t)l+ max (0, ]R(j,

Initially

(3.1) c(0) =0.

If R O then R is not modified during the computations with input

_
or +,

and is modified during the computation with input i. It follows that i, i+ R (j, T),
and

(3.2) c(T)n.

We shall end our proof by showing that

(3.3) c(t)4c(t- 1)+p.

Indeed, (3.1) and (3.3) imply that
4’-1

c(t)
3

p’

which together with (3.2) yields the inequality

nNp, or Tlog4 3 +1 (Ign-lgp).3
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Each occurrence of r in a set P(i, t- 1) contributes at most one new occurrence
of r in a set R(j, t) according to rule (iv.b) and one new occurrence according to rule
(iv.c). Thus

IR(j, t)l<- Ig(j, t- 1)l+2E IP( i, t- 1) I.
Since IR(j, t)l >- RI(j, t-1)[ this implies that

Y max (0, IR(j, t)l- 1) <-- Y max (0, Ig(j, t- 1)1-1)+2 Y IP(i, t- 1)l.
j

At most one processor may access at step of a computation on input fir the
register Rj (this is the point where we are using the EREW property). Thus each
occurrence of r in a set R(j, t-1) contributes at most one new occurrence of r in a
set P(i, t) according to rule (iii.b). Let Jt be the set of registers accessed by some
processor at step of some computation. The number of distinct registers accessed by
Pi at step of some computation is bounded by the number of segments in the segment
partition determined by the points in the set P(i, ), i.e. by IP(i, 1)l + 1. It follows
that IJ, <_-y IP(i, t- 1)l+ p.

We obtain the inequality
P P

Y IP(i, t)l-<- Y IP(i, t- 1)1 + E IR(j, t-
i= i= JJt

-E IP(i, t- 1)1+ E (IR(j, t- )1-)+11,1
JJt

E IP(i, t- max (0, IR(j, t- 1)l-l) +p.

Combining the last two inequalities one obtains that

c(t)-Y IP(i, t)l +Y max (0, [C(j, t)l-1)

<-_4 IP(i, t- 1)1+2 Y max (0, IC(j, t- 1)l-1)+p

<--4c(t-1)+p. D
We did not use in the proof the fact that concurrent writes are not allowed. Indeed,

the lower bound is still valid for an ERCW (exclusive read, concurrent write) parallel
machine. It is also valid even if inputs are initially replicated, so that each input value
can be accessed concurrently by all the processors.

The last lower bound is optimal. An EREW machine with n / processors can
solve the root finding problem for n keys x,..., xn in constant time by comparing
in parallel xi to xi+, i=0,..., n (Xo-0, x,+- l, by definition). This generalizes to
an algorithm that solves the problem with p processors P,. , Pp in O(lg (n/p)) steps
as follows. Let ij [j(n + 1)/pl. Firstly, each processor P checks in parallel whether

xj_, < xj. Next, the unique processor P that found a strong inequality continues to
execute a serial bisection algorithm on the list x_,+,..., x_l.

This simple algorithm can be extended to solve by comparisons the general range
searching problem in O(lg n-lgp) steps, provided that the searched key can be
accessed concurrently by all the processors.

4. Searching with an unbounded number of processors. If the searched key cannot
be accessed concurrently by all the processors, then 12(lgp) steps are required to
distribute it, thus cancelling the gain obtained from parallelism in the last algorithm.
This would seem to imply that f(lg n) steps are required to solve the range search
problem, independently of the number of processors. It turns out, however, that the
range search problem can be solved much faster.
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THEOREM 4.1. The range search problem for a table of size n can be solved by an
EREWparacomputer with O(n) processors and O(n) registers in O(/ig n) steps.

Proof The idea of the algorithm is illustrated in Fig. 2. The search is carried
according to a multiway search tree where the branching factor is doubled at each
level (Fig. 2b). Such a tree of depth contains 2 t(t-l)/2- keys, so that searching a
table of that size requires accesses to nodes of the tree. An access to a node of this
tree is done in one memory access provided that an encoding of the tuple of keys at
that node has been stored in one memory cell. Once the encoding of the keys at the
node has been read, the decoding and the subsequent comparisons are performed
locally, i.e. at no cost.

FIG. 2b. Corresponding multiway search tree.
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The search will be carried by one processor. Concurrently, the remaining processors
will compute and store encodings oftuples of keys. The multiway search tree is obtained
by "compressing" the binary search tree: A node at level of the multiway search tree
contains the keys belonging to a complete subtree of depth i, rooted at level 1/2i(i 1) + 1,
in the binary tree (Fig. 2a). The processors will compress the binary search tree,
increasing by one at each iteration the depth of the subtrees which encodings has been
computed.

We describe now this algorithm more formally. Assume w.l.g, that n + 2’’+)/2.
Let ak k_ 1/2k(k + 1). The algorithm consists of iterations. At the end of iteration
the search has proceeded through levels of the multiway search tree, that correspond

to ai levels of the binary search tree. Also, encodings have been computed for the keys
belonging to each complete subtree of the binary tree that has depth i+ and has its
leaves at level aj, j i+ 1,..., (see Fig. 2a). In particular, encodings have been
computed for the keys of each subtree of depth i+ rooted at level ai + 1, i.e. for each
tuple of keys belonging to a node of the multiway search tree at level i+ 1. During
iteration i+ the searching processor accesses one of these encodings to push the
search one level down on the multiway search tree; each of the remaining processors
computes an encoding of the keys belonging to a binary tree of depth + 2 by combining
the encodings for the left and right subtrees which have been computed at the previous
iteration, and the key at the root.

At each iteration, each key and each encoding is accessed at most once, and the
total number of new encodings computed is less than n. It follows that each iteration
can be performed in constant time using O(n) processors, and that only O(n) registers
are needed. The total running time is O(t)= O(x/lg n). [3

5. Order invariant computations and canonical paracomputers. We prove in this
section that algorithms using only comparisons are as powerful as more general
algorithms in solving comparison based problems. In order to do so, it will be convenient
to work with a paracomputer model where information of input values is clearly distinct
from other information.

Let X <--n be the set of strings over X of length at most n. A paracomputer II with
n inputs is in canonical form if it fulfills the following conditions.

(i) The set of processor states is of the form X<--n C and the set of register
symbols is of the form X-<-n x D (n is the number of inputs to II). (The input
symbol x X is identified with the register symbol (x, 0), where 0 D is a
fixed constant.)

(ii) If to((cr, s))=(r, v), then every element of r occurs in tr (a processor can
write an input symbol only if it is present in its "local memory").

(iii) If ((tr, s), (r, v))= (tr’, s’) then every element of tr’ occurs either in r or in
r (a processor can store an input symbol in its "local memory" only if it is
already there, or if it accessed it from shared memory).

We call C the set of control symbols, and D the set of coordination symbols.
The behaviour of a canonical paracomputer is conveniently indicated by specifying

the indices of the input symbols that are moved. The functions a3 and are defined
by the following identities.

where
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The definition of a canonical paracomputer is motivated by the following result.
THEOREM 5.1. To each paracomputer II with p processors, q registers, and time

bound T, we can associate an access equivalent canonical paracomputer r(II) with
O(2T(p+ q)) control and coordination symbols.

We postpone the proof of this theorem to the next section. It is important to note
that the number of control and coordination symbols of r(II) is independent of the
number of input symbols.

The following definitions will make precise the notion of a comparison based
computation. Two strings , 37 X" are order equivalent (-= ) if i,j, x < xcry < y.
A function F defined on X" is order invariant if =37F()= F(37). F is order
invariant iff each set F-(y) can be defined by inequalities, that is by Boolean
combinations of assertions of the form x < x. The range search function RS is order
invariant. Note that an order invariant function has finite range.

A canonical paracomputer is order invariant if, when tr--tr’ and ’= ", the
following conditions are fulfilled for any c, d and i.

(i) a,((tr, c))--ai((tr’, c)).
(ii) a3,((tr, c))= a3,((tr’, c)).
(iii) ,((tr, c), (r, d))= ,((tr’, c), (r’, d)).
Informally, a canonical paracomputer is order invariant if the behavior of each

processor depends only on the value of the control and coordination symbols, and the
relative order of the input values it has access to, but not on the value of the input
symbols themselves. In particular, the computation will follow the same course on two
sets of input values where the inputs have the same relative order.

Let trl denote the string obtained by substituting in tr each occurrence of x by
an occurrence of y. We leave to the reader the straightforward proof of the following
lemma, which formalizes the last claim.

LEMMA 5.2. Let II be an order invariant canonical paracomputer, and let and
be order equivalent input vectors. Then the following holds

(i) If s,() (r, c) and s,() (r’, c’) then c c’ and r’= rl
(ii) If c() (tr, d) and c() tr’, d’) then d d’ and r’ rl
(iii) a,(sl())= a,(sl()) for all and t.
COROLLARY 5.3. Let F be an order invariant function defined on U X, and let

W X" be a set that contains a representativefor each order equivalence class in U (i.e.

’ U ::1)7 W s.t. -= fi). Let II be an order invariant canonical paracomputer that
computes a unary encoding of F for inputs taken from W. Then H computes a unary
encoding of Ffor any input taken from U.

Proof. Let be an input vector from U. Let )7 W be order equivalent to . Then
F() F(fi). On the other hand, by Lemma 5.2, the computation of H on is access
equivalent to the computation on 37, so that a unary encoding of F() is computed.

We make use of the following well-known theorem [9].
RAMSEV’S THEOREM. For any k, m and there exist a number N(k, m, t) such that

the following is true" Let S be a set ofsize at least N(k, m, t); if we divide the k-element
subsets ofS into parts, then at least one part contains all the k-element subsets ofsome
m elements of S.

THEOREM 5.4. For each m, p, q and T there exist a number N N(m, p, q, T) such
that thefollowing holds" Let II be a canonical paracomputer with p processors, q registers,
time bound T, and an input set X ofsize IxI >- N. Then there exists a subset Y X such
that YI >- m and II is order invariant when restricted to inputs from Y.

Proof. Let {x... x,} and {y... y,} be two n-element sets of input symbols,
indexed in increasing order. We say that x...x, is congruent to Yl"’Y, if the
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following holds"

If tr and z are strings from X-<" with symbols taken from the set {Xl’’’ x,),
tr’=_ crl and z’ =_l, then a,((r, c)= a,((tr’, c), a3,((tr, c)- a3,((cr’, c), and
,((tr, c, (z, d)= ,((cr’, c, (z’, d), for a.ny c, d and i.

It is easy to see that this is indeed an equivalence relation on the n-element subsets
of X. The number of distinct values the functions ai, o3i, and may assume is bounded
by a function of n, q, ICI and IDI. It follows that the number G of distinct congruence
classes is bounded by a function of n, p, q, IC and IDI. According to Ramsey’s theorem,
for any s there is a number N-N(n, G, s) such that if IXI >_-N then X contains a
subset Y such that YI >-- s and all n-element subsets of Y belong to the same congruence
class. This entails that, if or, tr’, , and ’ are members of Y--<, tr--or’ and ’--z’ then
ai((O" C) ai((O", C), (i((O’, C))= i(<O", C), and ti((O’, C, (’T, d)) 8,((tr’, c), (z’, d)),
for any i, c and d. 71

COROLLARY 5.5. For each p, q and T there exist a number N N(p, q, T) such
that the following holds: Let F be a finite order invariant function defined on X. Let II
be a canonicalparacomputer with p processors, q registers and time bound T, that computes
a unary encoding of F. Let IX[ >-N. Then there exists an order invariant canonical
paracomputer with the same number ofprocessors and registers, and the same time bound
that computes F.

Proof. Let n be the number of variables of F (n <_-q). According to Theorem 5.4,
if X is large enough, then there exists a set Y such that [Y[ >_- n and II is order invariant
when restricted to inputs from Y. Each string from X-<- is order equivalent to a string
from Y--<.

Let II’ be the canonical paracomputer defined as follows" II’ has the same number
of processors and registers, same sets of symbols, and the same time bound as H; the
access, write and transition functions are defined as follows.

((, c)= ,((’, c))

where tr’e Y" is order equivalent to

,((, c>)= ,,((’, c)

where r’e Y-<-" is order equivalent to

t((tr, c), (z’, d))= t,((tr’, c), (z’, d})

where tr’ e Y--<" is order equivalent to tr and z’e Y<-" is order equivalent to
As II is order invariant on inputs from Y’, II’ is well defined, and order invariant

on all inputs from X". Also, the computations of II’ are identical to the computations
of II for inputs taken from Y’. Thus II’ computes a unary encoding of F on Y’, and
by Corollary 5.3, computes a unary encoding of F on all X’.

6. Lower bounds on searching with an unbounded number of processors. We prove
in this section that (x/g n) lower bound on searching with an unbounded number
of processors. The argument consists of three parts. Firstly, we shall complete the
proof of Theorem 5.1, thereby reducing the problem to canonical paracomputers.
Secondly, the results of the previous section can be used to reduce the problem to
canonical order invariant paracomputers. Finally, an argument similar to that used in
the proof of Thm. 3.1 yields the lower bound.

Proof of Theorem 5.1. We shall build (II) from II by stipulating that whenever
a processor of H writes onto shared memory, then the corresponding processor of
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(II) writes onto shared memory a complete account of the information available to
it; whenever a processor of H reads from shared memory, the corresponding processor
of 97(II) reads and stores in its local memory (its state) the content of the register
accessed. Thus, each processor of (H) has at each step sufficient information to
simulate the corresponding processor of II.

In a processor state ((, c, cr will contain the input symbols which values "are
known" to the processor, and c will represent the knowledge of the processor on the
memory accesses that were executed. A similar convention holds for register values.

We shall use S-expressions to encode information on memory accesses. L 5f(X),
the set of S-expressions over the set X, if[

L-- NIL, or
LX, (L is an atom from C) or
L (LI L2),

where LI and L2 are S-expressions over X. The list (LI’’’ Lk) is the S-expression
(... (LI. L2)’’ ")" Lk) (this is the reverse of LISP convention).

Let H be a paracomputer. (Pi, :, t), the history of processor Pi at step of the
computation on input, and (Rj, , t), the history ofregister Rj at step ofthe computation
on input , are lists defined inductively as follows.

(P,, , 0)= i,

where is an S-expression with no atoms, encoding the number i;

(R, , 0)- xi if Rj contains the ith input

NIL, otherwise.

If processor Pi accesses register Rj at step of the computation with input then

((P,, , t) ((P,, , t- 1)((Rj, :, t- 1)).

If processor P modifies register R at step of the computation with input , then

otherwise

(Rj, , t)= (Rj, , t- 1).

CLAIM. (i) The value of and the state s() of Pi at step of the computation
with input are uniquely determined by (P, , t).

(ii) The content cj() of Rj at step of the computation with input is uniquely
determined by j and (R, , t).

Proof. The claim is trivially true for 0. Assume it is valid for t- 1.
(i) Let L (P, :, t). The value of can be determined from the first element of

t--Ithe list L. From L we can extract (Pi, , t-l) and determine s () and, therefore,
the index j of the register accessed by Pi at step t. The history (Rj, , l) of register

’-() of Rj at time t-1 can beRj at time t-1 occurs in L, so that the content cj
t-1 t-Idetermined. But si () and c () determine s[().

(ii) Let L= (Rj, , t). If L= NIL or L-xj, then no processor wrote on R and
its content is known. Otherwise L (P, , t’-l) where t’ is the last step where a
processor modified R and P is the processor that modified R at step t’. It is possible

t’--Ito determine from the expression the values of i, and the state s of P at step 1.
These determine the next value c of R, which is also the value of R at step t.

We define II’ to be a paracomputer with the same number of processors, and
registers, the same time bound, and the same set of input symbols as II. The processor
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states and register values of H’ are S-expression with atoms taken from X. The functions
of H’ are defined as follows.

a’i(L) is undefined otherwise.

if s sl(), L= (P;, t,

to’,(L) L.

61(L,, L_) (L,. L2).

The previous claim implies that H’ is access equivalent to II" in fact
t(Pi, t, Y) and c.’(Y)= Y((Ri, t, y) for every i, j, t, and Y.

Each history expression of I1 contains at most n distinct input symbols, and has
length at most o(2T(p+q)). Let L be an S-expression with atoms Xl,’’’,Xk. We
represent L by the pair

(x Xk, L’"’-),ii...il

where J" is an atom-free S-expression (distinct from J’) that encodes the number i. The
canonical paracomputer (II) is obtained from II’ by replacing each state symbol,
and each register content symbol by its above representation.

We leave to the reader the proof of the following technical lemma.
LEMMA 6.1. Let 1, r be segment partitions of . Let o be a family of (not

necessarily distinct) segments from ,. r with the property that each element in
is contained in at most s sets from o. Then

Il <- E I,l-r/s,
i=l

THEOREM 6.2. For any p and q there is a number N(p, q) such that the following
holds: If an EREW paracomputer with p processors and q registers solves in time T the
range search problem for n inputs taken from a totally ordered set X such that
then T>= lg n + O(1).

Proof Let H be an EREW paracomputer that computes in T steps a unary encoding
of the function RS:X" that is associated with the range search problem. We can
assume w.l.g., by Corollary 5.5, that H is a canonical, order invariant paracomputer.
Let us pick 2n + elements from X, bo < a < b < "On < bn, and consider the behavior
of the algorithm on the n + sets of inputs (a,..., an, bi)i 0," ", n. Note that
RS(Y,) i.

We follow now the same approach as in the proof of Theorem 3.1. Let sl(Y_)=
(o-, c) and sl(Y)= (o-’, c’). The only inputs whose relative order in Y_ is different from
their relative order in Y are y and x. Thus, the state of processor Pi distinguishes
between input Y_ and input Y if the control symbols are distinct (c # c’), or the set
of inputs accessed are distinct (o-’# r] ’-’), or neither conditions obtain but both the
values of y(=b._ or b) and of x(=a) are known to P (occur in r and or’), in which
case r is not order equivalent to o-’. This motivates the following definitions. We define
inductively the sets P(i, t) and R(j, t) as follows.

(i) P(i, 0) R(j, O) .
(ii) rP(i,t) iff
(a) re P(i, t-1), or
(b) P accesses Ri at step of the computation on input Yr, and r R(j, t- 1), or

t--I(c) P accesses Ri at step of the computation on input Y,, b occurs in si (Yr),
t--Iand ar occurs in c (Yr), or
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t-I(d) Pi accesses Rj at step of the computation on input , ar occurs in si
’-()and br occurs in cj

(iii) r 6 R( t) iff
(a) re R( t- 1), or
(b) P modifies R at step of the computation with input :?, and r P(i, t- 1), or
(c) Pg modifies R at step of the computation with input r-, and r P(i, 1).
CLAIM. (i) Let s,(r_)=(or, c) and Sl(r)= (or’, C’). If re!P(i, t), then c=c, or’=

tr[ ar and =- tr.

(ii) Let cj(r_l)=(-, d) and C(r)=(Z’, d’). If re!R(j, t) then a=a’, -,,
and - -.

The proof of this claim is similar to the proof of the corresponding claim in
Theorem 3.1.

Let
P q

c(t) E IP(i, t)l + E IR(
i=1 j=l

We have c(0)= 0 and c(T)_-> 2n. Let us consider now the growth of c(t).
We have the following two facts.
Fact 1. Let f be the tth element of the Fibonacci sequence (fo =f 1). Then the

number of distinct input symbols occurring in the content of a register at step is
bounded by f-l, and the number of distinct input symbols occurring in the state of a
processor at step is bounded by f.

Fact 2. Each input symbol may occur in the states of at most 2t-1 processors and
the contents of at most 2t-l registers at step of the computation on a fixed vector of
inputs.

Let K =fr-i and H 2r-. Then each processor state and each register content
occurring during a computation of II contains at most K input symbols, and each
input symbol occurs in the states of at most H processors and the contents of at most
H registers during the computation on input ft.

It is easily seen that

(6.1) 2 ]R(j, t)[ <= 2 IR(j, 1)[ + 2 2 IP(i, t- 1)[.

The number of points contributed to sets P(i, t) according to rules (ii.1) and (ii.b) is
bounded by

(6.2) 2 IP(i, t- 1)1 + 2 IR( t- 1)l.
j

It remains to assess the contribution of rules (ii.c) and (ii.d).
Let (i, t) be the segment partition associated with P(i, t); let y(i, t) be the set

of segments in (i, t) corresponding to states of P where an input symbol y br
occurs; let (j, t) be the segment partition associated with R(j, t). For each r there
are at most H processors that contain y br in their state at step of the computation
on input ft. It follows, by Lemma 6.1, that

E Iy(i, t)l=<Y (l(i, t)l-1) / H-E [P(i, t)l/ H.

Replace each segment Sey(i,t-1) by the segments {SfIR’Re(j,t-1)},
where j is the index of the register accessed by Pi when in the states corresponding
to the segment S. The total number of segments thus obtained is bounded by

Y. Iy(i, t-1)l +Y IR(j, t-1)1<_- [P(i, t-1)l+ H+F IR(j, t- 1)l.
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Each of these segments contributes at most K new critical points, according to rule
(ii.c). Thus, the total number of critical points contributed by rule (ii.c) is bounded by

(6.3) K( IP(i, t)l+ IR(j, t)l+ H).
j

A similar argument yields the same bound for the number of new critical points
contributed by rule (ii.d).

We obtain from (6.2) and (6.3)

(6.4) Z lP(i, t)I<=(2K + I)[ IP(i, t-1)I+ IR(j, t-1)I] +2HK.
Inequalities (6.1) and (6.4) imply that

c(t) Z IP(i, t)[ + E ]R( t)l

---(2K+3) ZIP( i, t- 1)+(2K+2) Z [R(Z t- 1)[+2HK

It follows that

_-< (2K + 3)c( + 2HK.

2n <- c(T) <= 2HK (2K+3)T--
2K+2

so that

(6.5) n<-1/2H(2K+3) T.

< H(2K +3) T

Substituting back for K and H, we obtain

n _<- 2T2+O(T)

which implies that T->_ /lg n + O(1). rl

The last lower bound is valid even if we allow concurrent reads from those input
registers that contain the searched table. It is only the access to the searched key that
has to be restricted.

7. Paracomputers with bounded bandwidth. The O(x/g n) algorithm relies heavily
on the fact that the content of one register may encode the values of an arbitrary
number of inputs, so that an arbitrary amount of information can be transferred in
one read or write operation, and processed in one instruction cycle. This is not a
realistic assumption.

We can restrict this model by restricting the type of operations that can be
performed on inputs. This is the approach usually followed in the analysis of com-
parison based algorithms, where it is assumed that inputs are atomic entities that can
be only compared. We obtain a "structured" computational model (in the sense used
by [3]), which is more amenable to analysis.

Such restriction runs against the basic approach of this paper which is that of
assuming powerful computational nodes, but restricted communication ability. We
shall instead impose "structure" on the type of items that can be transmitted in one
access to memory. We shall assume that a memory register may contain a unique input
symbol; it can also contain a communication symbol, taken from a small set. Inputs
are transferred atomically, so that an input symbol cannot encode the values of a tuple
of input symbols. Formally, let II be a paracomputer with input set X and set of
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register symbols V. Then H has memory bandwidth d if the following two conditions
hold:

(i) V-X D, where D is a set of d communication symbols.
(ii) A processor may write a symbol x X only if it had read it at previous steps.

A paracomputer has bounded memory bandwidth if it has memory bandwidth d, for
some finite d.

We shall allow the memory bandwidth d to grow as a function of the problem
size n, but assume it is fixed with respect to the size of the input set.

This restriction is still not sufficient to imply an II(lg n) lower bound. Indeed, it
is still possible to represent the values of a tuple of keys by the state of a processor.
We obtain

THEOREM 7.1. The range searching problem for a table of size n can be solved by
an EREWparacomputer with O(n) processors and registers and O(1) memory bandwidth
in time O(lg n/lg lg n).

Proof. The algorithm used is similar to that given in Theorem 4.1. Assume w.l.g.
that n (t + 1)!- 1. The search proceeds according to a multiway search tree of depth
t= O(lg n/lglg n), where nodes at level contain keys, and have, therefore, i+
children (see Fig. 3). Such a tree, of depth t, contains (t + 1)!- keys, so that a table
of that size can be searched in iterations.

FIG. 3. Multiway search tree for algorithm in Theorem. 7.1.

A processor is assigned to each node of that tree. This processor reads at each
iteration one key, and stores its value in its local memory. At iteration the processors
assigned to nodes at level have accessed all the keys at their node. Each processor
is also assigned a mailbox. The searched key is initially in the mailbox of the processor
assigned to the root. At iteration the processors assigned to level nodes access their
mailbox. One processor finds the searched key in its mailbox, and compares it to the
keys of its node, thereby selecting a node at level i/ where the search proceeds. It
then puts the searched key in the mailbox associated with the node selected.

It is easy to see that each iteration can be implemented in constant time, using
O(n) processors, O(n) registers, and two communication symbols.

A matching lower bound can be proven, using the methods of the previous section.
We leave to the reader the proof of the following analogue to Theorem 5.1.
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LEMMA 7.2. To each paracomputer II of bounded memory bandwidth, with p pro-
cessors, q registers, time bound T, and set of communication symbols D we can associate
an access equivalent canonical paracomputer (II) such that the set ofprocessor states
is of the form X<=n C and the set of register symbols is of the form X x D, with

IcI <-- 0(27(p + q + [DI)).
THEOREM 7.3. For any p, q and d there is a number N N(p, q, d) such that the

following holds: If an EREWparacomputer with p processors, q registers, and memory
bandwidth d solves in time T the range search problem for n inputs taken from a totally
ordered set X such that Ixl--> N, then T>= lg n/lg lg n + O(1).

Proof The proof is similar to the proof of Theorem 6.2. We can assume w.l.g.
that H is a canonical paracomputer ofthe form given by Lemma 7.2, and order invariant.
Let the n + input tuples o, , 3,, the sets P(i, t) and R(.h t), and the sequence c(t)
be defined as in Theorem 6.2.

We have the following two facts.
Fact 1. At most input symbols occur in the state of a processor at step t.
Fact 2. A fixed input symbol may occur in at most 2’- processor states and 2’-

register contents at step of a computation on a fixed input.
It follows that inequality (6.5) ofTheorem 6.2 is valid with K T- and H 2T-I.

We obtain that

n <-1/2H(2K + 3) 7" =< 1/4(4T+ 2) r

so that T_>-lg n/lglg n+ O(1).
We further weaken our computational model by restricting the type of information

that a processor may store in its local memory (i.e. its "state"). We assume now that
each processor has a fixed number of local registers. Each local register, may store an

input symbol. In addition, each processor has a finite state control.
Formally, let H be a paracomputer of bounded memory bandwidth with input set

X, set of states S, and set of communication symbols D. Then II has processor bandwidth
(k, c), if the following conditions hold:

(i) S xk C, where C is a set of c control state symbols.
(ii) Each input symbol that occurs in wi((tr, c)) occurs in
(iii) If i((cr, d), u)= (r’, d’), then each symbol of r’ occurs either in o- or in u.
The second condition states that the value of a local register at step is either the

value of a local register at step t- or a value read from memory. The third condition
states that a processor may write an input symbol only if it is stored in one of its local
registers. Note that a paracomputer of bounded processor bandwidth is a canonical
paracomputer (provided that k_-< n).

THEOREM 7.4. For any p, q, c, d, k, and T there is a number N N(p, q, c, d, k, T)
such that the following holds: If an EREWparacomputer with p processors, q registers,
memory bandwidth d, processor bandwidth c, k), time bound T solves the range search
problem for n inputs taken from a totally ordered set X such that IXI >-N, then T >-

(lgn/lgk+O(1)).
Proof The same argument that was twice applied works here as well. Inequality

(6.5) of Theorem 6.2 is valid with K =k and H=2T-I. We obtain that n-<_

1/2H(2K +3) r_-<1/4(4k+6) , which yields the result. [3

The last result is asymptotically optimal: if processors may store in their local
memory k keys, then it is possible to search a table of size n in O(lgk+l n + lg k) steps.

8. Conclusion. As mentioned in the introduction, ultracomputers can be seen as
a restricted class of EREW paracomputers. Thus, each of the lower bounds is valid
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for ultracomputers. Consider a network of processors, each directly connected to all
the other ones, such that each processor contains one key from the searched table,
and one processor contains the searched key. If each processor has a fixed size local
memory, then fl(lg n) communication steps are required to perform a search, even if
local computations are allowed for free. If local memory is not restricted in size, but
only one input value may be transmitted at a time, then the problem can be solved in
O(lgn/lg lg n) communication steps. Finally, if there are no restrictions on the type
of information that can be transferred in one communication step, then the problem
can be solved in O(/g n) steps.

There are few methods known to prove lower bounds for parallel algorithms,
which are not based on fanin arguments. This paper contributes one such new method.
It seems to capture two "real-life" problems encountered while writing parallel pro-
grams" it is hard to parallelize algorithms with many test and branch operations; and
frequent coordination between concurrent processes may offset any gain obtained from
concurrency.

This paper also provides a method to generalize lower bounds obtained for
comparison based algorithms to less restricted algorithms. In that, we were inspired
by the work of Yao [14]. This method can be useful in other settings as well, and in
particular can be used to analyse distributed algorithms [8].

A more natural constraint on information transfer would be to restrict the number
of bits that can be stored in one memory cell. We believe that our lower bounds are
valid in such model too, but the proofs seem much harder to obtain.

The paracomputer models we presented may suffer a few interesting variations.
As noted in 2, the O(lg n/lgp) searching algorithm can be implemented on any
EREW shared memory parallel machine where one processor has the ability to broad-
cast messages to all the other processors in constant time (a BEREW machine?). If
all the processors share this broadcasting ability (only one broadcast is allowed at a

time), then this algorithm can be implemented even in the absence of shared memory.
We have here a model of parallelism, corresponding to a bus-oriented architecture. A
similar model was studied by Stout [11].

Another natural variation is to assume that conflicting memory accesses do not

result in an error, but rather in a busy signal being returned to all but one of the
requests; alternatively one may postulate a queuing scheme at the memory.

In a real parallel machine memory is likely to be organized into modules with
exclusive access being enforced at the level of the memory module rather than at the
level of the memory cell. This suggests that we consider computational models where
the number of shared memory cells is restricted, and where the amount of information
that can be transferred in one read or write operation is smaller than the content of a

memory cell. The work of Baer, Du and Ladner [1], and of Vishkin and Wigderson
[13] is a useful start in the investigation of such systems.

9. Acknowledgments. I would like to thank Clyde Kruskal who provided the initial
thrust for this work, and Allan Borodin and Chee Yap for their helpful remarks.
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APPROXIMATION OF THE CONSECUTIVE ONES MATRIX
AUGMENTATION PROBLEM*

MARINUS VELDHORST

Abstract. In this publication we will prove a number of negative results concerning the approximation
of the NP-complete CONSECUTIVE ONES MATRIX AUGMENTATION problem. We will characterize
a large class of simple algorithms that do not find a near optimum augmentation of their input matrices.
We will show that there are matrices for which these algorithms find augmentations that are even far from
optimal. These results are important for the analysis of a sparse matrix storage scheme.

Key words, consecutive ones property, sparse matrix storage scheme, NP-completeness, approximation
algorithms, analysis of algorithms

For many years much research has been done in the design of efficient storage
schemes for sparse matrices. Many storage schemes have proposed (cf. [3], [6], [9],
11]). Some of them are rather efficient for each distribution of the nonzero elements
over the matrix (cf. [11]). Others are only efficient for specific distributions (cf. [9]).
If one has to choose a storage scheme for sparse matrices in a practical problem, the
choice will depend e.g. on the operations to be applied to the matrix. In case only
matrix-vector products have to be computed the following data structure for sparse
matrices may be very efficient"

Use a data structure in which a sparse matrix is stored as a sequence of rows and
each row is stored in such a way that all zero elements at both ends will not be stored.

We will call this the rowmat data structure and Fig. gives an example how it can be
used for a specific matrix.

0.0 0.0 0.0 ;.0 3.0

-1.0 0.0 1.0 0.0 0.0

0.0 0.0 3.0 -.0 0.0

0.0 0.0 -3.0 1.0 5.0

0.0 3.0 0.0 -1.0 -,0

bounds [1:5]

FIG. 1. Storing a matrix in a rowmat data structure.

can be stored in

bounds [4:5]

bounds 1:3]

bounds [3:]

bounds [3:5]

bounds [:5]
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In this paper we will discuss the storage optimality of the rowmat data structure,
i.e. the amount of storage required if we store matrices in rowmat data structures.
Because all nonzero elements must be stored, we only need to consider the number
of stored zero elements. The rowmat data structure will not prevent zero elements from
being stored in memory (see Fig. 1). However in many applications the columns of
the matrix may be permuted. Thus we can look for a column permutation such that
the permuted matrix can be stored in a rowmat data structure without storing any
nonzero elements. Unfortunately there are matrices for which such a column permuta-
tion does not exist.

If columns may be permuted, the storage optimality of the rowmat data structure
is closely related to the consecutive ones property for rows of a matrix (cf. [4]). As
far as we know the relation of the consecutive ones property to a sparse matrix storage
scheme has never been explored before. Although the problem to find a column
permutation such that a minimum number of zero elements would be stored is
NP-complete (cf. ]), this does not justify the conclusion that the rowmat data structure
should not be used in practice. One way to proceed is to design a polynomial time
algorithm that finds for each matrix a column permutation such that a (hopefully)
small, but not necessarily minimum, number of zero elements will be stored. These
algorithms are called polynomial time approximation algorithms.

In this paper we will concentrate on the design of approximation algorithms. In
the first section we will review main results about the consecutive ones property ( 1.1)
and their relation to the storage optimality of the rowmat data structure ( 1.2). For
definitions in the field of complexity theory of algorithms we refer to [5]. In 2, 3
and 4 we will deal with approximation algorithms to find good column permutations.
In 2 we will characterize a large class of simple algorithms: the on-line column
insertion algorithms. This section also serves as an introduction for the main theorem.
In 3 we will prove the main theorem that states that any algorithm of the class of
on-line column insertion algorithms must give arbitrarily bad approximations for an
infinite number of matrices. This means that no on-line column insertion algorithm
can guarantee a bounded error factor with regard to the minimum number of stored
elements if all column permutations of the input matrix are considered. In the last
section we will extend this result to much wider classes of approximation algorithms.
In analyzing the rowmat data structure we are not interested in the exact value of a
nonzero element, but only in the fact that it is nonzero. Therefore, we will only consider
{0, }-matrices.

1. Consecutive ones property.
1.1. Consecutive ones property and submatrices.
DEFINITION 1.1. (cf. [4]). An m n {0, 1}-matrix A has the consecutive ones

property for rows (COR-property) if and only if there is an n n permutation matrix
P such that the ones of B AP= (flo)l<=i<=,,,<=j<=, occur consecutively in each row,
i.e., for each <= <-_ m) flij and flik imply flip for all p with j -<_ p -<_ k.

DEFINITION 1.2. Let A (aij) be an m n matrix. A p q matrix B (/3i) (p -<

m, q_-< n) is a permuted submatrix of A, if there are sets I={il,..., ip} and J=
{jl," ",jq} such that flhk a ihk for all h, k (1 < h < p, k q). If I {il, i + 1,. ,
il+p 1}, J={jl,j+l,...,jl+q-1}, we say B is a submatrix of A and we write
B A[i:il+p- 1,jl :jl+q- 1]. We will denote row of A by A[i, and columnj of
A by A[ j].

THEOREM 1.1 (cf. [12]). A {0, 1}-matrix A has the COR-property if and only if no
permuted submatrix ofA equals one of the matrices given in Fig. 2.
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FIG. 2. Minimal matrices not having the COR-property.

rows

columns

If a matrix A contains a permuted Mi, then we shall refer to A as simply containing
an Mi.

In the past, research has been done on the problem of detecting the forbidden
submatrices (see Fig. 2) in an arbitrary {0, 1}-matrix A. A number of questions can be
posed:

Does A contain a forbidden permuted submatrix? By Tucker’s theorem the
existence of a forbidden permuted submatrix is equivalent to A not having the
COR-property. Booth and Lueker (cf. [2]) gave an algorithm to test whether A has
the COR-property in O(m + n +f) time (f is the number of nonzero elements in A).
The algorithm is on line" the rows of A are processed one by one. It starts with the
set S of all column permutations of A. Processing row means that from S all
permutations are eliminated which, when applied to row i, do not place the ones in
row in consecutive order. If S gets empty before all rows of A are processed-, then
A does not have the COR-property. Observe that this algorithm actually finds the
largest p such that All p, n] has the COR-property.

Does A contain a forbidden permuted submatrix with at least k rows ? This problem
has been proved NP-complete (cf. [13]). Even the problems of detecting whether A
contains an MI, MII, M,I,, respectively, with at least k rows are NP-complete (cf. 14],
[13]). The LONGEST PATH problem for graphs can be proven to be polynomially
transformable to each of these four problems.

List all forbidden submatrices of A. in 13] an algorithm has been designed which
enumerates all forbidden submatrices in time polynomial in the size of A and the
number of submatrices listed. The core of this algorithm consists of a subroutine that
finds all permuted submatrices that have only nonzero elements on their main diagonal
and their first super diagonal. Such a submatrix corresponds to an induced subgraph
in a bipartite graph that is a path.

1.2. COR-property and storage optimality. In this section we will investigate the
consequences for the optimization of storage if a {0, 1}-matrix does not have the
COR-property. If we want to store such a matrix in a rowmat data structure, then we
shall have to compromise and store embedded zero elements. In the following para-
graphs we will deal briefly with two minimization problems. For related minimization
problems we refer to 1], [7] and 10].
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1.2.1. Augmentation.
DEFINITION 1.3. Let A=(aij) and B=(o) be m n {0, 1}-matrices. B is a

k-augmentation (k N) of A if a implies fl and moreover there are exactly k
different pairs (i,, j,), <= p <- k, such that a ip,p 0 and fl p,p <- p <- k).

Aug (A)= {A}, Augk (A)= {B: B is a k-augmentation of A}.
Suppose there is a B Augk (A) that has the COR-property. Let P be an n n

permutation matrix such that the ones of BP occur consecutively in each row. Then,
if we store AP in a rowmat data structure, at most k zero elements of A will be stored.
Moreover, if k is the least integer such that Augk (A) contains a matrix with the
COR-property, then AP requires k zero elements to be stored. This leads to the following
problem.

CONSECUTIVE ONES MATRIX AUGMENTATION:
Instance" a {0, 1}-matrix A; an integer k_-> 0.
Question: is there a p (0=<p-< k) such that Aug" (A) contains a matrix with the

COR-property?
THEOREM 1.2 (cf. [1]). The CONSECUTIVE ONES MATRIX AUGMENTA-

TION problem is NP-complete.
This means that it will be very difficult to design a practical algorithm to find the

column permutation that is optimal with regard to the number of stored zero elements.
In the next sections we will prove negative results concerning the existence of simple
schemes for even finding near optimum column permutations. Observe that for every
fixed k one can determine in polynomial time whether a {0, 1}-matrix has a k-
augmentation with the COR-property. There is only a polynomial number (in the size
of the matrix A) of k-augmentations of A, and each k-augmentation can be tested in
linear time for the COR-property.

1.2.2. Storing a number of (permuted) submatrices. If an rn n {0, 1}-matrix A
does not have the COR-property, then we may try to divide A into a minimum number
of submatrices All :p, :hi, A[p + :P2, :hi,. , such that each submatrix has the
COR-property. Each submatrix has its own column permutation such that the ones in

each row of the submatrix occur consecutively.
If it is not allowed to permute the rows of A, this problem can be solved in

polynomial time (apply the algorithm of Booth and Lueker (cf. [2]) several times), but

if the rows of A can be permuted, then this problem is NP-complete (cf. [10]). Even
to find a maximum set of rows of A that has the COR-property is NP-complete (cf.
[ 1]). Nevertheless we will show that the following problem can be solved in polynomial
time (in the size of A)"

Let A have rows r,..., r,,.
Partition R ={rl,..., r,,} into sets Rl,’’’, R, such that

(1) IR, I>=IR,+,I (1 <--i<--_p 1),

(2)

(3)

each R (1 -<_ <- p) has the COR-property,

for each (1 <_-i_<- p) and for each row r R with j > the set Ri LI {r} does not

have the COR-property.

The following algorithm will solve the problem.

ALGORITHM 1.
(initialize R := { r } (1 _-< -< m)

while there is a j and an r e Rj such that for some i<j Ri 12 {r} has the COR-
property
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do Rj:= Rj\{r}; R:= R,U{r};
sort (Ri)i<__m according to decreasing number of rows

od
let p be the greatest index such that Rp #
)

If this algorithm terminates, el,... Rp satisfy the requirements (1)-(3).
PROPOSITION 1.3. Algorithm terminates and does so within polynomial time.

Proof. Define:

f(el,’’’, Rm)= Y’. Ie, I. (Ie, is the number of rows in Ri).
i=1

f can only have nonnegative integer values. With each action consisting of a deletion,
an addition and an ordering, the value off decreases. The algorithm has to terminate
otherwise f would become negative. When the algorithm has processed the first line,
f(R,... ,Rm)=1/2m(m+l) and the outer loop will be executed at most 1/2m(m+ l)
times. It requires at most polynomial time to perform the instructions in the loop-clause.
Thus the algorithm will halt within polynomial time in the size of A. D

2. Examples of approximation algorithms. In the previous section we saw that not
every sparse matrix can be stored in a rowmat data structure without storing any zero
elements, even if the columns are permuted. Moreover, the problem of finding a column
permutation such that a minimum number of zero elements would be stored, turned
out to be very hard: the problem is NP-complete. However, these results do not justify
the conclusion that the rowmat data structure should not be used in practice. For such
a conclusion there should be negative results in the following four directions:

a) We restrict ourselves to a special class C of matrices (which reflects the matrices
used in practice) and try to design a polynomial time algorithm that finds for each
matrix of C a column permutation such that a minimum number of zero elements will
be stored.

b) We try to design a probabilistic ("usually efficient") algorithm that finds for
each matrix a column permutation such that a minimum number of zero elements will
be stored. For most matrices such an algorithm should run in polynomial time, but
for a (hopefully small) number of matrices it may need exponential time.

c) We try to design a polynomial time algorithm that finds for each matrix a
column permutation such that a (hopefully) small, but not necessarily minimum,
number of zero elements will be stored. These algorithms are called polynomial time
approximation algorithms.

d) Some combination of a), b), c).
In the 2-4 we will concentrate on approximation algorithms. The main result

is given in 3. Section 2 serves as an introduction for this main result.
DEFINITION 2.1. Let A (ol.ij) be an m x n {0, 1}-matrix.

ones(A)= _. a0
i=lj=l

(the number of nonzero elements of A),

store(A) (max {j" a0 # O} min {j: ao O} + 1)
= with max () 0 and min () 1,

optstore(A) min {store(AP): P is an n x n permutation matrix}.

An m n matrix B is a column permutation of A if B AP for some n n permutation
matrix P. B is an optimum column permutation of A if store(B)= optstore(A).
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DEFINITION 2.2. Let A (aij) be an m n {0, 1}-matrix and B a column permuta-
tion of A. Let column of A be column pi of B (1 =< _-< n). We say that a o,Jo of A is
stored in B if there are jl and j2 with

P --< Po, P2 >-- Po, a o,J a o, 1.

As we have seen in 1, the problem to find for each matrix A an optimum column
permutation B of A, is NP-complete. Here we seek a polynomial time algorithm that
finds a column permutation B of A (for each A) such that e.g.

store(B)
<_ c

ones(A)

for some fixed constant c, because otherwise there are other more appropriate data
structures for sparse matrices.

PROPOSITION 2.1. If such an algorithm exists, then c >-.
Proof. Consider the special case of Min (cf. 1.1).

optstore(Mn) store(M1n)=2(n+ 1)+n+2, ones(M.)= 2n+4.

Therefore, for every column permutation Bn of Mtn we have

optstore(Mt 3 n + 4store(Bn >
ones M.) ones M.) 2n / 4

Note that for c’< there is an n such that store(Bn)/ones(M.)> c’. Hence c>_-. [3

However, it is more realistic to compare store(B) with optstore(A) than with

ones(A). If store(B) is close to optstore(A), then B is considered a "good" column
permutation of A. Therefore, to analyze an algorithm X, we will use as a criterion the
magnitude of the ratio

store(B)
(4) with B a column permutation of A found by X.

optstore(A)

Moreover, we are interested in the asymptotic behavior of X.
DEFINITION 2.3. Let f: N- R be a mapping. Let X be an algorithm that takes

{0, 1}-matrices as input and that returns a column permutation of its input. X is an
f-approximation algorithm (for the CONSECUTIVE ONES MATRIX AUGMENTA-
TION problem) if there is an N N such that for all m n {0, 1}-matrices A (m, n >- N)

store(X(A))
optstore(A)

<-_ f( optstore(A)).

As we have seen, we are only interested in c-approximation algorithms with c some
constant. It should be nice if there are algorithms of that kind with a running time
that is polynomial in the length of their input.

DEFINITION 2.4. A {0, }-matrix A is said to be clean ifthe following five conditions
are satified:

(i) each column of A contains at least one nonzero element,
(ii) each row of A contains at least two nonzero elements,
(iii) Each row of A contains at least one zero element,
(iv) no two rows of A are equal,
(v) no two columns of A are equal.
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DEFINITION 2.5 Let A be an m x n, B an m x p, C an m x(n+ 1) and D an
m x (n +p) {0, 1}-matrix and let u be a {0, 1}-sequence of length m.

C=Aconcatu if C[ ,l:n]=AandC[ ,n+l]=u.

D=AconcatB if D[ ,l:n]=Aand D[ ,n+l:n+p]=B.

Now we will give two examples of straightforward approximation algorithms that
are not c-approximation algorithms for any c.

ALGORITHM 2.
proe BESTFIT (matrix A)matrix:
eo let A be an m n {0, 1}-matrix co
(initialize B as the m 0 {0, 1}-matrix;

for k from to n
do initialize C as the m x k {0, 1}-matrix with only nonzero elements;

for j from to k
do matrix D B[ :j ] concat A[ k] concat B[ j: k 1];

if store(D) < store(C) then C := D fi
od; B:=C

od;
return B
)

BESTFIT processes the columns of A one by one; processing column k means
that it will be inserted in B such that the current columns of B do not lose their relative
order; column k is inserted in B just where it causes the least number of elements of
B (including column k) to be stored.

PROPOSITION 2.2. BESTFIT is not a c-approximation algorithm for any c >- 1.
Proof. We have to prove that for each N N and each c R (c->_ l) there is a

{0, 1}-matrix A with at least N rows and columns such that

store(BESTFIT (A))
optstore(A)

Let NoN, ccR (c-> 1); let

0 0
0

0

li lO Ol

p+l p+l k

p + 2 rows,
2p + k + 2 columns,
k>=2,p>= 1.
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optstore(Ap,k) tore(Ap,,) (p + 1)2 + (p + 1)(p + 2) + 2k. If BESTFIT is applied to

Ap,, it returns

/1. O1 0
0 0tl

BESTFIT (Ap,)

/lo lo o
li

and

p/l k p+l

p+l k
2 +

store(BESTFIT (Ap.k))_ 2(p+ 1)2+(p+2)k p+2 p+ p+2

optstore(Apk) (p+ 1)2+(p+ 1)(p+2)+2k p+ 2k 2
+1+
p+2 (/+ 1)(p +2)

if k large compared with p. Thus, with p and k large enough, we have p+ 2_-> N,
2p + 2 + k ->_ N and (p + 2)/2 > c. We conclude that BESTFIT is not a c-approximation
algorithm for any c

Observe that the columns of Ap.k are sorted by nonincreasing number of nonzero
elements. BESTFIT has a rather bad performance because it compares the one column
to be inserted with the (maybe many) columns already processed. It may decide to
store the zero elements of column A[ q] (A arbitrary) rather than to change not-stored
zero elements of BESTFIT(A[ l:q-1]) into stored zero elements in
BESTFIT (A[ q]). This may happen even when A[ q] has many zero elements and
is identical to many other columns in the matrix A. Consider, for example, column
2p + 3 in the matrix Ap,k as used in the proof of Proposition 2.2.

BESTFIT has a tendency to insert the last columns somewhere in the middle of
the matrix obtained so far, which may lead to many stored zero elements that would
not be stored in the optimum column permutation. Thus Algorithm 3 below in which
the columns are ordered by decreasing number of zero elements, may perform better.
As for identical columns we have the following lemma.

LEMMA 2.3. Let A be an m x n {0, 1}-matrix. Then there is an optimum column
permutation B ofA such that identical columns of B are consecutive in B.

Proof Let C be an optimum column permutation of A and suppose not all
identical columns of C are consecutive. Thus there are jo, jl, j2 e N (jo <jl <j2) such
that the columns jo and j2 of C are identical and the columns jo and j of C are not
identical. Without loss of generality we can assume that the number k of stored elements
of column jo is not greater than the number of stored elements of column j_. If we
delete column j2 and insert it just beside column jo (thus obtaining a {0, }-matrix C’)
then exactly k elements of column j2 of C are stored in C’. Then:

store(C’) k + store(C[ :j2- 1] concat C[ ,j2 + 1" n]) -< store(C).

Because C was assumed to be an optimum column permutation of A, we have
store(C’) store(C). Thus we can permute the columns of C in such a way that the
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number of stored elements will not increase and identical columns will be consecutive.
This gives us another optimum column permutation of A.

DEFINITION 2.6. Let A be an mn matrix. We say that A has a row
partition K (0 k < k <. < kp m) and a column partition K
(O=k<kl<...<kq=n) if A can be partitioned into (Aij)<_i<_p,l<=j<_q such that
for all i,j (l<=i<-p,l<=j<-q) Ao=A[kr_l+l’k,k_l+l’k]. In this case
rowstrip(A, i, K) A[k_ + 1" k, and colstrip(A,j, K c) A[ k-l + 1" k].

DEFINITION 2.7.
(i) An m n matrix A is a block diagonal matrix with k blocks if it can be

partitioned into A=(Ao)<_<_p,<_<=q such that rain (p, q)= k and Aj=O for all ij
<- <= p, <=j <= q). Block of A is the matrix A, (1 =< _-< k).

(ii) An m n matrix A (ao) is a permuted block diagonal matrix with k blocks
if there are m m and n n permutation matrices P and Q such that PAQ can be
partitioned into a block diagonal matrix with k blocks.

Without proof we state:
LEMMA 2.4. Let A be an m n {0, 1}-matrix with row partition K (k,. , kp).

Then"

p

store(A) , store(rowstrip(A, i, K)).
i=l

If A is a block diagonal matrix with row partition K and column partition K=
(0= k), k ), then"

(i) for each (1 <=i<= min (p, q)):

store (rowstrip(A, i, Kr))-- store(colstrip(A, i, K))= store(A,),
p

(ii) optstore(A) optstore(rowstrip(A, i, K))
i=l

q, optstore(colstrip(A, i, K))
i=l

min(p,q)

optstore(A,).
i----1

ALGORITHM 3.
proc BESTFITDECR (matrix A)matrix:
(Let B be a column permutation of A such that the number of zero elements per
column in B is nonincreasing. Moreover, identical columns of A are consecutive
in B.

Then perform BESTFIT (B) with the modification that identical columns
are inserted simultaneously and are kept in consecutive order in the result of
BESTFIT (B)

)

BESTFITDECR processes the matrices Ap,k (p >- 2) of the proof of Proposition
2.2 very well"

store(BESTFITDECR (Ap,k) ) store(Ap,k) store(Ap,k)
1.

optstore(Ap,k) optstore(Ap,k) store(Ap,k)

BESTFIT works rather well for a block diagonal matrix A: the columns of each
columnstrip of A remain consecutive in BESTFIT (A). However, BESTFIT can have
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a bad performance for permuted block diagonal matrices, which will not necessarily
be improved by BESFITDECR.

PROPOSITION 2.5. BESTFITDECR is not a c-approximation algorithmfor any c >- 1.

Proof. We have to prove that for each N N and each c R (c >-1) there is an
m x n {0, 1}-matrix A (m, n->_ N) such that

store(BESTFITDECR (A))> c.
optstore(A)

Let N N, c R (c_-> 1). Let Ak be a block diagonal matrix with 2k blocks Aii with

0

Aii MI,-- 0

0
(1-< i-<2k).

Let Bk =(/30) be the 6k x7k {0, 1}-matrix with Bk[ l’6k]= Ak and for each (1 i
k) [33(i_l)+l,6k+i-’-3k+3(i_l)+l,6k+i--1 (see Fig. 3). Bk is a permuted block diagonal

Alll b

o
o

FIG. 3. Matrices used in the proof of Proposition 2.5.

matrix with k blocks. All columns of Bk are different and each column contains two
nonzero elements. Let K (0, 3, 6,. , 6k, 7k). BESTFITDECR returns the columns
of Bk in the ordering:

colstrip( Bk, 2k, K c), Bk[ 7k], colstrip( Bk, 2k- 1, K), Bk[ 7k- 1], ...,
Bk[ ,6k+2], colstrip( Bk, k + l, K), Bk[ 6k + l],

colstrip( Bk, k- 1, K), "’’, colstrip( Bk, 1, K").

colstrip Bk, k, K ),
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Thus

store(BESTFITDECR Bk))
k 2k

E store(A.)+ E
i=1 i=k+l

(store(A,)+ 1)+ ones(Bk[ 6k+ "7k])
k

+ E (3(k- 1)+i- l)
i=l

=(7k+27).
2k opstore(A,)= 2k + 14k 16k. With k largeOn the other hand, optstore(Bk) 2k + ,i=t

enough we have

store(BESTFITDECR (Bk)) 7k2+27k
C.

optstore Bk 32k

Hence, BESTFITDECR is not a c-approximation algorithm for any c => 1.
DEFINITION 2.8. Let A be an m n {0, 1}-matrix and u a {0, 1}-sequence of length

m. An m (n + 1) {0, }-matrix B is an insertion matrix for u in A if for some y N
(O<=y<-_n)

B A[ l’y]concat u concat A[ y+ l’n].

DEFINITION 2.9. Let X be an algorithm that takes {0, 1}-matrices as input a.nd
that returns a column permutation of its input. X is an on-line column insertion algorithm
if for each m (n+ l) {0, 1}-matrix A, X(A) is an insertion matrix for A[ n+ 1] in
X(A[ 1: n]).

PROPOSITION 2.6. BESTFITDECR is not an on-line column insertion algorithm.
Proof Let

0 0 0 0

A=
0 0

BESTFITDECR(A)=
0

i 101 00 i’1 i
00

i’0001
100

llO ;
BESTFITDECR (A[ 1"3])

0

i i01
and therefore, BESTFITDECR(A) is not an insertion matrix for A[ ,4] into
BESTFITDECR (A[ 1:3]). 1-1

We could have defined the notion of an on-line column insertion algorithm in
another way.

DEFINITION 2.10. Let X be an algorithm that takes {0, 1}-matrices as input and
that returns a column permutation of its input. X has property P if for every m n
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{0, 1}-matrix A and every keN (1 <_-k-<_ n), X(A) and X(A[ l:k]) satisfy (5):

let column (1 <- -<_ n) of A be column Pi of X(A); let column (1 -<_ _-< k)
of A[ :k] be column qi of X(A[ :k]); for all andj (1_-< i,j<- k) we(5) have

p<pj if and only if qi<qj.

LEMMA 2.7. X is an on-line column insertion algorithm if and only if X has
property P.

Proof.
=: Suppose X has property P. Let A be an m n {0, 1}-matrix and k n- 1. Let

(P)in and (q)in- as in (5) and Y=Pn. Then for all with q<=y-1 we have
p q and for all with qi y, p q + 1. Thus X(A) is an insertion matrix for A[ n]
in X(A[ l:n-1]). This holds for every matrix A and therefore, X is an on-line
column insertion algorithm.

3: Suppose X is an on-line column insertion algorithm. Let A be an m n
(0, 1)-matrix and keN (lkn). Consider A[ ,l:h] with kh<-n. Let column
(1 <_- h) of A[ h] be column Ph, of X(A[ h]). X(A[ h / ]) is an insertion
matrix for A[ h + 1] in X(A[ h]), thus:

for all i,j (l<=i,j<-h) ph,<ph, if and only if ph+,<ph+,.

With induction it is easy to prove that

for all i, j (1 i, j <- k) Pk, Pk, if and only if p, < p,.

Hence, X has property P.
Using this lemma, one can for every m n {0, }-matrix A determine X(A[ k])

from X(A) for every k-< n, since the relative ordering of columns of A[ :k] as they
appear in X(A) is inherited.

COROLLARY 2.8. Let A-(aj) be an m n {0, 1}-matrix and X an on-line column
insertion algorithm. Iffor some k <- n and io, jo <- io <- m, <-_ jo <- k) a o3o (cnsidered
as an element) of A[ l:k] is stored in X(A[ l:k]), then aio3o (considered as an
element) ofA is stored in X A).

3. A negative result. Now the question arises whether there is some on-line column
insertion algorithm that is a polynomial time c-approximation algorithm for the
CONSECUTIVE ONES MATRIX AUGMENTATION problem. In Theorem 3.2 we
will answer this question negatively. But Corollary 3.3 states more. To obtain a negative
answer, it will be sufficient to show that for each on-line column insertion algorithm
X and for each c _-> and each N N there is an m n matrix Ax,c, (m, n >-_ N) such
that

store(X(Ax,c,)) > c
optstore Ax,,

which proves that, in fact no on-line column insertion algorithm can be a c-approxima-
tion algorithm (for some fixed c) at all. Theorem 3.2 states that Ax,,N can be chosen
to be of arbitrary size (for fixed X and c) and Corollary 3.3 states that for fixed c and
N Ax,,u can be chosen such that the following conditions are satisfied:

(i) the number of rows and columns of Ax,, does not depend on the on-line
column insertion algorithm X,

(ii) let X and X’ be two on-line column insertion algorithms. Then Ax,c,v and
Ax,,,u are equal possibly except for their last columns.
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In order to prove this we will use a block diagonal matrix A of k m m blocks.
The number of elements in a block is bounded from above by m2 and in a rowstrip
by km2. We will use blocks that all have an optstore value bounded by 3 m. A is chosen
such that for each of its column permutations B it is possible that many elements of
a rowstrip of B will be stored if one extra column is inserted in B.

THEOREM 3.1. Let N N, c R c >= 1). Then there is a clean square matrix A with
n >= N rows such that for each column permutation B ofA we have:

ifstore(B)/optstore(A)<= c then there is a {0, 1}-sequence UB oflength n such that

for each matrix C that is an insertion matrix for uB in B,
store(C)/optstore(A concat uB)> c.

Proof Let N N and c R (c _-> 1). Let f: N- N be any function such that
(i) limk_.f(k)
(ii) there are a c’> 0 and a K’ N such that for all k >= K’, f(k)/k < 1/2-c’.
For example: f(k)= [k/4], f(k)= [log2 k], etc.
Choose k’ N (k’>- 3) such that for all k >-k’ we have

k-3f(k)
(6) f(k)> c and (1 +2f(k))> c.

3k

Such a k’ exists. Let k->_ k’. Choose m’ N (m’_-> 3) such that for all m _-> m’ we have

k(3m-2)+m+m2f(k)
mk >= N and > c.

k(3m-2)+m2-m+2
Let m >_-m’. Thus:

(7)

mk >- N, m>-3, k>-_3,
k(3m 2) + m+ m2f(k)
k(3m-2)+m2-m+2

l+2f(k) k-3f(k)
>c and (l+2f(k))> c.

3 3k

>c,

Observe that the fifth inequality of (7) follows from the second inequality of (6).
Let A be a block diagonal matrix with k blocks M,..., Mk and

(8) Mi=M,,._2 (l_<-- i_--< k).

Let K (0, m, 2m, , mk) be the corresponding row and column partition. Then
we have:

(9) optstore(Mi)=3m-2 (l <-_i<-_k), optstore(A)=(3m-2)k.

Let B be any column permutation of A with column j of A column pj of
B (1 <=j>- mk).

Let

pmin( i) min {p/: (i- 1)m <--j <--_ im}, <--_ <-- k)
(10)

pmax( i) max {p;: )m <=j <= im}, <= <- k).

Claim.

and

(11) store(rowstrip(B,i,K))>-m+2(pmax(i)-pmin(i)) for all -<_ i-< k.

ProofofClaim. Consider column in rowstrip(B, i, K) with pmin( i) <= <= pmax( i).
It is either a column of M or it is a zero column. When it is a zero column, we have
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pmin(i) < < pmax(i) and at least two of its zero elements are stored in rowstrip(B, i, K).
There are exactly pmax(i)-pmin(i)-m+ zero columns in rowstrip(B, i, K) between
the columns pmin(i) and pmax(i). Hence

store( rowstrip( B, i, K)) >-_ optstore( Mi) + 2(pmax( i) -pmin( i) m + 1).

With (9) this proves the claim.
We are interested in the values of pmin(i)-pmax(j).
Let qo min {pmax(i): -< =< k}, q max {pmin(i): _-< _-< k}.
Thus exactly one columnstrip of A has all its columns at the left of column qo+

in B and exactly one columnstrip of A has all its columns at the right of column q-
in B. There are three cases.

Case 1. q qo- mf(k).
Claim 1. With m and k satisfying (7) and q <= qo-mf(k) we have

store(B)
optstore(A)

>C.

Proof of Claim 1. q <- qo- mf( k). Thus"

for all pmax(i) >-_ pmin(i) + mf(k) (i <= <- k).

Using (11) this results in store( rowstrip( B, i, K))>- m+2mf(k) so that (with (7) and
(9)).

store(B)
>
mk + 2mkf(k)

>
m + 2mf(k) + 2f(k)

> c.
optstore(A)- (3m -2)k 3m 3

Hence Claim is proved and Case satisfies the theorem.
Case 2. [q qol < mf(k).
Claim 2. With m and k satisfying (7) and Iq- qol < mf(k) we have

store(B)
optstore(A)

>C.

Proof of Claim 2. First assume mf(k) < min (qo, q) < max (qo, q) < mk mf(k).
We divide B into five parts, as shown in Fig. 4.

R1 B[

R2 B[ min (qo, q) mf(k)

R B[ min (qo, q)

R4 B[ max (qo, ql)+

R5 B[ max (qo, ql)+ mf(k)+

min (qo, q l) mf(k) ],

min (qo, q)- ],

max (qo, q) ],

max (qo, q) + mf(k) ],

mk ].

R2, R and R4 together contain at most 3mf(k) columns. B contains mk columns so
that R and R5 together at least mk-3mf(k) columns.

Let

IMIN={i:pmin(i) <min (qo, q)-mf(k)} and

/MAX { i: pmax(i)> max (qo, q)+ mf(k)}.

Then IIMINt-J IMAxl -> k-3f(k). For each i IMINLI IMAx:pmax(i)-pmin(i)>= mf(k).
With (11) this gives the result"

for all i IMIN [-J/MAX: store(rowstrip(B, i, K)) >- m+2mf(k).
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nl R2

mf
columns

Ra R4

colurnns]
,f ()

colurnns

rnir(’o,q rnax(o,q
FIG. 4

Hence:
store(B) >= E store(rowstrip(B, i, K))

i IMINu/MAX

e IIuiNU IMAXI" (m+2mf(k))>-(k-3f(k)) (m+2mf(k)).

With (7)"

store(B)
optstore(A

(k-3f(k)).(m+2mf(k))> (k-3f(k)). (1 + 2f(k))
(3m-2)k 3k

Now we have proved Claim 2 for the general case ttiat mf(k)<min(qo, q)<
max (qo, q < mk mf(k).

Next assume min (qo, q) <= mf(k) or max (qo, q) >= mk- mf(k). The two special
cases (.min (qo, q)<=mf(k) and max (qo, q)>= mk-mf(k)) are similar; thus we will
only deal with min (qo, q)<= mf(k). Now we divide B in 4 parts:

R:,= B[ min (qo, q)- ],

R3 B[ min (qo, ql) max (qo, q) ],

R4 B[ max (qo, ql)+ max (qo, q)+ mf(k)] and

R5 B[ ,max (qo, q) + mf(k) / mk ].

RE, R and R4 together contain at most 3mf(k) columns, and therefore R5 contains

at least mk-3mf(k) columns and there are at least k-3f(k) columnstrips of A with

a column in Rs. Let

/MAX {i: pmax(i) > max (qo, ql)/ mf(k)}.

Then IIMgxl>--k--3f(k). For each i/MAX: pmax(i)--pmin(i)> mf(k). With (11):

store(B) >- , store(rowstrip(B, i, K))>-_(k-3f(k)) (m+2mf(k))
IMAX

and with (7): store(B)/optstore(A) > c.
Now Claim 2 is proven, and hence Case 2 satisfies the theorem.
Case 3. q >- qo + mf(k).
Claim 3. With m and k satisfying (7) and q >-_ qo / mf(k) there is a {0, }-sequence

us of length mk such that for each matrix C that is an insertion matrix for us into B,
we have store(C)/optstore(A concat us)> c.
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I< >-mr(k)-1 >1

Rz R

R R

FIG. 5

rowstrtp(B,s 0,K)

rowstrip(B,s 1.K)

Proof of Claim 3. Let qt-qo > mf(k). With the definition of qo and qt there are

So and st (1--<So-<k, l<-s2-<-k) such that qo=pmax(so) and q=prnin(s). Then we
have: SoS st and pmin(sl)-pmax(so)>= mf(k). Let us divide B as in Fig. 5.

Because of (10) and the choice of So and Sl, the submatrices R2, R3, R4 and R5
are all zero matrices. Let uB be a {0, 1}-sequence of length mk defined by"

if (So- 1)m <j<_- So" m,

(12) uB[j]= if (st-1)m<j<st’m,

0 otherwise.

(13) A concat uB is a permuted block diagonal matrix with k-1 blocks.

optstore(A eet u) <-_ optstore(rowstrip(A, i, K)) + 2 m + +
i=1 i=3
So,S

(14)
(k 2)(3m -2)+ m2 + 5m -2.

Let C be an insertion matrix for uB in B. Thus, there is a y N (0<= y <= ink) such
that

B[ ,l’y]=C[ ,l’y],

u=C[ ,y+l],

B[ y+ mk]= C[ y+2" mk+ l].

If y_-< qo then all zero elements of R5 are stored in C though they are not stored
in B. R5 contains at least m2f(k)-m zero elements.

If y >= qt-1 then all zero elements of R2 are stored in C though they are not
stored in B. R2 contains at least m2f(k)-m zero elements.

If qo < y =< qt, then the same number of zero elements will be stored in C, but now
they are distributed over R2 and Rs. None of these zero elements are stored in B.

Thus"

store (C)>-_ optstore(B)+ ones(u)+l{elements of R_ and R5 stored in C}
>-_ k(3m -2)+ 2m + mf(k) m k(3m -2)+ m2f(k)+ m.

With (14) and (7), this gives:

store(C) k(3m-2) + m+ m2f(k)
C.

optstore(A concat us) k(3m-2) + m2-m + 2

This ends the proof of Claim 3 and the proof of Theorem 3.1. [3
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As a direct consequence we have"
THEOREM 3.2. Let X be an algorithm that takes {0, l}-matrices as input and that

returns a column permutation of its input. Suppose there is a c R such that X is a

c-approximation algorithm. Then X is not an on-line column insertion algorithm.
However, Theorem 3.1 states more about c-approximation algorithms.
COROLLARY 3.3. Let X satisfy the conditions of Theorem 3.2. Then for all N N

and for every algorithm Y that takes {0, }-matrices as input and that returns a column
permutation of its input, there is an m n matrix B m, n >-_ N) such that X(B) is not

an insertion matrix for B[ n] in Y(B[ n 1]).
COROLLARY 3.4. Let N N, c R c >- 1). Then there are m, n >= N and an m n

matrix A such that for every two on-line column insertion algorithms X and X’ there are

m x (n + l) matrices B and C with

store(X’(C))store(X(B))
> c, > c and B[ n]= C[ n]= A.

optstore(B) optstore(C)

Theorem 3.2 is the special case of Corollary 3.3 with X replaced for Y. Observe
that Corollary 3.3 holds even if Y finds the optimum column permutation of its input.

It actually is the insertion of the last column of its input that prevents an on-line
column insertion algorithm to be a c-approximation algorithm for some c R. If we
design an approximation algorithm that first determines some column permutation D
of all but the last column u of its input (such that D is independent of u) and then
inserts u in D, then this algorithm is not a c-approximation algorithm for any c R.

With Corollary 3.3 we have described a large class of approximation algorithms
that are not c-approximation algorithms. This class contains, among others, the on-line
column insertion algorithms.

4. Extensions to other classes of approximation algorithms. In the previous section
we saw that many approximation algorithms can provide bad approximations to the
optimal storage (in a rowmat data structure) of a column permutation of a matrix. In
particular this bad result is obtained for some block diagonal matrices. Knowing this,
one can try to design more sophisticated approximation algorithms. In this section
we will extend Theorem 3.1 and, consequently, Theorem 3.2 and the Corollaries 3.3
and 3.4, and describe larger classes of approximation algorithms that still do not
contain a c-approximation algorithm for any c R.

4.1. Preprocessing to block diagonal form. The class of matrices used in the proof
ofTheorem 3.1 merely consists ofblock diagonal and permuted block diagonal matrices
(see (8) and (13)). For each block diagonal matrix there is an optimum column
permutation that is block diagonal too. Moreover, as we have seen before (Algorithm
2), there is an on-line column insertion algorithm that preserves this block diagonal
structure if applied to a block diagonal matrix. Thus it seems reasonable to permute
the rows and columns of a permuted block diagonal matrix to block diagonal form
before applying any on-line column insertion algorithm. Unfortunately this does not
give a c-approximation algorithm for any c R. In the proof of Theorem 3.1 we could
have chosen a slightly different A’: A’ has also nonzero elements in the positions
(m+ 1, m), (2m+ 1,2m), ., ((k- 1)m+ 1, (k- 1)m) and (1, km). With this change
the blocks of A have been made loosely connected in A’. The column u in the proof
would then make a stronger connection between two loosely connected blocks of A’
that are far away from each other in the column permutation B. Preprocessing A’ into
block diagonal form does not change A’ because it is already in this form (one block).
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To prove negative results concerning more sophisticated preprocessors, we intro-
duce the concept of a separator of a matrix.

DEFINITION 4.1. Let p N and A an m n (0, l}omatrix with p-< n.
(i) A set of p columns of A is a separator of A if the matrix A with the columns

deleted, is a permuted block diagonal matrix with at least two blocks.
(ii) Let S be a smallest separator of A A is in connected order if the deletion of

the columns of S from A results in a block diagonal matrix.
A matrix A with a small separator is almost a permuted block diagonal matrix.

If, in addition to this, A is in connected order, A can be considered almost block
diagonal. The idea is that preprocessing an input matrix into connected order, would
improve the worst-case behavior of on-line column insertion algorithms. However, the
next theorem states that if an on-line column insertion algorithm is combined with a
preprocessing algorithm that permutes matrices in connected order, this will not give
rise to a c-approximation algorithm for any c R.

THEOREM 4.1. Let N N, e, c R (c >_- 1, e > 0). Then there exist an n N and a

square {0, l}-matrix A such that for each column permutation B of A:

if store(B)/optstore(A)<-_c then there is a (0, l}-sequence uB of length n !+ such
that store(C)/optstore(A concat uB) cfor any matrix C that is an insertion matrix

for u in B. A and A concat u satisfy the following conditions"

they are clean
(ii) they have n+ >- N rows.
(iii) they are in connected order;
(iv) they do not contain a separator of size <n 1-.

Proof. Because the proof of this theorem is similar to the proof of Theorem 3.1
and uses the same kind of arguments, we will only give an outline. Let f: N-> N be a
function with f(n)=fl(n) and there are 0 and KN such that for all k_->K

(3f(k)-l)/3k-1/2 . Let M, U and A be as in Fig. 6. Then we have"
(i) The smallest separator of An,k,d contains 2d- 2 columns,
(ii) nd <-optstore(Mi)<-_(d- l)n+(n-d + l)d,
(iii) kd(1/2(d-1)+n)<-optstore(An.k,d) and optstore(An,k,d)<=k(3nd-1/2d2+

1/2d-2n)- n(d- 1)-1/2d(d- 1).
Let B be a column permutation of An,k,d. pmax(i) and pmin(i), <-_ <-_ k, are

defined as in (10). Without proof we state:
Claim. store(rowstrip (B, i, K))>-d(pmax(i)-pmin(i)+ l) for all (1 <_-i<-k).
Let q0 max {pmin(i)" 2_-< <-_ k}, q min (pmax(i)" 2 <- <- k}. The rest of the

proof is quite the same as the proof of Theorem 3.1, except that it requires more
calculations. We only show where the connected order plays a role. An,k,d does not
have a separator of size less than 2d- 2. Deletion of the last d columns of the first
and last columnstrip of An,k,d, results in a block diagonal matrix with two blocks.
Moreover, the sequence u that is defined will not have nonzero elements in the first
n positions, because pmin(1) and pmax(1) do not play any role in the value of qo and
q. Therefore, deletion of the same 2d 2 columns of An,k,d coacat u once again results
in a block diagonal matrix with two blocks. 71

Remark. Theorem 4.1 even holds if we put the additional restriction on A (and
A coacat us) that the columns of a smallest separator are consecutive in A (and
A concat us).

Thus, preprocessing a matrix into connected order does not help us to find
c-approximation if we use an on-line column insertion algorithm. Of course, it is
impossible to prove negative results for all combinations of preprocessing and on-line
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d-1
< >
I...I

’i

<
d

an nxn }O, II-matrix in which each
row and column has exactly d non-
zero elements,
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< >
i...i

’i

an nxn lO, II-matrix,

with Mi M..a (I</)

U U..a (i<_<_/c).

FIG. 6

column insertion algorithms: one of these combinations gives for each matrix the
optimum column permutation. But each preprocessing algorithm that does not change
the column number of un if applied to A concat un (see (12)), does not improve the
performance of any on-line column insertion algorithm.

4.2. Mixers and on-line column insertion algorithms. Another kind of more soph-
isticated approximation algorithms can be obtained by incorporating a "small mixer"
in an on-line column insertion algorithm. On-line column insertion algorithms often
can be formulated in such a way that the columns are processed one by one. The
columns that are processed do not loose their relative order with the insertion of a
next column. If we incorporate a "small mixer", we allow that the columns already
processed are permuted slightly just before column will be inserted.

DEFINITION 4.2. Let A be an m n {0, 1}-matrix, u an {0, 1}-sequence of length
m and s: N--> N a function with s(k)<= k for all k e N. Let B a column permutation of
A concat u and column of A concat u is column Pi of B (1 -<_ i-< n + 1).

B is an s-mix insertion matrixfor u in A ifthere are n s(n) numbers il < i2 <" <
i._(.) < n such that

(15) i<ik ifandonlyif p<pi (l <=j<-n-s(n), <=k<=n-s(n)).

B is an s-mix2 insertion matrix for u in A if for all j (1 _-<j _-< n) we have"

if pj < p.+, then IPj -J[ -< s(n) and if p > Pn+l then IP -j[ =< s(n).
DEFINITION 4.3. Let X be an algorithm that takes {0, 1}-matrices as input and

that returns a column permutation of its input. Let s: N--> N be a function with s(k) <- k
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for all k N. X is an on-line column s-mixl (resp. s-mix2) insertion algorithm if for
each m n {0, 1}-matrix A, X(A) is an s-mixl (resp. s-mix2) insertion matrix for
A[ ,n]inX(A[ ,l’n-1]).

In an on-line column s-mixl insertion algorithm at most s(n-l) columns may
be deleted from X(A[ l’n-1]) and inserted somewhere else in this matrix before
inserting column n. In particular, an s-mixl insertion algorithm allows that the first
column of X(A[ l’n- 1]) will be the last column of X(A), in case s(n- l) -> 1. The
way these s(n- 1) columns are mixed and once again inserted, will have to depend
on column n, otherwise Corollary 3.3 states that we do not have a better approximation
algorithm.

In an on-line column s-mix2 insertion algorithm all columns of X(A[ l’n- 1])
are allowed to be permuted, but the new column number will differ at most s(n- 1)
from the old column number. With s(n- l)< n- 2, this means that the first column
of X(A[ l’n- 1]) will never be the last column of X(A). For the same reason as
above we are only interested in mix2 algorithms that depend on column n of A.
Unfortunately, if s(n) is not large enough, no on-line column s-mix or s-mix2 insertion
algorithm is a c-approximation algorithm.

THEOREM 4.2. Let N N, e, c R c >- 1, e 0). Then there are an n N and a

clean square {0, 1}-matrix A with n+ >- N rows such that for each column permutation
B ofA we have:

If store(B)/optstore(A)<-c then there is a {0, 1}-sequence UB of length n+ such
that for every function s" N- N with s( k) <- k- k >- 2), store(C)
optstore(A concat Ha) c for every matrix C that is an s-mix insertion matrix for
uBin B.

THEOREM 4.3. Theorem 4.2 with "mix l" replaced by "mix2".
We only sketch the proofs of these theorems, because they are similar to the proof

of Theorem 3.1.
Proof of Theorem 4.2. Use the matrix A given in (8), with Mi an n n matrix.

Let B be a column permutation of A. Let k n.
We only have to look at the case store(B)/optstore(A)<-_c in which we have to

provide UB. Define uB as in (12). Let B be divided as in Fig. 5.
Because s(n l+e) n, there is at least one column of each columnstrip of A of

which the column number is one of the il,""", in+-s(nt+) of (15). Let us delete all
columns pi of B of which does not occur in il," ", i,+_(,/, resulting in a matrix
B’. Then there surely is a column of colstrip(A, So, K) in the left part of B’ and one
of colstrip(A, s, K) in the right part of B’. Inserting uB in B’ causes at least n(nf(k)-
s(n+) 1) zero elements to be stored. Inserting the deleted columns can make things
only worse. With suitable f and n large enough, ratio (4) is violated.

Proof of Theorem 4.3. Let A, B and u as above in the proof of Theorem 4.2.
After the mixing of B has been done, column pmax(so) of B is at most s(n /) positions
to the right and column pmin(sl) of B s(n+) to the left. Thus inserting u causes at
least n(nf(k)-2s(nl+) 1) zero elements to be stored. With suitable f and n large
enough, ratio (4) is violated, l]

COROLLARY 4.4. Let X be a c-approximation algorithm. Then X is neither an on-line
column s-mix nor an on-line column s-mix2 insertion algorithm for any e R (e > O)
and s" N- N with s k) <- k-.

COROLLARY 4.5. Let c R (c >-1). Let X be a c-approximation algorithm and let
NN such that store(X(A))/optstore(A)<= c for all matrices A with at least N rows
and N columns. Then for every algorithm Y that takes {0, 1}-matrices as input and
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that returns a column permutation of its input, there is an m n matrix B m, n >-N)
such that X(B) is neither an s-mixl nor an s-mix2 insertion matrix for B[ n] in
Y(B[ l’n-1]) for any eR (e>0) and s’N-->N with s(k)<-k-.
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OPTIMAL ALLOCATION OF AREA FOR SINGLE-CHIP COMPUTATIONS*

ZVI M. KEDEMt

Abstract. This paper presents initial results on the problem of allocation of the available VLSI chip’s
area among various functional components such as I/O pads, memory cells, and internal wiring. First, a
general lower bound for any chip computing a transitive function is derived; this bound is tight for certain
functions. The arguments used in the various derivations are later used to specify which of the components
are critical depending on the relative sizes of the chip and the number of variables of the function to be
computed. The general lower bound is powerful enough that many of the previously proved lower bounds
(which could account only for some of the functional requirements) are obtained as explicit special cases
of the new result.

Key words. VLSI complexity, area/time tradeoffs, optimal allocation of resources

1. Introduction. The purpose of this paper is to examine the following question:
Given chip area A, how to optimally allocate it among I/O, memory and wiring
(internal communication) so that some function of interest can be computed in the
provably minimum time? Perhaps surprisingly, the geometric nature of the model
makes it sufficiently "structured" so that meaningful study of the consequences of such
allocation for the purpose of designing provably optimal (up to constant factors) chips
is feasible. (It is interesting to contrast this situation with the one in unstructured
models, where similar attempts at formal treatment of optimal allocation do not seem
to be as fruitful; see also JAr80, p. 210].) Our results permit us to completely characterize
both the amount of resources required and their optimal allocation for certain computa-
tions, and to obtain some of the previously proved lower bounds (which generally
accounted for some of the resources, or restricted their utilization in some way) as
special cases, by invoking explicit constraints.

Our physical and geometrical assumptions on the chip structure are the same as
those commonly employed in theoretical research (see e.g., [Th79] and [BrKu81] to
which the reader is referred) and therefore we will only sketch them briefly, more for
the purpose of fixing the terminology. We consider chips having a constant number
of layers v; for advantages of using three-dimensional chips see the work of A.
Rosenberg [Ro81]. We will assume that the chip is designed on a square grid; the
"squares" of the grid will be referred to as tiles. We also find it convenient to assume
that the chip is convex (or we might deal with its convex hull), as we can then use
our simple separator theorem. Hence, without loss of generality [Le80] we assume that
the chip is a square whose sides lie in the layout grid. (Somewhat less stringent
assumptions could suffice, see, e.g., [Th79], [LeMe81] and [Sa81].) A major decision
to be made concerns the appropriate wire delay function, namely what is the time
required to move a bit along a wire as a function of the distance. We will consider
two delay functions studied previously: unit (constant) and linear. They seem to be
sufficiently representative to give insight into other possible monotonic delay functions.
Ignoring nonessential constants, we state some "reasonable" assumptions concerning
the technological capabilities of the chip. (As we shall see in 4, it is worthwhile to
treat input and output separately.)

* Received by the editors February 3, 1983. This research was partially supported by the National
Science Foundation under grants MCS 80-25376, MCS 81-04882 and MCS 81-10097. Part of the research
was conducted when the author was visiting the Department of Computer Science, Columbia University.

t Department of Computer Science, State University of New York, Stony Brook, New York. Current
address: Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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Input. In one time unit an I/O pad of unit area can read in one input bit.
Output. In time unit an I/O pad of unit area can write out one output bit.
Memory. One unit of area can store a number of bits equal to the numbers of

layers.
Wires. Each wire is of width one, and can "move" only one bit at any time

unit. The wire delay function may be chosen to be either constant or linear.
Computation. In one time unit a computational element of one unit of area can

compute an arbitrary boolean function of the bits stored in it.
We will now describe the chip’s functional behavior. A chip computing some

function has defined an I/O schedule, that is a set of triples of the form (i,j, k), meaning
that I/O pad number at time instance j reads the input variable (or respectively
writes the output variable) number k; as the input and the output variables’ indices
will be distinct there will be no confusion using this definition. Specifically, we will
say that a chip with I/O pads P1, P2,’", Pp computes some boolean function
(Z1, Z2,""" Zn)--f(Zn+l, Zn+2,"’" Zm) in time T, if there exists a subset /z (the I/O
schedule) of {1,..., P} {0, , T} {1,. , m} with the following properties:

1. If (il,jl, kl) (i2,j2, k2) are elements of/x, then (i,j) # (i2,j2). (A single I/O
pad can deal with only one variable in a single time instance.)

2. fk<= n=li >- 1 =ij[(i,j, k)/x]. (Every output variable is produced.)
3. If whenever (i, j, k) Ix for k->_ n + 1 the input z is supplied at I/O pad P at

time j, then whenever (i, j, k) I for k <- n the output Zk is produced by the chip at
I/O pad P at time j, and the values of the variables are related by (z,..., z,)=
f(z,+l,’’’, Zm). (If the chip receives the inputs according to /z, it will produce the
outputs according to/z also, and the values of the variables satisfy the function f for
all possible values of the input variables.)

We explicitly point out to the reader that there is no assumption that an input
variable can be read at most once during the computation. This point is discussed
towards the end of this section.

What we have actually defined above was a where- and when-determinate schedule
(which is therefore identical for all possible input variables). Informally, a schedule
is where-indeterminate if the first elements of the triples in/z are not "fixed," but can
be determined (perhaps by an oracle) on the basis of the values of the input variables;
it is when-indeterminate if the second elements of the triples can be determined on the
basis of the values of the input variables. As we do not assume that the chip has any
control over its input, the where- and when-indeterminate schedules do not model
actual chip behavior well, but may be of theoretical interest.

We will specifically consider chips computing transitive groups (or functions) as
done first by J. Vuillemin [Vu83], who also attempted to relate their complexity to that
of other functions of interest. (For a discussion of the relations between the complexity
of transitive functions and more "useful" functions such as binary multiplication see
[KeZo81].) A group G of permutations of {1, 2,..., n} is called transitive if ti, j
{1,2,...,n} =lgG[g(i)=j]. A boolean function f as above is called a transitive
function of n variables (or computes a transitive group) if it is of the form (y, , y,)
f(x,..., x,, s,..., Sp), and for some transitive group G,

Vg G ]Sl, Sp {0, 1} VXl," , x, {0, 1}

[f(x, ", x,,, s,, Sp) (Xg(1), ", Xg(n))],

The inputs were partitioned into two classes, variables to be permuted xa, , x, (onto
y,. , y,) and arbitrary parameters s,. , sp dependent only on the permutation to
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be computed. Note that the definition above allows one, in effect, to input a different
program (the values of sl,’", Sp) for each permutation. This is of no concern in
proving lower bounds, but we will return to this point briefly when upper bounds are
considered.

VLSI complexity theory has been attracting growing interest following the pioneer-
ing work of C. Thompson [Th79]. Nevertheless, we believe that previous work does
not address a very important concern of how to utilize the available area of the chip.
Specifically, it was assumed in previous work, explicitly or implicitly, that one or
two of the requirements dominate and the other can be ignored. It was also believed
that this would suffice for predicting adequately the total area needs ofthe computation.

As the most important example of that previous approach we will focus now on
the AT2 (n2) type results considered first by [Th79] and later further developed by
among others [BrKu81] and [Vu83]. A careful reader of the various proofs of these
lower bounds will observe that they account only for the wiring (internal communica-
tion) requirements of the computation, and thus they can shed little insight on the
other resources required during computations. It may indeed seem at first glance that
wiring is the critical resource, as for some functions ATE-- O(n2). Furthermore,
sometimes a result of the form A f(n) is proved, essentially implying that storing
the complete problem’s description can/must always be done [BrKu81]. However,
these are both really only consequences of the model chosen, which frequently assumes
that each input is read only once, an assumption which is not made in this paper.
Thus, it is not possible to study within that framework the consequences of limited
memory which sometimes is the bottleneck of the computation. In other words this
lower bound cannot predict the complexity unless the chip is large.

As a motivating analogy for our more general approach, consider the problem of
sorting sequences of items on a computer with limited memory. If the sequence to be
sorted is small compared to the memory size, then one normally tries to minimize the
amount of internal computation. If the sequence is large (analogous to the violation
of A=(n)), a different set of concerns arises. The bottleneck is then the limited
memory size, which causes for instance, considerable movement ofinformation between
internal and external storage (see, e.g. [Kn73]), and theory should account for this. It
is generally the case that during sorting intermediate results are read in and out of
CPU/RAM, a more sophisticated strategy than just reading the input several times,
as we allow here. However, even the assumptions we make allow us to prove interesting
results, which seem to indicate the relative importance of input, memory and wiring
depending on the relative sizes of n and A.

It should be mentioned that a lower bound ofthe form A2T f/(n2) was considered
by [Va81] and [Sa82], further developing [Gr76]. This lower bound accounts for input
and memory requirements of VLSI chips, even though it was originally developed for
boolean circuits. The model used in the derivation of that result also assumes that
inputs may be read more than once. However, this lower bound too characterizes only
some of the resources needed, as it cannot predict the complexity unless the chip is
small, and the wiring needs are not critical.

As stated in the first paragraph of this section, we wish to study the optimal
allocation of the area of a single chip among the various resources required. To this
end we first prove a general lower bound of the form F(A, T)=fl(G(n)), where F
and G are suitable functions, and n is the number of variables being permuted. This
is indeed done in 2, although we find it more convenient to first state T as a function
of A and n. In 3 we very briefly sketch a construction showing that our lower bound
is optimal for some transitive functions. In 4 we compare and contrast our work with
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some of the previously published results. We conclude that section by actually stating
which resources are critical, depending on the relative sizes of A and n.

2. The lower bound.
LEMMA 1. Consider a set of tiles of the layout to which some positive weights are

assigned. Assume that each weight is at most A, and the sum of weights is at least . Then

for every q <- there exist two slices, vertical S and horizontal $2 defined by the sequences
of "points": (xl, -), (x, y), (x2 xl + 1, yl), (x+) for S, and (-, Y2), (X3, Y2),
(X3, Y3 Y2 + 1), (+0, Y3) for $2, for integer x, x, x3, Yl, Y2,. Y3, and such that both the
weight of the tiles to the left ofS and th’e weight of the tiles below S lie in the interval

(-, ].
Proof. We sketch the proof for S. Let x--min {integer xlthe weight of the tiles

to the left of the line x x2 is at least /}, and let x x2-1. As the weight of each tile
is at most A, the existence of an appropriate Yl follows immediately. D

We now prove a convenient version of the planar separator theorem. (A similar
result was also proved by J. Savage [Sa82].)

LEMMA 2. Let q > 1/2 and let m >- 128q be integer, let nonnegative integer weights be
assigned to the tiles of the chip such that the sum of the weights of the tiles is m, and the
weight of each tile is at most [m/128qJ. (This, of course, implies that A >- 128q.) Then
the chip can be separated by a separator lying in the layout grid and of length 5x/ at

most into fl >-2q not necessarily connected "patches" such that the weight of the tiles in

each patch is at least m/10q.
Proof. Before starting the formal proof we present an intuitive explanation. We

wish to divide the chip into pieces (patches) of approximately equal weight (actually
of certain minimal weight which is close to the average) by means of cuts of small
total length. First, consider the very simple example (see Fig. 1), where each tile of

FIG.

the chip is of weight m/A. Then, assuming that is divisible by x/, we can slice
the chip by means of x/-1 vertical and x/-1 horizontal segments of length
each so that each of the 2q small squares (patches) obtained is of weight m/2q and
the total length of the segments is 2(x/-1)x/. [3

The lemma assumes a more general situation, as there is no requirement that all
the tiles are of equal weight. Therefore the patches are constructed in two stages (see
Fig. 2). First, approximately horizontal "strips" (parcels), which are not necessarily
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FIG. 2

connected, are obtained by means of successive slicing off strips of weight m/x/
approximately. (Technically, at least m/3x/.)

Each such cut is of length or / 1 as it may contain one "knee" (see Lemma
1). Then, each such strip is sliced in turn into approximately x/ patches each of
weight m/(x/x/) approximately. (Technically, at least m/lOq.) Although a single
strip is not of constant width and furthermore about x/-1 additional knees are
possible in each strip, the total length of the cuts is still O(x/Aq).

We now proceed with the formal proof. By repeated application of Lemma 1 it
can be shown that there exist [x/-1 vertical slices dividing the chip into
regions, which we will refer to as parcels, each containing tiles of total weight at least

1 128q 2x/ 64x/ 3x/

The total length of the vertical cuts (each cut is obtained by restricting a slice to the
chip) is bounded from above by (v/-+ 1)x/.

By repeated application of Lemma 1 to each parcel in turn, it can be shown that
there exist [x/-1] horizontal slices for each parcel dividing the parcel into
regions, referred to as patches in the statement of Lemma 2, each containing tiles of
total weight at least

The total length of the horizontal cuts (each cut is obtained by restricting the slice to
its parcel) is bounded from above by (x/+3(/+ 1))x/. As A _-> 128q > 64, it follows
that 1 _-< x/<-v//8 and therefore the total length of the cuts is bounded from above
by 5x/-. [3

During the proof of our results a certain argument needs to be used a number of
times. In order to avoid repetition, we will prove a basic lemma which states the
argument in sufficient generality that it can be used as needed later. Let the chip
compute some transitive G, and let g be some generic element of G. We may consider
the computation performing this particular g. Pick two time instances tl and t2 during
the computation, such that 0 <- tl t2 <- T. Assume that the chip was separated by means
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of some separator of length r into at least /3-> 1 disjoint patches (which are not
necessarily connected). Let/3’ be the actual number of patches. P=, 7r 1, ,/3’, will
stand for the 7rth patch. Of course, if/3’= 1 then o-= 0. We do not assume here that
weights are assigned to the tiles of the chip, so we will not use Lemmas 1 and 2. During
the time interval (tl, t2] each patch outputs some variables, at least y in number. Let
the actual number of variables output by P= be y=. To do that each patch needed to
acquire by time instance t2-1 e/aough information to compute the appropriate outputs.
This information can come out of three sources: the information stored in the patch
at time instance tl, the information read into the patch during the interval tl, t2), and
the information that entered the patch from other patches during the interval
by crossing the separator. We will consider all these sources of information.

Let a be the upper bound on the information that can be stored in P at tl in
addition to the information present there at the beginning of the computation. (We
wish to consider only the information that is dependent on the values read by the chip
during the computation.) Let ag .,’=1 a anda =maxg (ag). Note that a necessary
condition for a > 0 is tl > O. Furthermore, a <- vA, where v denotes the number of layers.

Let pg be the upper bound on the information that has to arrive in P from the
other patches by crossing the separator during the time interval h, t). Let pg .,3’
and p maxgo Pg)"

Let 6i be the number of patches into which at least one copy of xi was read during
n--1the interval [t, t), and let (i=o i)/n.

LEMMA 3. Using the above notation, p >- 7(-)- a. Furthermore, if fl > 1 (and
thus o" > 0), then t2 t >- p/ o’v >-_ 7(/3 8) a )/cry.

Proof. Let g vary over the elements of the transitive group G. Let Go=
{g Gig(i)=j}. For every and j choose gj to be some element of G0. As noted by
J. Vuillemin [Vu83], for transitive G all Gj’s have the same cardinality, which we will
denote by h. Furthermore, GI- hn.

Define:

if during [h, t2) no copy of xi was read into P,
otherwise.

Note that Y.= D.7 >-’-. Let Prut-" {JlY) was written by P= during (/1, t2]}. Note that
all Pout’S are disjoint and J’=1 Pout may be a proper subset of {1,. ., n}. Define

if during Its, t2) no copy of x was read into P for which g(i) Prut
otherwise.

n--1 n--1 --1

g O j=0 g O/j j=0 j=0

as Vg G)[E E,].

Note now that for each [3, jp E 7D >= 3’Di and therefore

’ Eh’E) E’ E1 TD, Thus D7 > h7( fl’- i). Sum-- .-1mingveriweget,,=ogEnh7(fl 8) and asg=o ,=og
n--1we have g =o E nh7( ) ]G} 7(fl’- ). We conclude that for some g,-> v(’- ).i=0
,-1 E is a lower bound on the number of bits that are needed inInformally, =o

various locations of the chip for output, but which have not been read into the "right"
patches. Thus they were either stored in the right patches, or arrived there from other
patches. More formally, we have ag + pg 7(fl’- ), and thus, a + p y(fl’- ),
proving the first claim of the lemma.
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We now prove the second claim of the lemma. During t2-tl time units at least
/9 >= 3’(/3’- ) a >_- y(/3 ) c bits have to move through the separator of length
As there are , layers on the chip, at most trt, bits can move across the separator during
one time unit. This immediately proves the second claim.

COROLLARY 4. Consider tl, 2 stlch that 0 <-- < t2 <--_ T. Let qi be the number oftimes
n--1

xi was read into the chip during some interval [tl, t2), and let q (--o qi)/n. Let m be
the number of outputs produced during the interval (tl, tEl. Then, q >-_

1 (min (tA, t,A) / m.

Proof. The first claim of Lemma 3 states that t9 => y(/3- )- c. Clearly, the most
that the chip can "remember" at time tl is min (the number of inputs the chip has
read so far, the storage available). Thus we have cr- min {tlA, t,A. Applying Lemma
3 to our case and noting that/3 I we set p 0, 3’ m, and t -_< q. Thus, 0 _-> m (1 q)
and q>= l-trim- 1 (min (tlA, t,A))/m.

Not surprisingly, Lemma 3 will be used later (in conjunction with Lemma 2) to
show that q is a fraction of 1 if a is a fraction of m, and thus during certain time
intervals "many" inputs had to be read.

THEOREM 5. For any chip computing a transitive function of n variables,

T-I(-min((l +-)q/ f) +z(n)),
ql \\

where

if the wire delay is constant,

if the wire delay is linear.

Proof The statement to be proved is equivalent (by trivial manipulations) to the
conjunction of the following three statements:

1. T l"ll min + f min max for A
q-->l ql 20v

2. T- 1-1 min q + fl min max
ql ql A

3. T f(r(n)).

The reader will find it more convenient to follow the proof if each of these cases is
considered separately.

LEMMA 6.

T 11 min max forA <.
q>=l 20v

Proof By the structure of our argument we will actually prove that

T=f( min max {7, /}),q>l/2

which is, of course, equivalent to the claim of the lemma.
Choose a shortest time interval during which some m [20vA, (20v / 1)A) outputs

are written. (Such an interval exists, as at most A bits can be written during a single
time unit.) Assume this is the interval (t, t2] for some 0 <_- t < 2 < T. Let 2- t. By
our choice of tl and t2 it follows that T>= nt/(20,+ 1)A. As n/(2Ot,+ 1)A=(R)(n/A),
it will suffice to show that t=(minq>/2 max {nq/A, x/A/ q}
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Let qi be the number of times xi was read into the chip during the interval tl,/2),
n--1and let q (Y=o q)/n. By Corollary 4, q ->_ 1 (min { q, A, uA})/m >- 1 ,A/m >-_

1- uA/2OvA>1/2. We will now show that, whatever the value of q (subject of course
to q>1/2), t=l)(nq/A) and t=(x/A/q), thus proving the lemma.

First observe that, as there were at least nq input bits read during time units,
we immediately see that >-nq/A.

Before showing that l(x//q) we give an overview of the basic idea. The most
interesting case occurs when no pad writes "many" bits during the interval. We will
partition the chip into a certain number of patches each writing out approximately the
same number of outputs during the interval, which will be possible as no pad has
many outputs. We then use the fact (proven in Lemma 3) that for some "unlucky"
permutation "many" bits that need to be output were not read into the "right" patches,
but as the chip was "small," it could not "remember" a "large" number of them. Thus
we conclude that "many" bits needed to travel during the interval across the separator
that defines the patches. The separator was chosen using Lemma 2 in a way that makes
it quite "short" (with respect to the already small chip). From here it follows that the
time interval had to be long enough in order to accommodate the required movement
of information. We now proceed with the formal proof for this case.

Assume first that no output pad writes more than m/128q bits during the interval
(tl, tt]. Assign to each cell of the chip weight equal to the number of bits it writes
during the interval. Apply Lemma 2 to the chip, obtaining a partition of the chip into
patches each containing output pads writing m/10q bits at least by means of a separator
of length 5xq at most, We now apply Lemma 3. In this case we have,/3-> 2q > 1 (by
Lemma 2 and q > 1/2), r _<- 5x/qq, y _-> m/10q, a _-< A, 6 -<_ q, and thus 6 -<_ q. The con-
clusion of Lemma 3 gives us that

y(fl-t)-a> (m/lOq)(2q-q)- ,A>20,Aq/lOq- ,A A _l f

We will now deal with the case when some output pad writes out more than m/128q
bits during the time interval. We will show that >_-(20,/128)x/A/q. As has to be at
least as long as it takes the output pad to write out its outouts we have >-m/128q >_-

20uA/128q ->_ (20u/128)A/q. IfAq >-_ 1, then as Aq >- /A/q the claim follows. Other-
wise, note that as there are at most A pads writing m outputs we have, >-m/A>-
20,A/A 20, > (20 ,/128)1 > (20 ,/128)x/A/

We have thus shown that t=l(minq>/2 max { nq/ A, ,/A/ q}), from which the
lemma follows.

LEMMA 7.

T fl min max
ql A

Proof Similar to the proof of Lemma 6, but accounting for memory requirements
is not necessary. [3

Proof of Theorem 5. It remains to show that T 1((n)). We deal here in detail
only with the case when the wire delay is linear, using a modification of an argument
due to B. Chazelle and L. Monier [ChMo81]. Consider the output pad writing yo.
During the T time units of the computation only the inputs read within the distance
of at most T from the pad can "influence" the value of Yo. Thus some region of the
chip of area O( T2) must read at least one copy of each out of the n inputs Xo, , x,_.
As each unit of area could read at most T inputs during the computation, it follows
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that Tz=fI(n/T), or T=D(nl/3). If the wire delay is constant, the application of a
similar agument for fan-in, immediately gives T II(log n). 71

COROLLARY 8. For a chip computing a transitive group of n variables:
if the wire delay is constant then:

If A <-/I 2/3, then A T [2(nZ).
Ifn2/3<-A<-_n, then A3T3=[(n4).
Ifn<-_A<-_(n/log n)3/z, then AZT3=(n3).
If (n/log n)3/Z<-A, then T=(Iog n).

If the wire delay is linear then:
IfA <- n 2/3, then A T ll(n2).
Ifn/3<-_A<=n, then A3T3=[-(n4).
If n <-- A, then T l-l(n 1/3).

Proof. The proof of the corollary is entirely trivial" for various values of n and A,

min + q + + ’(n)
A

(see statement of Theorem 5) is minimized by selecting an appropriate value of q
subject to q _-> 1. The actual derivation, nevertheless, is most instructive and therefore
we will prove the first two claims of the corollary here. We consider the case where
A-<_ n. It is easy to see that -(n) can be ignored and therefore as nA _>- we minimize
nq/A +x/A q subject to q _-> 1. We have two cases"

1. A<-_n /3.Here,asq>l,wehavenq/A>n/A>nl/a>x/>x/A/q.Thus,q= =1
and T=II((n/A)(n/A))=fl(n/A),

2. A> n2/3. In this case we "balance" nq/A x/A/ q obtaining q A/ n :2/3 and
T=((n/A)(n/A)(A/n/3))=I(n4/3/A). 71

As communicated to the author by J. Savage, part ofthe corollary was conjectured
by L. Valiant for at least some transitive functions [Va81].

Let us examine the proof of the first case. We have, in effect, deduced that the
term x/A/q was not of significance in the range A-<_ n 2/3, and thus ifusing some different
assumptions on the chip’s capabilities we could derive only the weaker formula

q>-I

it would be as strong as the original one in the range of interest. Comparing with the
proof of Lemma 6, we see that the term x/A! q was obtained on the basis of accommodat-
ing the internal movement of information (using internal wiring), and thus even if we
assume that "wires are free," the same lower bound would hold. After showing that
the lower bounds are tight ( 3) and making the argument more formal, it is possible
to conclude that if A <= n 2/3 then wires are not a critical resource. The fact that wires
are not critical if the chip is small fits nicely with the fact that if the RAM of the
computer is small then internal computations are not critical for sorting large sequences
(an analogy intoduced in 1). A complete summary stating which resources are critical
in various ranges is given at the end of 4.

3. The upper bound.
THEOREM 9. For each A greater than some constant, there exists a chip computing

all circular shifts of an n-bit vector a transitive function) such that

T=O min 1+ q+ +-(n)
q_->l
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.Proof. We do not present here the construction for the case of linear wire delay.
The construction shown is a uniform construction for constant wire delay, and builds
on the ideas of the construction presented in [KeZo81] for the special case A n3/2

and T=log n. The interested reader is referred to that paper for a more detailed
description of that special case to help him understand the general construction, as
we only sketch here its more salient points.

Let u and w be such that 1 -<_ w <= u-<_ n. For simplicity we assume that w divides
u and, u and w2 divide n. By selecting only the log w smallest stages from the standard
circular barrel shifter of u bits it is possible to construct a layout of size O(u) by
O(w), which implements all circular shifts of a vector of u bits by 0, 1,..., w-1
positions. Attach to each of the u in-terminals an H-tree of w leaves. The leaves of
the trees will serve as input pads and memory cells capable of storing one bit each.
This can be done so that the new layout is still of size O(u) by O(w). (Figure 3 shows
an informal drawing for the case where u 8 and w 4.)

FIG. 3

We only describe the computation informally. Let the value of the shift be written
as s bu + p, for nonnegative integers b and p, and -< u- 1. The computation will
consist of max {n/uw, 1} phases. During each phase the leaves of each set of trees
connected to the in-terminals {p, p+ 1,. , p+ w- 1} for p that is divisible by w, read
in all n inputs using a total of n!w2 time units. Each tree stores in its leaves a total
of q min {w, n! u) of the inputs. The bits selected will, in effect form a circular shift
of the input by bu positions. Then the stored inputs are pipelined from the leaves to
the in-terminals and then into the shifter. The shifter will then perform a shift by
positions. This is done in max {log w, q} time units.

Thus, as max{a,b}=a+b for nonegative a and b, we get that T=
O((n/uw+ 1)(n/w2+(log w)+min {w, n/u})). For each value of area size A some
choice of u and w will give the claimed value of T. Specifically:

IfA <n/3 choose u=w=
If/12/3 < A < n, choose u A/nl/3 1/3,W--R
If n<-A<-_(n/log n)3/2, choose u=A:V3 w’-A1/3

If (n/logn)3/a<-_A, use only (n/logn)3/a area and choose u=n/logn,
w (n/log n) 1/a.

Notice that our model allowed the chip to read in during the computaton arbitrary
parameters that were only dependent on the permutation and not on the vector to be
permuted. One may object and say that this in effect allows us to input a different
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program for each permutation, which is indeed the case. It is, however, possible to
modify the above construction so that the area is just large enough to store the index
of the permutation using area of O(log (n)) and the parameters read are just sufficient
to specify the permutation.

4. Conclusions and comparison with previous work. We have shown that for an
arbitrary transitive group the lower bound

T f min 1 + q + + -(n)
q>l

holds. Furthermore, we have exhibited transitive groups for which

T 19 min 1 + q + + r(n)
q-__

for any feasible A, showing that for general transitive functions no additional lower
bounds or tradeott functions on area/time seem to be of interest (assuming our model).
It is gratifying that such a tight result is obtained.

We have allowed the chip to read multiple copies of the inputs, in contrast with
what is cutomarily assumed in theoretical VLSI research. We feel that a more liberal
assumption is unavoidable if one is interested in computations of "large" functions,
namely functions for which the number of variables n is larger than the on-chip
memory. This case is of importance, as the size of a chip is bounded by a constant,
and it should not be assumed that it can be made as large as one wishes. Just as it is
of great interest and importance to study sorting of large sequences on a computer
whose RAM is relatively small, we feel it is of interest to study computations of large
functions on small chips. This paper deals with single-chip computations, ignoring
system complexity, which is not addressed here.

We will now consider how our work relates to previously obtained results on
lower bounds. We can consider only the time and the area (and thus we do not deal
here with other measures of interest, such as the period or the power). We also do not
discuss related work of A. Yao [Ya81], who studied the consequences of allowing
arbitrary coding of the inputs.

It will be convenient to ignore the "boundary condition" function -(n), so we
will only consider the "partial" lower bound function

We proceed to consider the implications of modifying the assumptions stated in our
description of the model in order to obtain previous results. There will be several cases
of interest (special cases of (.)), depending on additional restrictions on the permitted
allocation of resources. We will also note the weaker assumptions on "what needs to
be paid for," sufficient to prove those lower bounds. The fact that some known results
can be proved using veaker, sometimes less realistic assumptions, may indicate to us
that they do not completely characterize the complexity. Our discussion will be rather
oversimplified, but the interested reader can easily derive the results more formally.

For each of the cases, we list only the changes to our original model, as described
in 1 (and which we encourage the reader to review). The various input assumptions
deal here only with the variables being permuted. We again abuse the formalism by
ignoring constant factors as much as possible.
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Case 1. The modified assumptions.
Input. In one time unit an input pad of unit area can read in an unbounded

number of bits. However, each input bit can be read into only one input pad,
possibly more than once.

Memory. One unit of area can store an unbounded number of bits.
When-indeterminate. The I/O schedule is not "completely fixed," it is

when-indeterminate (but still where-determinate).
(It was precisely in order to be able to discuss this and similar cases that we treated
the input and the output requirements separately in our model.) Under these assump-
tions, it can be shown that the following weaker version of (.) holds:

T 12( min (q + f))
q->l

with the additional restriction that q 1. Thus, T f((n/ A)(1 + x/)) 12((n/ A)x/)
n(n//-), or

AT2 12(/12).
This is the lower bound, of among others, Thompson [Th79], Brent and Kung [BrKu81]
(but see case 2 below), Vuillemin [Vu83], Chazelle and Monier [ChMo81] and Savage
[Sa81] (who used a model similar to the modification above).’ We stress that such a

strong lower bound can be proved without any accounting for memory.
Case 2. The modified assumptions.

Input. In one time unit an input pad of unit area can read in an unbounded
number of bits. However, each input bit can be read only once.

We sketch the argument somewhat imprecisely. We are dealing here with a restricting
modification of Case 1, forcing (1+ n/A)q-1 (actually, of course, O(1)), which is
strictly stronger than Case 1. As q >_-1, it follows that q 1 and A=>/1. Again, T=
12((n/A)(l+x/))=12(n/x/-,), or ATE=I)(n2), in addition to A=f(n). Thus the
argument of Brent and Kung [BrKu81] holds, showing that ATEa (AT2)’A-
12(n2’n-) f(n+), for any a =[0, 1].

It is important to note that as it is not reasonable to assume that chip area can
be made arbitrarily large, the inequality A-> n seems to imply that large functions
cannot be computed on a single chip even given an unlimited number of additional
chips used as auxiliary storage. As discussed in 1, this would be analogous to allowing
sorting of sequences only on computers whose RAM is at least as large as the sequences.

Case 3. The modified assumption.
Memory. One unit of area can store an unbounded number of bits.

Under this assumption, the weaker version of (*)"

T=12( qm>=in (q+ /))
(without the additional restriction that q= 1, used in Case 1) applies. Then, T=
((n/A)A1/3), giving A2T 12(/13).

This is the optimal lower bound if n<-A<-_(n/log/1)3/2 (see Corollary 8).
Note also that

T---n mqi>n O+ -’12 mqi>? 0+ "-12 m1/4

giving A3T4=(n4). This lower bound which is not tight is due to Kedem and Zorat
[KeZ081]. (For arguments on similar issues, see also [LiSe81].)
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Case 4. The modified assumptions.
Wires. Wires are not necessary, because of the following assumption:
Computation. In one time unit every computational element of unit area can

compute an arbitrary boolean function of all the information stored in the whole
chip.
Under these assumptions, it can be shown (as indicated in the proof of Corollary

8) that the following weaker version of (.):

T f( min (q))
applies. From here T=f((n/A)(n/A)), giving A2T=Iq(n2).

This is the optimal lower bound if A<=//2/3 (see Corollary 8).
Grigoryev [Gr76] proved a general result on boolean circuit complexity, which

was later interpreted in the VLSI context by Valiant giving the same bound. It was
also explored by Savage [Sa82]. It is interesting to note that such a "nongeometric"
model also gives an optimal lower bound if A-</I2/3 (see Corollary 8). (The intuitive
explanation for this is that the chip is so small, or alternatively the function so "large,"
that the internal communication requirements are of lower order of magnitude than
those of input and memory, as "everything is close to each other.")

We can now re-examine the proof of Theorem 5 in order to see which resources
needed to be accounted for in the proof. This will determine which computational
resources are "critical" for a least some transitive functions.

If the wire delay is constant then:
If A <-//2/3, the complexity is dominated by input and memory requirements.
If //2/3_<_A_<_ n, the complexity is dominated by input, memory and wiring

requirements.
If//-<_ A _-< (n/log/1)3/2, the complexity is dominated by input and wiring require-

ments.
Area greater than (n/log n)3/2 cannot be used to decrease T because of fan-in

limitations.
If the wire delay is linear then:

If A <_-/12/3, the complexity is dominated by input and memory requirements.
If //2/3_<_A_< n, the complexity is dominated by input, memory and wiring

requirements.
Area greater than n cannot be used to decrease T because of delay limitations.

This classification of critical resources helped also in the design of optimal chips
in the proof of Theorem 9.

As stated above, for A <= n2/3 both input and memory are the critical resources,
and thus it may be useful to balance the area devoted to I/O pads with the area
devoted to memory. One can object and say that whereas the chip designer can allo-
cate the chip area between (internal) wires and memory, he cannot assume that the
system designer will supply any requested number of (external) wires to the chip. We
do not consider system level complexity here, but it may be worthwhile to mention
that if the area devoted to the pads is constant, then the lower bound AT f(n2)
holds.
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SCHEDULING FILE TRANSFERS*

E. G. COFFMAN, JR, M. R. GAREY’t, D. S. JOHNSON’t AND A. S. LAPAUGH*

Abstract. We consider a problem of scheduling file transfers in a network so as to minimize overall fin-
ishing time. Although the general problem is NP-complete, we identify polynomial time solvable special
cases and derive good performance bounds for several natural approximation algorithms, assuming the
existence of a central controller. We also show how these bounds can be maintained in a distributed regime.

Key words. Edge coloring, protocols, NP-completeness, approximation algorithms

1. Introduction. In this paper we study a fundamental problem of distributed
processing, that of transferring large files between various nodes of a network, in par-
ticular, we are interested in how collections of such transfers can be scheduled so as to
minimize the total time for the overall transfer process.

In our model, an instance of the problem consists of a labeled, undirected multi-
graph G (V,E), which we shall call the file transfer graph. Both the vertices and
edges of this graph are labeled with integers. Vertices correspond to
computers/communication centers, each of which is assumed to have the ability to
communicate directly with every other center. The label p (v) of a vertex v is its port
constraint, and denotes the maximum number of simultaneous file transfers that the
given vertex can engage in. Edges correspond to the files to be transferred, with the
label L (e) of an edge e representing the amount of time needed to transfer that file.
This is assumed to be independent of the time at which the file is transferred or the
ports involved. Forwarding is not allowed; each file is transferred directly between the
centers that are its endpoints. We also assume that once the transfer of a file begins,
it continues without interruption until the transfer is complete.

This model is relevant to a variety of situations. For instance, consider a network
of home computers, where each computer has an automatic dialer and interconnection
is accomplished via a standard telephone network. This would correspond to our
model with p (v)= for each vertex. On a larger scale, one could consider the com-
puter centers of a large company, where each has many automatic dialers.

In this paper, we.concentrate on the problem of minimizing the makespan of the
schedule (the time interval between the beginning of the first transfer and the comple-
tion of the last transfer). In the dial-up applications, this might be motivated by the
need to make all transfers during periods of low usage (or low telephone rates), and
hence to find schedules which are "short" enough to fit into such intervals.

In 2 and 3 of this paper we shall consider the construction of schedules by a
single central controller that, given the file transfer graph, constructs an overall
schedule in advance. In 2 we present complexity results and algorithms for the prob-
lem of finding an optimal schedule under various restrictions on the problem instance.
In 3 we analyze approximation algorithms that guarantee near-optimal solutions for
those cases where finding an optimal solution is too difficult.

Results for a central controller give us an idea of the best schedules one could
hope to obtain. However, in many applications no single processor knows all the
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details of the files to be transferred. In 4 we consider what is possible in the perhaps
more common case of distributed control, where the schedule is constructed on the fly
in a distributed fashion, with each vertex knowing only its local part of the file
transfer graph (and perhaps not all of that in advance), and with the possibility that
vertices (and communication lines) may not be reliable. We conclude in 5 by listing
some directions for future research.

2. Complexity results and solvable subcases. Given a file transfer graph G
(V,E), a schedule can be viewed formally as a function s:E---,[0,oo) that assigns to

each edge e a start time s (e), such that, for each vertex v and time >/O,

[{e: v is an endpoint of e and s (e) < <s (e) + L (e)}[ < p (v).

The length or makespan of a schedule s is the largest finishing time, i.e., the max-
imum, over all edges e, of s (e)+L (e). Figure illustrates file transfer graphs and
the timing diagrams to be used in representing schedules. Our goal is to find, given a
file transfer graph G, a schedule s with the minimum possible makespan.

Pv Pv
(, L(e1!=3 e2 Y/1/,

e6
L(e2) L(e6)=3

e4

0
Pv =2 Pv

G

e5 e5

4 6

SCHEDULE FOR G WITH
MAKESPAN =6

FIG 1. A file transfer graph and a schedule.

An elementary lower bound is obtained as follows. Let E, denote the set of files
that are to be sent or received by vertex u. The degree of node u is given by
du lEvi. Let Eu, denote Eu N Ev, the set of files to be communicated between u
and v. We define u ee. L(e) and ,,,v--" eE,.v L(e). For consistency with

this notation, we shall also use Pu to denote the port constraint p (u) for each vertex u.
The time to transmit all of the files sent or received by vertex u is at least

[Z/Pu ]. Thus we have the following:
LEMMA 1. The optimal schedule length OPT (G) for any graph G must satisfy

OPT(G) >/ m,ax [,,Ip,1.

Note that this lower bound is achieved by the schedule in Fig. 1, where
T--" [S,v2/Pv2 12/2---6. Figure 2 illustrates the fact that OPT(G) can be sub-

stantially larger than maxu v[,/pu ]. Here the value of the bound is 2, but the fol-
lowing simple analysis shows that a makespan of 2 is not achievable.

In order to finish the three files of any one triangle in 2 time units, a two-port
vertex of that triangle has to transmit two of the triangle’s three files simultaneously,
during one or the other time unit. Since there are only 2 two-port vertices, two of the
triangles must be transmitting two files in the same time unit. This can be done only
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PV=I

Pv

Pv i
pv=d

lypv=1

Pv =I

2u/Pu :2, all

FIG 2. An example where OPT (G) > max.v

by the first and third triangles, each transmitting the files incident with its two-port
vertex. But during this time unit no file of the middle triangle can be in transmission.
Since this triangle requires 2 time units, we thus have OPT(G) > 2. In fact, it is
easy to see that OPT (G) 3 (3/2) maxu v Z,/pu ].

It is not always "easy to see" what OPT(G) is, however. The general decision
problem "Given G and a bound B, is there a schedule s for G with makespan B or
less?" is NP-complete and hence unlikely to be solvable efficiently, i.e., by a polyno-
mial time algorithm. (For a discussion of NP-completeness and its implications, see
[8].) Let us refer to this decision problem as FILE TRANSFER SCHEDULING.
In the remainder of this section we will consider the complexity of this problem and
some of its more interesting special cases.

Before we begin our search for polynomial time solvable subproblems of FILE
TRANSFER SCHEDULING, it is important to note that there are two distinct rea-
sons why the general problem is NP-complete, one having to do with the structural
complexity of the file transfer graph and the other with the complexity involved in
balancing the transmission of files of different lengths. We shall illustrate this by
proving that two very restricted versions of the problem are NP-complete.

THEOREM 1. FILE TRANSFER SCHEDULING is NP-complete even when
restricted to file transfer graphs in which the port capacity p (v) of each vertex is 1,
there is at most one edge between each pair of vertices, and all edges have the same
length.

Proof. The problem is in NP because the general problem is: a nondeterministic
algorithm need only guess a schedule and check (in polynomial time) that it is a valid
schedule and meets the specified bound on makespan. Thus all we must show in this
and future NP-completeness proofs is that some known NP-complete problem is poly-
nomially transformable into the current one.

In this case the known NP-complete problem is CHROMATIC INDEX [11]:
"Given a graph G and a positive integer k, can the edges of G be colored with k or
fewer colors so that no two edges with the same color share a common endpoint?"
This can be directly translated into the current special case, for if we view G as a file
transfer graph with edges of length and port capacities of 1, then an edge coloring
corresponds to a schedule, with all the edges of the same color being scheduled during
the same time unit and with the makespan equalling the total number of colors used.
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THEOREM 2. FILE TRANSFER SCHEDULING is NP-complete even when
restricted to file transfer graphs with just two vertices, u and v.

Proof In this case the transformation is from MULTIPROCESSOR
SCHEDULING [8]: "Given a set T of tasks, each task having an integer length
L (t), a number m of processors, and a bound B, can the tasks be partitioned among
the m processors so that the total length of the tasks assigned to any one processor
never exceeds B?"

In this case, we let p (u)--p (v)---m and create TI edges between u and v, one
for each task, letting the length of an edge equal the length of the corresponding task.
It is then easy to see that a schedule with makespan B or less will exist if and only if
the desired task partition exists. Note that, since MULTIPROCESSOR SCHEDUL-
ING is NP-complete for any fixed value of m greater than [8], FILE TRANSFER
SCHEDULING is thus NP-complete for any fixed bound of 2 or more on the port
capacities. Like MULTIPROCESSOR SCHEDULING for an arbitrary number of
processors, it is NP-complete "in the strong sense" [8] if port capacities are arbitrary.

Theorems and 2 considered restrictions on FILE TRANSFER SCHEDULING
involving edge lengths, the possibility of multiple edges between two vertices, bounds
on port capacities, and the structure of the file transfer graph. We have conducted a
more thorough investigation of the complexity of the problem in terms of these param-
eters, and our results are summarized in Tables and 2. Table lists results for the
case where all edge lengths are equal and hence structural considerations dominate;
Table 2 considers the case where arbitrary edge lengths are allowed. The other
parameters are as follows:

1. File transfer graph structure; special cases include bipartite graphs, trees,
cycles, and paths. Such restrictions might well arise in physical networks with res-
tricted interconnection patterns, where nodes only communicate with their neighbors.

2. Port constraims; a single port per vertex will be the special case, correspond-
ing for example to the personal computer application mentioned above.

3. Edge multiplicity; as a special case we will consider graphs having at most one
edge between each pair of vertices. This restriction is often imposed in practice, e.g.,
when only a single telephone call between any pair of vertices is feasible. In this case
an edge of the file transfer graph represents all the files to be transferred between its
two endpoints.

Entries in the tables are either "NPC" for NP-complete, "?" for "Open," or an
upper bound on running time (in those cases where polynomial time algorithms have
been found). Theorem(s) that imply the result are also indicated. The theorems
themselves (other than the already-seen Theorems and 2) are presented in the fol-
lowing two subsections, one devoted to each table.

2.1. Complexity results when all edge lengths are equal. Throughout this section
we assume that all edge lengths are equal. The only NP-completeness results known
under this assumption are for special cases where general graphs are allowed, and are
implied by Theorem 1. Thus this section will be devoted to presenting polynomial
time algorithms for cases where the graph structure is restricted. The polynomial
time algorithms for the case of bipartite graphs all come from the following theorem,
which is based on the same analogy with edge coloring used in Theorem 1.

THEOREM 3. If G is bipartite and all edge lengths are equal, a minimum mak-
espan schedule can be found in polynomial time, even when multi-edges and arbi-
trary port capacities are allowed.
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Proof. When only one port per vertex is allowed, the result follows from known

TABLE

Complexity classification for FILE TRANSFER SCHEDULING when all edge lengths are equal

EQUAL One Port Arbitrary Ports
LENGTH
EDGES

General Graphs

Bipartite Graphs

Trees

Paths and
Even Cycles
Odd Cycles

Single Edges
NPC

[Theorem

O(IEI.!vi)
[Theorem 3]

O(IEI)
[Theorem 4]

o(lel)
[Theorem 5]

O(IEI 
[Exercisel

Multi-Edges
NPC

[Theorem

O(IEI.Ivl)
[Theorem 3]

O(IEI)
[Theorem 41

O(IEI)
[Theorem 5]

[Theorem 6]

Single Edges
NPC

[Theorem

[Theorem 3]

O(IEI)
[Theorem 41

o(lel)
[Theorem 51

O(IEI)
[Exercisel

Multi-Edges
NPC

[Theorem

O(IEI
[Theorem 3]

O(IEi)
[Theorem 4]

o(IEI)
[Theorem 5]

TABLE 2

Complexity classification for FILE TRANSFER SCHEDULING when arbitrary edge lengths are allowed

ARBITRARY
EDGE

LENGTHS
General Graphs

Bipartite Graphs

Trees

Paths

Even Cycles

Odd Cycles

One Port

Single Edges
NPC

[Theorem

NPC
[Theorem 7

NPC
[Theorem

O(IEI)
[Theorem 81

O(IEI)
[Theorem 8]

O(IEi)
[Theorem 10]

Multi-Edges
NPC

[Theorem

NPC
[Theorem 7]

NPC
[Theorem

O(IEI)
[Theorem 8]

O(IEI)
[Theorem 81

NI’C
[Theorem 9]

Arbitrary Ports

Single Edges
NPC

[Theorem 1]

NPC
[Theorem 7

NPC
Theorem

[Theorem 8]

o(lel)
[Theorem 81

o(lel)
[Theorem 10]

Multi-Edges
NPC

[Theorems 1,2]

NPC
[Theorems 2,7

NPC
[Theorems 2,71

NPC
[Theorem 21

NPC
[Theorem 21

NPC
[Theorem 2]

algorithms for edge coloring of bipartite graphs and multigraphs, e.g., see [1],[3],[7].
We present an extension of these algorithms to handle the case of arbitrary ports. We
may assume without loss of generality that the common edge length is 1, in which
case the lower bound on makespan from Lemma becomes B---maxvsv[dv/Pv ].
We shall prove that this lower bound is in fact achievable. Given the analogy to edge
coloring explained in the proof of Theorem 1, all we need to do is show how to color
any bipartite file transfer graph using B colors, where we allow Pv edges incident with
any vertex v to share the same color. We prove this by showing how to modify any
partial coloring of the edges of G to obtain a new partial coloring that colors one addi-
tional edge.

Let {u0,v0} be any currently uncolored edge. Since this edge is incident to both
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U0 and v o, the choice of B implies that each of these two vertices has at least one
color that has not been used a maximum number of times on the edges incident with
that vertex. If some color i available at both Uo and Vo, we can color {Uo,V o} with
that color and hence obtain our desired extended coloring. Otherwise, let "red" be an
available color at Uo, and let "blue" be an available color at vo. We will construct an
alternating path Vo,Ul,Vl,U2,V2,...,Xk, where xk is either u, or Vk, such that each
edge {vi, ui+} is currently colored red and each edge {ui, vi} is currently colored blue.
Moreover, Xk will have color red available to it in the current coloring if Xk Vk, and
will have blue available to it if xk --Uk. Note that, since G is bipartite, this means
that x, is neither v 0 nor Uo.

If we have such a path, we can obtain a new legal partial coloring by interchang-
ing the colors red and blue along the path. In this new coloring, the color red
becomes available at v 0 and remains available at u o, and so we can extend the color-
ing by coloring {Uo,Vo} red, thus obtaining our desired extension of the original color-
ing. All that remains to be shown is how to construct the path.

Since the color red is not available at v o, we can start the path by choosing some
red edge incident with v o, calling its other endpoint U l. In general, suppose we have
constructed the partial augmenting path Vo,U,v uj,vj (the case in which the last
vertex is uj is symmetric and will not be detailed here). If vj has the color red avail-
able, we can halt with xj- vj. If vj does not have the color red available, then it
must have its full capacity of red edges in the current coloring and there must be
some edge incident with vj that is colored red and that does not belong to the path
constructed so far: if vj-vo this follows because v 0 by assumption has at least one
fewer blue edge than capacity allows, and so far the path contains an equal number of
blue and red edges incident with Vo; otherwise it follows because the path currently
contains one more blue edge than red edges incident with vj. Choose such an unused
red edge to add to the path, and label its other endpoint uj+. Combining this with
the symmetric argument for extending a path ending at uj, we see that we can always
extend the path whenever the desired termination condition fails to hold. Since there
is a bound of EI on the length of the path, at some point in our procedure the
desired termination condition must hold.

Thus, the desired augmenting path always exists, and we can certainly find it in
time proportional to the minimum of IEI and Vl’maxvvp (v) following the above
method. We thus have an overall running time bound of
O(min{IE 2, IE I’lVl’maxvevp(v)}). Standard methods for constructing augmenting
paths more efficiently [3],[7] seem likely to extend to the above, and so substantial
improvements to this bound are likely to exist [6].

This result immediately implies that all the remaining special cases in Table 1,
except those involving odd cycles, can be solved in polynomial time. However, those
special cases can in fact be solved with even faster algorithms.

THEOREM 4. If G contains no simple cycles other than the trivial 2-vertex
cycles induced by multiple edges (i.e.. if G becomes a forest when multiple edges are
coalesced), and if all edge lengths are equal, then a minimum makespan schedule can
be found in time 0 (IE I).

Proof. If G is not connected, the schedules for its connected components are
independent and hence can be constructed separately. Thus all we need to show is
how to do the scheduling when G is connected (and hence a tree). Without loss of
generality assume that all edges have unit length. Recall that maxe [Z/p is a
lower bound on schedule length when G has arbitrary port constraints. Here, with
unit-length edges, the bound specializes to B maxu [d/p ]. The algorithm
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below achieves B.
For each vertex assume that the edges (files) are ordered so that multiple edges

to the same neighboring vertex are consecutive in the ordering. We label the edges of
the tree as follows.

We begin with an arbitrary vertex, v, and label the edges in their given order
with the first B nonnegative integers, used cyclically in the sequence
0, 1,...,B- 1,0,1,...,B- 1,0,1 Figure 3 shows an example.

T-= mclx

FIG 3. The edge labelling used in Theorem 4.

Now suppose v is any vertex whose edges have all been labeled and w is a vertex

adjacent to v, some of whose edges are not yet labelled. (Since G is a tree, we can
proceed in such a way that the only edges involving w that are labelled are those with
v as the other endpoint, i.e., those in Ev,w.) If j, 0 < j < B, is the label of the last
edge in Ev, to be labelled, then the labeling of w’s remaining edges begins with j+l
(or 0 if j B-l) and proceeds cyclically through the sequence 0,1 B-1 as before.

In this way we repeatedly choose a vertex w adjacent to a completely labeled ver-
tex v and then complete the labeling for edges incident on w. It is easy to see that, no
matter what order we choose for the vertices and edges consistent with the above
description, the edges of each vertex u will be labeled in some sequence l,i2 ik,
where 0 < < B and ij+ ij + l(modB). The number of times an integer appears
in this sequence of du integers is at most du/B ]. By definition of B we have

du/B < Pu.maxv v [dv/Pv < [d,/p, < d,/p,

Thus, if we begin transmitting every file (edge) labeled at time i, 0 < < B, we will
have a valid schedule for G that is finished at time B and hence has B for its make-
span. Since our algorithm obviously has a linear running time, the theorem is
proved.

If the file transfer graph is a path, then the algorithm of Theorem 4 applies
because a path is a tree. Thus the only results from Table that remain unproved are
those for cycles. For even cycles with both arbitrary ports and multi-edges allowed,
we rely on a hybrid of the algorithms in Theorems 3 and 4 to obtain a linear time
algorithm.

THEOREM 5. If G is an even cycle with multi-edges, all of equal length, and
arbitrary port capacities, then a minimum makespan schedule can be found in linear
time.
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Proof. Pick a pair (u,v) of adjacent vertices in the cycle which has the minimum
value for Eu,v [. Note that this value is at most [E I/I v I. Deleting the edges of Eu,v,
we obtain a path and can apply Theorem 4 to obtain a minimum makespan schedule
in linear time. This can then be viewed as a partial edge coloring for G in the sense of
Theorem 3, which we wish to extend to the edges of Eu,v, thus obtaining a schedule
meeting the Lemma lower bound on makespan. (We know this bound is attainable
because even cycles are bipartite.) By the algorithm of Theorem 3, this will involve
the finding of augmenting paths. Since each of these can be found in time
O(IV[) when G is an even cycle with multi-edges (an exercise we leave to the
reader), the overall time for constructing all the paths (and hence completing our
minimum makespan schedule) is O(IvI.(IE I/Ivl)) O(IE I), as claimed.

Surprisingly, the situation becomes considerably more complicated when even
cycles are replaced by odd ones. Although the equal-length, single edge case remains
fairly straightforward (and we leave the derivation of linear time algorithms as an
exercise), the equal-length, arbitrary port capacity, multi-edge problem remains open
and the restriction of this to single ports, although solvable in linear time, requires a
new approach:

THEOREM 6. If G is an odd cycle with multi-edges, with all edge lengths equal,
and with all port capacities equal to 1, then a mimimum makespan schedule can be
found in linear time.

Proof. Let us once again view our problem as one of edge coloring, as in
Theorem 3. By a result in [1, p. 255], the number of colors needed for the edges of
an odd cycle with n vertices and [EI multi-edges is

c(G)--max{maxdv n-1

The following algorithm, based on the proof of the above result, constructs a coloring
with precisely this number of colors.

1. Set G0 G, 0.
2. While G contains a copy of each edge of the cycle, do

Find a maximum matching M from Gi, with the one vertex not covered by
any edges of M being a vertex of minimum degree in G;. Schedule all
edges in M to start at time i. Construct Gi+ by deleting all edges of M
from Gi.

3. Now G must be a collection of 0 or more disjoint paths, and we can find a
schedule for it starting at time and using exactly maxv v dv time units in
linear time by the algorithm of Theorem 4. This completes our construction
of the schedule.

That this algorithm runs in linear time follows from the fact that, so long as Gi
contains a copy of each edge of the cycle, the desired maximum matching M contains
(n-1)/2 edges and can easily be found in time proportional to n. That the con-
structed schedule has makespan c (G) follows from the fact that c (Gi+) --c (Gi)-
for all > 0, which we will now demonstrate. Note that every time we delete a max-
imum matching, the quantity 21E I/(n-1) decreases by 1, since the size of a max-
imum matching is always (n- 1)/2 in Step 2. Thus the only way c (Gi) could fail to

decrease is if maxvvdv >/ 21E I/(n-1) and all vertex degrees are equal to this max-
imum degree. However, this is impossible: If all vertices have the same degree d, then
the total number of edges is dn/2, and so
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21El dn
(n-l) n-1

>d

Thus our claim about c(Gi+) holds and, by induction, the algorithm produces a
schedule with makespan c (G), the optimal value.

This completes our consideration of special cases where all edge lengths are equal.

2.2. Complexity results for arbitrary edge lengths. Let us now turn to Table 2
and those results for arbitrary edge lengths that are not already implied by Theorems
and 2. The following theorem shows that, when arbitrary edge lengths are allowed,

NP-completeness cannot be banished even if we restrict our attention to trees.
THEOREM 7. FILE TRANSFER SCHEDULING is NP-complete even when G

is a tree of single port vertices without multi-edges.
Proof. Our reduction uses the 3-PARTITION problem: Given A {at ,a3k},

with B/4 < a < B/2, < < 3k, where B (l/k) ,k_.,ai, does there exist a par-
tition A A U A 2 U... OAk such that aeAia B, ..-/" < k? (Note that this is

again a special case of MULTIPROCESSOR SCHEDULING.) Assume without loss
of generality that k is odd and k =2n+l, and let Ci-iB+i-1, < < n. Given
an instance of the above form, we construct a file transfer graph as illustrated in Fig.
4.

FIG 4. Tree used in proof of Theorem 5.

The tree is constructed around a hub vertex v, on which are incident (i) 3k edges
with lengths a through a3k and (ii) n subtrees G1 through G,, each G having two

unit-length edges, b and bi’ incident with v. Let M Zv xp3k a. + 2n. (Note
’i- ,

that M is a lower bound on the optimum makespan, since v nas a single port.) The
lengths of the remaining edges in G are as follows (for simplicity we shall use the
same symbol to denote both the edge and its length):

gi gi’ M-Ci, < < n,

fi=fi’-Ci, < < n,

ei ei’-- Ci + l, < < n,

di di’-- M-Ci-1, < < n.

We shall show that this tree of single-port vertices can be scheduled with makespan
equal to the lower bound M if and only if the desired 3-partition exists. NP-
completeness will then follow in the usual way.
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Consider the scheduling of Gi, for any i, under the assumption that G can be
scheduled in time M. Clearly, since di-l-e M, transmission of di must either begin
at --0 or end at M. By similar arguments, this must also hold for fi, di’, and
f,.’. Since di and fi cannot both start at time 0 because they share an endpoint, one
must start at time 0 and the other end at time M. This means that b must be
scheduled in the interval between them, either at time Ci or at time M-C-1,
depending on whether f,. or d goes first. A similar argument holds for bi’, so between
the two tasks, each time slot [Ci,Ci + 1] and [M-d;.- 1,M-Ci] must be occupied by
one of the edges bi and bi’, as in Fig. 5a.

----TIME UNIT C +1

oI. d e
--g" i’i f

0 _’_’_’_ M
TIME UNIT M-C

b b’ b b b’
(b).

0 M

FIG 5. Scheduling the tree of Figure 4.

Applying this argument for all i, < n, we deduce that the schedule at vertex
v must look as in Fig. 5b, when restricted to tasks of types b and b’. Noting that

Ci+ (Ci + 1) B, < < n, and that [M-(nB +n) ]-(nB +n)
M-2nB-2n kB+2n-2nB-2n B, we conclude that there are 2n + gaps
left in the schedule, each of length exactly B, and into which the tasks of type a; must
be scheduled. It thus follows that G can be scheduled with makespan M if and only if
there is a 3-PARTITION of A. n

As Theorem 7 implies all the complexity results in Table 2 for cases where the
graph is at least as complicated as a tree, the remaining results in this section concern
only cycles and paths. As evidenced by the table, the distinction between odd and
even cycles is here quite pronounced. Although the single-port, multi-edge case is
solvable in linear time for even cycles, the same problem for odd cycles is NP-
complete! The case of even cycles can be combined with that of paths, and is covered
in the next theorem. (Note that we must forbid either multiple edges or arbitrary
port capacities, since if both are allowed the problem becomes NP-complete even for a
path of length 1, and hence also for cycles of any length, by Theorem 2.)

THEOREM 8. If G is a path or even-length cycle with arbitrary edge lengths,
and either all port capacities equal or no multi-edges are present, then a minimum
makespan schedule can be found in linear time.

Proof. We first consider the case of port capacity 1. Observe that with single-
port vertices the Lemma lower bound on makespan simplifies to

OPT (G) > max ;,, (*)
u

This bound can be achieved rather simply in the present case.
Let {vi, 0 < < n-l} be the vertices of the path or cycle, where v and vi+,

0 < < n-2, are adjacent. Nodes Vo and v,-1 are also adjacent in the case of a
cycle. Let Ci denote the set of edges between vi and Yi+l(modn), with Cn- being
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empty in the case of a path. Starting at 0 we schedule without interruption all of
the edges in the sets Ci, odd. The order within each set is unimportant. Each
remaining edge set Ci, even, is scheduled to start and proceed without interruption at
the earliest possible time thereafter; i.e. as soon as all edges in Ci-l(modn) and
Ci+l(modn have been completed. Figure 6 shows examples.

Co c4 c2 c5 c4 c5

START C ,C5,C AT t=O

0

START C,C3,C AT t=O

FIG 6. Illustrations for Theorem 8.

Since G is either a path or an even cycle, any schedule of the above type is
clearly valid. To see that it is optimal, let Ck be an edge set with the latest finishing
time. If C, started at time O, the makespan for the schedule is no more than Evk and
hence must equal the above lower bound (*) and be optimal. Otherwise k must be
even and the makespan must be

max{ L (e) + L (e), L (e) + L(e)}.le E Ck-l (moa n) le E Ck le (: C +1 (mod n) t Ck

But this is simply the maximum of 2;vk and 2;v+,<mo,,) and hence must again equal the
lower bound of (*) and be optimal.

Now suppose that at least one vertex v of G has port capacity p (v) greater than
1, but that there are no multi-edges. Given that the file transfer graph is either a
path or an even cycle, the lack of multi-edges means that no vertex is involved in more
than two edges. We thus can proceed as follows: For each vertex Vk with port capa-
city 2 or greater, replace vk by two copies, one adjacent to Vk_(modn and one adjacent
to Vk+l(modn), giving each copy a port capacity of 1. This breaks G into a collection of
paths, each of which has all port capacities equal to 1. By the above we can find
minimum makespan schedules for each in linear time. These determine a schedule for
the original graph G, which must be valid since all the duplicated vertices had port
capacity at least 2. It is easy to see that it also must have the minimum possible mak-
espan.

Turning now to odd cycles, we have the following results, depending on whether
one forbids arbitrary port capacities (Theorem 9) or multiple edges (Theorem 10).

THEOREM 9. FILE TRANSFER SCHEDULING is NP-complete even when
restricted to file transfer graphs that are 5-cycles of single-port vertices.

Proof. We shall make use of the NP-complete problem PARTITION: Given a
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sequence A---(al,a 2 an) of positive integers, does there exist a subset A, c_ A
nsuch that aa,,a (1/2) i-ai" (Note that this corresponds to the special case of

MULTIPROCESSOR SCHEDULING where there are just m 2 processors.)
Given an instance A of PARTITION, the corresponding file transfer graph is

shown in Fig. 7, where we use B to denote (1/2). ai, and our desired makespan is
5B. This graph can clearly be constructed In polynomial time, so we can complete our
proof by showing that a schedule with the makespan 5B exists if and only if the
desired partition exists.

L 2B

L (m

2BL
(m4) 2B

L:O

meA m m

t=O

m m mA

FIG 7. Illustration for Theorem 9.

First, suppose there is a partition A U A 2 m such that

-’a,A, ai---- ’a,A2 ai----B. The files are scheduled as shown in Fig. 7. It is easily

verified that no edges with common endpoints are scheduled at the same time, and
hence the schedule is a valid one of length 5B.

Next, suppose there exists a schedule with a finishing time at most 5B. Then m
and m 4 must overlap for exactly B units of time, because:

(1) If the overlap is less than B, then there are more than 3B time units during
which either m or m4 is being sent and the files in A cannot be sent in parallel with
either of these. This would imply that the schedule length is greater than 5B.

(2) If the overlap is more than B, we observe that m 2 and m cannot overlap at

all with the interval when m and m4 are both being sent, and m2 and m3 cannot
overlap each other. Thus, we again have that the schedule length is greater than
B +2B +2B 5B.

Without loss of generality, let us now assume that m starts before m 4. If m3
were to start after m4 (it cannot overlap with m 4), the schedule would already occupy
5B time units, with the endpoints of m2 being simultaneously idle only in the interval
from time 2B to time 3B, an interval too short to schedule m2. Thus, m3 starts (and
ends) before m4. Similarly, m 2 starts after m.

It follows that, in order to finish by time 5B, the schedule must start m3 at time
0, m at time B, m 4 at time 2B, and m2 at time 3B, so it has the form of Fig. 7. The
files in A must be sent during either the first B or last B time units, since they cannot

overlap with either m or m 4. Since their lengths total exactly 2B, they completely
occupy these two regions. Since the lengths of the subsets of A in each region must
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sum to exactly B, we have the desired partition.
It is not difficult to extend the above theorem to cycles with any fixed odd length

2k + 1, k >/ 2. (For cycles of 3 single port vertices, it is easy to see that no two
edges may be scheduled simultaneously, so all schedules with no idle time have
optimal makespan.) However, if we restrict ourselves to single edges, the odd cycle
problem once more becomes solvable in linear time, even if we allow multiple ports.

THEOREM 10. If G is an odd cycle without multi-edges, then a minimum mak-
espan schedule can be found in linear time.

Proof. As in Theorem 6, the presence of a vertex with port capacity exceeding
reduces the problem to that of a path, for which we already have algorithms. Thus we
may assume that G is a cycle of single port vertices. Let us label them Vo,V vr_,
where vi is joined to Vi+l(modT by the edge el, 0 < < T-1. We shall show that a
lower bound on makespan is the maximum of the following two quantities:

LB (G) max tL (el)

LB2(G) =-- min IL (el)

+ L (ei+l(modT))’O < T-l},
+ L (ei+l(modT)) + L (ei+2(modT))’O < T-l},

and that a schedule with makespan equalling the larger of these two quantities can be
found in linear time.

Note that LB (G) is just our old lower bound from Lemma 1, specialized to the
current case. To see that LB2(G) is also a lower bound, let s be a minimum mak-
espan schedule. For each edge ei, call ei a trailing edge if s (ei) > s (ei+(modr)) (and
hence s(ei) s(ei+l(modT)) + L (ei+l(modT))). Otherwise we call ei a leading edge,
and s(ei+l(modT)) s(ei) d- L (ei)). Since G is an odd cycle, there must be either
two consecutive trailing edges or two consecutive leading edges. In either case, if ej
and ej+l(modT are these two edges, the makespan of s must be at least L (ej) +
L (ej+(modr)) + L (ej+.(modr), which is at least as large as LB2(G).

To see that max {LBI(G),LB2(G)} is attainable, let j be chosen to minimize the
sum L (ej) + L (ej+lmodr) + L (ej+2(modr). Schedule ej at time 0, along with the
(T-3)/2 edges ej_2(modT), ej_a(modT), ej_6(modT ej+5(modT), ej+3(modT). Then
schedule ej+(modT tO start at time L(ej), ej+:Z(modT) tO start at the maximum of
L (ej+3(modr)) and L (ej) + L (ej+(modr)), and all remaining tasks to start as soon as
their endpoints become available. It is straightforward to verify that the makespan for
this schedule is max {LB (G),LB 2(G)}.

We note in concluding this section that the proofs of Theorems and 7 actually
prove NP-completeness "in the strong sense" with all that implies [8], although those
of Theorems 2 and 9 do not. This leaves open the possibility of "pseudo-polynomial
time" algorithms [8] in the latter two cases. In fact it is easy to see that one exists in
the case of two vertices (Theorem 2), although it is not clear how far such an
approach can be generalized.

3. Approximation algorithms. In the previous section we identified a number of
special cases where minimum makespan schedules can be found efficiently..In gen-
eral, however, NP-completeness blocks our way to finding optimal schedules effi-
ciently. A standard approach to use when confronted with such an obstacle is to
search for good "approximation algorithms," algorithms that efficiently generate
schedules, but that provide no guarantee of optimality (although a guarantee of
"near-optimality" may be possible). In this section we shall consider such algorithms,
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showing how classical results from the study of multiprocessor scheduling can be
adapted to the more general problem of file transfer scheduling, and can provide both
efficient algorithms and reasonable guarantees.

The main algorithm we shall study is List Scheduling (LS). This algorithm
assumes that the edges of the file transfer graph are ordered in a "priority" list as
el, e2, era. At time 0, and thereafter each time an edge is finished, the list
is scanned for "ready" edges, i.e. edges that have not yet been started and for which
there is an available port at both endpoints. Whenever such an edge is encountered on
the list, it is assigned starting time t, the two ports it uses become unavailable, and the
scanning of the list is continued from that point. The list is always scanned in the
given order, and ready edges are never delayed. The obvious implementation for List
Scheduling is O(IE 12), since the list might have to be scanned once for each edge
scheduled. However, a cleverer implementation can reduce this bound to
O(]VllEI+IE ]loglE I) (note that, since multiple edges are allowed, E can be
larger than ]VI2). The key to this bound is choosing the right data structures and
doing the right "bookkeeping" in assigning work to the starts and finishes of edges.

Initially, we simply scan down the priority list to determine in the obvious way
the edges to start at time 0, for a cost of O(]E 1). We also create at this time a list
for each vertex v of the as-yet-unstarted edges involving v, sorted in priority order
(and labelled by their position in the priority list), with the exception that for each
neighbor u of v we include in v’s list only the highest priority unstarted edge {u,v}.
Any lower priority copies of {u,v} are kept in an auxiliary list, also sorted by priority,
which is pointed to by the highest priority copy. This additional pre-processing
requires time O (]E I).

To determine the next time at which an edge may start, we maintain a heap con-
taining the finishing times of all the currently executing edges. The minimum value
in the heap is the desired time, and we delete this value once we begin scheduling at
that time. Since there are EI values inserted into the heap overall, standard heap
implementations will yield a total time of O (IE I’ oglE I) for the heap operations.

To schedule edges at a time when one or more edges have just finished, we
proceed as follows: Let V, denote the set of endpoints of the just-completed edges.
For each v E V,, scan down the list of unstarted edges involving v to find the highest
priority ready edge on that list. Assign the highest priority such edge among-all v E V,

to start at t, add the finishing time for that edge to the heap, delete the edge from
both edge lists it belongs to (inserting the next higher priority copy of the edge, if any,
in those lists), and remove from V, those of its endpoints which no longer have free
ports. This list updating requires time O(I V I) and is charged to the newly started
edge. We then continue scanning down the unstarted-edge lists for all v fi V,, starting
from where we left off, once again finding on each such list the highest priority ready
edge (possibly the same edge as before suffices, but it may no longer be ready since
one of its endpoints may no longer have a free port). Again we assign that one of
these with the overall highest priority to start at t, add its completion time to the
heap, update V, and the lists for its endpoints accordingly, and repeat the process
described above, continuing until we have scanned to the end of each unstarted-edge
list without finding a ready edge, at which point no further edges can possibly be
scheduled to start at t. We then use the heap to find the next time at which edges
can be scheduled, repeating the above process until no unscheduled edge remains.

The list scanning process requires time O(I V I) for each vertex in V,, plus at
most two additional individual item scans for each newly started edge (to account for
the lower priority copies of that edge which may have been inserted in the lists). The
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former is charged to the edges that just completed, for a cost of O (1V I) per edge
completion (at least Iv, I/2 edges must have been completed). The latter is charged
to the newly started edge, which, with the O (I V I) charge for list updating assigned to
that edge, gives a total charge of O (I V I) per newly started edge. Because each edge
is started and completed exactly once, this gives a total time of O (I V I’IE I) plus the
O lEl oglEI) for the heap operations, which combine to give the claimed time
bound.

As illustrated in Fig. 8 schedule lengths resulting from different lists can differ
substantially. Note that the example is easily generalized to one for which the degrees
are do--k, d ---k-l, < < k, and the schedule lengths corresponding to lists
(el ek, ek+ ek’-) and (ek+l,...,ek2, e ek) are k and 2k-l, respectively.
This file transfer graph will be given the special designation Hk; it will come up again
later in this section.

H4:

4

Pu FOR ALL u, L (e) FOR ALL

S (e,, e2, e3, ,e6)
e e2 e3 e4
e8 e5 e6 e7
e e2 e9 elo

el41 et5 e6 e13
0 4

LS (H4, 1) 4

S (es,e6,...,e16,el,ez,es,e4)

e5 e6 e7 e e2 e e4
eol

ell e121 el:l
e14 e15 e16

0 7

LS (H4, 2) 7

FIG 8. The file transfer graphs H4.

Given a file transfer graph G and a sequence S of the edges, denote by LS (G,S)
the makespan of the schedule produced when LS is applied to G with list S. It is
easily verified that the complexity results of the last section also apply to the problem
of finding an ordering of the edges of a file transfer graph that minimizes LS (G,S).
However, as the next result shows, even the best list schedule need not always be
optimal. Define OPTts(G) ---mins LS (G,S), and let OPT(G) be the optimal mak-
espan for G.

THEOREM 1. For any t3 > 0 there exists a file transfer graph G such that

4]oer,s(a) > T- OPT(G).

Proof. Consider the graph in Fig. 9, where edges al, a2, and a have length
/ e, e << 1, and all other edges have length 1. Each of the three subtrees incident on

vertex u can be scheduled with makespan 3+3 by scheduling in parallel bi with ell,

bi2 with ci2, and a with Cil and el2 in the intervals [0,1+e], [1+,2+2e], and
[2+2e,3+3], taken in any order. Adopting an order for the ith subtree that schedules
ai, Cil and el2 in interval [(i-1)+(i-1)e, i+ie], 1,2,3, therefore assures that the
subtrees incident on u can be scheduled in parallel, i.e. a port conflict at u can be
avoided. Thus, the graph can be scheduled in time 3+3e. Note, however, that the
schedules above are not list schedules; delays (of at most e) have been introduced at
times when there are ready edges.
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L (e) IF {a, ae, a}, L_ (a) (a z) (a 3) +

Pv 1, FOR ALL

FIG 9. Example for Theorem 11.

Let us now suppose that there is an ordering S for the edges of G such that
LS (G,S) < 4. Since all edges other than the ai’s have unit lengths, the earliest of
the ai’s to start, say a l, must start at an integer time. If a started at a time > l,
then since the ai’s must be scheduled in disjoint intervals, the length of the schedule
would be at least 4+3. Thus, a must start at 0 along with one of Cl and c2
and one of e and e12, say Cll and e. At l, a is not finished so b and b 12
cannot start. Thus, c2 and el2 must start, and this prevents b and b2 from start-
ing prior to 2. Since b ll and b l2 must be scheduled in disjoint intervals we have
immediately LS (G,S) 4. Thus,

OPTs(G) 4
OPT(G) 3+3

and the theorem follows by choosing sufficiently small, m
Fortunately, although the best list schedule may not be all that close to optimal,

the worst one cannot be all that far away.
THEOREM 12. For any file transfer graph G and any list S of its edges, we have

where L is the maximum edge length and p is the maximum port capacity. More-
over, the bound is tigh, even for trees. To be specific, for p 1, there exist trees
with orderings S such that (a,s)/oPT(a) is arbitrarily close to 2 and for p 2
there exist trees a with orderingsS such that LS (G,S) 2OPT(G)+ (1- (2/p)),
even in the case where is as large as OPT (G).

Pro@ In any given list schedule of G, let e [u,v} denote an edge with latest
finishing time, and consider the vicinity of e in G as shown in Fig. 10. At any time
prior to the start of e, it must be the case that either all ports at u or all ports at v are
busy. But all ports at u can be busy, with edges other than e, for at most
(-L (e))/p units of time, and the symmetric bound holds for v (recall that all

edge lengths are integers). Thus, since LS (G,S) equals the starting time for e plus its
length L (e), we have

-(e 2u-(el
LS (G,S) + + L (e) (**)

P P

Xu Xv+ +L(e)
P P P P
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The sum of the first two terms above is no more than 2OPT(G), since
OPT(G) > ,u/Pu and OPT (G) > ,v/Pv. The contribution of the last term is bounded
as follows. If (1/pu)+ (1/pv)> 1, then the last term is non-positive and we have
LS (G,S)< 2OPT(G). Otherwise, the last term is non-negative, but no more than
L (1- (2/p)), since L (e)< L and since neither Pv nor Pu can exceed p. Thus the
upper bound of the theorem is proved.

FIG 10. Illustration for Theorem 12.

To see that the upper bound is tight for p 1, consider the trees H, illustrated
in Figure 8 for k 4. As described in the text relating to that figure, OPT (Hk) k
but there are orderings S such that LS (Hk,S) 2k (2- 1/k)OPT (Hk). Thus
as k goes to oo, the ratio LS(Hk,S)/OPT(Hk) becomes arbitrarily close to 2, the
claimed upper bound.

Let us now turn to the case where p > 2. For any such p, we can construct a
tree and an ordering S of its edges such that LS (G,S) attains the quoted bound. See
Figure 11. This graph is built around a single edge e- {u,v} of length L, where L will
turn out to equal OPT(G). To the endpoint u of e, which has port constraint p, are
attached p (p-l) unit-length edges a (i), while to the other endpoint v, also with port
constraint p, are attached p-1 trees G (i), each G (i) being a copy of the tree Hp, all
of whose internal vertices have port constraint and all of whose edges have length 1.
It is easy to see that we can order the edges so that a schedule of the following form is
produced by LS.

In each of the first p-1 time units we schedule one edge from each of the sets.

Cjk(i) (1 < j < p, < k < p-l) in each of the G (i). Thus a total of p (p-1) of
these edges are scheduled in each time unit of [0,p-l]. Also starting at 0, all of
the edges ai, < < p (p-l), are scheduled. Since the port constraint at vertex u is
p, the a’s are scheduled p at a time and thus occupy the first p-1 time units. Thus,
edge e cannot be scheduled during [0,p-1 ], and at p-1 we are left with the tree

consisting ofeandthep(p-1) edgesbj(i) (1 < < p-1, < j < p).
Starting at --p-1 we schedule all of the bj(i)’s; since the port constraint at

vertex u is p they are scheduled p at a time in the interval [p-l,2(p-1)]. The start
of edge e is clearly delayed until 2(p-l). Since L(e)=p, we thus have
LS (G,S) 3p-2.

An optimal schedule for the graph is easily found. Each of the trees G (i),
< < p-l, is scheduled optimally as shown in Figure 8 for H,. Since the port

constraint at vertex u is p, edge e and each of the p-1 G (i)’s can be done in parallel
in the first p time units. During [0,p] the p-1 ports left available by e at vertex v
are used to schedule the p (p-l) ai’s, p-1 at a time. This schedule is obviously a
best possible schedule, and hence OPT (G) p L. We thus have

with L OPT(G), as desired.
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G G(i)

L(e’) IF e’ e, L(e)=p p= IF w =u,V, Pu=Pv= p.

S= (C(1),...,Cp, p_(p-1), a.. ,ap{p_l), b() bp(p-1),e)

0

p2_ pZ(p-1)Cik(i)’S

p(p-)bj{

2(p-1) 5p-2

)’S

LS(G, S) 5p-2

FIG 1. A worst-case example for Theorem 12.

The significance of Theorem 12 is best seen in terms of the following corollaries.
COROLLARY 12.1. For any file transfer graph G and all orderings S of the

edges of G,

LS (G,S)
<3,

OPT(G)

and this bound is tight in the sense that there are trees G and orderings S such that
LS (G,S)/OPT (G) is arbitrarily close to 3.

Proof. Since OPT (G) is always at least as large as the maximum edge length L
of G, the upper bound follows from the upper bound of Theorem 12. The lower bound
examoles are those of Theorem 12 for arbitrarily large values of p.

COROLLARY 12.2. If the maximum port capacity p for G is 2 or less, then

LS (G,S)
<2OPT(G)

and this bound is tight in the sense that there are trees G obeying these port capacity
bounds and orderings for which the ratio is arbitrarily close to 2.

Proof. If p < 2, then 1- 2/p < 0, so the upper bound once again follows from
Theorem 12. The lower bound examples are the trees Hk, as k goes to oo.

THEOREM 12.3. If all edges in G have the same length, then

LS (G,S)
<2

OPT (G)
and this bound is tight in the sense that there are trees of equal length edges and
orderings for which the ratio is arbitrarily close to 2.
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Proof. We may assume without loss of generality that all edge lengths are 1, in
which case Ev dv, and the argument behind (**) leads to

LS (G,S) < +1

1+ [pl-l+l
v] < 2OPT(G)

The lower bound examples are once again the trees Hk as k goes to .
List Scheduling algorithms, such as the one we have been discussing, have the

drawback that they are at the mercy of whoever or whatever is ordering the edges. In
the above proofs we used this fact in constructin,g our worst-case examples. The ques-
tion naturally arises, what advantage might we gain if we had the power to order the
edges ourselves? We saw in Theorem 11 that it may be that no re-ordering of the list
of edges will yield an optimal schedule. However, a very natural ordering, easy to
compute and often used to good advantage in other scheduling problems, does yield an
improved bound. The idea is to re-order the edges in "decreasing" order, i.e., so that
L (e 1) > L (e_) > > L (era). Because of ties between edges of equal length, there
may be more than one possible decreasing order, so we shall evaluate this approach
with a conservative, "worst-case" measure. Let

DLS (G) = max{LS (G,S):S is a decreasing ordering of the edges of G}.

We then have the following result.
THEOREM 13. For any file transfer graph G with maximum port capacity

p >/2,

DLS (G) 5
OPT(G) < ---Moreover, this bound is tight in the sense that for each p there exist trees and order-

ings for which the ratio approaches the given bound.
Proof. Consider Fig. 10 in Theorem 12, where e is the last edge to finish in our

decreasing-list schedule. If DLS (G)> OPT(G), e cannot have started at time 0.
Therefore, at time 0 either all the ports of vertex u were busy or else all the ports of
vertex v were busy. Assume without loss of generality that the latter is true. Since
this is a decreasing-list schedule, this means that v must be an endpoint for at least Pv
edges e’; e with L (e’) > L (e). But this means that v is an endpoint of Pv + edges
of length at least L (e), and hence at least two of them must be scheduled in disjoint
intervals, which means that OPT(G)> 2L(e). Substituting this inequality into
Theorem 12 gives the’desired upper bound.

Proving the bound to be tight will be somewhat more difficult than for our previ-
ous results (indeed, we initially suspected that an upper bound of 2 might hold). For
each p >/ 2 we shall define a family {Gp,, " > 0} of file transfer graphs. The edges
of the graphs will not have integral lengths, although this can be rectified by appropri-
ate scaling. Each Gp, will be described as a rooted tree for which we can show

DLS (Gp, >/ OPT(Gp,,) 5__._J _f(),
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where f (e) approaches 0 as does. The parameter does not affect the structure of
the tree, only the lengths of its edges. G2, is illustrated in Fig. 12.

STARTING
TIME
UNDER
DLS

:5/2-12 5/4-6 1- 2 I/2 0

Fl6 12. File transfer graph G 2, for Theorem 13.

For convenience in the definition of Gp,, the vertices of the tree will be organized
into 2 sequences of sets Ao,A ,Ap and Bo,B1 Bp, with the root of Gp, in

Ao-- {Uo}. B0 will also have only a single vertex, and it will be denoted v0. The
numbers of vertices in the remaining sets Ai and B; will increase with the index, i.

The structure of Gp, will be defined by successively constructing all edges, start-
ing with those incident on the root. The numbers of vertices in the sets A and B will
be determined implicitly from this construction.

We start by placing an edge between u0 and v 0. This edge corresponds to e, the
last edge to finish under both schedules and the only edge to be named explicitly.
Next, edges are placed between u0 and p distinct vertices in each of B, B 2 Bp.
Then, from v0 edges are formed to p distinct vertices in each of A,A Ap.

Proceeding now to A, we place p edges from each vertex in A to p (new) ver-
tices in each of B,Bz,...,Bp. Next, we place p edges from each vertex in B1 to p
(new) vertices in each of A z, A3,...,Ap. This continues for 1,2 p-l, so that p
edges from each vertex in A go to p new vertices in each of Bi Bp, and immedi-
ately after this assignment, p edges from each vertex in B are joined to p new vertices
in each of Ai+ Ap, < < p-1. After assigning the edges from vertices in Bp-1
to vertices in Ap, the process of constructing the edges of Gp, concludes with the
placement of p edges from each vertex in Ap to p new vertices in Bp.
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Although we are assuming that all port constraints are p, note that the port con-
straint at vertices in Bp cannot be important, since they each have but one incident
edge.

It can be verified that just the number of edges from vertices in Ap to vertices in
Bp grows faster than pp+2. This not only explains why a graph more illustrative than
G. was not drawn, but it suggests that a complete indexing of the edges be avoided if
possible. For this latter problem we shall classify an edge by the higher-indexed set
containing one of its endpoints. Specifically, to economize on notation, Ag
(1 < < p) will also be used to represent all those edges with one endpoint in Ai and
one endpoint in some Bj with j < i. Thus, the vertices of Ag are in one-to-one
correspondence with the edges in Ai. In terms of Fig. 12, A; is simply the set of edges
from vertices to the left of Ai to vertices in Ag. Similarly, we also use Bi, 0 < < p,
to denote the set of edges between vertices in Bi and vertices in sets Aj for j < i.

We now wish to assign edge lengths that ensure the following properties:
(i) In the DLS schedule the edges are scheduled set by set in the sequence Bp,

Ap, Bp_, Ap_ B, A , B0 {e}, with the edges within a set all having approxi-
mately the same length, and these lengths being chosen so that the makespan is
approximately 5/2 1/p.

(ii) L(e) is within of being the maximum edge length in Gp,,, even though by
(i) the edge e cannot be ready to be scheduled until the edges in A are finished.

(iii) An optimal schedule can be found with makespan approximately 1.
To show that the scheduling sequence in (i) is valid, we must verify that it is con-

sistent with the structure of Gp,, as well as its edge lengths. With respect to the.struc-
ture question, we note that if the edges of Bp are scheduled at 0, no other edges in

Gp,, can be ready. This follows from the fact that p edges from every vertex in
A o,A .,4p terminate in Bp. Thus the port capacities of all vertices in these sets are
"used up" by the edges of Bp. Since all remaining edges have an endpoint in one of
the vertex sets A, < j < p, no other edges can be ready.

Now suppose the edges in Bp have finished and those in Ap have started. As
before, p edges at each vertex in B, 0 j < p-l, terminate in Ap; therefore the
port capacities of all these vertices are used up, and since all remaining edges have an
endpoint in a set Bj for some j, 0 < j < p-l, none can be ready. Inductively, this
holds for the scheduling of edges in each A and B, < < p, in the sequence given
in (i); i.e. no other edges are ready during their execution, assuming that we have
arranged edge lengths so that only the edges in A9 (respectively Bj) are in execution
after the edges in B (respectively A.+) have finished.

As shown in Table 3 the lengths of edges in Bp, Ap and Bo {e} will all be
about 1/2, and all remaining edges will have a length approximately 1/(2p). With the
sequence in (i) this will give (roughly)

+ 2(p_l) 1___ 5DLS (Gp, - + --f 2p -f 2 p

Later, we shall show that OPT(Gp,) . 1.
Excluding edge e in Bo, the lengths of edges in all other sets are in a decreasing

sequence from set to set, so that the edge sequence Bp,Ap B,A will conform to a
DLS schedule. As shown in Table 3, the decreasing sequence is achieved by succes-
sive subtraction from 1/2 and 1/(2p) of an increasing O() term.
To keep edge e from being ready until all others are finished, we must properly fix the
lengths of the edges between its endpoints u0 and v o and the vertices of A; and Bi,
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TABLE 3

Message lengths for Fig. 12. Ai and B contain just

those edges of Ai and Bi involving v and Uo, respectively.

Messages in Lengths Subscript Range

/2
1/2 +
1/2
1/2
1/2 2
1/(2p) (4i-1)e
1/(2p)- (4i)e
1/(2p) (4i+l)e
1/(2p) (4i+2)

< < p -1

< < p

< < p -1

< < p -1

> 1. Denoting the sets of these edges by Ai c_ A and Bi c_ Bi, we give each a
length greater than that of the other edges in the sets Ai and Bi, respectively (see
Table 3). To see that this works, consider first the scheduling of Bp edges, which
must begin at 0 because of the file lengths of (1/2) + between U o and vertices in
Bp. (The reader may wish to refer to Fig. 12 in this discussion.) At time 1/2, all
of the Bp edges except the p to U o are finished; these latter ones have to go, and
therefore U o is still not available for scheduling e. Therefore, the smaller edges of Ap
begin at time 1/2, thus occupying vertex V o and preventing edge e from being
scheduled during [1/2, l-e].

But at time 1-2 all edges of Ap except the p edges involving vertex V o are fin-
ished, and hence at 1-2 the edges in Bp-1 begin, and they occupy vertex Uo during
[1-2, + 1/(2p)- 5], while all the other edges in Bp-1 are finished by time
+ 1/(2p)- 6. It should now be clear how this alternating process of occupying

vertices U o and Vo is made possible by the increment in length for edges between U o
and vertices in Bi, and the similar increment for edges between V o and vertices in Ai,
> 1. In general, the edges in Bp-i, < <p-1, finish at time
+ (2i- 1)/2p bi (with the edges to U o finishing later), while the edges in Ap_

finish at time + 2i/2p -ate (with those to vo finishing later). The values of a
and b are determined by the recurrence

bl 6,

a--b +4i +2, < <p-1,

bi-’-ai-i + 4i, 2 < < p- 1.

Solving, we obtain

ap_ 6 + 2j 4p 2 2p,
j-3

which means that the edges from v o to A do not finish until time

+ _2(p--1) (4p2_2p) ’ + .
2p

Since"uo and V o are constantly occupied until all edges in A and Bi, < < p, are
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finished, e will not be scheduled until this time, and hence

DLS (Gp ,) 5 (4p 2 2p 1). (***)
2 p

We turn now to optimal schedules for Gp,,. We shall not actually construct an
optimal schedule, but instead will show that a schedule exists with makespan of + ,
an upper bound on OPT(Gp,,) that will be good enough for our purposes. To work
out such a schedule we shall determine schedules individually for the set of edges at
each different vertex type in the order A0, Bo, A1, B1,... From the tree structure of
Gp,, we know that, when scheduling edges at a vertex v (v ; Uo) in this sequence,
exactly one of its edges, say {u,v}, has already been scheduled (there is only one such
edge to an earlier vertex). Therefore, in defining the schedule for the as yet
unscheduled edges at v, we will show how to make a port available at v during the
time interval that {u,v} has already been scheduled.

1. The root, u0. This vertex has p edges of length 1/2 + with endpoints in Bp,
p edges of length at most 1/(2p) with endpoints in each of B1,B 2 Bp_l, and the
edge e of length 1/2. The total edge length is approximately

(p+i) + iv(p-l) ----p,
2 2p

which at a p-port vertex can be accommodated in about one unit of time. Specifically,
we schedule the p edges with endpoints in Bp on p ports during [0,1/2 + ]. Then we
schedule edge e on one port during [1/2 + , 1+], and the remaining p (p-l) edges
of length at most 1/(2p) on the other p-1 ports during [1/2 + , 1+].

2. Vertex Vo. This vertex is similar to u0. It has p edges of length 1/2 with
endpoints in Ap, p edges of length at most 1/(2p) with endpoints in each of
A I,...,Ap_I, and finally it has edge e. We schedule the p edges of length 1/2 dur-
ing [0,1/2 ]. The remaining p (p-l) unscheduled edges of length at most 1/(2p)
are scheduled on p-1 ports during [1/2- , 1+], leaving one port free during
[1/2 + , 1+] for edge e, which has already been scheduled at U o during this interval.
See Fig. 13.

3. A vertex v . Ai, < < p-1. This vertex has p edges of length 1/2 with
endpoints in Bp and p edges of length at most 1/(2p) with endpoints in each of

Bi ,Bp_. It also has an edge of length at most 1/(2p) which has already been
scheduled during [1/2, 1] at some vertex, say u, in Bj, for some j < i. As before we
schedule the p edges of length 1/2 in [0, 1/2]. Then, the at most p (p-i) < p (p-l)
remaining unscheduled edges of length at most 1/(2p) are scheduled in [1/2, 1] on
p-1 ports, leaving one port idle during [1/2, 1] to accommodate the edge that u has
already scheduled with v. Note that there will be slack time in schedules for vertices
in Ai, > l, whereas the schedules for u0 and v 0 were essentially packed full. More-
over, this slack time increases with i.

4. A vertex v c:: Bi, < <p-1. A vertex in Bi is similar to one in Ai,
< < p-l, except that corresponding edge lengths are slightly greater at v Bi.

Thus, edges at the Bi vertices for < < p-l, can be scheduled in the same manner
as those in Ai.

5. Vertices in Ap. These vertices have p+l edges of length at most 1/2, one of
which has already been scheduled during [0, 1/2- ] in step 2 or step 4 above. We
simply schedule the p edges with endpoints in Bp during [1/2, 1].

Vertices in Bp do not have to be considered, for their edges have all been
scheduled in steps 1, 3, and 5.
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EDGES IN Bp (LENGTHI/2)

:1212121:1:121:

t=o i/2 +e 1+e

SCHEDULE AT

p(p-1) EDGES
IN B THROUGH
Bp -1
(LENGTH"-’ 1/2p)

EDGES IN Ap (LENGTH"’1/2)

2
5

p-1

t=o /2 +

SCHEDULE AT

p(p-l) EDGES
IN A THROUGH

Ap-1
(LENGTH’--’ I/2p)

1+

FIG 13. Optimal schedules at u and v in Theorem 13.

Finally, it is clear that the combination in [0, 1+] of all of the above schedules
constitutes a schedule with makespan 1+. From (***) we can thus conclude that

DLS (Gp,,) 5
lim >/
--.o OPT (Gp,) 2 p

thus proving that the upper bound of Theorem 13 is tight in the sense claimed.
We have been unable to find any general polynomial time approximation algo-

rithm that provides an improvement on the 2.5OPT(G) bound for DLS. However, we
have been able to provide better guarantees in special cases. For instance, if all edge
lengths are equal and there are no multi-edges, one can apply Vizing’s result [1,14]
that any graph can be edge-colored using only one more color than the obvious lower
bound of maxvevdv. The proof of this result yields a polynomial time algorithm for
generating such a coloring, which in turn yields a scheduling algorithm that is
guaranteed to come within an additive constant of OPT (G) in the case where all port
capacities are 1. If multi-edges are allowed, we can still improve on DLS in the single
port case, although the additive constant now is multiplied by the maximum edge mul-
tiplicity. For high edge multiplicities, this can be replaced by an algorithm guarantee-
ing [(3 that is based on an edge-coloring result of Shannon [1,13].
Recent edge-coloring results of Goldberg [9,10] suggest that a more complicated but
still polynomial algorithm will provide a guarantee of(91. (Recall that
DLS only guarantees 2OPT (G) for such instances.)

A second class of instances for which improvements over List Scheduling are pos-
sible are those in which the file transfer graph is a tree. Recall that the lower bounds
for both LS and DLS hold even if the file transfer graph is a tree. We shall show how
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to beat the (2.5)OPT(G) bound of DLS by tailoring our algorithms specifically to
trees. We show how any heuristic for the multiprocessor scheduling problem can be
adapted to the tree problem in such a way that its performance guarantee (in the mul-
tiprocessor scheduling problem) also adapts to the tree problem. Recall from the dis-
cussion preceding Theorem 2 that file transfer scheduling and multiprocessor schedul-
ing are identical for 2-vertex graphs. The association of ports with processors esta-
blished there will continue to apply in the sequel.

For the following theorems we need some notation. Let A (E,p) denote the
length of the multiprocessor schedule on p processors (ports) produced by algorithm A
for a set E of tasks (edges). We let OPT(E,p) denote the length of a corresponding
optimal schedule.

THEOREM 14. For a fixed integer p > O, suppose A is a polynomial-time algo-
rithm for multiprocessor scheduling such that for any set E of tasks, there is a con-
stant Bp such that

A (E,p) < Bp OPT (E,p).

whenever p’< p. Then there is a polynomial-time algorithm A’ for file transfer
scheduling that, given a tree G without multi-edges and with maximum port capacity
p, guarantees

A’(G) < (Bp + 1)OPT(G).

Proof. Using algorithm A, we first construct for each vertex v of G a separate
schedule for just those edges incident on v, using Pv ports. Thus each edge will be
scheduled in exactly two of these schedules, one for each of its endpoints. By our
assumption on the bound for A, the schedule for v will satisfy
A (Ev,p)< Bp’OPT(E,p). Then we proceed to combine these schedules, adding
them one at a time to the partial overall schedule constructed so far, and each time
adjusting the one being added so that it is consistent with the overall schedule. The
key is to show that the adjustments can always be performed in such a way as to obey
the stated bound.

So suppose we have computed the individual schedule for all vertices of G using
algorithm A. Choose an arbitrary vertex v0, and any ordering Vo,V vn of the ver-
tices of G with the property that, for < < n, exactly one neighbor of v; precedes vi
in the ordering. The existence of such an ordering follows easily from the fact that G
is a tree. We will combine the individual schedules for the vertices according to this
ordering.

We begin with the schedule for vertex v0 as our partial overall schedule. It
clearly satisfies the desired bound, since Bp’OPT (Eo,pvo) < Bp’OPT (G).

In general, suppose we have combined the schedules for vertices Vo,V vi,

0 < < n, into a valid schedule for all edges incident on any of those vertices and that
this partial schedule satisfies our desired bound. We show how to "merge" the indivi-
dual schedule for v--vi+ into this schedule to obtain a partial overall schedule for
Vo,V vi+ that satisfies the bound.

Let u be the single neighbor of v that occurs earlier in our ordering, and observe
that the only edge incident on v that has already been scheduled in the partial overall
schedule is the single edge {u,v}--e. Thus all we need to do is to suitably modify the
schedule for v so that e is scheduled at the same time as in the partial overall
schedule, and we can then simply combine the two schedules. We do this by modify-
ing only that portion of v’s schedule that involves the single poit of v to which e has
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been assigned. Because v’s schedule ignores neighbor constraints at this point, we may
assume, without loss of generality, that the schedule for v executes tasks consecutively,
with no inserted idle time, on this port.

Let be the time at which e is scheduled to start in the partial overall schedule,
and let t’ be the time at which e is scheduled to start in the schedule for v. If t’< t,
change the schedule for v by starting e at t, decreasing by L (e) the starting time for
each edge that was started after e (on e’s port) and was completed by + L (e), and
increasing by + L (e)-s* the starting time for each edge that was completed after
+ L (e) (on e’s port), where s* is the starting time of the first edge e’ that was com-

pleted on the port after + L (e) (and hence + L (e)- s* < L (e’)). See Figure 14a.
We then combine the resulting schedule for v with the given partial overall schedule to
obtain our expanded partial overall schedule. To see that the desired bound continues
to be satisfied, observe that if e is now the last edge to be started on e’s port, then the
makespan for the new overall schedule either is the same as it was (and hence satisfies
the bound by assumption) or is achieved on one of the ports of v for which v’s
schedule was left unchanged, and hence is at most A (Ev,Pv) < Bp.OPT(G). On the
other hand, if e is not now the last edge started on its port, the makespan for v’s
schedule was increased by at most L (e9 < OPT(G), so the new schedule for v has
makespan at most A (Ev,Pv) + OPT(G) < (Bp + 1).OPT(G). Thus, since the old
partial overall schedule satisfied this bound, the new partial overall schedule must con-
tinue to do so.

BEFORE

el

e2 e5 e’

LI
AFTER L (e’)

(o) BEFORE AND AFTER WHEN t’<

BEFORE

e’ e e3t

I e’ el le2 e4e5

L (e’)
AFTER

(b) BEFORE AND AFTER WHEN f< t’

FIG 14. Illustrations for Theorem 14.

If < t’, change the schedule for v (on e’s port only) by starting e at time t,
increasing by L (e) + -s (e’) the starting time for each edge completed after and at
or before t’, where e’ denotes the first edge completed after t, and increasing by
t-s (e < L (e9 the starting time for each edge completed after t’. See Figure 14b.
This increases the makespan of the schedule for v by at most L (e < OPT (G). Thus,
as above, the makespan for the new schedule for v will be at most (Bp + 1).OPT (G).
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Combining this new schedule for v with the given partial overall schedule thus again
gives us a new partial overall schedule satisfying the desired bound.

The theorem follows by induction.
Note that if in Theorem 14 we have Pv for all v in the tree G, then there is

an A’ such that A’(G) < 2OPT(G), since it is trivial to design a multiprocessor
scheduling algorithm that finds optimal schedules when there is just one processor,
and hence has B 1. Note, however, that List Scheduling yields the same guaran-
tee for arbitrary graphs with unit port capacity. We do gain improvements over LS
when port capacities exceed 1:

COROLLARY 14.1. For any p > and any > O, there exists a polynomial time

algorithm A’such that

A’(G) < (2 + )OPT (G)

for all single-edge trees with port capacities bounded by p.
Proof. In [12] it is shown that for any fixed number m of processors and any

> 0, there is a polynomial time multiprocessor scheduling algorithm that guarantees
a solution with makespan at most + times optimal. Theorem 14 thus yields the
desired result, although unfortunately the algorithm’s running time is exponential in rn
(and hence in p).

COROLLARY 14.2.

such that

There exists an O([ElloglEllog(eEL(e))) algorithm A’

A’(G) < (2.2)OPT(G)

for all single-edge trees.

Proof. The MULTIFIT DECREASING algorithm of [2] for multiprocessor
scheduling runs in the above time (when EI is the number of tasks) and has been
shown in [5] tO guarantee a makespan at most 6/5 times optimal, no matter what the
number of processors. Theorem 14 thus applies. Moreover, it is straightforward to
see that the use of a multiprocessor scheduling algorithm in the manner described in
the proof of Theorem 14 for a file transfer graph with E edges yields the same time
complexity as running the algorithm in its normal mode for a multiprocessor schedul-
ing instance with ILl tasks.

Theorem 14 thus provides a nontrivial improvement over DLS’s guarantee of
(2.5)OPT(G), although it is restricted to single-edge trees. We can also improve
upon DLS’s guarantee for multi-edge trees, but this requires that we restrict ourselves
to the case in which all port capacities are the same.

THEOREM 15. Suppose A is a polynomial time multiprocessor scheduling algo-
rithm as in the hypothesis of Theorem 14. Then there is a polynomial time algo-
rithm A’ for file transfer scheduling that, given a tree G (possibly with multi-edges),
all of whose port capacities equal p, guarantees

A’(G) < (2Bp)OPT (G).

Proof. Choose an arbitrary vertex v0 as the root of the tree, "color" it red and
"color" each remaining vertex either red or blue in such a way that no two adjacent
vertices have the same color. Each edge then joins two differently colored vertices,
one being the parent and the other being the child in the rooted tree; color the edge
with the same color as the parent vertex.

Now we form two separate schedules, the "red" schedule for the red edges and
the "blue" schedule for the for the blue edges. For the red schedule, we just use
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algorithm A to construct for each red vertex a p-processor (p-port) schedule for the
red edges incident on that vertex and take the union of these individual schedules.
The port constraint at each red vertex is obeyed in this schedule by construction (and
by the fact that no two red vertices are adjacent). The port constraint at each blue
vertex is also obeyed in this schedule, because all red edges incident on a blue vertex
go to the same other vertex, its parent in the rooted tree, and the blue vertex has the
same port constraint as its red parent. The makespan for the red schedule is the max-
imum of the makespans of the individual schedules, which is at most

maXvv{A(Ev,p)} < Bp’OPT(G), where the maximum can be taken over just the
red vertices. The blue schedule is constructed in the same way, being the union of
individual schedules for the blue edges incident on each blue vertex, and similarly has
makespan at most Bp.OPT (G).

To construct the required overall schedule, we simply concatenate the red and
blue schedules constructed above, starting the blue schedule at the time that the last
edge of the red schedule is completed. Since each of the red and blue schedules has
makespan at most Bp.OPT(G), the concatenated schedule has makespan at most

2Bp’OPT(G), as claimed.
As with Theorem 14, we have two main corollaries, based on the same multipro-

cessor scheduling algorithms.
COROLLARY 15.1. For any p > and any > O, there exists a polynomial time

algorithm A’ such that

A’(G) < (2 + e)OPT (G)

for all (multi-edged) trees with all port capacities equal to p.
COROLLARY 15.2. There exists an O(]ElloglEIlog(eeEL(e))) algorithm A’

such that

A’(G) < (2.4)OPT(G)

for all (multi-edged) trees with all port capacities equal.

4. Distributed scheduling. The scheduling algorithms of the previous section have
all assumed the existence of some central processor that knows in advance all the files
to be transferred and their lengths. An even more basic assumption is that once a
schedule has been constructed it can be carried out without a hitch, i.e., the various
nodes will be able to commence sending and receiving files at the predetermined times
and all transfers will take their predicted times. In many of the envisioned applica-
tions of our problem, neither of these assumptions will apply. No central processor
will exist, transfer times may not be known exactly in advance, and indeed the set of
files to be transferred may not be entirely known when the first transfer takes place.
The question thus arises: How much do our results for the idealized file transfer
scheduling problem have to say about the actual transfer of files in distributed sys-
tems?

The NP-hardness results continue to tell us something. If finding optimal make-
span schedules is difficult when one processor knows everything in advance, it cer-
tainly does not become any easier when the problem must be solved in a distributed
fashion while subject to imperfect information. Surprisingly, however, there is also
some carry-over of our algorithmic results, in particular, those concerning the List
Scheduling approximation algorithm. The algorithm itself, requiring a central proces-
sor, does not apply. However, the proof of its guarantee can be adapted to yield a
similar result for a kind of schedule that can be generated by a distributed process.
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(Note that any process for transferring files, even one that does not involve pre-
assigned starting times, can be viewed as defining a schedule ex post facto; one need
only observe when transfers actually began and how long they took to be able to con-
struct both the schedule and the file transfer graph.)

Let us call a schedule s for file transfer graph G a demand schedule if there is no
interval of time [t,t’], 0 < < t’, such that for some vertices u and v with an edge e
between them, e does not start before t’ even though both u and v have an idle port
during the interval [t, tq. If it is not a demand schedule, define for each pair u,v of
distinct vertices in G the quantity delays (u,v) to be the total length of intervals during
which the above is violated for u and v. A schedule s will be called a A-delayed
demand schedule, A > O, if A equals the maximum value of delays (U, V) for all pairs
u,v. Note that a 0-delayed demand schedule is simply a demand schedule. A careful
examination of the proof of Theorem 12 shows that it implies the following:

THEOREM 16. If s is a A-delayed demand schedule for G, then

MAKESPAN(s) < 2OPT(G) +L(e) +,5 < 3OPT(a) +A

where e is the last edge to finish and p is the maximum port capacity.
Now every schedule is a A-delayed demand schedule for some A; what we need

are schedules with small A’s. Fortunately, distributed scheduling algorithms are fairly
easy to devise that construct A-delayed demand schedules for A’s that one can reason-
ably expect to be small in relation to the overall makespan. Consider the application
in which ports correspond to telephone lines, as in a network of home computers. The
only way to communicate with another node is to call it up, using the same phone
lines over which the files themselves are to be transferred. If a vertex has more than
one port, we shall assume that an automatic call routing mechanism sends an incom-
ing call to a free port if one exists. The following distributed algorithm suggests itself.
It assumes that file transfers, once initiated, occur in parallel with the operation of the
scheduling protocols, terminating when the transfer is finished by disconnecting the
phone link and freeing the port used for the transfer.

Each vertex v has a set Ev of the edges (files) it wants to send or receive. (We
do not require that both endpoints of an edge have that edge in their sets, only that
one of them does.) Each vertex v maintains a queue Qv of those files it currently
wants to send or receive. Each vertex v then executes the following protocol:

DEMAND PROTOCOL 1 (DPI).

Repeat until Qv is empty:
1. If v has an idle port, attempt to call the other endpoint u of the first edge e in Qv.

1.1. If u answers, initiate the transfer of e and delete e from Qv.
1.2. If busy or no answer, move e to the end of the queue.

2. If v has an idle port, wait some prespecified time for an incoming call.
2.1. If a call is received from a neighbor u, initiate the requested transfer,

delete the corresponding edge e from Q,, (if present), and end Step 2.
2.2. If no call is received after waiting for e, end Step 2.

END (DEMAND PROTOCOL 1)

The main problem faced here does not concern file transfer scheduling but rather
the difficulties of communication inherent in this distributed "dial-up" model. How
does one locate a neighbor with a free port when there is always the possibility of
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"false" busy signals, i.e., busy signals caused because the node being called is itself
making a call that will eventually receive a busy signal or no answer? By appropri-
ately adjusting the length of the wait in Step 2 (with perhaps different values for dif-
ferent vertices), one can presumably minimize the amount of time one expects to
spend in such churning. (Step 1.2, by moving an edge that got a busy signal to the
end of the queue, prevents us from endlessly calling a truly busy neighbor when idle
neighbors still exist.) More complicated schemes for determining when one calls and
when one waits might yield further improvements. However, since the avoidance of
busy signals is not the main subject of the current paper, we shall merely attempt to
isolate this "communication delay" from the delays caused by the scheduling heuristic.

Given a protocol P and a distributed network represented by a file transfer graph
G, let b(P,G) be the maximum time for the network, using P at each node, to initiate
some transfer, given that there is an untransmitted edge whose endpoints both have
free ports. Although no such upper bound may exist that holds over all executions of
the protocol, such a bound can at least be computed ex post .facto for any particular
scheduling of G using P (assuming there is no infinite sequence of false busy signals).

The situations of interest are, of course, those in which (P,G) is small relative to
OPT(G). In this case, the following corollary of Theorem 16, which follows from
that result and the above definitions, becomes relevant.

COROLLARY 16.1. If s is a schedule constructed by Demand Protocol with ex
post facto file transfer graph G, maximum port capacity p, and last-finishing edge e,
then

MAKESPAN (s) < 2OPT (G) + L (e) + 3(DP 1,G)’IE!

< 3OPT(G) + 6(DP1,G)’[E

Thus if communication delays can be kept small relative to file transfer time, the
guarantees of the previous section can be carried over to the distributed milieu. More-
over, given any specified scheme for avoiding unnecessary busy signals, there is a sense
in which DP1 can be expected to minimize communication delay, since it requires only
one completed call per pair involved in a file transfer. The number of completed calls
required could be further reduced by transferring all files that are to go between u
and v as soon as the two vertices are connected. However, this latter approach may
have its own drawbacks. It would prevent the parallel transfer of multiple files
between the same pair of vertices, and hence could give rise to a A-delayed demand
schedule where A exceeds (P,G).IE [, at least in those cases where port capacities
exceed 1.

Note that protocol DP1 does not require that the lengths of the files be precisely
known in advance. The protocol can also be easily adapted to the case where the
required file transfers are not all known at the start of the transfer procedure, but
arrive on-line, thus being added to the lists Qv in midstream and causing the protocol
to be restarted if Qv was already empty at the time. (An explicit mechanism for this
is illustrated in the next protocol we present.) The value of the Theorem 16 guarantee
is considerably lessened, however, since now delays can occur because of the late
arrival of a transfer request, not just because of communication delays. However, one
can still get a guarantee:

COROLLARY 16.2. If s is a schedule constructed by Demand Protocol (modi-
fied to handle late arrivals), G is the ex post facto file transfer graph, and if one
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takes OPT (G) to be the minimum makespan possible, given the late arrival of cer-
tain requests, then

MAKESPAN (s) < 4OPT (G) + 6(DP 1,G)’IE I.

Proof. Simply partition the schedule into the part before the arrival of the last
transfer request, which clearly has length less than OPT(G), and the part starting
when the last file transfer request arrives, from which point Theorem 16 applies with
A equal to the remaining communication delay.

The protocol can also be adapted to tolerate unreliable vertices, in a manner simi-
lar to that in the next protocol, although there is some question as to how appropriate
makespan is as an optimization criterion in either the on-line situation or the case of
unreliable processes see Section 5. (As it stands, DP1 can handle vertices that die
and stay dead, in which case it still insures that all transfers not involving the dead
vertices are eventually completed, assuming that there is no infinite sequence of false
busy signals and that the death of a neighbor frees all ports it was using at the time.)

If the system is such that communication delays are very small in comparison to

file transfer time, one might be willing to spend more time in protocol communication
in exchange for an improved bound such as the (2.5)OPT(G) of Decreasing List
Scheduling. In the remainder of this section we describe a protocol that does just this.
As with the previous protocol, this one does not depend on precise knowledge of the
edge lengths in the file transfer graph. (However, the 2.5 result will require that both
endpoints of an edge know of its existence at time 0 and have identical estimates of its
length. The extent to which an estimate can be "off" will determine the quality of the
guarantee.) The protocol we describe can also handle on-line requests and tolerate
unreliable vertices, although these may degrade its performance and the guarantees we
prove will depend on the system behaving sensibly and reliably.

To focus on scheduling issues rather than the problems inherent in distributed
communication, we shall push issues of communication and reliability even further
into the background than we did for DP1, by postulating the existence of certain lower
level protocols that behave as follows:

(1) There is a Communications Protocol that any vertex can invoke to send a
query to a neighbor, and that will return an appropriate response (one of those speci-
fied by our scheduling protocol) or a "busy" signal, the latter only occurring if the
neighbor is currently using all its ports for file transfers (or is either dead or so slow in
responding that it appears to be dead).

(2) There are file transfer protocols FileSend and FileReceive that, given an
agreement between two vertices to transfer a file, can be invoked by the sender and
receiver respectively to effect the transfer. (The order of invocation is irrelevant; they
take care of their own synchronization.) On completion of the transfer (or premature
termination), each protocol informs its invoker of the transfer’s success or failure.

We also assume that queries, responses, and reports on successful or unsuccessful
file transfers are all placed on a First-In, First-Out Protocol Message Queue as they
arrive, along with any new internally-generated requests for transfers.

Our old protocol could be reinterpreted in this model, with the one type of query
being "Will you agree to perform a transfer?" and the allowed answers being "No"
(when all my ports are full or myself have an outstanding request) or "Yes" (in
which case the requester and the responder both initiate the appropriate file transfer
protocols). However, note that such an implementation wastes the power of our
assumption that all queries receive answers, by making one of the answers equivalent
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tO receiving a busy signal in our original model. The power of that assumption, as we
shall see, is that it allows us to prove that there cannot be an infinite sequence of
operations without progress being made, as is at least possible in the original model.

The protocol we now describe is the distributed analogue of List Scheduling.
Based on our results about it we can derive a result analogous to that for Decreasing
List Scheduling as a corollary. Corresponding to the "list" in List Scheduling, there
will be a total ordering ">6" on the edges (including late arrivals), with the
"greatest" edge corresponding to the first edge in the list. We assume that an indivi-
dual vertex can determine the relative ordering between any two edges of which it is
an endpoint.

The protocol uses just one type of query: "Are you prepared to perform the
transfer represented by edge e?," which we shall denote by Query (v,e,u), where e is
the name of the edge and u and v are its endpoints, v being the vertex sending the
query, and u being the addressee. There are three permitted answers: (1) "Yes,"
denoted Yes (e,u), (2) "Call back later, I’m waiting to see whether can execute a
higher priority edge," denoted Later (e,u), and (3) "No, all my ports are in use (or
am dead)," denoted No (e,u). The invocation of the FileSend and FileReceive proto-
cols for edge e are denoted by FileSend (e) and FileReceive (e) respectively. Reports
from these protocols are of the form Success (e) or Failure (e). An internal request
for a new transfer represented by the edge e has the form Add (e).

Each vertex v maintains two lists of incident edges. The first is the A-list and
contains those edges whose transfers have not yet begun and whose other endpoints
are not thought to be busy. It is ordered according to > 6 with the largest element
first. The second is the B-list and contains all the rest of the as yet untransferred
edges, ordered in a First-in, First-out fashion. We assume that these are initialized so
that the B-list is empty and all transfer requests initially known by (and involving) v
are in the A-list, marked as "unqueried," i.e., as not being the subject of any query
sent by v but not yet answered. In addition, the variable NotEmeD, initialized to 0,
gives the current number of outstanding unanswered queries, and the variable
NrReeeORr, initialized to Pv, contains the current number of free ports. We shall
assume NQwmeo is updated automatically, whereas we shall explicitly update
NFReEI’ORr SO that it reflects the number of ports committed to transfers, even though
some of the transfers may not yet be taking place.

We are now in a position to describe the protocol.

DEMAND PROTOCOL 2 (DP2).

Repeat forever:
1. If the Protocol Message Queue is not empty, remove the first message M and do

the following:
1.1. If M No (e,u), move e from its current position to the end of the B-list

and mark it as "unqueried."
1.2. If M Later (e,u), mark e as "unqueried" and move it to the A-list if it

is not already there.
1.3. If M Yes (e, u) then

1.3.1. If e is in either the A-list or B-list, delete e from its list, reduce

NFReeZ’ORr by 1, and invoke the appropriate one of FileSend (e)
and FileReceive (e).

1.3.2. If e is not in either list, do nothing. (We have already invoked
the appropriate one of FileSend (e) and FileReceive (e) in
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response to a query from u.)
1.4. If M Query (u,e,v) then

1.4.1. If NFRe.e’ORr O, send the message No (e,v), add e to the A-list
marked "unqueried" (if it is not already there), and delete it
from the B-list (if present).

1.4.2. Else if e is in the A- or B-list marked "queried," or if NFReeeor
exceeds the number of edges e’ that either (i) are currently
marked "queried" or (ii) are marked "unqueried," satisfy
e’ > G e, and are in the A-list, then send the message Yes (e,v) to
u, delete e from its list (if it is on one), reduce NFeFt’Or by 1,
and invoke the appropriate one of FileSend (e) and
FileReceive (e).

1.4.3. Else send the message Later (e,v) to u, add e to the A-list marked
"unqueried" (if it is not already there), and delete it from the B-
list (if present).

1.5. If M Success (e), increase NFFe’Oter by 1.
1.6. If M Failure (e) or M Add (e), add e to the A-list marked

"unqueried" (if not already there), delete it from the B-list (if present),
and increase NFReeeoter by 1.

2. While NFRee’Or > No.t:emeo and there is an edge in the A-list or the B-list that
is marked "unqueried," do the following

2.1. Let e be the first edge marked "unqueried" in the concatenation of the A-
list followed by the B-list, and let u be its other endpoint.

2.2. Send Query (v,e,u) and mark e in its list as "queried".
END (While NFREEPORT ..)

END (DEMAND PROTOCOL 2)

It is easy to verify (by induction or case analysis) that certain elementary proper-
ties are obeyed by this protocol. For instance, NQt:Emeo is never more than
NFREeeogr; a vertex, once informed of the existence of an edge, never forgets it until
the corresponding transfer is successfully completed (if we count the fact that the file
transfer protocols "remember" the edge while a transfer is being attempted, and rein-
state it should the transfer fail); if one endpoint of an edge invokes a file transfer pro-
tocol for an edge, then so must the other unless it dies, i.e., stops making steps in its
protocol loop. Our major claim, which follows from such elementary observations, is
the following "correctness" result.

THEOREM 17. Suppose that the network is being governed by DP2 and is in a

state where there is an unstarted edge, both of whose endpoints are alive and have a

free port. Then so long as no vertex dies and the Communications and File Transfer
protocols operate as assumed, one of the following must happen:

(a) an edge starts,
(b) an edge finishes, or
(c) a new edge gets internally requested at some vertex.

Proof. Suppose we are in a configuration where none of (a), (b), or (c) will ever
occur again and no further vertices will die, and that, contrary to the theorem, there is
an unstarted edge, both of whose endpoints are alive and have free ports (in what fol-
lows we shall call such an edge a free edge). We first show that a free edge must
eventually be placed on some vertex’s A-list.

So suppose no free edge is on an A-list. Then all free edges must be on B-lists.
Let e be a free edge, and let it be the first such on the B-list for some vertex v. Let m
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be the number of edges in the concatenation of v’s A- and B-lists that are in front of
e. By assumption, the other endpoints of all these edges either are dead or have no
free ports (and never will have, since no more edges will ever finish). Thus the
response to any query concerning such an edge must be "No," which results in the
edge being moved to the end of the B-list and the reduction of m by 1. Each time
such an answer is received, we also reduce NQVeRIED by 1, so that in Step 2 a new
query is posed, either for e or some edge ahead of e in the concatenation of the A- and
B-lists. Since all queries receive answers, and all edges ahead of e must receive the
answer "No," this means that eventually the number of edges ahead of e will be
reduced to the point where a query must be posed for e. The other endpoint of e,
being neither busy nor dead, must thus answer "Later" (it can’t answer "Yes" as that
would cause e to be started), which causes v to put e on its A-list.

So now let us suppose that there are free edges on A-lists. Let e be the greatest
free edge (under >G) having this property, and let u and v be its endpoints, with at
least v having e on its A-list. We shall show that either e gets started, or else some
other free edge e’ with e’>G e is promoted to an A-list. Suppose not, and hence e
remains the greatest free edge, in perpetuity. By an argument like that of the previ-
ous paragraph, we can assume that e eventually reaches the head of v’s A-list (after
all non-free edges have received "No" answers and been demoted). Since a request
for e can never receive a "No" answer, it will never leave its A-list. Assuming no
other edge e’ is promoted, e must thus remain at the head of its A-list in perpetuity.
At some point it thus must be requested, and thereafter each time Step 2 of the proto-
col is reached, it will either already be under request or else will be re-requested (this
happens when a "Later" response was received in Step 1). Hence, from some point
on, e will always be under request when Step is entered. If, from this point on, v
ever reads a request Q(u,e,v) off its Protocol Message Queue in Step 1, it must
answer "Yes" and start a transfer. Thus e’s other endpoint u must never query for e.
However, u must answer v’s queries, and it must answer them with "Later," thus
insuring that e gets on u’s A-list. As soon as this happens it is only a matter of time
before u must query for e, since no edge ahead of e on u’s A-list can be free by our
choice of e.

Thus we have a contradiction to our assumption that e is never started nor super-
seded as "greatest" free edge on an A-list. Hence one of these two possibilities must
occur. Since the replacement of the greatest free edge can only occur a finite number
of times (there are only a finite number of edges and by assumption no edge ever loses
its freeness), eventually an edge must start, the final contradiction. The theorem fol-
lows.

As a consequence of Theorem 17, we can conclude that, so long as dead vertices
are not revived and our assumptions about the underlying protocols are valid, protocol
DP2 guarantees that all files involving surviving vertices will eventually be transferred
successfully. Moreover, a statement analogous to Corollary 16.1 can be made. Let us
assume that no vertex ever dies, no transfer fails, and that all edges are known to their
endpoints at time 0. Then Theorem 17 says that any time an edge becomes free there
is a finite amount of time before either an edge starts or another edge finishes. Let
6(DP2,G) be the maximum amount of time for this to occur given the network
corresponding to the file transfer graph G.

COROLLARY 17.1. Assuming that all edges are known to their endpoints at time
0 and that no vertex ever dies and no transfer ever fails, then if s is the schedule pro-
duced by Demand Protocol 2 with ex post facto message graph G, e is the last edge
finished, and p is the maximum port capacity, we have
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MAKESPAN (s) < 2OPT(G) + L (e) + 2(DP2,G).IEI

< 3OPT(G) + 26(DP2,G)IEl

Note that the delay term includes a factor of 2 since we must include 6(DP2,G)
twice for each edge (once for its start and once for its finish), whereas in Corollary
16.1 we needed to count 6(DP1,G) only once per edge. The delay term is probably
even worse than twice that for DP1, however, since 6(DP2,G) does not directly
correspond to 6(DP 1,G). The model is different, involving many more protocol mes-
sages. Moreover, as hinted in our proof of Theorem 17, 6(DP2,G) may itself be pro-
portional to ]E 1, since we may have to wait for all the free edges to be "promoted"
before we actually get around to starting any of them. However, if 6(DP2,G) can be
kept small relative to OPT(G), then this protocol can be adapted to approximate the
2.5OPT(G) guarantee of Decreasing List Scheduling. The key is in an appropriate
definition for >G.

In order to make this definition, we shall impose just a few more (reasonable)
restrictions on the model. We assume that each vertex v has a unique identification
number ID(v), that each copy e of a multi-edge has a distinct name Name(e)
(presumably the name of the corresponding file), and that both endpoints of an edge
have identical estimates of its length. (We do not require that the actual ex post

facto length agree precisely with this estimate, however.) Given these definitions it is
straightforward to devise an ordering >G that will behave as desired and whose res-
triction to the edges involving a given vertex can be computed locally, so long as that
vertex knows the ID’s of its neighbors. Define ">D" as follows. Let e {v,u} and
e’--{v’,u] be two distinct edges with ID(v) > ID(u) and ID(v > ID(u. Then

e>De’ if (a) L(e)>L(e’), or if (b) L(e)--L(e’) and ID(v)>lD(v), or if (c)
L(e)--L(e), v--v’, and ID(u) >lD(u, or if (d) L(e)--L(e, v=v’, u--u’ and
Name (e) is lexicographically prior to Name (e3.

COROLLARY 17.2. Suppose that the situation is as described in Corollary 17.1,
that no actual edge length differs from the edge’s estimated length by more than ,
and that the order relation > used in DP2 is > D. Then we have

5MAKESPAN(s) < -z-OPT(G) + 2 + 26(DPZ, G).IE[

Proof. Given Corollary 17.1, the result will follow if we can show that the last
edge e to finish has actual length no more than (1 + 2. Suppose not.
Then the estimated length of e exceeds (1, and any edge e’ with

e’>D e must have actual length exceeding(1 We may also assume that
e started after time 26(DP2,G)’iE I, since otherwise the result would follow from the
fact that the actual length of e is at most OPT (G). Let us examine what happened at
time 0 and immediately thereafter. Initially e was on the .A-list for both its endpoints
u and v. We may assume that it was among the first p. edges on the A-list for v, as
otherwise v would have had Pv + edges of length exceeding (1 which is
impossible. Similarly, e must have been among the first Pu edges on the A-list for u.
So consider the first time v executed Step of DP2. If the Protocol Message Queue
was not empty and the first message was a query from u concerning e, v would have
had to say "Yes" as NFREEPORT Pv and NQUERIED 0. Otherwise, at, Step 2 v must

have queried u about e. Turning now to u, we note that u must also have either said
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"Yes" to a query about e the first time it entered Step l, or sent a query itself about e
at Step 2. If neither u nor v says "Yes" to a query about e during its first pass
through the protocol’s main while loop, then both will have sent a query about e. One
of the two must thus receive the other’s query before it receives the answer to its own.
Suppose without loss of generality that this happens to v. By Step 1.4.2 of DP2, v
must then say "Yes." We conclude that one of u and v must say "Yes" to e, and
hence the transfer must take place, without a query about e ever receiving a "No"
answer. In other words, e remains free from time 0 until the time it is transferred.
Thus by Theorem 17 and the definition of 6(DP2,G), e must start no later than time
26(DP2,G)’IE I, a contradiction.

We thus can conclude that the actual length of the last task to finish is at most
(1 + 2, and the Corollary follows.

Note that the proof of Corollary 17.2 depends heavily on the fact that all vertices
start executing DP2 at the same time (time 0). Otherwise u or v might have received
a "No" answer from the other endpoint because it was not yet awake. This would
wreak havoc with the argument of Corollary 17.2, although it would have only a lim-
ited effect on Theorem 17 and Corollary 17.1, as long as the spread between vertex

start-up times is itself limited.

5. Directions for further study. In this paper we have introduced the problem of
File Transfer Scheduling. As far as we know, there has been little previous theoretical
analysis of this problem (although a more-limited variant, posed in terms of a link-
testing problem, has been discussed in [4]). There are a wide variety of directions for
further research, such as improving on our results, extending them to more general
versions of the model, and investigating other optimization criteria.

Within the model, the major question we see is whether a polynomial time heuris-
tic can be devised that will provide a better guarantee than the (5/2)OPT(G) of
Decreasing List Scheduling. (For those interested in the arcana of NP-completeness,
there is also the question of the complexity of FILE TRANSFER SCHEDULING for
message graphs that are odd cycles of equal-length multi-edges.)

The most important extension of the model includes the possibility of forwarding.
This becomes relevant if u wants to send a file to v, but has no direct link, and hence
must send it to an intermediary, say w, who will then send it on to v. Forwarding may
be helpful even when direct links are available. Suppose both u and v are so busy that
times when they simultaneously have free ports are rare. In this case a common
neighbor w, which has a free port most of the time, might take the file from u when u
has the time and then hold it until v is flee. Can our results be extended to include
one or both of these types of forwarding?

Another extension of the model would be to include the real-life distinction that
often arises between dial-out and dial-in ports, as in the case of a computer system
with just one automatic call unit, but many incoming lines. In such a situation it
might be that two nodes each have many ports, but can only be involved jointly in two
simultaneous file transfers, since each transfer occupies one of the dial-out lines.

Finally, there is the question alluded to earlier about appropriate optimization cri-
teria. Makespan is a reasonable standard in the case when one is trying to perform all
transfers during a particular time interval, or when all the nodes are going to be tied
up in the transfer process until all transfers are completed. However, in many sys-
tems, file transfers may be going on all the time, or nodes may be free to do other
things once their own transfers are complete. The latter case suggests a criterion such
as "average finishing time" (over all nodes), and the former suggests a more dynamic
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measure such as the "average time in system" for a requested transfer, i.e., the aver-
age delay between the time a node decides it wants the transfer until the transfer is
accomplished. For such criteria, average case analysis may well be more meaningful
than the worst case analysis performed here, especially if one wishes to analyze the
system when nodes or transfers may fail.

Acknowledgment. We are indebted to B. Gopinath for originally posing the
basic file transfer scheduling model to us and for encouraging us to address the issues
discussed in this paper.
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DATA STRUCTURES FOR ON-LINE UPDATING OF
MINIMUM SPANNING TREES, WITH APPLICATIONS*

GREG N. FREDERICKSON"

Abstract. Data structures are presented for the problem of maintaining a minimum spanning tree on-line
under the operation of updating the cost of some edge in the graph. For the case of a general graph,
maintaining the data structure and updating the tree are shown to take O(x/) time, where m is the number
of edges in the graph. For the case of a planar graph, a data structure is presented which supports an update
time of O((log m)2). These structures contribute to improved solutions for the on-line connected components
problem and the problem of generating the K smallest spanning trees.

Key words, connected components, data structures, edge insertion and deletion, K smallest spanning
trees, minimum spanning tree, on-line computation, planar graphs

1. Introduction. Consider the following on-line update problem" A minimum
spanning tree is to be maintained for an underlying graph, which is modified repeatedly
by having the cost of an edge changed. How fast can the new minimum spanning tree
be computed after each update? In this paper we present novel graph decomposition
and data structures techniques to deal with this update problem, including a useful
characterization of the topology of a spanning tree. Furthermore, while dynamic data
structures have been applied with success to various geometric problems [OVJ, [WL],
our results are among the first [ST], [Hll] in the realm of graph problems.

Let m be the number of edges in the graph, and n the number of vertices. The
current best time to find a minimum spanning tree is O(m log log(2+m/n) n) [CT], [Y].
If only straightforward descriptions of the underlying graph and its current minimum
spanning tree are maintained, then it has been shown in [SP] that the worst-case time
to perform an edge-cost update is O(m). The problem of determining the replacement
edges for all edges in the spanning tree can be solved in O(ma (m, n)) time IT2], where
a(.,.) is a functional inverse of Ackermann’s function IT1]. However, that solution
is essentially static, so that actually performing replacements can necessitate consider-
able recomputation.

We show how to maintain information about the graph dynamically so that edge
costs can be updated repeatedly with efficiency. After each edge cost change, the
change in the minimum spanning tree is determined, and the data structures are
updated. We are able to realize an O(x/) update time. Moreover, if the underlying
graph is planar, we show how to achieve an O((log m)2) update time. Our structures
require O(m) space and O(rn) preprocessing time, aside from the time to find the
initial minimum spanning tree. These compare favorably with those developed recently
in [H12], which realize O(n log n) update times.

Our results are both of practical and theoretical interest. On the one hand, a
minimum spanning tree may be used to connect the nodes of a communications
network. Variable demand, or transmission problems, may cause the cost of some edge
in the network to change, and the tree will need to be reconfigured dynamically. On
the other hand, by focusing on edge cost changes, we have formulated a natural version
of the problem of updating a minimum-cost base of a matroid [W]. (In this case,
the matroid is a graphic matroid.) Our work leads naturally into the updating of

* Received by the editors August 1, 1983, and in revised form May 25, 1984. This research was supported
in part by the National Science Foundation under grant MCS-8201083.

" Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.
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minimum-cost bases of certain simple matroid intersections. These are investigated in
[FS1], [FS2], in which our data structures are used extensively. The problem of
maintaining a minimum spanning tree when vertices are inserted and deleted has been
studied in [SP], [CH], but the best performance to date is O(n2). This suggests that
because of its connection to matroids, the edge-update problem is perhaps more natural
than the vertex-update problem.

We also show how to apply our data structures to a number of related problems
to yield improved performance bounds. We cast the problems of edge insertion and
deletion into an edge update framework, and realize O(x/tt) update times, where mt
is the current number of edges in the graph. Using this, we improve on the update
time for the on-line connected components problem in a graph in which edges are
being inserted and deleted. The problem is to maintain a data structure so that a query
asking if two vertices are in the same connected component can be answered in constant
time. A version involving deletions only was examined in [ES], for which the total
time for rn updates was O(mn). A more general version has been discussed recently
in [Hll], for which O(n) time per individual update was realized. Our solution uses
O(x/m--t) time per update.

Our data structures can also be used in generating the K smallest spanning trees
in increasing order [G]. The best published solution [KIM] requires
O(m log log(2/,/ n+ Km) time and O(K + m) space. Quite recently, this has been
improved in [H12] to O(Kn(log n)2+ m log n) time at the expense of O(Kn log n +
m log n) space. We improve the time complexity for instances with relatively small K.
If K is O(x/), our solution uses O(m log log(2+m/n) n + K2/) time and O(m) space.
If the graph is planar, then the solution in [KIM] uses O(Kn) time and O(K + n)
space. If K is O(n/(logn)2) and the graph is planar, our solution uses O(n+
KZ(log n)2) time and O(n) space.

A preliminary version of this paper appeared in [F].

2. Preliminaries. There are several cases to be handled in edge-cost updating. The
cost of an edge may either be increased or decreased, and this edge may currently be
either in the minimum spanning tree or not in the tree. If the cost of a tree edge is
decreased, or the cost of a nontree edge is increased, then there will be no change in
the minimum spanning tree.

In the two remaining cases, the minimum spanning tree may be forced to change.
However, at most one edge will leave the tree, and one edge will enter the tree. If the
cost of a nontree edge (v, w) is decreased, then this edge may enter the tree, forcing
out some other edge. This case may be detected by determining if the maximum cost
of an edge on the cycle that (v, w) induces in the tree has greater cost than c(v, w).
An obvious implementation of this test would use O(n) time. A faster approach uses
the dynamic tree structures of Sleator and Tarjan [ST]. A maximum cost edge (x, y)
can be found using the operations evert(v) and findmax(w). The operation evert(v)
makes v the root of the dynamic tree structure, and findmax(w) finds the maximum
cost edge on the path from w to the root. The dynamic tree may be updated using
cut(x, y) and link(v, w). The operation cut(x, y) deletes edge (x, y) from the tree, and
link(v, w) adds edge (v, w). As discussed in [ST], the worst-case time required to
perform these operations is O(log n).

The most interesting case is if the cost of a tree edge (x, y) increases. Then the
edge may be replaced by some nontree edge. This case may be detected by determining
if the minimum cost nontree edge (v, w) that connects the two subtrees created by
removing (x, y) has cost less than c(x, y). In the worst case, there can be ll(m) edges
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that are candidates for the replacement edge. Consequently, this case appears to be
the most troublesome to deal with.

Our structures are designed to handle graphs in which no vertex has degree greater
than three. Given a graph Go Vo, Eo), we shall produce a graph G V, E) in which
each vertex satisfies this degree constraint. A well-known transformation in graph
theory [Hy, p. 132] is used. For each vertex v of degree d > 3, where Wo, , Wd-1 are
the vertices adjacent to v, replace v with new vertices Vo,’", Vd-I. Add edges
{(Vi, /)(i+l)mod a) 0," ", d 1}, each of cost 0, and replace the edges {(wi, v)
0,. , d 1} with {(wi, vi) 0,. , d 1}, of corresponding costs.

Let n’--IvI and m’= IEI, Then it is not hard to see that n’=< 2m and m’<- 3n’/2 <= 3m.
Thus there are 19(m) vertices in the new graph G, and 19(m) storage is required. Given
a minimum spanning tree To (Vo, E0,) for Go, it is easy to find a minimum spanning
tree T (V, E,) for G. For each new vertex v, include {(v, Vi+l)[i 0,..., d-2}, and
replace any edge (w, v) with the corresponding edge (w, v). In 3-7 of this paper,
we shall assume that we are dealing with graph of O(m) vertices, in which each vertex
has degree no greater than 3.

3. Topological partitions of the vertex set. In this section we examine a simple
solution to our problem that allows for o(m) update times. We first give a procedure
for organizing vertices into clusters, based on the topology of the minimum spanning
tree. Using this partition, we show how to achieve O(m2/3) update times.

We partition the vertices of the minimum spanning tree T on the basis of the
topology of the tree. Let z be a positive integer to be specified later. Let E’ be a set
of edges whose removal from T leaves connected components with between z and
3z- 2 vertices. The vertex set of each resulting connected component will be called a
vertex cluster, and the collection of clusters will be called a topological partition oforder
z. Such a partition always exists and is in general not unique.

Given a tree with more than 3 z 2 vertices, and ofmaximum degree 3, a topological
partition may be generated as follows. Perform a depth-first search of T starting at
any leaf vertex, which shall be identified as the root. Now call csearch(root), where
csearch(v) partitions v and its descendants into zero or more clusters of size between
z and 3z- 2, and one set of size between 0 and z- 1. The set is returned to the calling
procedure.

proc csearch (v)
local clust
clust { v}
for each child w of v do clust clust csearch(w) endfor
ir [clust[ < z then return(clust)

else print(clust) return(b) endif
endproc

Let a procedure FINDCLUSTERS be the procedure that initially calls csearch. If
csearch returns a nonempty set to FINDCLUSTERS, FINDCLUSTERS should union
it in with the last cluster printed.

LEMMA 1. Procedure FINDCLUSTERS partitions the vertex set ofa spanning tree
with maximum degree 3 into vertex clusters of cardinality between z and 3z- 2 in O(m)
time.

Proof It is not hard to see that the clusters which are output do form connected
components with respect to tree T. Since vertices are of degree no greater than 3, and
the root has degree 1, each vertex in T will have at most two children. Since sets of
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size at most z 1 are returned by csearch, and any vertex will have at most two children,
any cluster formed at a vertex v will have size at most 2z-1. A set of at most z-1
vertices can be returned to FINDCLUSTERS, and when this set is unioned with the
last cluster printed out, a cluster of size at most 3z- 2 will result. Thus all clusters are
within the prescribed size bounds. If the sets are implemented as linked lists, then the
whole procedure will require time proportional to the size of T.

The number of vertex clusters will be (R)(m/z). If z => x/, then there will be O(x/)
vertex clusters. Once the vertices are partitioned, partition the edges in E- Et into sets
E0 such that an edge in E0 has one endpoint in vertex cluster V and the other endpoint
in vertex cluster V. Thus there will be O(m) sets Ej. For each set Eij, a minimum cost
edge is determined. Both of these tasks can be performed in O(m) time. Thus, once
a minimum spanning tree for Go is determined, all other initialization will take O(m)
time. The amount of space used may be seen to be O(m).

We now describe how to handle the two more interesting update operations.
Suppose the cost of a nontree edge (v, w) is decreased, so that tree edge (x, y) must
be removed from the tree, and (v, w) must be added. Edge (x, y) can be determined
in O(log m) time, as discussed in 2. Several cases are possible. If x, y, v and w are
in the same cluster, or if x and y are in different clusters, then the cluster need not be
changed.

The crucial case is x and y are in the same vertex cluster, say V, which does not
contain both v and w. Then this vertex cluster must be split into V’i and VT, and the
sets E0 must be split for all j. Since V/] is O(z) and each vertex is of degree no greater
than 3, IkJ Eo] is O(z). Thus the splitting may be carried out in O(z) time. If either
V or V7 has fewer than z vertices, then combine it with a neighboring vertex cluster.
If this neighbor now has more than 3z-2 vertices, it can be split into two clusters by
using csearch. The total time to determine and perform whatever splits are necessary
will be O(z).

If the cost of a tree edge (x, y) is increased, then a minimum cost replacement
edge (v, w)# (x, y) must be found. To find (v, w), do the following. If (x, y) connects
two vertices in the same cluster V, split V into V’ and V’.’,, and adjust the sets E, as
above. Removing (x, y) will partition the vertex clusters into two sets. Check the
minimum cost edges between every pair of vertex clusters V and V, where V and V
are in different sets of the partition. Choose the minimum of these to be (v, w). There
can be O(m/z) vertex clusters in each set of the partition, so that the time required
to check all pairs of vertex clusters will be (R)(m2/z2). As before, splitting V into V’
and V7 will use O(z) time.

We may realize best performance for this approach if we choose z [m2/3]. This
structure is called structure I.

THEOREM 1. Structure I allows the on-line edge-update problem for minimum span-
ning trees to be solved in O(m2/3) time per update, using O(m) space and O(m)
preprocessing time, asidefrom the time required tofind the initial minimum spanning tree.

Proof The preprocessing requirements have already been established. The update
times are dominated by O(z + m2/z2). Choosing z m2/3 gives the desired result.

4. Topology trees. In the previous section we showed how to partition the vertices
into clusters to improve update times. In this section we show how to build clusters
of clusters, yielding a hierarchical characterization of the minimum spanning tree. This
characterization is then used in the next section to aggregate edge set information.

Given a spanning tree T in which each vertex has degree no greater than three,
we define a data structure that describes the topology of the tree in a convenient
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manner. Let the external degree of a vertex cluster be the number of spanning tree
edges with exactly one endpoint in the vertex cluster. A multi-level topological partition
of the set of vertices satisfies the following:

1. For each level i, the vertex clusters at level will form a partition of the set of
vertices.

2. A vertex cluster at level 0 will contain a single vertex.
3. A vertex cluster at level > 0 is either

a. the union of 2, 3 or 4 vertex clusters of level i-1, where the clusters are
connected together in one of the three ways shown in Fig. 1, and the external
degree is no greater than 3; or

b. a vertex cluster of level i-1 whose external degree is 3.
A topology tree for spanning tree T is a tree in which each internal node has at

most four children, and all leaves are at the same depth, such that:
1. a node at level in the topology tree represents a vertex cluster in level of

the multi-level topological partition, and
2. a node at level i> 0 has children which represent the vertex clusters whose

union is the vertex cluster it represents.

FIG. 1. The allowable topologies for vertex clusters that may be unioned together.

Given the vertex clusters for level i- 1, we can determine how the vertex clusters
are unioned together to give vertex clusters at level i. Consider a spanning tree T_I
derived from T by collapsing each vertex cluster of level i- 1 to a single vertex. Apply
procedure FINDCLUSTERS to the tree T_I, with parameter z 2. This will identify
clusters of vertices in the tree T_I of cardinality two, three or four, grouped as in Fig.
1. For each cluster in T_I that would have external degree greater than 3, subdivide
the cluster so that the resulting subsets each have degree 3. The vertices in T_I so
grouped, represent the vertex clusters of level i- 1 that should be unioned to get vertex
clusters on level i. An example of tree T is shown in Fig. 2. The corresponding topology
tree is shown in Fig. 3.

LEMMA 2. Let n be the number of vertices in a spanning tree T. The height of a
corresponding topology tree will be O(log n).

Proof. Consider the generation of the vertex clusters of level > 0, using the vertex
clusters of level i-1 and the corresponding tree T_I. Over half the vertices in T_I
will be of degree less than three, and all of them will participate in a unioning from
level i- 1 to i. Since one vertex cluster will replace at least two for each vertex cluster
that is unioned, fewer than

__1

vertex clusters will remain after the unionings.
Since the number of vertex clusters unioned at each level is at least a constant

fraction of the remaining number, the number of levels until a single vertex is reached
is O(log n). It follows that the topology tree is of height O(log n). El
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FIG. 2. A multilevel partition of the vertices in a spanning tree.

FIG. 3. The topology tree corresponding to the topological partition in Fig. 2.

LEMMA 3. A topology tree can be generated for a given spanning tree T in time

proportional to the number of vertices in T.
Proof. Let n be the number of vertices in T. The first iteration will require O(n)

time. From the proof of Lemma 2, at least 1/4 of the remaining vertices are removed on
any iteration. Thus total time will be O(i=o n()i), which is O(n). U

We are interested in the operations of deleting an edge from the minimum spanning
tree, and connecting two trees via an edge into a minimum spanning tree. These
spanning tree operations will force the corresponding operations of splitting a topology
tree and merging two topology trees. We shall show that each of these topology tree
operations can be performed in O(log m) time.

At first glance, merging and splitting of topology trees would appear similar to
the merging and splitting of 2-3 trees [AHU]. However the topology trees represent
clusters that satisfy, among other things, degree constraints and thus must be handled
carefully. Adding an edge to merge two trees into a spanning tree may cause the
external degree of a vertex cluster to increase from 3 to 4. In this case the vertex cluster
must be split, and the tree must be restructured accordingly. On the other hand, deleting
an edge may make it possible to include a vertex cluster in some union at a lower level
than before.

We first discuss in detail the merging of two topology trees. Consider the edge
that is added to connect the two corresponding trees to give the spanning tree. If some
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vertex cluster has its external degree increased from 3 to 4, choose the most deeply
nested such cluster, say W. It must be the union of at least two clusters, and its
constituent clusters can be regrouped into two adjacent vertex clusters, W’ and W",
such that the external degree of each is now three. We thus replace a vertex cluster
W, originally of external degree 3, and now of degree 4, with two vertex clusters, each
of degree 3. An example in which a cluster must be split into two clusters is shown in
Fig. 4a, and the resulting clusters are shown in Fig. 4b. The resulting clusters may
force the cluster in which they are located to be split, and this effect may propagate
upwards in the multilevel partition. The next level up from the cluster in Fig. 4a is
shown in Fig. 4c, with the result in Fig. 4d.

(a) (b)

(c) (d)

FIG. 4. An example of external degree increasing from 3 to 4.

Once any critical change in external degree has been handled, the root of the
topology tree of smaller height can be joined to the appropriate level of the other
topology tree. The operation is similar to inserting a node as a child of some node in
a 2-3 tree, in that the insertion of the new node may force the parent and children to
be reorganized so that there are two parents, and this effect may then propagate upward.
It is not hard to see that nodes along only one path to the root are affected. An example
is shown in Fig. 5, with levels beneath the root of the smaller topology tree not shown
in either tree. The multilevel partition and topology trees are shown before the edge
insertion in Figs. 5a and 5b, and after the insertion in Figs. 5c and 5d. The set V9
becomes a child of V12 which is then split into V14 and VI, which then forces the
splitting of V13 into g16 and V17.

We now discuss the splitting of a topology tree. The edge is deleted, and all
clusters containing that edge are split. These clusters are represented by nodes on a
path in the topology tree. The pieces of the topology tree are merged back into two
trees, in a fashion similar to what is done when fragments of a 2-3 tree are merged
after a splitting. Here again the constraints on the clustering shown in Fig. 1 must be
preserved. An example of clusters that are split is shown in Fig. 6a, and the resulting
clusters for the two trees are shown in Fig. 6b.
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(c) (d)

FIG. 5. An example of inserting a tree edge and merging two topology trees.

(a)

FIG. 6. An example of deleting a tree edge and splitting a multilevel partition.

Suppose there is a vertex cluster that is an only child and has had its external
degree drop from 3 to 2. Choose the most deeply nested such cluster, say W. Identify
the cluster W’ at the same level as W in the multilevel partition that has the lowest
common ancestor with W of such clusters in the topology tree. Combine W and W’,
rearranging the enclosing clusters as necessary. The newly formed cluster may need
to be split, because it is not one of the three forms in Fig. 1. An example of this is
shown in Figs. 7a and 7b. Otherwise, there will be one fewer node, and this may cause
the combinations to propagate back up in the tree. An example is shown in Fig. 7c,
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(a)

(c)

FIG. 7. Examples of external degree decreasing from 3 to 2.

with an intermediate result shown in Fig. 7d. (The outermost cluster shown must still
be unioned with some other cluster at its level.)

THEOREM 2. The time required to perform a split of a topology tree, caused by the
deletion of an edge in a spanning tree, or to merge two topology trees, caused by adding
an edge to create a spanning tree, is O(log n).

Proof. From the previous discussion, it may be seen that a constant amount of
work is done for each node along a constant number of paths in the topology tree.
The theorem then follows, lq

5. Aggregating edge costs using topology trees. In 3 we outlined a first strategy
for updating minimum spanning trees on-line, using a partition of the vertices based
on the topology of the minimum spanning tree. We determined that an expensive
operation is finding an edge to replace a tree edge that has increased in cost. This
operation could take time proportional to the square of the number of vertex clusters.
In this section we use the topology tree described in the last section and show how to
avoid examining so many edge sets, by aggregating edge set information in a manner
based on the topology tree. Using this approach, we show how to achieve O(/m log m)
update times.

We would like to generate a data structure in the following manner. Shrink each
vertex cluster in a topological partition to a single vertex, yielding a shrunken tree T.
Now generate a topology tree for T, Unfortunately, this is not in general possible,
since vertices in Tr may have degree greater than 3. The difficulty is in our rather
simple definition of a topological partition, which we now extend to a simply-connected
topological partition. Such a partition consists of )(m/z) vertex clusters of size O(z),
.such that any cluster is adjacent to at most three other clusters in the spanning tree,
and any cluster with fewer than z vertices must have external degree 3.

Procedure csearch from 3 can be modified to generate the desired partition.
Besides returning a set of vertices, the procedure should return the current external
degree of the set. The size and external degree of a set generated at v can then be
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determined. If this set has at least z vertices or has external degree 3, then it should
be printed out. The set generated at v will never have external degree greater than 3,
for the following reason. As before, each vertex in T will have at most two children.
Suppose nonempty sets of vertices are returned from recursive calls to each child.
Each of these sets will have external degree at most two. But of this degree of at most
two, one was contributed by the child’s adjacency to v, which will not be counted.
Hence the external degree of the set generated at v will be at most three: at most one
from each of the at most two children, plus one for the adjacency of v with its parent
(if any).

The simply-connected partition will induce shrunken tree Ts. Note that each leaf
in T will represent a vertex cluster of size between z and 3z- 2. This follows since
such a cluster, generated at vertex v, will have in effect no external degree contributed
by its children. Such a set will not have external degree equal to three, so it is output
only because its size is at least z. Hence there will be O(m! z) leaves in Ts. Every vertex
cluster of cardinality less than z will be represented by a vertex of degree 3 in T. Since
there will be fewer vertices of degree 3 than leaves in T, there will be O(m/z) vertex
clusters in a simply-connected partition. We call these vertex clusters basic vertex
clusters.

We may now generate a topology tree for tree T, the tree resulting from shrinking
basic vertex clusters in a simply-connected topological partition. We show how to use
these structures to improve update times. For each basic vertex cluster V, we maintain
an image of the topology tree. At the leaf representing basic vertex cluster V in tree
i, store the set Eij, along with the minimum cost edge in that set. If there is no such
edge, then assume a default cost of . At each internal node in the topology tree,
maintain the minimum value from among its children. Thus the topology tree is
augmented to maintain a heap on edge costs. The space required by the topology tree
for one cluster V will be to(m/z) for the nodes, and (R)(z) for the elements in j Ei.
Thus total space requirements for tO(m/z) trees for all the clusters will be tO(m2/z2 + m),
which is O(m) if z => /.

Given a basic vertex cluster V, suppose we wish to find a path from the root to
the leaf representing V in V’s copy of the topology tree. It is sufficient to maintain
an original copy of the topology tree with pointers from children to parents. The
location of basic vertex cluster V in V’s copy can be found by tracing up from V in
the original copy of the topology tree. Thus locating the path from the root to basic
vertex cluster V will use O(log (re time.

We now consider handling the two more interesting update operations. If the cost
of a nontree edge is decreased, then finding the edge to replace, splitting a basic vertex
cluster, and recombining the pieces is similar to that discussed before, except that now
there are consequences in terms of the structure of the topology tree. We have already
discussed how to split and merge topology trees. In particular, a topology tree can be
split on a leaf representing basic vertex cluster V in O(log (m/z)) time. Merging two
topology trees that are to be joined via an edge will use O(log (m/z)) time to adjust
external degrees, and O(hl- h:z) time to merge the topology trees, where hi and h2 are
their heights. It is straightforward to maintain the heap property on the topology trees
as they are merged or split. Since each image of the topology tree must be changed,
total time is O((m/z) log (m/z)) for all the topology tree manipulations.

In the case in which the cost of a tree edge is increased, we can use the topology
trees to find the replacement edge for (x, y) more quickly than before. If x and y are

in the same basic vertex cluster V, split V into V’ and V’. If either is too small, given
its external degree, combine it with a neighboring basic cluster, if there is one, and
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adjust the upper levels of the topology tree as necessary. Now split each copy of the
topology tree on edge (x, ’) to give two topology trees for each copy before. This split
induces a partition of the set C of basic vertex clusters into C’ and C". In Fig. 6b, for
example, C’ would consist of basic clusters 1, 2 and 3, while C" would consist of the
remaining basic clusters 4 through 9. For each basic vertex cluster V, one of its now
two topology trees will be a heap on edge costs for edges with one endpoint in V and
the other endpoint in a cluster in C’, and the other tree will be a heap on edge costs
for edges with one endpoint in V and the other in a cluster in C".

We find the minimum cost replacement edge (u, v) as follows. For each basic
vertex cluster V in one of the sets, say C’, consider V/’s topology tree for the other
set C". Take the minimum value from among those in the roots of all such topology
trees. Ifthis value is smaller than the new cost of edge (x, y), then the edge corresponding
to this value becomes the replacement edge.

Once the minimum cost replacement edge (u, v) has been chosen, the topology
trees can be merged on this edge. Choosing z- [V’m log m ], we get structure II.

THEOREM 3. Structure II allows the edge-update spanning tree problem to be solved
in O(x/m log m) time per update, using O(m) space and O(m) preprocessing time, aside

from the time to find the initial minimum spanning tree.

Proof. Splitting and merging the basic vertex sets will use time O(z). Splitting
(R)(m/z) copies of the topology tree on an edge will take time O((m/z)log (m/z)),
and merging them will take the same. The time needed to examine the roots of O(m/z)
topology trees for the replacement edges will be O(m/z). D

6. The 2-dimensional topology tree. It is possible to improve the update time over
that of structure II by doing the following. In structure II there is a separate copy of
the topology tree for every basic vertex cluster V. If we combine all the images of the
topology tree into one large tree, we can realize slightly faster update times. The leaves
of the large tree will be essentially the same as the set of leaves in all copies of the
topology tree, with one leaf for each pair of basic vertex clusters. The root of the large
tree may be viewed as the union of the roots of all of the copies. Other internal nodes
may be viewed as the unions of various internal nodes in the copies of the topology
trees. The organization of the large tree will be such that the time to split or merge
the structure will be O(m/z), rather than the O((m/z) log (m/z)) of structure II.

We define the 2-dimensional topology tree in terms of the topology tree. Let V
and V, be vertex clusters represented by nodes at the same level in the topology tree.
Then there is a node labelled with V V, in the 2odimensional topology tree, which
represents the set of edges in E- Et with one endpoint in V and the other in V,.
Since edges are undirected, we shall understand V, V to denote the same node as

V V,. The root of the 2-dimensional topology tree is labelled V V and represents
the set of all edges in E- Et. If a node in the 2-dimensional topology tree represents
V V, where V has children VI, V2,. V in the topology tree, then V V
has children { V, Vjll <- <=j <-_ r}. Similarly, if a node represents V V,, where
a and V, has children V,, V,2,. ., V,s in the topology tree, then V V has
children { V, V,j[1 <_- <= r, 1 _-<j-< s}. A portion of the 2-dimensional topology tree
corresponding to the topology tree in Fig. 2 is given in Fig. 8. In our structure III,
leaves of the 2-dimensional topology tree will store the edge sets E0, along with the
minimum cost edge of each set. Internal nodes will have the minimum of the values
of their children.

We discuss how to modify a 2-dimensional topology tree when its corresponding
topology tree is modified. Each modification in the topology tree affects nodes along
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FIG. 8. A portion of the 2-dimensional topology tree corresponding to the topology tree in Fig. 3.

a path from the root to some node representing a vertex cluster V, which may or may
not be a basic vertex cluster. In the corresponding 2-dimensional topology tree, nodes
are affected along paths from the root to nodes of the form V V0 for all clusters V0
for which node V Vo exists. For any node Vv on the path to V in the topology
tree, all nodes of the form Vv V will be on these paths in the 2-dimensional topology
tree. (It is straightforward to verify that for each node V on the same level of the
topology tree as Vv, there will be a node Vv V in the 2-dimensional topology tree.)
These nodes Vv V together form a subtree T of the 2-dimensional topology tree.
In fact the subtree T will be isomorphic to that subtree of the topology tree with
nodes at the same level as V or above. Hence there are O(m/z) nodes in T.

Since each node has a number of children bounded by a constant, the time to
modify or replace each node in the subtree T will be constant. Thus the operations
of merging or splitting a 2-dimensional topology tree can be done in time proportional
to the number of nodes in T, which is O(m! z). To find a replacement edge, one must
examine the values in appropriate nodes once the 2-dimensional topology tree has
been split. Suppose that the topology tree has been split into two trees, whose vertex
sets are the clusters V and V0, with the V0 set having no fewer levels than the V set.
The replacement edge can be found by examining the values at the nodes V Vv for
all such nodes, and taking the minimum. It will take O(m/z) time to find and examine
these nodes.

Choosing z x/-, we get our structure III.
THEOREM 4. Structure III allows the on-line edge-update problem for minimum

spanning trees to be solved in O(x/--) time per update, using O(m) space and O(m)
preprocessing time, aside from the time to find the initial minimum spanning tree.

Proof. As before, splitting and merging the basic vertex sets will use O(z) time.
All other operations will take O(m/z) time. [3

7. A data structure for planar graphs. As stated previously, we have been able to
do much better when the underlying graph is planar. In this case we do not deal at
all with basic vertex clusters, but merely use the multilevel partition. Thus we use a
topology tree for the minimum spanning tree T, augmented with additional information.
Consider an internal node of the topology tree representing vertex cluster W, whose
children represent vertex clusters W1, W2," ", W, Since the graph is planar, it may
be laid out so that each cluster V is in its own connected region of the plane. All
edges between a pair of vertices in any one W may be laid out so that they are wholly
contained in the appropriate region. An example of such a correspondence is shown
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FIG. 9. A planar graph, with the tree edges shown in bold, the nontree edges in solid, and the vertices
grouped with dashed lines.

in Fig. 9, with the tree edges shown as bold lines, the nontree edges as solid lines, and
the boundary of the regions shown with dashed lines.

Given a planar embedding of the graph, consider any vertex cluster W and its
region. The region is either simple, or it has between one and three "holes" in it. One
such example is shown in Fig. 10a, in which region W1 has a closed curve bounding
it, which separates W1 from W2, W3 and W4. For each closed curve bounding a region
W, the edges with one endpoint in W and the other not in V may be ordered in a
natural way, e.g., clockwise around the closed curve. A boundary between two regions
is a maximal set of edges between the regions, which is consecutive in ordering with
respect to both regions. It is possible that two regions have more than one boundary
between them. For example, note that in Fig. 10b the clusters W3 and W4 have two
boundaries between them. For r-> 3 regions, it is not hard to show that there are at
most 3 r- 6 boundaries between them. Since no vertex cluster will have more than four
children in the topology tree, there will be at most six boundaries between the children.
Two such cases are shown in Figs. 9 and 10b.

The operations that we shall perform on boundaries are splitting a boundary,
concatenating two boundaries, and finding a minimum-cost nontree edge in the boun-
dary. We thus represent the boundaries with mergeable heaps, such as those in [AHU].
The merging and splitting of regions are similar to what has already been discussed
with respect to topology trees, except now boundaries of regions must also be

\.W

(a) (b)

FJG. 10. Examples of relationships between regions.
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maintained. We shall discuss the splitting of a region in some detail, leaving the simpler
operation of merging to the reader.

We first consider how to split a vertex cluster W in the topology tree, assuming
that edge e, a tree edge with endpoints in W, is removed. Our split routine will return
two clusters W’ and W", and boundary B between them. Let W be the union of subsets
W, W2," ", W. If e is in some boundary between a pair of the W’s, then do the
following. Determine which of the W’s will still be connected to each other, i.e., which
W/’s will be in W’, and which will be in W". Determine those boundaries between
W’s that will form the boundary between W’ and W", and concatenate them together
to form B. Each remaining boundary between the W/’s will separate subclusters of
either W’ or W". Return W’, W" and the boundary B between them.

As an example, consider the.region W from Fig. 9, shown by itself in Fig. lla.
Suppose it consists of two subregions, W with the upper four vertices, and W12 with
the lower five vertices. Suppose that W is to be split on the dashed edge between W
and W12. The resulting two regions W WI and W’ W are shown in Fig. 1 lb,
along with the boundary between them, shown as a dotted line.

(a) (b)

FIG. 11. Splitting a planar region.

If e is not in the boundary between a pair of the W’s, then it is contained in one
of the W’s, say W. Recursively split W on edge e, which should return W, Wj’ and
a boundary between them. Split as necessary the boundaries that W had with any of
the other W’s. Determine which of the W’s, along with W and Wj’, are connected,
to form the basis of W’ and W". If W is of level one less, merge it with a neighbor.
Handle W]’ similarly. Determine the boundaries between the new W’s that will form
the boundary between W’ and W". As before concatenate these boundaries, and assign
remaining boundaries to W’ and W".

Now suppose that the whole graph W in Fig. 9 is to be split on the same edge
as in Fig. l la. The boundary that W shared with W3 must be split, as well as the
boundary that W shared with W2. Note that W will be merged with W3, absorbing
the boundary between them into the result W’, and W’ will be merged with W2 and
W4, yielding the result W". The boundary between W’ and W" will be the concatenation
of the boundaries between W3 and W4, W and W4, W and W2, W and W’, W
and W, and W3 and W:, in that order.

The time to split vertex cluster V on edge e may be seen to be O((log m)2). As
established earlier, the height of the topology tree will be O(log m). For each level,
the number of boundaries that will be split or concatenated will be no greater than
some constant. Since each split and concatenation will take O(log m) time, this work
is bounded by O(log m) per level. Merging vertex clusters together, as in a small W
with a larger neighbor, will require O((h- h’) log m), where h’ is the level of Wj, and
h is the level of its larger neighbor. The level of the resulting vertex cluster will be at
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least h. Thus the total of the difference in levels will be O(log m). Thus the merging
will be O((log m)-) also.

THEOREM 5. The edge-update spanning tree problem may be solved in O((log m)2)
time per update, using O(m) space and O( m) preprocessing time.

8. Edge insertion and deletion, and maintaining connected components. It is not
hard to cast the problems of edge insertion and deletion into an edge update framework.
When an edge is inserted, the degree of the incident vertices in the original graph
increases. If the degree of such a vertex has become four, then the transformation
discussed in 2 must be applied to the vertex. If the degree has become greater than
four, then the transformation from 2 has already been applied but now must be
modified. In both cases, the number of new edges and vertices introduced is a small
constant. Similar transformations may be performed in reverse if an edge is deleted.

When edges are being inserted or deleted, the number m of edges is of course
changing. Let mt be the number of edges in the graph at time t. We claim that an
update at time can be carried out in time O(x/mt). This can be achieved as follows.
Let z, [x/-]. We shall also allow basic vertex clusters of size 3z,- 1, and basic vertex
clusters of external degree less than three of size zt- 1. When the value of z changes
due to an insertion or deletion, there will be at least x/- updates before z advances
to the next value up to or down in the same direction. The idea is to adjust a small
constant number of basic vertex clusters each time that there is a new update. Since
there will be no more than x/-, clusters that need to be adjusted, the adjustment may
be accomplished before a new round of adjustments is initiated. Thus every time an
insertion occurs, the clusters can be scanned to find any cluster that is too small and
this cluster can be combined with a neighbor as necessary. Similar operations are
performed upon a deletion.

THEOREM 6. A minimum spanning tree may be maintained under the operations of
insertion and deletions ofedges in O(x/--, time per update, where m is the current number
of edges.

If the graph is planar, then things are even easier, since no parameter z will be
adjusted. Thus edge insertion and deletion can be performed in O((log m)2) time,
provided that the graph remains planar.

Using the above modifications to our basic structure, we can solve the problem
of maintaining connected components of a graph on-line. Given a graph in which
edges are being inserted and deleted, a data structure must be maintained so that a
query about whether two vertices are in the same connected component can be answered
in constant time. In addition to our above structure we use the following. Let each
edge in the graph have cost 1. In addition, keep a sufficient number of "dummy" edges
of cost 2 in the graph to link together the connected components. Any dummy edge
included in the augmented graph must be in the minimum spanning tree of the graph.

Give each connected component a number. In each basic vertex cluster, maintain
lists of vertices that are in the same connected component. An array listnum will give
for each vertex v, the index of the list holding v. A second array compnum will give
for each list the index of the connected component containing the vertices in /. To
answer a query on vertices u and v, compare compnum (listnum (u)) and compnum (list-
hum v)) for equality.

To insert an edge (u, v) do the following. If the edge is currently a dummy edge,
make it a real edge by decreasing its cost to 1. Otherwise insert it with cost 1. If u and
v were in different components, merge the components by doing the following. First,
identify the at most one basic vertex cluster that contains vertices from both components,
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and concatenate the lists for these components, changing the listnum values of the
vertices on one list to be the smaller of the two component numbers. Then in each
basic vertex cluster containing a list in the higher numbered component, change the
compnum value of the list to be the index of the lower numbered component. Since
there are O(x/-,) vertices in any basic vertex cluster, and O(x/-) basic vertex clusters
altogether, the time required will be O(x/tt). Inserting edge (u, v) may force a dummy
edge out of the minimum spanning tree. Delete this edge. This will require work
proportional to the total size of a constant number of basic vertex clusters, or O(x/-,).

The ideas for deletion are similar. If the edge e to be deleted is not in the minimum
spanning tree, delete it. If it is in the tree, and there is a replacement edge for e of
cost 1, delete e. Otherwise, increase the cost of e from 1 to 2. Then renumber the
component that has split off, split the at most one list in some basic vertex cluster that
has vertices in both resulting components, and give the new number to the O(x/-,)
lists (at most one per basic vertex cluster) containing vertices in the new component.

THEOREM 7. The on-line connected components problem can be solved using data
structures that allow edge insertion and deletion times of O(x/-t).

9. Generating the K smallest spanning trees. In this section we show how to use
our data structures to generate the K smallest spanning trees of a graph in increasing
order of cost. Each tree in the sequence except for the first can be described in terms
of a preceding tree in the sequence, with one tree edge swapped out and replaced by
a nontree edge. Thus our output will be in the following form. The minimum spanning
tree will be output first, followed by a succinct description of each of the remaining
trees. Each remaining tree will be characterized by its cost, a reference to the tree from
which it can be derived using a single swap, and that swap.

Our approach is based on a branch-and-bound technique described in ILl and
used in [G], [KIM]. The set of all spanning trees not yet selected is partitioned on the
basis of the inclusion or exclusion of certain edges. When the minimum spanning tree
is selected, the set is partitioned as follows. For each edge ei in the minimum spanning
tree, there is a replacement edge f of minimum cost. Without loss of generality, assume
the swap pairs (ei, f) are indexed in increasing order of c(fi)--c(ei). We assume that
all such costs are unique, with ties broken by lexicography, if necessary. The set of
remaining spanning trees is partitioned into n 1 subsets with the ith subset containing
all spanning trees with edge ei excluded and {el," ", e-l} included.

When the next smallest spanning tree T’ is chosen from one of these subsets, the
remainder of the subset is partitioned as follows. Let {el 1,..., n’-1} be the set
of edges in tree T’ that are not required to be included in T’ because of membership
in the subset, and {f} the corresponding set of replacement edges of minimum cost
that are not required to be excluded from spanning trees in that subset. Once again
assume that the pairs (e’,f’) are in order of increasing cost. The subset is partitioned
into n’-1 subsets with the ith subset containing all spanning trees satisfying the
previous conditions plus e excluded and {e,. ., e’i-1} included.

The above discussion seems to imply that every time the next smallest spanning
tree is chosen, a large number of replacement edges must be found. However, the
determination of some replacement edges may be delayed, as the next lemma suggests.
This will allow us to realize our improved strategy when K is small.

LEMMA 4. Let T be a minimum spanning tree of graph (V, E). Let f andf be the
replacement edges for ei and ej, resp., in T, and let f be the replacement edge for ej in the
minimum spanning tree T-ei+fi in (V, E-ei). If c(fi)-c(ei)<c(f)-c(ej), then

c( T- e, +f e; +]) > c( T- ej +f).
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Proof. Since T is a minimum spanning tree, c(f)> c(ei). Thus the proof reduces
to showing that c(f)>-c(f). If f=f, then we are done. Otherwise, ej must be on the
cycle induced by f in T. Since ej has^a replacemen,t edge of f in T chosen among
edges including f, c(f)>-c(f). Since ff,^T-ei +f is a spanning tree. Since e has
replacement edge f chosen instead of f, c(f)> c(f). The lemma then follows. [3

Our approach is as follows. First use a fast algorithm to find the minimum spanning
tree T. Generate our data structure for T. For each tree edge, find its replacement
edge, using the algorithm in IT2]. Each such swap infers a spanning tree. Name each
spanning tree, label it with a reference to T and the swap that generates it. Create a
heap on the costs of these spanning trees. Set up a list L of such trees resulting from
T that have already been chosen. Initially, L is empty.

We then iterate the following step until K 1 additional spanning trees have been
chosen. Suppose i-1 trees have already been chosen. Select the minimum value out
of the heap. The corresponding spanning tree will be T. Let T be the spanning tree
from which T is generated, e the edge removed, and f the replacement edge. Generate
our data structure for T from that of T, setting the cost of e in the graph to be .
Traverse the list Lj. For each TI on the list, determine the replacement edge for e in
T/. Name the corresponding spanning tree, label it with T and the new swap, and
enter its cost into the heap. Now add T to the list Lj. Find the replacement edge for
f in T. Name the new spanning tree, and as before label it and enter its cost into the
heap. Set up a list Li, initially empty. Repeat until K.

The correctness of the above algorithm may be seen as follows. The inclusion-
exclusion strategy is being implemented, with an edge excluded by setting its cost to

in the data structure that is the source of the appropriate subset of spanning trees.
Inclusion of edges is enforced by the mechanism of building and traversing the lists
{L}. The only edges in tree T that can be swapped out are f and those edges involved
in swaps with respect to T that are more expensive than (e,f). Lemma 4 guarantees
that a spanning tree arising from such a swap need not be examined until the
corresponding list has been traversed during execution of the algorithm.

We now consider the time complexity of our algorithm. Finding the minimum
spanning tree requires O(m 1oglog(2+m/n)n) time. The time to find all replacement
edges in the minimum spanning tree is O(ma (m, n)), which is dominated by the above
time. We bound the iteration time as follows. Every time an iteration is performed,
the length of some list is increased by one. The total number of elements on all lists
when tree T is chosen is i-2. Thus at most i-1 replacement edges in various trees
must be found after selecting tree T. Since the time to find a replacement edge is
O(x/-), the ith iteration requires O(ix/) time. For K- 1 iterations, this time is
O(K2vr-). When K is o(x/) the resulting time is o(Km).

As presented, the time and space to generate the T’s is O(Km), since the space
for our basic data structure is O(m). However it is possible to save space in the
following way. Since the time required to generate our data structure for T by modifying
the structure for T is O(x/), the number of new nodes is O(x/). The idea is to not
destroy any nodes of the structure for T/, but simply share the appropriate subtrees.
This reduces the space to O(m + Kx/-), which is O(m) when K is O(x/m).

THEOREM 8. The K smallest spanning trees of a graph can be found in
O(m loglog(2+m/n)n+ K2/) time and O(m+ Kx/--) space. [3

As discussed in the introduction, this result is better than previous results in [KIM]
whenever K is 0(() and to(loglog(.+,/, n). Our results are better than those in
[H12] whenever Kx/m is o(n(log n)2) or K is o(ml/4(log n)I/2). If the given graph is
planar, then our corresponding structures for planar graphs should be used. These
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results are better than the corresponding ones for [KIM] whenever K is o(n/(log rl)2).
They are also never worse than those in [H12], and are better when K is o(n).

THEOREM 9. The K smallest spanning trees of a planar graph can be found in

O(n+ K2(log n)2) time and O(n+ K(log n)2) space. D
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DECOMPOSING A POLYGON INTO SIMPLER COMPONENTS*

J. MARK KEIL

Abstract. The problem of decomposing a polygon into simpler components is of interest in fields such
as computational geometry, syntactic pattern recognition, and graphics. In this paper we consider decomposi-
tions which do not introduce Steiner points. The simpler components we consider are convex polygons,
spiral polygons, star-shaped polygons and monotone polygons. We apply a technique for improving the
efficiency of dynamic programming algorithms in order to achieve polynomial time algorithms for the
problems of decomposing a simple polygon into the minimum number of each of the component types.
Using the same technique we are able to exhibit polynomial time algorithms for the problems of decomposing
a simple polygon into each of the component types while minimizing the length of the internal edges used
to form the decomposition. When the polygons are allowed to contain holes many of the problems become
NP-hard.

Key words, polygon decomposition, convex polygon, star-shaped polygon, spiral polygon, monotone
polygon, dynamic programming

1. Introduction. Let P be a simple polygon in the plane having vertices v, v2, v,
clockwise on its boundary. There are many ways to decompose such a polygon into
simpler components [15], [26]. The simpler components we will consider are convex
polygons, spiral polygons, star-shaped polygons and monotone polygons. Using a
dynamic programming approach we will develop polynomial time algorithms for
decomposing a polygon into the minimum number of each of these simple components.
Using the same technique we are able to exhibit polynomial time algorithms for the
problems of decomposing a simple polygon into each of the component types while
minimizing the length of the internal edges used to form the decomposition.

There are several motivations for considering polygon decomposition problems.
An arbitrary polygonal shape can be recognized more easily once its component parts
have been identified. This property can be used in pattern recognition schemes [9],
[23], [26]. In computational geometry, a problem can often be solved on a general
polygon by applying efficient specialized algorithms to the component parts of the
decomposed polygon. Other application areas for polygonal decompositions include
database systems [20] and graphics [21].

Decomposing a simple polygon into nonoverlapping component parts can be done
with or without introducing additional vertices which are commonly called Steiner
points. A decomposition which does not increase the number of vertices is preferable
when the components are to be processed further. Figure 1.1 shows decompositions
of simple polygons into the minimum number of convex polygons with and without
Steiner points. The algorithms we describe in this paper do not introduce Steiner points.

WITH STEINER POINTS WITHOUT STEINER POINTS

FIG. 1.1. Minimum decompositions.
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If the interior angle at a vertex is reflex the vertex is called a notch. Experimental
observation from graphics [21] and pattern recognition [23] shows that, in practice,
the number of notches in a polygon is much smaller than the number of vertices. We
let N denote the number of notches in a polygon and we describe and analyze
decomposition algorithms with respect to both n and N.

Before we consider the polygon decomposition problems we make the following
definitions. A Convex Polygon P is a simple polygon in which any two boundary points
can be joined by a segment that lies completely within P. A Spiral Polygon is a simple
polygon whose boundary chain contains at most one concave subchain. A Monotone
Polygon is a simple polygon in which there exists two extreme vertices in a preferred
direction such that they are connected by two polygonal chains monotonic in the
preferred direction. A Star-shaped Polygon is a simple polygon in which the entire
polygon is visible from at least one fixed (possibly interior) point of the polygon.

In 2 we develop our dynamic programming approach. We use it in 3 to develop
a polynomial time algorithm for the problem of decomposing a simple polygon into
the minimum number of convex components. In 4 we develop a polynomial time
algorithm for decomposing a simple polygon into the minimum number of star-shaped
components. We consider minimum edge length decompositions in 5 and other
decomposition problems in 6.

2. Dynamic programming. Since their introduction by Bellman [2], dynamic pro-
gramming (DP) algorithms have been used to solve a wide variety of discrete optimiz-
ation problems. To apply DP one must represent such a problem by a decision process
which proceeds from state to state in a series of stages. At each stage a decision is
made that will lead to a state in the next stage at a certain cost. A DP algorithm
decomposes the problem into a number of smaller subproblems each having fewer
stages than the original problem and it gains its efficiency by avoiding recomputing
solutions to common subproblems. For a survey of the use of DP in computer science
see [3].

A state consists of variables that describe the condition of the system. A state
must contain enough information so that current decisions depend only on the current
state and not on the particular history of previous states and decisions. This property
is called the state separation property. The state space consists of the set of all possible
states in which the system may exist and a valid state space for DP must have the state
separation property.

A problem for DP is rarely presented in terms of states and decisions and often
such a representation is not obvious. The most difficult part in applying DP is usually
the definition of the state space. If too little information is included in a state the state
space will not be valid and no correct DP algorithm can be developed. If too much
information is included in a state the state space will be large and the DP algorithm
will produce an unnecessary amount of computation.

Reducing the size of a valid state space can reduce the time required by a DP
algorithm. Karp and Held [13] suggested state space minimization as a good heuristic
for speeding up DP algorithms but were unable to provide a method of doing it. Later
Ibaraki [12] showed that in general the problem of minimizing the number of states
in a valid state space is not decidable.

Elmaghraby [8] introduced the concept of equivalent states which is useful in
reducing the size of a valid state space. A policy is a finite ordered sequence of decisions
that leads from one state through others to a destination state. Let X be the set of all
policies. Then two states s and s2 are said to be equivalent if and only if the state
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reached from sl after policy x is the same state reached from S2 after policy x for all
permissible policies x X. In a minimum state space there will be no pair of equivalent
states.

To reduce the size of a valid state space Elmaghraby [8] suggests constructing
classes of equivalent states. Once these classes have been constructed only one rep-
resentative member from each class need be kept. This method has not been widely
used because it is difficult to find these classes of equivalent states. In this paper we
systematically use the equivalence class method of state reduction to exhibit polynomial
time algorithms for each of the decomposition problems we consider.

Let us look at the problem of decomposing a polygon into the minimum number
of convex polygons and attempt to develop a DP algorithm for it. To do this we need
some definitions which are illustrated in Fig. 2.1. Two points of a polygon P are said
to be visible if the line segment joining them lies wholly inside P. A subpolygon Po of
P with vertices vi, Di+I,’’’Dj exists when 1 < i<j-1 < =n- 1, and vivj are visible.
The base convex polygon Co of a minimum decomposition (MD) D of Po is that convex
polygon of D that contains the edge vv in its boundary. We call vvj the base edge of

Pu. A triangle Ti,, can merge with a convex decomposition A of Pm if Ci,,,(A)w Tmj
is a convex polygon. The size of a MD of P0 is the number IDI of convex polygons
in a MD of Po.

Vq

\\\\7

vi BASE EDGE vj

FIG. 2.1. Definitions. Timj merges left with any MD A of Pim with Ci,(D) Oil)ll)qt)m.

Let us define the state space by letting the states be of the form so where su has
the interpretation that subpolygon P0 has been decomposed minimally. A decision is
then based on a pair of states si,, and s,,j, i< m <j, and leads to the state so in the
next stage. The minimum cost of a policy that leads to so is equal to the size of MD
of Po. A MD of subpolygon Po is found by taking a MD of Pim and Pm for some
< m <j and merging T,, with Cm or C,, if possible.

An attempt to use this DP formulation will reveal that the state space is not valid.
There can be many MDs of a subpolygon P,, and it is not sufficient for a state to
contain information about only one of them. Figure 2.2 shows two MDs of Pm only
one of which merges with T,,.

not.

m

vj v
FIG. 2.2. The MD ofPi, shown on the left merges with Ti,j while the MD ofPim shown on the right does
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Since storing information about one MD of a subpolygon P0 is insufficient we
can try creating a state for each MD of a subpolygon. With this definition the problem
encountered due to lack of information has vanished and indeed the state space is
valid. We therefore have a correct DP formulation and the only question remaining
is the efficiency of the algorithm. Unfortunately, the state space we have defined is
very large. In fact, as illustrated in Fig. 2.3 there can be an exponential number of
ways of decomposing a simple polygon into convex polygons. Since we are seeking a
polynomial time algorithm we must try to reduce the size of the state space.

FIG. 2.3. There are 2n/3-4 MDs ofthe above polygon. Each notch has an independent choice oftwo interior
edges that will remove it.

As indicated previously we will use equivalence classes of states. To describe these
we make a few more definitions which are illustrated in Fig. 2.1. In a subpolygon P0
the edge preceding vivj in the clockwise representation of Co(D) is the right edge of
MD D. The left edge of a MD is defined analogously. The left angle of a MD D is
the angle between the left edge and the base edge of D. The right angle of a MD is
defined analogously.

The reason why we needed to keep more than one MD of a subpolygon Pi,, was
that the MDs varied in their ability to merge with triangles T,,j. But it is only the left
and right edges of a MD that affect its ability to merge. This suggests that all MDs
with a given pair of left and right edges are equivalent under this DP formulation and
this equivalence is established in the following lemma.

LEMMA 2.1. Any members of the class of MDs of a subpolygon Pi,,, with a given
pair of left and right edges are equivalent in terms of constructing a MD of a valid
subpolygon Po(J > m) by merging with

Proof Let A be a MD of Pi,,. T,, can merge left with A if C,(A)U T,, is a
convex polygon. Since C,, (A) and T,,j are convex C,, (A) U Tmj is convex if and only
if the angles between vv and the left edge of A and between v,,v and the right edge
of A are less than 180 degrees. Therefore two MDs of P,, with the same left edge and
right edge are equivalent in terms of constructing a MD ofa valid subpolygon Po(J > m).

We can therefore reduce the size ofthe state space by including only one representa-
tive from each class of MDs of a subpolygon with a given pair of left and right edges.
We have retained enough information to perform merges and the state space remains
valid. Since there are only O(n2) possible pairs of left and right edges of MDs in a
subpolygon there are now only a polynomial number of states in the state space and
our DP algorithm runs in polynomial time. However we are not yet finished eliminating
states and improving the efficiency of the algorithm.

Even in the reduced state space there are states that will not be used in constructing
the optimal solution. The following lemma helps identify some of them.

LEMMA 2.2. No MD D of P contains an interior edge which connects two vertices

of P which are not notches.
Proof Straightforward.
This means we need not consider states associated with subpolygons P0 where

neither v nor v is a notch. A subpolygon is called a valid subpolygon when either 1
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or j n or at least one of vi and vj is a notch. In the rest of this section and in 3
when we say subpolygon we will mean valid subpolygon. We can remove those states
that are not associated with valid subpolygons. The following lemma will enable us
to identify classes of states that can be replaced in a valid state space by one representa-
tive state.

LEMMA 2.3. If MD A of Pi,,, has left angle 1)1 and right angle 01 and MD B of
Pi,,, has left angle 2 and right angle 02 where Ckl <= t#2 and O1 <= 02, then MD B merging
with Ti,j where Pi is a valid subpolygon (j > m), implies that A also merges with

Proof. Straightforward.
If two states are associated with the MDs A and B as in Lemma 2.3 the state

associated with MD B need not be kept in the state space. To find the MDs that can
be similarly eliminated we first define an equivalence relation R over the set of MDs
of a subpolygon P0 so that all those MDs of P0 with right angle 0 will belong to the
equivalence class R(0) of R. A MD in R(0) with the minimum left angle is called a

left minimum of R(0). Using Lemma 2.3 we now seek the smallest set of MDs of Pe
that will be sufficient to represent the right angle equivalence classes. To begin with,
Lemma 2.3 implies that any MD that is not a left minimum of one of the classes R(0)
is not essential. Normally a class of MDs, R(0), will be represented by its left minimum.
However if two left minimum MDs A and B have angles as in Lemma 2.3 then MD
A is used to represent both R(01) and R(02). A set of MDs with only these essential
right angle class representatives is said to have the right representative (RR) property.

In the algorithm a set X with the RR property is stored in a binary search tree
so that a MD with a given right angle can be found in O(log (size (X))) time. The
definition of the RR property implies that a set X with the RR property sorted in
increasing order of right angle will also be sorted in decreasing order of left angle.
The left representative (LR) property is defined analogously.

By identifying equivalent classes of states and eliminating unnecessary states we
have substantially reduced the size of the state space. In the next section we will
describe the DP algorithm in more detail.

3. Convex decomposition algorithm. Of all the polygon decomposition problems,
the problem of decomposing a polygon into the minimum number of convex com-
ponents has received the most attention. Chazelle and Dobkin [4], [5], [6] were the
first to exhibit a polynomial time algorithm for a minimum polygonal decomposition
problem. Their O(n + N3) time algorithm decomposes a polygon into convex parts
and allows Steiner points.

Until recently, when Steiner points are disallowed, no polynomial time exact
solution was known to the convex decomposition problem thus motivating the develop-
ment of approximation algorithms. Feng and Pavlidis [9] describe an O(N3n) time
algorithm which does not generally yield a minimum decomposition. Schachter’s [25]
O(Nn) time decomposition algorithm, based on the Delaunay triangulation, also does
not generally yield a minimum decomposition. Recently, Greene [10] has developed
an O(n log n) time algorithm that finds a decomposition that is within 4 times of the
minimum decomposition. Note however that any convex decomposition that does not
contain unnecessary edges will be within 4 times of the minimum decomposition.

Recently, Greene 10] independently discovered an O(N2n2) time exact algorithm
for the convex decomposition problem. Our algorithm for that problem runs in
O(NEn log n) time.

In the previous section we defined the state space for a DP formulation of the
convex decomposition problem. In order to complete the algorithm description we
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make a few definitions. A reference vertex is a vertex of P which is either a notch or
vl or v,. Nonreference vertices are called convex vertices. A valid subpolygon Po will
be one of three types: type (a) if both vi and vj are reference vertices, type (b) if vi is
a reference vertex and vj is a convex vertex, or type (c) if v is a convex vertex and v
is a reference vertex. A base triangle T,, of P is a triangle viv,,v (i < m <j) where
each of viv,, and vjv,, is either a base edge of a valid subpolygon or an original side
of P.

Preprocessing. Some ofthe work is best done before the main DP procedure begins.
1. Determine which vertices are notches in O(n) time.
2. For each reference vertex x of P determine the set of vertices of P visible from

x. For convex vertices store the set of visible reference vertices. Denote such a visibility
list sorted by angle about vertex x as V(x). All of this can be done in O(nN) time
using the visibility polygon algorithm of E1-Gindy and Avis [7].

3. Since each visibility pair viv(i <j) determined in step 2 is the base edge of a
valid subpolygon these valid subpolygons can be sorted in ascending order by the size
measure j- in time O(nN log (nN)).

4. For each valid subpolygon Po form the set of base triangles. In the O(N2)
subpolygons of type (a) this can be done in O(n) time by computing T=
{( V U {v+l}) V IA {v_})}. In the O(nN) subpolygons of type (b) or (c) this can be
done in O(N log n) time by computing T using a binary search.

DP procedure.
1. Consider each valid subpolygon Po in the order computed in step 3 of the

preprocessing.
2. Compute a set XRo of MDs of Po with the RR property (and similarly a set

XL of MDs of Po with the LR property) as follows.
Let M denote the size of a MD of Po. Initially set M to n. If j-i= 2, XRo will

contain a single triangle.
Otherwise, for each base triangle T, of Po:
(a) select the MD A from the set XL,, of Pi,, with the minimum left angle such

that T,,j can merge left with C,,(A). This is done by binary search. If no such A exists
select any MD A of P,,. Take the decomposition A selected together with T,, (merged
if possible) and a MD B of P,, to form a decomposition D of Po with right angle
(VVm, VV). If ID[ > M discard D as it is not a member of XRo. If [D[ M then insert
D into XRj. as the member with right angle (vv,,, vv). If [D[ < M then empty XRo
and insert D as the only member of XRi and reset M to ]D].

(b) select the MD B’ from the set XR,, with the minimum right angle that will
merge with T,,j. Take decomposition B’ merged with T, together with a MD A’ of
Pi,, to form a decomposition D’ of Po. As in part (a) compare [D’[ to M to see if D’
belongs in XR.

At this point XRo will consist of a set of MDs with unique right angles. However
XR may still not have the RR property. To remove MDs from XRo that are inconsistent
with the RR property begin by sorting XRj by right angle. Set th to the left angle of
the MD in XRo with the smallest right angle. Now scan XRo in order of increasing
right angle. If the MD D under scan has left angle b’>_-4 delete D from XRj. If D
has left angle 4’ smaller than 4 then set 4 to 4’. When the scan is complete XR has
the RR property. See Fig. 3.1.

3. The subpolygon P, P will be the last one considered. Select one member of
XL, or XR, as a MD of P.

Proof of correctness. We need to show that we correctly compute a set of MDs,
with the RR(LR) property, for each subpolygon Po. We use a proof based on an
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FIG. 3.1. A set of MDs with the RR property results from the scan that removes the crossed MDs.

induction on the size, j-i, of the subpolygons. If j-i 2, Po is a triangle and there
is only one MD. Otherwise, as an example, let us consider how we. compute a MD of
a subpolygon P0 of type (a) with right side vjvi. Clearly we need only consider single
merges to the left if we use base triangle Trj. If any MD, say A, of Pit merges with
Trj then clearly A merged with Trj taken together with a MD of P will form a MD
of P0. If no MD of Pir merges with T then we may take any MD of Pi together with

T and a MD of P,,j to form a MD of P0. We are similarly able to compute any MD
that we require by single merging at an appropriate base triangle using MDs of smaller
subpolygons that have already been calculated. The following lemma shows how an
arbitrary MS, as a member of a set with the RR property, can be constructed.

LEMMA 3.1. Let D be a MD in the set XRo of MDs of Po with the RR property.
Furthermore when a base triangle T,,, exists let XL,. be a set of MDs of P, with the
LR property and XRm be a set of MDs of P,, with RR property. Then there exists an
O(log n) time algorithm which will construct a MD D’ of Po equivalent to D using only
VVl (the left side of D), vvr (the right side of D) and XLi, and XR,,j where T,. is a
base triangle of Po with either v,, vt or v,, v.

Proof.
Case 1. If P0 is oftype (a) or (b) then T,. exists so that v,, v. The decomposition

D’ required can be found by computing decomposition D’ in parts (i) and (ii) and
selecting the smaller.

(i) If Co(D is a triangle then the MD D’ formed by taking Tm together with
any MD A of Pi,, and any MD B of P, will have the same left and right edges as
decomposition D and will be, by Lemma 2.1, equivalent to D.

(ii) If Co(D is not a triangle let polygon Q be Pi,. kJ T. Clearly D restricted
to Q is a MD of Q. Let A be D restricted to P,.. If A is not a MD of P, then any
MD of P,., A", would have the property that Ci(A")LJ Tim is not a convex polygon.
But this would imply that there exists a MD of P0 with the same right angle as D but
with a smaller left angle. This is a contradiction to XRo having the RR property. Since
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A is a MD of Pi,, when we select the MD A’ from XLi,, in O(log n) time with the
smallest left angle that will merge with T,,;, A’ will have the same left edge as A by
Lemma 2.1. Taking T,,; merged with A’ together with a MD B of P,,; will yield a MD
D’ of Po equivalent to D.

Case 2. If P0 is of type (c) then T,,; exists so that v,, Vl. Again the decomposition
D’ required is found by computing decomposition D’ in parts (i) and (ii) and selecting
the smaller.

(i) If Co(D) is a triangle the MD D’ can be found as in Case 1.
(ii) If Co(D) is not a triangle in O(log n) time select a MD B’ from XRo with

the minimum right angle that will merge with T,,;. The MD D’ of Po formed by taking
a MD A of Pi,, together with T,,; merged with the MD B’ of P,,; will have the same
left angle as D and at least as small a right angle as D. Since D is in XRi; with the
RR property the right edge of D’ will in fact equal the right edge of D and again by
Lemma 2.2 D’ will be equivalent to D.

The next lemma shows how the required set of MDs for each subpolygon can be
found.

LEMMA 3.2. A set XRo (likewise XLo) of MDs of Po with the RR (likewise LR)
property can be correctly constructed in O(n log n) time if Po is of type (a) and in

O(N log n) time if Po is of type (b) or (c). The procedure uses only a set XLi,, of MDs
of Pi,, with the LR property and a set XR,,; of MDs of P,,; with the RR property, where
m is such that T,,; is a base triangle of

Proof Each member decomposition D of XRo can be found using a different
base triangle T,,; as in Lemma 3.1. If Po is of type (a) then O(log n) work is performed
at each of the O(n) base triangles. If Po is of type (b) or (c) then O(log n) work is
performed at each of the O(N) base triangles. With this method some MDs will be
placed into XRo that are not consistent with the RR property. If we treat XRo as a
set of two-dimensional vectors with first component (180mright angle) and second
component (180mleft angle) then the members of XRo that are consistent with the
RR property will be the maximal elements of XRo with respect to the natural partial
order. The scan procedure described in the algorithm implements the algorithm of
Kung, Luccio and Preparata [16] for finding the maxima of a set of vectors. This

requires O(n log n) time if P is of type (a) and O(N log N) time if P0 is of type (b)
or (c).

Using the above lemmas we can prove the following.
THEOREM 3.3. The algorithm finds a MD of a simple polygon P in O(NZn log n)

time in the worst case.

Proof The preprocessing requires O(N2n log n) time. There are O(N2) subpoly-
gons of type (a). There are O(nN) subpolygons of type (b) or (c). To calculate a set
XLo of MDs of Po with the LR property and a set XRo of MDs of P0 with the RR
property, as in Lemma 3.2, O(n log n) time must be spent at subpolygons of type (a)
and O(N log n) time must be spent at subpolygons of type (b) or (c). Altogether
O(NZn log n) time is required in the worst case to compute XRln and XL1.. Since

P1. P any MD in XR1. or XLI. is a MD of P.

4. Star-shaped decompositions. Recall that a star-shaped polygon is a simple
polygon in which the entire polygon is visible from at least one (possibly interior)
fixed point of the polygon. Avis and Toussaint [1] give an O(n log n) algorithm that
finds a decomposition into at most n/3 components and does not use Steiner points.
However their algorithm does not generally yield a minimum decomposition. Before
we can formulate a DP algorithm for the minimization problem we need a few
definitions.
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The set of points from which the entire polygon P is visible is called the kernel
of P. For star-shaped decompositions we need to define two types of merging. Let
Sire(A) be the base star-shaped polygon of the minimum star-shaped decomposition
A of Pim. A triangle Tmj can single-merge with MD A of Pim if Sim(A) LJ T,,j is a
star-shaped polygon. A triangle T,0 can double-merge with a MD A of Pm and a MD
B of P,, if S,,(A)LJ T,,LJ S,o(B) is a star-shaped polygon.

To formulate a DP algorithm we define the state space by letting the states sij
have the interpretation that subpolygon P0 has been decomposed into the minimum
number of star-shaped components. As in the convex case, decisions are based on a
pair of states s,, and s,,, < m <j, and lead to the state si in the next stage. A MD
of Po is found by taking a MD of Pi. and P. for some m such that i< m <j and
determining whether T, will double-merge or single-merge with S, or Smj. The size
of a MD of P0 can be one less, equal to, or one more than the sum of the sizes of a
MD of Pm and P,, for some m depending on which merges can take place. After our
experience with convex decompositions we are not surprised that the state space in
this DP formulation is not valid. As before it is not sufficient for the states to contain
information about only one MD of a subpolygon P0. Figure 4.1 shows two star-shaped
MDs of P, only one of which single-merges with T,.

not.

FIG. 4.1. The MD of Pi,. shown of the left merges with Ti,.j while the MD of Pi,, shown on the right does

The surprise comes when we discover that creating a state for each MD of a
subpolygon is insufficient for a valid state space. Figure 4.2 shows a subpolygon for
which the MD, which consists of a single star-shaped polygon, cannot be found by
this DP formulation since the smaller subpolygons defined by a base triangle, as in
Fig. 4.2b, are not star-shaped. Even though all MDs of smaller subpolygons are kept
and all double and single merges are found, the MD of P is not found. As illustrated
in Fig. 4.3 there can be an exponential number of ways of decomposing a simple

(a) (b)

v vj v vj
FIG. 4.2

FIG. 4.3. There are 2n/6-4 MDs of the above polygon.
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polygon into star-shaped polygons. If we are to develop a polynomial time algorithm
for this problem we certainly cannot expand the state space further.

We will now define a set KER of potential kernel points. We begin by identifying
segments that could contain a side of the boundary of the kernel of the base star-shaped
polygon of a MD of a subpolygon. If va and Vb are vertices of polygon P then there
may exist a segment of the line through va and Vb, that lies entirely within P, that
contains Vb and exactly one other boundary point vc of P so that Vb lies between va
and vc. We denote such a segment lab when it exists. That is, lab is the segment drawn
inside P beginning at Vb, in the direction away from va, until the boundary of P is
reached. We define L-{lablVb is a notch and va is a vertex of P visible from Vb}. The
segments in L may intersect with each other or with sides of P or both. Let KER
denote the set of all such intersections together with the vertices of P as in Fig. 4.4.
With these definitions we can present the following lemma which allows us to achieve
a valid polynomial sized state space.

FG. 4.4

LEMMA 4.1. The kernel ofany star-shaped base polygon ofa MD D ofa subpolygon

Pi contains a point in the set KER. The set KER contains at most O(n2N2) points.

Proof. The kernel of a base star-shaped polygon Sij(D) of a MD D of P0 is the
intersection of the halfplanes defined by the sides of Sij(D). The sides of the kernel
of S(D) will either be contained in sides of S(D) or in segments extending from
these sides (i.e. segments in the set L). If Si(D) is convex then vertex v, a point in
KER, is contained in the kernel of S(D). Otherwise at least one side of the kernel
of Sij(D) is contained in a segment lab in the set L. If vertex Vb, the endpoint of lab
that is a vertex of P, lies in the kernel of S(D) we are done as Vb is a point in KER.
If vertex Vb is not in the kernel of S(D) then a side of the kernel adjacent to the side
contained in lab must also be contained in a segment in L. The point of intersection
between these segments will be a vertex of the boundary of the kernel of S(D) and
also a point in KER.

The set L contains O(nN) segments. There will be at most O(n2N2) intersections
amongst segments in L and O(nN) intersections between segments in L and the sides
of P. Therefore KER will contain at most O(nN) points.

To achieve a valid state space we introduce pseudo star-shaped polygons. A pseudo
star-shaped subpolygon PS of P based along vivj has the property that there exists a
point x in P and not in PSi so that every point of PS can be seen from x through

vv. We will allow star-shaped MDs of subpolygons P0 to contain pseudo star-shaped
polygons based along viva. Figure 4.2b shows pseudo star-shaped polygons that will
double merge to form the correct MD of the polygon. A MD of a subpolygon Po can
be found using our DP formulation if all pseudo star-shaped MDs of P, and P,,j,
< m <j, are computed.

Lemma 4.1 allows us to compute only O(n2N2) star and pseudo star-shaped
decompositions for each subpolygon. For each subpolygon Po and each point x in
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KER we find the smallest star-shaped or pseudo star-shaped decomposition D that
either contains x as a kernel vertex of the base polygon of D or uses x to see the
pseudo star-shaped base polygon of D. We call such a decomposition, (MDx), the
MD of Po viewed from x. By associating a state with these MDs we have achieved a
valid polynomial sized state space. We have again reduced the size of a state space
by finding a small number of representative states.

Figure 4.5 shows a polygon whose only star-shaped MD contains an interior edge
which connects two vertices of P which are not notches. Therefore, unlike the convex
case, we must consider all subpolygons.

FIG. 4.5

Armed with the state space definition we can now describe the star-shaped
decomposition algorithm.

Preprocessing.
1. Form the set KER of potential kernel vertices.
2. For each point x KER store a list of the vertices of P that are visible from x.
3. For each vertex v of P determine the set of vertices of P that are visible from

v and store them in a sorted list.
4. Since each visibility pair vivj (i<j) determined in step 3 is the base edge of a

subpolygon these subpolygons can be sorted by the size measure j-i in time
O(n- log n).

5. For each subpolygon Pij of P form the set of base triangles with base edge viva.
DP procedure.
1. Consider each subpolygon Po in the order computed in step 4 of the prepro-

cessing.
2. Compute the set of MDs of Po as viewed from each member of KER.
Ifj- 2, P will consist of a single triangle. Points in KER that lie in the triangle

have real MDs of P. Points in KER that do not lie in the triangle but are visible from
vi, v+ and v have pseudo MDs of Po.

Otherwise for each base triangle T/,, of Pi, for each point x in KER:
(a) First check for double merges. If both MD, of P,, and MDx of P,,j exist then

they are merged to form a candidate for MDx of P.
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(b) If a double-merge for x is not possible at T,o, we check for single-merges.
The MD, of Pi,, single merges with T,o if x is visible from vs. To form this MD, of
P0 we take the MDx of Pi,, merged with T,o together with the smallest real MD of
P,-s. Single merges with MDs of P-o are analogous.

(c) Finally, if we can perform no merges a candidate for MDx of Po exists if x
lies in or x is visible from v, v and v through edge vv. This candidate is formed
by taking the smallest real MD of Pim together with and the smallest real MD of

As the various candidates for the MDx of P are considered only the smallest is
kept. Also the smallest real MD of Po will be needed when no merge past vv is
performed.

3. The subpolygon P1, P will be the last one considered. The smallest real MD
of P, is kept as a minimum star-shaped decomposition of P.

THEOREM 4.2. e above algorithm correctly computes the minimum star-shaped
decomposition of a simple polygon.

Proo Lemma 4.1 implies that it is sucient to show that we compute MD of

Po correctly, for all x KER, for all subpolygons Po. We shall proceed by induction
on the size (j-i) of a subpolygon.

Ifj- 2, Po will consist of a single triangle and clearly MD of Po is computed
correctly if it exists. Also P0 is its own smallest real MD.

As an inductive assumption let us assume that MD of Po, for all x KER,
including the smallest real MD, have been computed correctly for all subpolygons Po
with j-i< q. Let us consider the computation of MDx for a subpolygon Po with
j-i= q. Clearly there exists at least one base triangle, Z, that is contained in the
base star or pseudo star-shaped polygon Sij(MDx). If Sij(MDx) Timj then, by the
inductive assumption, we will have correctly computed MD by performing no merges
as in pa (c) of step 2 of the algorithm. If either the left side of So(MDx)= vv or
the right side of Sj(MD)= vvj then, by the inductive assumption, we will have
correctly computed MDx by single merging as in pa (b) of step 2 of the algorithm.
If neither v,v or vvj lie in the boundary of So(MDx) then, again by the inductive
assumption, we will have correctly computed MD by double-merging as in pa (a)
of step 2 of the algorithm.

We can similarly compute all MD, for all x KER, for any subpolygon Powith
j-1 q. That one of the MD of Po is the smallest real MD of Po is evident from
Lemma 4.1. We have therefore shown by induction that all MDx, for all x KER, for
all subpolygons Po will be computed correctly.

Analysis. Step 1 of the preprocessing requires O(nN2) time. Step 5 of the
preprocessing requires O(n3) time. In the DP procedure, given a viewing veex x a
double merge can be found in O(log n) time at a base triangle if the MDs of a
subpolygon are stored soed by viewing veex. A single merge between Tj and MD
of P, can be detected in O(log n) time by searching for vj in V(x). Since there are
O(n2N) points in KER, O(nN2 log n) time is spent at each base triangle. Since there
are O(n3) base triangles, altogether the algorithm may require O(nSN log n) time to
find the minimum star-shaped decomposition.

5. Minimum edge length decompositions. In some applications a decomposition
that minimizes the total length of the internal edges used to form the decomposition
is useful. Figure 5.1 shows that such a decomposition can be quite different from a
decomposition that minimizes the number of components. Lingas et al. [19] have
developed an O(r/4) time algorithm which decomposes a rectilinear polygon into
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rectangles while minimizing the total internal edge length. Using our DP approach we
are able to develop polynomial time algorithms to decompose a simple polygon into
each of the component types while minimizing the amount of "ink" necessary.

CONVEX DECOMPOSITIONS

MINIMUM NUMBER MINIMUM INK

FIG. 5.1. Convex decompositions.

5.1. Convex decompositions. Since the convex minimum "ink" decomposition
seems to have the widest range of applications we will treat it first. Most of the terms
we defined when dealing with the convex minimum number decomposition problem
will also be useful here. Refer to Fig. 2.1. We define the length of a convex decomposition
D to be the sum of the lengths of the internal line segments forming D. A free MD
of a subpolygon Pu is a convex decomposition D of Pu such that if D’ is any other
convex decomposition of Po then length (D’)>= length (D).

Independently Greene 11] has noticed that his algorithm for the convex minimum
number problem [10] can be adapted to yield an O(N2n2) time algorithm for the
convex minimum edge length problem. By developing our algorithm for that problem
with our general DP approach we are able to easily adapt the algorithm for convex
components to other simple types of component polygons. To begin we define the
state space by letting the states be of the form sij where su has the interpretation that
subpolygon Po has been decomposed minimally. That is, we associate a free MD of

Po with su. Decisions are as before and the cost of a policy that leads to su is equal
to the length of a MD of Po. As we expect this DP formulation is not valid. Figure
5.2 shows that the free MD of Pim cannot merge to form the free MD of Pu.

Vm

FIG. 5.2
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Here we encounter a major difference between the minimum "ink" and the
minimum number problems. In the minimum number case if edge vivm was not part
of a MD of P0 then one MD of Pim would merge with Tij. Figure 5.2 shows that this
is not the case with minimum "ink" decompositions. We would therefore gain nothing
if we create a state for each free MD of a subpolygon.

Instead we introduce fixed MDs. A fixed MD of a subpolygon P0 with a given
left edge and right edge is the convex decomposition D of P0 such that if D’ is any
other convex decomposition of P0 with the same left edge and right edge as D then
length (D’)>_-length (D). The usefulness of fixed MDs is established in the following
lemma.

LEMMA 5.1.1. Any members of the class of convex decompositions of a subpolygon
Pi with a given pair of left and right edges ,are equivalent in terms of constructing a
decomposition of subpolygon Po (j > m) by merging with Tmj.

Proof Analogous to that of Lemma 2.1.
Since we are seeking a minimum edge length decomposition it is clear that a state

space that includes a state for each fixed MD of a subpolygon is valid. As there are
only O(n2) possible pairs of left and right edges of decompositions in a subpolygon
there are only a polynomial number of states in the state space and the resulting DP
algorithm runs in polynomial time.

Even in this polynomial state space there are states that will not be used in
constructing the optimal solution. Lemma 2.2, which states that no MD of P contains
an interior edge which connects two vertices of P which are not notches, remains valid
for minimum edge length decompositions. We therefore need only consider states that
are associated with a fixed MD of a valid subpolygon.

The following definitions allow us to increase the efficiency of the algorithm by
placing an ordering on the states. A set X of fixed MDs of a subpolygon Po has the

left increasing right fixed (LIRF) property for a given right angle b if it contains all
fixed MDs of Po with the given right angle b subject to the following constraint. If a
fixed MD A of Po with right angle b has left angle 0 and a fixed MD B of Po with
right angle b has left angle 02 so that 0 >= 02 then A cannot be a member of X unless
length (A) is less than length (B). If X is sorted in increasing order of left angle then
it is also sorted in decreasing order of length. The right increasing left fixed (RILF)
property is defined analogously.

We are now ready to describe the DP algorithm in more detail.
Preprocessing. We use the same four preprocessing steps that we used in the

algorithm for computing the decomposition of a simple polygon into the minimum
number of convex components.

DP procedure.
1. Consider each valid subpolygon Po in the order computed in the preprocessing.
2. Compute a set of fixed MDs of Po with the LIRF property for each valid right

edge of a decomposition of Po and compute a set of fixed MDs of Po with the RILF
property for each possible left edge of a decomposition of Po.

These computations are done as follows.
If j-i= 2, the only MD is a triangle.

Otherwise for each base triangle Tm.
(a) Compute a set X of the fixed MDs of Po with left edge vv,,, with the RILF

property. First all fixed MDs of Po with left edge viv, are found as follows.
Take a free MD of P,, together with
(i) T, and a free MD of P,, and
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(ii) T,,j merged with the smallest MD of P,,j that will merge for each possible
valid right edge of a MD of P,,. The smallest MD in Pi with a given right edge is
found using binary search in a set with the LIRF property for the given right edge.

Now that all fixed MDs of P0 with left edge ViVm have been placed in a set X we
remove some MDs so that X will have the RILF property. We have the MDs in X
sorted in increasing order of right angle. Set a variable L to the length of the MD in
X with the smallest right angle. X is scanned in increasing order of right angle. If the
MD D under scan has length greater than or equal to L we delete D from X. Otherwise
we set L to the length of D. We continue the scan until all MDs in X have been examined.

(b) A set of fixed MDs of P0 with right edge v,.vj with the LIRF property is found
similarly.

At this point there may be valid left edges viv,, in subpolygons of type (b) for
which no set of MDs has been found and similarly valid right edges in subpolygons
of type (c) for which no set of MDs have been found. This will happen when v#,,

and v,,v are not both valid edges so that valid base triangle T,, does not exist. Figure
5.3 illustrates the situation.

vj-I

.v vj

FIG. 5.3. The only base triangle of Pij is Tij_)j.

Consider a valid left edge VVm in a subpolygon of type (b) such that T.,j is not
a valid base triangle of Po. No set of MDs with left edge vv., has been explicitly
collected. However MDs with left edge VVm have been encountered while collecting
MDs with various right edges. Each time a MD with the valid left edge viv.,, such that
T.,j is not a valid base triangle of Pj, is encountered we should set it aside. When all
valid base triangles have been processed we will have several sets ofMDs corresponding
to these stray left edges. These sets can be given the RILF property using the scanning
procedure described above. Similarly sets of MDs with the LIRF property are found
for valid right edges VmV in subpolygons of type (c) for which Ti,.j is not a valid base
triangle. In this way all required MDs of a subpolygon are found.

The free MD of a subpolygon Po is the smallest of all the fixed MDs found.
3. The subpolygon P1. P will be the last one considered. A free MD of PI,. is

the desired MD of P.
Proof of correctness.
LEMMA 5.1.2. Let D be a fixed MD ofa subpolygon Pi with left edge vivt and right

edge VrV. Then there exists an O(log n) time algorithm that forms a fixed MD D’ of Po
with the same left and right edges as D. The algorithm uses only free MDs of P,, Po, Pr
and Po and a set offixed MDs ofP with the RILF property with left edge viv and a

set offixed MDs of Po with the LIRF property with right edge vv.
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Proof Assume Po is of type (a) or (b). The proof is analogous if Po is of type
(c). When P0 is of type (a) or (b) then Ti,,j exists so that Vm V, The decomposition
D’ required can be found by computing decomposition D’ in part or ii.

(i) If Vl vr then Co(D is a triangle (i.e. T,,j). Clearly the decomposition D’
formed by taking a free MD of Pil and a free MD of Pr will have the same length,
left edge and right edge as D.

(ii) If Vl vr then C0 is not a triangle and we must consider MDs of Pim that
merge with T,,. Let A’ be the smallest fixed MD of Pim with left edge VVl that will
merge with T,. A’ is found in O(log n) time by binary search in the set of MDs of
P,, with the RILF property with left edge vvl. If A is the restriction of D to Pi,, t_J
then clearly the length of A’ is at least as small as the length of A. The desired MD
D’ is formed by taking A’ merged with T,, together with a free MD of P,,.

The next lemma shows how the required sets of MDs for each subpolygon can
be found.

LEMMA 5.1.3. There is an algorithm that runs in O(n2 log n) time for subpolygons
of type (a) and in O(nN log n) time for subpolygons of types (b) or (c) that correctly
finds a set with the LIRF property for all valid right edges in Po and a set with the RILF
property for all valid left edges of Pi. The procedure uses only a free MD of Pi,, and
and a set with the LIRF property for all valid right edges in P,, and a set with the RILF
property for all valid left edges of Pi,,, where T,,,j is a base triangle of

Proof Each fixed MD of Po can be found in O(log n) time using the algorithm
of Lemma 5.1.2. There are O(n2) fixed MDs in a subpolygon of type (a) and O(nN)
fixed MDs in a subpolygon of type (b) or (c). These MDs are organized into sets with
the RILF property for valid left edges of Po and into sets with the LIRF property for
valid right edges of Po. This is done by sorting the MDs in each set and performing
and scanning procedure described in the algorithm. A free MD of Po is found by
keeping track of the smallest fixed MD of Po.

Using the above lemmas we can prove the following.
THEOREM 5.1.4. The algorithm finds a minimum edge length decomposition of a

simple polygon in O(N2n2 log n) time in the worst case.
Proof The preprocessing requires O(N2n log n) time. There are O(N2) subpoly-

gons of type (a) at which O(n2 log n) time is spent computing fixed MDs as in Lemma
5.1.3. There are O(Nn) subpolygons of type (b) or (c) at which O(Nn log n) time is
spent computing fixed MDs as in Lemma 5.1.3. Altogether O(Nn21og n) time is
required to compute the fixed and free MDs of each subpolygon. Since Pin P a free
MD of Pan is the desired minimum edge length decomposition of P.

5.2. Star-shaped decompositions. For star-shaped decompositions we define fixed
MDs as follows. A fixed MD of a subpolygon P0 with a given kernel point x KER
is the star-shaped (or pseudo star-shaped) decomposition D of P0 such that if D’ is
any other star-shaped (or pseudo star-shaped) decomposition of P0 with the same
kernel point x then length (D’)>-length (D).

Lemma 4.1 allows us to compute only O(N2n) fixed star and pseudo star-shaped
minimum decompositions of each subpolygon. For each subpolygon we associate one
state with each point in KER that can either be a kernel vertex of a base polygon of
a fixed MD of P0 or a vertex than can see a fixed pseudo star-shaped base polygon
through viva. The resulting state space is valid and of polynomial size.

Figure 4.5 shows a polygon whose star-shaped minimum edge length decomposi-
tion contains an interior edge which connects two vertices which are not notches.
Therefore, we again must consider all subpolygons as possible components.
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The details and analysis of the star-shaped minimum edge length decomposition
algorithm are very similar to those of the star-shaped minimum number decomposition
algorithm. Altogether O(N2n log n) time may be required to find a star-shaped
minimum edge length decomposition.

6. Other lroblems. Recall that a spiral polygon is a simple polygon whose boun-
dary chain contains at most one concave subchain. That is, a spiral polygon has at
most one set of adjacent notches. Feng and Pavlidis [9] give an algorithm for decompos-
ing a simple polygon into spiral polygons. Their algorithm does not introduce Steiner
points and does not generally yield a minimum decomposition. Our DP formulation
for the spiral decomposition problem is similar to that for the convex decomposition
problem. In the spiral case, base angles which are notches are allowed. Some double
merges may then be necessary as illustrated in Fig. 6.1. Also some of the convex
equivalence classes must be subdivided. A class of MDs with a given pair of left and
right angles are not all equivalent in their ability to merge. A MD with a convex base
polygon can spiral merge with some base triangles where a MD with a nonconvex
base polygon could not. These changes do not significantly affect the DP approach
and we are able to develop polynomial time algorithms for both the minimum number
and minimum "ink" spiral decomposition problems [14].

V m

FIG. 6.1

Recall that a monotone polygon contains two extreme vertices in a preferred
direction such that they are connected by two polygonal chains monotonic in the
preferred direction. Lee and Preparata 17] give an O(n log n) algorithm for decompos-
ing a simple polygon into monotone polygons without using Steiner points. Their
algorithm does not generally yield a minimum decomposition. A valid DP formulation
for the monotone decomposition problem could have a state for all monotone MDs
of a subpolygon. This state space can be reduced by recognizing that MDs having
base polygons monotone with respect to the same directions are equivalent. A convex
polygon is monotone with respect to all directions and it is only sides which are
adjacent to notches in a polygon that can eliminate directions of monotonicity [24].
The sides of a subpolygon divide the set of all directions into a polynomial number
of classes of direction. If a subpolygon is monotone with respect to one direction in
a class it is monotone with respect to all directions within that class. Therefore the
state space can be further reduced by keeping only one representative MD for each
of the classes of direction. Since there are only a polynomial number of such classes
a polynomial DP algorithm results. This approach will work for both the minimum
number and the minimum "ink" decomposition problems.

The complexity of a convex decomposition problem may increase if we allow the
polygon to contain holes that must be avoided. Holes are nonoverlapping "island"
simple polygons inside the main polygon. Lingas [18] has shown that if Steiner points



816 J. MARK KEIL

are allowed the problem of decomposing a polygon with polygonal holes into the
minimum number of convex components is NP-hard. O’Rourke and Supowit [22] show
that if Steiner points are allowed and overlapping of components is allowed decompos-
ing a simple polygon with polygonal holes into the minimum number of convex,
star-shaped or spiral components is also NP-hard. These proofs can be adapted [14]
to prove that decomposing a polygon with polygonal holes into the minimum number
of each of convex, star-shaped or spiral components is NP-hard when Steiner points
are disallowed. It can be shown using a component design proof that decomposing a
polygon with polygonal holes into the minimum number of monotone components is
NP-hard and that decomposing a polygon with polygonal holes into convex components
using minimum ink is also NP-hard [14].

7. Further research. If the introduction of Steiner points is allowed, most of the
polygon decomposition problems remain open. The only result of this type in Chazelle
and Dobkin’s [4], [5], [6] polynomial time algorithm for the problem of decomposing
a simple polygon into the minimum number of convex components.

Acknowledgment. I would like to thank Derek Corneil for many useful discussions
on these problems.
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A LINEAR-TIME ALGORITHM FOR COMPUTING K-TERMINAL
RELIABILITY IN SERIES-PARALLEL NETWORKS*

A. SATYANARAYANA" AND R. KEVIN WOODt

Abstract. Let G (V, E) be a graph whose edges may fail with known probabilities and let K
_
V be

specified. The K-terminal reliability of G, denoted R(GK), is the probability that all vertices in K are
connected. Computing R(G:) is, in general, NP-hard. For some series-parallel graphs, R(Gn) can be
computed in polynomial time by repeated application of well-known reliability-preserving reductions.
However, for other series-parallel graphs, depending on the configuration of K, R(Gn) cannot be computed
in this way. Only exponential-time algorithms as used on general graphs were known for computing R(G<)
for these "irreducible" series-parallel graphs. We prove that R(Gn) is computable in polynomial time in
the irreducible case, too. A new set of reliability-preserving "polygon-to-chain" reductions of general
applicability is introduced which decreases the size of a graph, and conditions are given for a graph admitting
such reductions. Combining all types of reductions, an O(IEI) algorithm is presented for computing the
reliability of any series-parallel graph irrespective of the vertices in K.

Key words, algorithms, complexity, network reliability, series-parallel graphs, reliability-preserving
reductions

1. Introduction. Analysis of network reliability is of major importance in com-
puter, communication and power networks. Even the simplest models lead to computa-
tional problems which are NP-hard for general networks [5], although polynomial-time
algorithms do exist for certain network configurations such as "ladders" and "wheels"
and for some series-parallel structures such as the well-known "two-terminal" series-
parallel networks. In this paper, we show that a class of series-parallel networks, for
which only exponentially complex algorithms were previously known [7], [8], can be
analyzed in polynomial time. In doing this, we introduce a new set of reliability-
preserving graph reduction of general applicability and produce a linear-time algorithm
for computing the reliability of any graph with an underlying series-parallel structure.

The network model used in this paper is an undirected graph G (V, E) whose
edges may fail independently of each other, with known probabilities. The reliability
analysis problem is to determine the probability that a specified set of vertices K

___
V

remains connected, i.e., the K-terminal reliability of G. Computing K-terminal reliabil-
ity was first shown to be NP-hard by Rosenthal [12], and it follows from Valiant [17]
that the problem is CAP-complete even when G is planar. Two special cases of this
reliability problem are the most frequently encountered, the terminal-pair problem
where IKI- 2, and the all-terminal problem where K V. These problems are also
CAP-complete [11], in general, although their complexities are unknown when (3 is
planar.

In network reliability analysis, three reliability-preserving graph reductions are
well-known: the series reduction, the degree-2 reduction (an extension of the series
reduction for problems with IK[ > 2) and the parallel reduction. From the realiability
viewpoint, we classify series-parallel graphs into two types, those which are reducible
to a single edge using standard series, parallel and degree-2 reductions, and those
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$ Department of Operations Research, Naval Postgraduate School, Monterey, California 93943.
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which are not. The former type is "reducible" and the latter "irreducible." For example,
the series-parallel graph of Fig. l a is reducible if K {vl, v2}, but irreducible for
K ={vl, v6}. Thus, the reducibility of a series-parallel graph, for the purpose of
reliability evaluation, depends on the nature of the vertices included in K. A more
detailed exposition of this concept appears in 2.

(a)

(b) (c)

(d) (e)

FIG. 1. Reducible and irreducible series-parallel graphs. Note: Darkened vertices represent K-vertices.

The K-terminal reliability of a reducible series-parallel graph can be computed
in polynomial time. Several methods exist for the solution of the terminal-pair problem
for such a graph, i.e., for a two-terminal series-parallel network [9], [15], and for

IKI > 2, direct extensions of the methods can be used. However, it has been believed
that computing the reliability of irreducible series-parallel graphs is as hard as the
general problem. (The use of series-parallel reductions with multi-state edges [13] is
applicable to this problem although this has not been recognized. We do not follow
this tack because of the simplicity and generality obtained by maintaining binary-state
edges.) The purpose of this paper is threefold: (1) to introduce a new set of reliability-
preserving graphs reductions called "polygon-to-chain reductions," (2) to show that
by using these reductions, irreducible series-parallel graphs become reducible, and (3)
to give a linear-time algorithm for computing the reliability of any graph with a
series-parallel structure.

In a graph, a chain is an alternating sequence of vertices and edges, starting and
ending with vertices such that end vertices have degree greater than 2 and all internal
vertices have degree 2. Two chains with the same end vertices constitute a polygon.
In 3, we show that a polygon can be replaced by a chain and that this transformation
will yield a reliability-preserving reduction. We discuss the relationship between
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irreducible series-parallel graphs and polygons in 4. Using the polygon-to-chain
reductions in conjunction with the three simple reductions mentioned earlier, a poly-
nomial-time procedure is then outlined which will compute the reliability of any
series-parallel graph. This procedure is very simple but not of linear-time complexity,
so in 5 we develop algorithm which is shown to operate in O(IEI) time. This algorithm
will compute the K-terminal reliability of any graph having an underlying series-parallel
structure. Finally, in 6, we briefly discuss an extension to the algorithm to reduce a
nonseries-parallel graph as far as possible so that the algorithm could be used as a
subroutine in a reliability analysis program for general networks.

2. Preliminaries. Consider a graph G (V, E) in which all vertices are perfectly
reliable but any edge ei may fail with probability qi or work with probability p 1 q.
All edge failures are assumed to occur independently of each other. Let K be a specified
subset of V with KI >_-2. When certain vertices of G are specified to be in K, we
denote the graph G together with the set K by Gr. We will refer to the vertices of G
belonging to K as the K-vertices of Gk. The K-terminal reliability of G, denoted by
R G/ ), is the probability that the K-vertices in GK are connected. K-terminal reliability
is a generalization of the common reliability measures, all-terminal reliability and
terminal-pair reliability where K V and IK] 2, respectively.

Reliability of a separable graph. A cutvertex of a graph is a vertex whose removal
disconnects the graph. A nonseparable graph is a connected graph with no cutvertices.
A block of a graph is a maximal nonseparable subgraph.

Let G (V, E) be a separable graph and v V be any cutvertex in G. G can be
partitioned into two connected subgraphs G)= (V, E) and G2)= (V, E2) such that
V t3 V V, V 0 Vz v, E U E2 E and E f’) E2 . Also, E and E_ . Denote
K K f’) V1 and K2 K f) V. If one of the K is null, say K , then G is irrelevant
and R(G/) R(:)a Otherwise, assuming K and K , it is well known thatK2
R(G:) R( "-:(),-,KltAv)R(G(2)K2tAv). (R(G:)=- 1 if [K] 1. Therefore, if K, {v} then
R(r-.(i),uo)-= 1 and the above statement is still true.) Thus the reliability of a separable
graph can be computed by evaluating the reliabilities of its blocks separately. For this
reason, we henceforth consider only nonseparable graphs.

Simple reductions. In order to reduce the size of graph Gc, i.e. reduce
and therefore reduce the complexity of computing R(G:), reliability-preserving reduc-
tions are often applied: Certain edges and/or vertices in G are replaced to obtain G’;
new edge reliabilities are defined; a new set K’ is defined; and a multiplicative factor
1] is defined; all such that R( G: OR(G,). The following three reliability-preserving
reductions are well known and are called simple reductions.

A parallel reduction replaces a pair of edges e, (u, v) and e (u, v) with a single
edge e (u, v) and defines p 1- q,q, K’= K, and 1] 1.

Suppose e (u, v) and e (v, w) such that u w, deg (v) 2, and v K. A series
reduction replaces e and e with a single edge e (u, w), and defines p pp, K’= K
and f- 1.

Suppose e, (u, v) and e (v, w) such that u w, deg (v)= 2, and {u, v, w}c_ K.
A degree-2 reduction replaces e, and eb with a single edge e (u, w) and defines
p p,p/(1 q,q), K’ K v, and f 1 qq.

Series-parallel graphs. The following definition should not be confused with the
definition of a "two-terminal" series parallel network in which two vertices must remain
fixed. No special vertices are distinguished here. In a graph, edges with the same end
vertices are parallel edges. Two nonparallel edges are adjacent if they are incident on
a common vertex. Two adjacent edges are series edges if their common vertex is of
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degree 2. Replacing a pair of series (parallel) edges by a single edge is called a series
(parallel) replacement. A series-parallel graph is a graph that can be reduced to a tree
by successive series and parallel replacements. Clearly, if a series-parallel graph is
nonseparable, then the resulting tree, after making all series and parallel replacements,
contains exactly one edge.

We wish to clarify the subtle difference between the term "replacement" used
here and the term "reduction" used with respect to simple reductions. Replacement
is a strictly graph-theoretic term indicating some edges or vertices from G are removed
and then replaced by other edges or vertices to create a new graph G’. A reduction is
defined, on the other hand, with respect to G, K, and edge reliabilities. A reduction
includes the act of replacing edges or vertices in G to create G’ along with defining
edge reliabilities, K’, and O, all such that R(G/) OR(G:,), i.e. reliability is preserved.
For example, in graph G as shown in Fig. l a, series replacements are possible while
no (reliability-preserving) simple reductions are possible in the corresponding GK for
K {vl, v6} (Fig. lb). Motivated by the difference between graphs which allow replace-
ments but, with K and edge reliabilities defined, do not allow reliability-preserving
simple reductions, we distinguish between graphs which can and cannot be reduced
by simple reductions.

Reducible and irreducible series-parallel graphs. Clearly, if (3 has no series or
parallel edges, then for any K, G/ admits no simple reductions. If (3 is a series-parallel
graph, then a simple reduction might or might not exist in G depending upon the
vertices of (3 that are chosen to be in K. For example, consider the series-parallel
graph G of Fig. l a. The graph Gc, for K {v2, v3, v4} as in Fig. l c, can be reduced
to a single edge by successive, simple reductions. On the other hand, for K --{vl, v6},
G/ admits no simple reductions (Fig. lb). A series-parallel graph G/ is reducible if
it can be reduced to a single edge by successive, simple reductions. If Gr is reduced
to a single edge ei using rn reductions, then R(GIc)=pi I-Ik=l fk where Ok is the
multiplicative factor defined by the kth reduction. Note that any series-parallel graph
(3 is reducible for the all-terminal problem since any degree-2 vertex in Gv allows a
degree-2 reduction.

It is possible for a (nonseparable) series-parallel graph to admit one or more
simple reductions for a specified K and still not be completely reducible to a single
edge. As an illustration, consider G/ of Fig. ld. Two series reductions may be applied
to this graph to obtain the graph of Fig. l e, but no further simple reductions are
possible. A graph G/ is an irreducible series-parallel graph if Gc cannot be completely
reduced to a single edge using simple reductions.

Chains and polygons. In a graph, a chain X is an alternating sequence of distinct
vertices and edges, /)1, (/)1, V2), /)2, (/’)2, /)3), /)3,"" ", /)k-l, (/)k-l, /)k), /)k, such that the
internal vertices, v2, v3," ", Vk-1, are all of degree 2 and the end vertices, Vl and Vk,
are of degree greater than 2. A chain need not contain any internal vertices, but it
must contain at least one edge and two end vertices. The length of a chain is simply
the number of edges it contains. A subchain is a connected subset of a chain beginning
and ending with a vertex and containing at least one edge. Both the end vertices of a
subchain may be of degree 2. The notation X will also be used for a subchain with
the usage differentiated by context.

Suppose X1 and X2 are two chains of lengths ll and 12, respectively. If the two
chains have common end vertices u and v, then A X1 t_l X2 is a polygon of length ll + 12.
In other words, a polygon is a cycle with the property that exactly two vertices of the
cycle are of degree greater than 2. While this definition allows two parallel edges to
constitute a polygon, we will initially require a polygon to be of length at least 3.



822 A. SATYANARAYANA AND R. KEVIN WOOD

3. Polygon-to-chain reductions. In this section a new set of reliability-preserving
reductions will be introduced which replace a polygon with a chain and always reduces
VI + IEI by at least 1. Consider a graph GK which does not admit any simple reductions
but does contain some polygon A. In general, no such polygon need exist, but, if it
does exist, then the number of possible configurations is limited.

Property 1. Let GK be a graph which admits no simple reductions. If Gn contains
a polygon, then it is one of the seven types given in the first column of Table 1.

Proof. This follows from the facts that (i) every degree-2 vertex of GK is a K-vertex,
(ii) there can be no more than two K-vertices in a chain, and (iii) the length of any
chain in GK is at most 3.

Polygon-to-chain transformations. Let Aj be a type j polygon in G:, a graph which
admits no simple reductions. Let u and v be the vertices in zj such that deg (u)> 2
and deg (v)> 2. Then, A Xj t_J Xj’, where Xj and Xj’ are chains in G: with common
end vertices u and v. Replacing the pair Xj and Xj’ by the corresponding chain X, as
in Table 1, is called a polygon-to-chain transformation.

In Theorem 1 we will prove that a polygon-to-chain transformation can be used
to produce a reliability-preserving, polygon-to-chain reduction. It is useful here,
however, to make the distinction between a polygon-to-chain reduction and a polygon-
to-chain transformation, in the same manner that simple reductions and replacements
are differentiated. A transformation is only a topological mapping of a graph G to a
graph G’ and ignores all considerations of reliability including K-vertices. A reduction
includes the topological transformation as well as all reliability calculations and changes
in K-vertices.

The proof technique of Theorem 1 requires that we first discuss the use of
conditional probabilities for computing the reliability of a graph in a general context.
Let ei (u, v) be some edge of G: and let Fi denote the event that e is working and
F denote the complementary event that ei has failed. Using rules of conditional
probability, the reliability of G: can be written as

R Gc piR G IF)+ qR GK [/i)=piR(G’n,)+ qiR G’k,,)(1)

where

and

G’=(V-u-v+w,E-ei), w=uLJv,

K’-K fu, vK,
K -u-v+w if uK orvK

G"=(V,E-ei),

F and F are said to "induce" G:, and G:,, from G, respectively. ("Induce" is not
used in the standard graph-theoretic sense here.) G, is Gn with edge e contracted,
and G:,, is GK with edge ei deleted.

Equation (1) can be applied recursively on the induced graphs and simple reduc-
tions made where applicable within the recursion. After repeated applications of the
formula, the induced graphs are either reduced to single edges for which the reliability
is simply the probability that the edge works, or some K-vertices become disconnected,
in which case the reliability of the induced graph is zero. In this way, the reliability
of any general graph may be computed. This method of computing the reliablity of a
graph is known as "factoring" [10], 14] and is a special case of pivotal decomposition
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TABLE
Polygon-to-chain reductions

Note: Darkened vertices represent K-vertices

Polygon Type Chain Type Reduction Formulas

(I)

(2)

ec,," d
(3)

(4)

er es

e e

e
_r

qaPbqc

paqbqc

Pa Pb Pc ]
qaPbqe

paqbqc

>- %

b

ed’e

(6)

b

(7)

See note

IKI a -qaPbPcqd

paqbPcqd

-paPbqcqd

7
Pa Pb Pc Pd/

-qaPbPeqdPe
13 -paqbPc(pdqe + qdPe

+ Pb(qaPcPdqe +PaqcqdPe

paPbqcPdqe

-paPbPcPdPe +--
Pa Pb Pc Pd Pe/

-qaPbPcqdPePf

-paqbPc(qdPePf + PdqePf +PdPeqf
+ PaPbqcPf(Pdqe + qdPe

+ qaPbPcPd(qePf +Peqf)

-paPbqcPdPeqf

(i qa
V "PaPbPcPdPePf

+--+qb+q--c
Pa Pb Pc

+ _++
Pd Pe Pf/

eT

New Edge Rellabilltles

n (a +j) (13 .+) ( +7)

Note

or II"
chain is

Pr (Pb +PaqbPcPd )/f2

fl Pb + PaqbPc

of a general binary coherent system 1 ]. For our purposes, factoring will only be applied
to the edges of a single polygon or a chain.

Polygon-to-chain reductions.
THEOREM 1. Suppose GK contains a type j polygon. Let G’, denote the graph

obtained from GK by replacing the polygon Aj with the chain Xj having appropriately
defined edge probabilities, and let 1) be the corresponding multiplication factor, all as in
Table 1. Then, R GK f#R (G’,).
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We prove the exactness of reduction 7 only, since reductions 1-6 may be shown
in a similar fashion. Figs. 2 and 3 illustrate the proof of the theorem. To improve
readability in the proof, we drop the subscript "7" on c,/3, 6, y, and fl even though,
strictly speaking, these are functions of the type of reduction.

eb

G
K

(a) Schematic of a graph with a type 7 polygon.

GI’KI C3’K3
State FaFbFcFdFeF State FaFbcFdFeF
Prob. qaPbPcqdPePf Prob. PaPbqcPdPeqf

States FaFb FcFdFeF FaFbFcFdFeF States

FaFbFcFdFeF FaFbFcFdFeF
FaF% FcFdFe-F- -aFb FcFd-e F
FaFb FcFdFeF

uUv

G2, K G4’ K

FaFbFcFdFeF
FaFbFcFdFeF
FaFbFcFdFeF
FaFbFcFdFe

Probs. paqbPcqdPePf + paqbPcPdqepf Probs.

+ PaPbqcqdPePf + PaPbqcPdqeP +

+ PaqbPcPdPeq + qaPbPcPdqePf +
+ qaPbPcPdPeqf +

paqbPc(qdPePf + PdqePf + PdPeqf)
+ PaPbqcPf(Pdqe + qdPe
+ qatbPcPd(qepf + Peqf)

FaFbFcFdFeF
FaFbFcFdFeF
FaFbFcFdFeF

PaPbPcPdPePf + qaPbPcPdPePf

PaqbPcPdPePf + PaPbqcPdPePf

PaPbPcqdPeP + PaPbPcPdqeP

PaPbPcPdPeqf

( qa qb qc qd qe q)paPbPcPdPePf + + + + + +
Pa Pb Pc Pd Pe

(b) Nonfailed induced graphs.

FIG. 2

Proof of Theorem 1. Let Fi be the event that edge e in the polygon is working
and let F be the event that edge e has failed. _F denotes a compound event or state
such as FFbcFdeFy, and F denotes the set of all 26 such states. Also, z 1 if Fi
occurs and z 0 if/ occurs. By conditional probability and extension of (1),

(2) R(G)= Y pa"q p)q}-gR(Gl_F).

Only sixteen of the possible sixty-four states are nonfailed states where
R(G _F)# 0. Each nonfailed state will induce a new graph with a corresponding set
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(a) Graph of Fig. 2 with polygon replaced by chain.

(]

GI,K

State: State: F-
Prob. qrPsPt Prob. PrPsq

3,K

G2 ,K

State: Fr State: F

Prob. prqspt Prob. prpsPt

(b) Nonfailed induced graphs

FIG. 3

of K-vertices of which there only four dif[erent possibilities. Figure 2 gives these four
graphs Gi,,:,, i= 1, 2, 3, 4, the states under which the graphs are induced, and the
summed state probabilities in each case, c, /3, , and T. Thus, by grouping and
eliminating terms, (2) is reduced to

(3) R(G/) cR(G,,/q) + fiR(G2,/2) + R(G3,/3)+ 3,g(G4,K4).

Now G:, is obtained from G: by replacing the polygon with a chain u, er, vl,

es, v2, et, w, and redefining K as shown in Fig. 3. Using conditional probabilities again,

R G’n,) prqsp,R G’n, Frff’Ft + qrp,p,R G’n, LFFt
(4)

+ p,pq,R G’n, I(F,F, + prpsq,R G’n, I( FrFsF,
where only the nonfailed states have been written.

The four nonfailed states of G:, induce the same four graphs which the nonfailed
states of Gr induce. Multiplying (4) by a factor , we thus have

(5)
YR(G:,) lIpqsp,g( G1./q) + 12qpsp,g( G.:2) + l-lppqg( G3./3) + l)prpp,R( G4.r,4).

Equating, term by term, the coefficients in (3) and (5) gives

a =flqrpp=fl(1--pr)pp, tS=flprpsqt=l)pp(1--pt),

fl =12prqp flpr(1--ps)p,,
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These four equations in the four unknowns 1), p, Ps, and p, may be easily solved to obtain

y 3
Pr Ps

which are the values given in Table 1 for a type 7 polygon. The reader may verify that
when these values are substituted into (4), we obtain

12R(G,) aR(G1,K,) + R(G2./2) + 6R(O3,K3) + yR( 04,K4 R(G/ ). 3

It can be seen from Table 1 that polygon-to-chain reductions, like simple reductions,
always reduce IVI+IE by at least 1.

Theorem 1 can be extended to give a result which can be useful for computing
the reliability of a general graph. In a nonseparable graph, a separating pair is a pair
of vertices whose deletion disconnects the graph. For example, vertices u and v in
Fig. 2 are a separating pair. Using the same conditioning arguments as in the proof
of Theorem 1, it can be shown that any subgraph between a separating pair can be
replaced by a chain of 1, 2, or 3 edges to yield a reliability-preserving reduction. For
two special cases, it has been shown that a subgraph between a separating pair can
be replaced by a single edge [6]. The first case occurs when the subgraph including
the separating pair has no K-vertices, and the second case occurs when the separating
pair belongs to K. The fact that a chain can always be used to replace any subgraph,
irrespective of the K-vertices, greatly increases the generality of any algorithm which
uses this reduction.

4. Properties of series-parallel graphs. In this section we set down some properties
of series-parallel graphs with respect to topology and reliability. We prove that a
series-parallel graph must admit a polygon-to-chain reduction if all simple reductions
have first been performed. Thus, every series-parallel graph is reducible irrespective
ofthe vertices in K. Using this fact, we then outline a simple polynomial-time procedure
for computing the reliability of such graphs.

The following property is a simple extension of the definition of a series-parallel
graph.

Property 2. Let G’ be the graph obtained from G by applying one or more of the
following operations:

a series replacement;
a parallel replacement;
an inverse series replacement (replace an edge by two edges in series);
an inverse parallel replacement (replace an edge by two edges in parallel).

Then, G’ is a series-parallel graph if and only if G is series-parallel.
Proof of Property 2 may be found in [3]. The next two properties show that the

series-parallel structure of a graph is not altered by simple or polygon-to-chain reduc-
tions.

Property 3. Let G’ be the graph obtained by a polygon-to-chain transformation
on G. Then G’ is a series-parallel graph if and only if G is series-parallel.

Proof. G’ may be obtained from G by one or more series replacements, a parallel
replacement, and one or more inverse series replacements, in that order. Thus, this
property follows directly from Property 2. [3



K-TERMINAL RELIABILITY IN SERIES-PARALLEL NETWORKS 827

Property 4. Let G:, be the graph obtained from G/ by applying a simple reduction
or a polygon-to-chain reduction on G/. Then, G’ is a series-parallel graph if and only
if G is series-parallel.

Proof. A series or degree-2 reduction implements a series replacement, a parallel
reduction implements a parallel replacement, and a polygon-to-chain reduction imple-
ments a polygon-to-chain transformation on G. Hence, by Properties 2 and 3, G’ is a
series-parallel graph if and only if G is a series-parallel. [3

By next proving that every series-parallel graph G/ admits a simple reduction or
a polygon-to-chain reduction, it will be possible to show that R(G/) can be computed
in polynomial time for such graphs.

Property 5. Let G/ be a series-parallel graph. Then, GK must admit either a
simple reduction or one of the seven types of polygon-to-chain reductions given in
Table 1.

Proof. If G/ admits a simple reduction, then we are done. If Gr has no simple
reductions, then by Property 1, any polygon of G/ must be one of the seven types
given in Table 1. Hence, we need only show that G contains a polygon. Let G’ be the
graph obtained by replacing all chains in G with single edges. If G’ contains a pair
of parallel edges, then the two chains in G corresponding to this pair of edges constitute
a polygon. We argue that G’ must contain a pair of parallel edges. If G’ has no parallel
edges, no simple reductions are possible in G’ since all vertices in G’ have degree
greater than 2. Thus, G’ and hence G are not series-parallel graphs, which is a
contradiction. [3

One simple procedure for computing R(G/) can now be outlined as follows: (1)
Make all simple reductions; (2) find a polygon and make the corresponding reduction;
and (3) repeat steps 1 and 2 until G/ is reduced to a single edge. If GK is originally
series-parallel, then Properties 4 and 5 guarantee that the above procedure eventually
reduces Gr to a single edge. The reliability is calculated by initializing M 1, letting
M Miqj whenever a polygon-to-chain reduction of type j is made, and letting
M Mf, for f 1- qaqb, whenever a degree-2 reduction is made on some edges ea
and eb. At the end of the algorithm with a single remaining edge ei, the reliability of
the original graph is given by R(G)= Mpi.

The total number of parallel and polygon-to-chain reductions executed by this
procedure, before the graph is reduced to a single edge, is exactly IEi-IVI+ 1. This
is because the number of fundamental cycles in a connected graph is IEI- [VI + 1, and
a parallel or polygon-to-chain reduction deletes exactly one such cycle [2]. The com-
plexity of steps (1) and (2) above can be linear in the size of G, and thus, the running
time of the whole procedure is at best quadratic in the size of G. In order to develop
a linear-time algorithm, we have found it necessary to move the parallel reduction
from the domain of simple reductions to the domain of polygon-to-chain reductions.
Indeed, a parallel reduction is a trivial case of a polygon-to-chain reduction with a
multiplier l)= 1. We will henceforth consider two parallel edges to be the type 8
polygon and the parallel reduction to be the type 8 polygon-to-chain reduction.

5. An O(IEI) algorithm for computing the reliablity of any series-parallel graph. The
objective here is to develop an efficient, linear-time algorithm for computing the
reliability of any series-parallel graph. All results needed to present this algorithm have
been established; however, some additional notation and definitions must be given.

If u and v are the end vertices ofa chain X, then u and v are said to be chain-adjacent.
When it is necessary to distinguish these vertices, we will use the notation X(u, v). A
subchain with end vertices u and v will also be denoted X(u, v) but in this case u and
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v cannot be said to be chain-adjacent. The algorithm is presented next, followed by
a proof of its validity and linear complexity. The algorithm reduces G: to two edges
in parallel and prints R(GK) if G is initially series-parallel (We stop at two edges in
parallel instead of a single edge because these edges do not form a polygon by our
definition; their end vertices do not have degrees greater than 2.), or prints a message
that G is not series-parallel. Comments are enclosed in square brackets.

ALGORITHM.
Input: A nonseparable graph G with vertex set v, lvl _-> 2, edge set E, IEI >--2, and

set K c__ V, IK[ -> 2. Edge probabilities Pi for each edge ei E.
Output: R(GK) if G is series-parallel or a message that G is not series-parallel.
Begin
M-I.
Perform all series reductions.
Perform all degree-2 reductions letting M Mf for each such reduction.
Construct list, T{vlv V and deg (v)> 2} marking all such v "onlist."
Mark all v T "ofttist."
While T and ]El > 2 do

Begin
Remove v from T.
i 1. [Index of the next chain out of v to be searched]
Until i> 3 or v is deleted or deg (v)= 2 do

Begin
Search the ith chain out of v.
ii+l.
If a polygon A(v, w) is found then do

Begin
Apply the appropriate type j polygon-to-chain reduction to A(v, w)
to obtain X(v, w), and let M Mfj.
ii-1.
If deg (v)= 2 or deg (w)= 2 then do

Begin
Apply all possible series and degree-2 reductions on the chain
(or cycle) containing subchain X(v, w) to obtain completely
reduced chain X(x, y) (or parallel edges (x, y) and (x, y)), letting
M Mf for each degree-2 reduction.
If y v and y is "offlist" then mark y "onlist" and add y to T.
If x v and x is "ofttist" then mark x "onlist" and add x to T.
End

End
End

End
f IEI=2 then print ("R(G) is" M(1-qaqb)) [for E={ea, eb}]

else print ("G is not series-parallel").
End.

The key to the algorithm is the way in which the "until" loop operates. This loop
says: "Sequentially search chains incident to v reducing any polygons which are found
and making any subsequent series and degree-2 reductions until either (a) v is shown
to be chain-adjacent to three distinct vertices, or (b) v is completely deleted from G
through the reductions, or (c) v becomes a degree-2 vertex through the reductions.
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No chain is ever searched more than once each time this loop is entered. The correctness
of the algorithm is not hard to show. Arguments similar to those presented here may
be found in [16] where the problem is the recognition of two-terminal series-parallel
directed graphs.

Suppose firstly that G consists of a single cycle. The initial series and degree-2
reductions will reduce G/ to two edges in parallel, T will be empty, and the algorithm
therefore gives R(GK) correctly at the final step of the algorithm. Next, suppose that
G does not consist of a single cycle, in which case T will not be empty and an initial
search for a polygon will begin. Since all initial series and degree-2 reductions were
performed, by Property 5, any polygon found must be one of the eight specified types.
If a polygon is found and reduced, the resulting chain may, in fact, be a subchain. If
this happens, some new series and degree-2 reductions may be admitted on the chain
(or cycle) containing that subchain but nowhere else. All such reductions are made
when applicable. Thus, every time the "until" loop of the algorithm is entered or
iterated, the graph admits no series or degree-2 reductions, and only polygons of the
eight given types can exist.

Vertices are continually removed from the stack T and replaced, at most two at
a time, only when polygon-to-chain reductions are made. At most IEI- vl polygon-to-
chain reductions can ever be made since each polygon-to-chain reduction removes
exactly one of the IEI-I vl / 1 fundamental cycles of G and the final reduced graph
must retain at least one fundamental cycle. Therefore, at most vI/2(IEI-IvI)=
21El-] VI vertices can ever pass through T before T becomes empty and the "while"
loop must terminate. If E] 2 at that point, then R(G/) is correctly given at the last
step of the algorithm since only reliabilty-preserving series, degree-2, and polygon-to-
chain reductions are ever performed. Property 4 proves that the original graph must
have been series-parallel.

If IEI > 2 when T becomes empty, then we must show that the reduced graph is
not series-parallel and that the original graph was not series parallel. In this case, every
vertex v with deg (v)> 2 is chain-adjacent to at least three distinct vertices. This is
true since (i) every vertex v with deg (v)> 2 is initially put in the list T and its
chain-adjacent vertices checked in the "until" loop and (ii) whenever the chain-
adjacency of a vertex or vertices is altered (this can occur to at most two vertices at a
time) after a polygon-to-chain reduction, then this vertex or vertices are returned to
the list T if not already there. The following property proves that a graph with the
given chain-adjacency structure is not series-parallel.

Property 6. Let G be a nonseparable graph such that all vertices v with deg (v) > 2
are chain-adjacent to at least three distinct vertices. Then, G is not a series-parallel
graph.

Proof Let G’ be the graph obtained from G by first replacing all chains with
single edges in a sequence of series replacements and then removing any parallel edges
in a sequence of parallel replacements. By Property 2, G is a series-parallel if and
only if G’ is a series-parallel. Now, every vertex v V’ has deg (v)> 2 and there are
no parallel edges in E’. Thus, G’ admits no series or parallel replacements and cannot
be series-parallel. Therefore, G cannot be series-parallel.

This proves that if the algorithm terminates with IEI > 2, the reduced graph is not
series-parallel, and Property 4 proves that the original graph could not have been
series-parallel either. This establishes the validity of the algorithm. We now turn our
attention to its computational complexity.

In order to show that the algorithm is linear in the size of G, we use a multi-linked
adjacency list to represent G. In this representation, for each vertex a doubly-linked
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list of adjacent vertices corresponding to incident edges is kept together with the
associated edge probabilities. Every edge is represented twice since we are dealing
with an undirected graph, and additional links are kept between both representations
of each edge. Such an adjacency list can be initialized in O(IV[/lEI) time for any
graph. Using the above representation, any series, degree-2, or polygon-to-chain reduc-
tion can be carried out in constant time. Also, none of the reductions ever require the
use of more vertices or edges after the reduction than before. This means that if any
new edges or vertices must be defined, old ones can be reused and the size of the
graph representation is never increased.

Now, initial series and degree-2 reductions are performed on O(1V[) time only
once and, consequently, may be ignored for purposes of complexity analysis. Consider
the "until" loop of the algorithm. Each time chains emanating from the current vertex
v are searched here, and polygons are found and reduced, the maximum amount of
work which can be performed is bounded by C1 + C21, where C1 is a constant bounding
the amount of work required to find three chains with distinct end vertices, and C2 is
a constant bounding the amount of work required to perform a polygon-to-chain
reduction and any subsequent series and degree-2 reductions. That C1 is, in fact, a
constant is obvious. C,_ is a constant because there are only eight types of polygons
to recognize and reduce, and because after reduction of A(v, w) to X(v, w), any chain
X(x, y) containing X(v, w) can have length at most 9. Thus X(x, y) would require at
most 8 series and degree-2 reductions to be completely reduced. This worst case could
occur if deg (v)=deg (w)= 2 after the polygon-to-chain reduction and the subchains
X(x, v), X(v, w), and X(w, y), which were proper chains before the reduction, are at
their maximum possible lengths of 3. (In the case that G is a cycle after a polygon-to-
chain reduction, the maximum length of such a cycle is 6, and reduction of the cycle
to two edges in parallel requires at most 4 series and degree-2 reductions.) Since at
most 2lEI- vI vertices ever pass through T, and since at most [E[- vI polygon-to-chain
reductions will ever be performed, the work performed by the algorithm is bounded
by C,(21EI-I Vl)/ C=(IEI / Vl). Under the connectivity assumptions IEI-->lVl, and we
have therefore proven the following theorem:

TIqZORZM 2. Let G be a nonseparable series-parallel graph. Then, for any K, R Gc
can be computed in O(IEI) time.

6. Extension to the algorithm. The algorithm of 5 can be extended to make all
possible simple and polygon-to-chain reductions in a nonseries-parallel graph. In this
way, the extended algorithm can be used as a subroutine in a more general network
reliability algorithm for computing R(G:) when G is not series-parallel. The com-
plexity of computing R(GK) can often be reduced to some degree by this device.

Suppose the reduction algorithm of 5 starts with a nonseries-parallel graph G.
After termination of the algorithm, GK may or may not have been partially reduced.
From the proof of Property 6, the only possible remaining reductions are polygon-to-
chain reductions. Each such polygon-to-chain reduction would correspond to a parallel
edge replacement used to obtain the graph G’ of that proof. Therefore, G can be
totally reduced by first applying the algorithm and then finding and reducing any
remaining polygons. This can easily be done by searching all chains emanating from
all vertices v with deg (v) > 2. In the worst case, each chain, and thus each edge, must
be searched twice. Parallel chains can be recognized in constant time, and therefore,
the added computation is O(IE]) and the algorithm with the extension remains O([EI).

To illustrate the usefulness of the extended algorithm for a general graph, let us
consider the ARPA computer network configuration as shown in Fig. 4a [4]. Suppose
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FIG. 4

we are interested in the terminal-pair reliability between UCSB and CMU. Application
of the extended algorithm yields a reduced network as shown in Fig. 4b with redefined
edge reliabilities and an associated multiplier. The original reliability problem is now
equivalent to computing the terminal-pair reliability between RAND and CMU in the
reduced network. In linear time the size of the network has been reduced considerably
and, because computing the reliability of a general network is exponential in its size,
a significant computational advantage should be gained.
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A DEPTH-UNIVERSAL CIRCUIT*

STEPHEN A. COOK:I: AND H. JAMES HOOVER’

Abstract. This paper describes a family of depth-universal circuits. For any n, c, d there is a universal
circuit U(n, c, d) that can simulate any circuit a having n inputs, of size c and depth d, and U has depth
O(d) and size O(c3d/log c). The construction is used to give an alternative proof of a theorem of Ruzzo
showing the invariance under different uniformity conditions of complexity classes defined by uniform
circuit families.

Key words. Boolean circuits, parallel processing, computational complexity

1. Introduction. Boolean circuits are one of the more general models of parallel
computation. Within this model, the fast circuits are particularly interesting, especially
those in NC, that is the circuits of polynomial size and poly log depth. A natural
question to ask is: Are there general purpose circuits for performing fast parallel
computations?

More precisely, given n, c, d is there a circuit U of size c1) and depth O(d) that
can simulate any n-input circuit of size c and depth d? In this paper we present a
universal circuit of size O(c3d/log c) and depth O(d). We call this circuit depth-
universal because of the only constant factor increase in depth.

First, some background. Valiant [Va76] examines the question of universal circuits
and presents one of size O(c log c) and depth O(c). Using an information-theoretic
argument, Valiant shows that such circuits are optimal with respect to size, and thus
there are no size-universal circuits. Although this circuit has very poor depth perform-
ance, Valiant also mentions that permutation networks can be used to construct a
universal circuit of size O(dc log c) and depth O(d log c).

In [Ho78], using an infinite-circuit model, Hoover constructs a depth universal
circuit with polynomial activation size. In addition, this circuit also addresses the
problem of translating the encoding of the circuit to be simulated into the appropriate
control signal settings for the universal circuit. Our construction uses a number of the
ideas in [Ho78].

In a noncircuit vein, Goldschlager [Go78] presents a time-universal parallel
computer. His conglomerate can simulate any p processor, time conglomerate in
time O(t) using O(2t) processors. It has the drawback of requiring an exponential
number of processors.

Galil and Paul [GP83] also look at universal parallel computers. Their efficient
general purpose parallel machine can simulate any p processor, time parallel computa-
tion using O(p) processors and O(t log2 p) time. Thus their machine is processor-
universal. Using sorting and permutation networks, Galil and Paul improve the time
performance and construct two other universal machines with O(t logp) time and
O(tp log p) size.

In [adH83], auf der Heide constructs a time-universal parallel computer with size
O(pl/). It can simulate any parallel computer that has predictable communication
(i.e., each processor can precompute the address of the processors it wants to communi-
cate with in the next steps in time O(t)). The parallel computer in [adH83] consists
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of a network whose nodes are processors with an unbounded number of states. The
simulation uses ideas similar to ours but in a different setting and was done indepen-
dently.

We begin by describing a depth-universal circuit for circuits of depth fl(log n).
This circuit is uniform and of polynomial size. However, it takes as input a nonstandard
encoding of the circuit to be simulated. Next we describe a circuit that converts the
more common standard circuit encoding into the nonstandard encoding. The conversion
circuit is also uniform and polynomial size, but requires depth O(log n log log n). Thus
we obtain a depth-universal circuit accepting the standard circuit encoding for circuits
of depth l)(log n log log n). Finally, we focus on the problem of generating circuit
encodings in the first place, and this leads to the alternative proof of Ruzzo’s uniformity
result.

2. Definitions. We use the following accepted definitions [Bo77], [Co81].
Let Bn {flf: {0, 1}n {0, 1}} denote the set of all Boolean functions of rank n. A

circuit a with n inputs is a finite directed acyclic graph such that each node has a label
from {xl,’’’, In} kJ BoU B1U B2. A node labelled xi must have indegree zero and is
called an input node. A node u with label g Bi must have indegree i, and one edge
into u is associated with each argument of g. The circuit has a sequence of m >- 1 nodes
designated output nodes and labelled y,..., y,. When the variables xi are assigned
values from {0, 1} every output node Yi assumes a unique value in {0, 1}. Thus the
circuit a computes a function f: {0, 1} {0, 1} in the obvious way.

We are interested in computing functions f from {0, 1}* {0 1}*. Let f" be f
restricted to inputs of length n. A family
computes fn for all n.

Let c(a), the complexity of a, be the number of nodes in a, and let d(a), the
depth of a, be the length of the longest path in c. For any nontrivial single output
circuit c(a 12(n) and d (c) f(log n).

We define two types of encodings for the circuit a. The standard encoding, denoted
d, is the usual encoding for describing circuits. The extended encoding, denoted c, is
derived from Ruzzo’s [Ru81] extended connection language. Our universal circuit
accepts the extended encoding directly. It can be modified to accept the standard
encoding by adding the conversion circuit described in 4. Unfortunately, the conver-
sion circuit is not depth preserving for very shallow circuits.

DEFINITION. The standard encoding d of a circuit a is a string {0, 1}* grouped
into 4-tuples (u, g, l, r), one tuple for each node of a, interpreted as follows. Node
number v is a g-gate, where g { null, input} Bo t_J B1 B2. The left (right) input to v
is numbered (r). The nodes of cr are numbered 1,..., c with nodes 1,..., n corre-
sponding to inputs x,. , In. The gate type, g, is encoded using 5 bits, while v, and
r are encoded in binary as strings of [log2 c] bits. Missing inputs to v are numbered
0. Tuples appear in d ordered by increasing v.

DEFINITION. The extended encoding of a circuit cr is a string {0, 1}* of 5-tuples
(v, 7r, g, l, r). Values of 7r are strings from {L, R} representing backwards paths, via
left and right inputs, from node number v. The node resulting from following path r
from node v is denoted 7r(v). If 7r is empty, that is r-e, r(v)--v. Node 7r(v) is a
g-gate with left (right) input numbered l(r). The nodes of c are numbered 1,..., c
with nodes 1,..., n corresponding to inputs x,..., In. Furthermore, paths 7r are
restricted to have length =< [log2 c(ce)]. The values of g, u, and r are encoded as for
the standard encoding. There is one tuple in c for each possible combination of v and
7r. If r(v) is not a legitimate node then the gate type is null and 1, r are 0. The tuples
are ordered in c by increasing v and
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DEFINITION. A family (an) of circuits is UBc uniform provided some deterministic
Turing machine can compute the transformation I dn in space O(log c(an)).

3. The depth-universal circuit. We now describe the construction of a family of
depth-universal circuits. Each member U of the family can simulate circuits of a
particular size, depth and input length. When supplied with the extended encoding
of the circuit a, and with the values of the inputs, U computes the same function as
a. U will have depth the same order as a and have only polynomially greater size.

THEOREM 1. For all n, c, d where c >-_ d >- [log2 c ], c >-_ n there exists a depth-universal
circuit U U(n, c, d) with n regular inputs Xl, , xn, O(c2 log c) encoding inputs and
c outputs Yl,’", Yc, such that: When supplied with the extended encoding, , of any
n-input circuit with d (a) <= d and c(a) <- c the circuit U simulates a on Xl, , xn. The
outputs Yl, ",Yc of U correspond to the nodes 1,. , cofa. Furthermore, d (U) O(d
and c( U)- o(cad/log c), and U is UBc uniform in the sense that the transformation
l n0101d- U(n, c, d) can be computed by a deterministic Turing machine in space
O(log c).

Construction of U. The circuit a will be simulated by U in stages. Each stage will
simulate a slice of a ofthickness h. Slice contains all nodes u with (i 1)h < depth(u) <-_

ih, where depth(u) denotes the length of the longest path from an input to u. There
are [d/h + 1 slices in a. Slice 0 consists of just the inputs Xl,’’ ",

U is constructed as a multi-layer sandwich of switching layers separated by
simulation layers. Simulation layer computes the values of all nodes in slice i. In
addition it recomputes the values of all nodes simulated in earlier slices. Switch layer
connects the outputs from simulation layer i-1 to simulation layer i.
A simulation layer is constructed with trees of universal gates. Each universal gate

u can compute all 22 of the functions in Bo (.J B1 (3 B2. It has two regular inputs labelled
L and R and control inputs sl,. ., ss. The control inputs specify which function u is
to compute and have the same encoding as g, the gate-type, in the extended circuit
encoding.

The universal tree of depth h, denoted Th, is a complete binary tree constructed
by connecting the output of each universal gate to the L or R input of its parent. Each
universal gate of Th is naturally identified by a path r {L, R}* of length <_-h from
the root. The peripheral universal gates of Th each have two inputs, L and R, resulting
in 2h+ input leaves. The input leaves of Th are identified by paths of length h + 1,
and this induces a natural numbering of the leaves. Th has size O(2h) and depth O(h).
By appropriate duplication of inputs at the leaves, and setting of control inputs to
each universal gate, each universal tree can simulate any one-output circuit of depth h.

A switching layer is constructed with selector trees. The selector tree for c inputs,
S, has c regular inputs Wl," ", w and k [log: c] control inputs b,. ., bk. Setting
the control inputs to represent in binary selects input wi to the output. If is not in
1,..., c the output of S is 0. S has size O(c) and depth O(log c).

The switching layers of U have depth O(log c). This gives U a depth of O((h +
log c)[d/h ]). In order for U to be depth-universal, that is have depth O(d), h must
be chosen to be l)(log c). We choose h-[log: c]. Letting q= [d/h], U has levels
numbered 0,. , q.

Note that the size of this circuit can be improved to O(c2+ed) by choosing
h e log c, e < 1. Since our main interest is in keeping the size polynomial, h is chosen
for simplicity.

The ith level is constructed as shown in Fig. 1. At the bottom of level are c
universal trees Th, Th. The output of Th

ia is denoted zij. The universal tree Th

is responsible for’simulatin’g node j of a. Attached to input leaf k of Th
ij

ia is a selector
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Selector Trees

Universal Trees

FIG. 1. Level of the universal circuit.

tree, SiC,j,k, for c inputs For i_-> 1, input y, of SiC,j,k is connected to Zi-l,m, namely the
output from the universal tree simulating node m in the previous level. For i= 0 (level
0), input y, of Si,j,k is connected to regular input xm if 1 _-< m-< n, and the constant 0

hif m > n. At level q the output of Tq, is designated yj.
Each of the O(d/log c) levels of U has c2 selector trees of size O(c) for a total

size for U of o(cad/log c).
Operation of U. The extended encoding t is used directly, without any additional

circuitry, to set up U for simulating a. Signals from tuple (v, r, g, l, r) are connected
into U as follows For all universal trees Th simulating node v, the bits of g are
attached to the control inputs of universal gate 7r in the tree. The selector tree attached
to input leaf m (m encoded as path A) of Th namely S,, must select the appropriatei,p,

L or R input from the previous slice. This is achieved by connecting the control inputs
of the selector tree to or r depending on whether A ends in L or R.

Thus node v in slice is computed in terms of the values of nodes in slice i-1.
Correctness of U. A straightforward induction on the level number, i, shows that

level correctly computes the value of all nodes v with depth(v)<-_ ih. Since c has
depth < qh, by level q all nodes have been correctly simulated, and the output of Ti,//

namely y, is the value of node v. Since U is nothing but a very regular arrangement
of trees it is easy to verify that U is Unc uniform.

4. Converting circuit encodings. The standard encoding c of a circuit a is minimal
in the sense that each node and edge of a appears only once in c. The extended
encoding c used by U contains redundant edge information in the form of short,
[log2 c(a)], interconnection paths. This makes its length about the square of the
standard encoding length. It is this redundancy that allows the direct setting of the
selectors and universal trees and so permits the simple structure and small depth of U.

As observed by Ruzzo [RUB1] both the standard and extended encodings can be
converted to each other in DSPACE (log c(a)). To convert from extended to standard
is immediate and just involves discarding unnecessary tuples. To convert from standard
to extended requires the traversing of paths of length O(log c(a)) back from a node
to its predecessors. The space is kept small since each node has fan-in _-<2 and so the
paths can be represented as O(log c(a)) length strings from {L, R}*.
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Under the UBC definition of uniformity all reasonable encodings are
DSPACE (log c(a)) equivalent, and whenever (a,) is UBC uniform we can reasonably
expect to have c available as input to U.

However it can still be argued that c contains a lot of precomputed information
whose explicit computation by a circuit would increase the depth of U. The next result
shows that d does not contain that much more easily accessible information than ci.

If we restrict U to accepting d we pay a depth penalty only for circuits of depth
d o(log c log log c).

THEOREM 2. There exists a conversion circuit CU that when supplied with the
standard encoding for any n-input circuit a ofsize c and depth d will output the extended
encoding . Furthermore CU is UBc uniform and c(CU)=O(c4) and d(CU)=
O(log c log log c).

Proof. Let v{1,..., c} be a node of a and Try{L, R}* be a path with I 1_-<
[log2 c]. The circuit CU has two main stages.

(1) Compute all possible v(Tr).
(2) For each valid v(cr) produce the tuple (v, 7r, g, l, r) of the extended encoding

directly from the tuple (v(zr), g, l, r) of the standard encoding.
Step (1) is the most difficult step. In the subcircuit for (1) there are nodes labelled

Pij(cr) and defined by

p(zr)=l iff i(r)=j.

That is, P0(cr) 1 if and only if node j is reached by following path zr back from
node i.

The p(zr) are computed by a subcircuit as follows:
(a) p(e), p0(L), p(R) are set directly from the standard encoding.
(b) The remaining p0(cr) are computed from the equation:

p.(o) v p,(o) ^ p().k=l

Note that there are 0(c2c) of the pij(Tr), and that for given and 7r at most one
of Pi,1 (r)," , Pi, (Tr) has value 1.

For (la) setting pj(L) and p(R) requires checking that l=j and r=j in (i, g, l, r).
This can be done with a circuit of size O(log c) and depth O(log log c). Thus (la) has
size O(c2 log c) and depth O(log log c).

For step (lb) choosing 7ra, rb to be about the same length keeps the number of
compositions to log 17r[ O(log log c). Each evaluation of the equation requires depth
O(log c) and so computing po(Tr) has depth O(log c log log c). Each evaluation has
size O(c) for a total size of O(c4) for step (lb).

Step (2) is a straightforward selection. The tuple (i, 7r, g, l, r) is produced by using
pi,l(Tr),""", pi.c(r)to select g, l, r from the c tuples (1, g, l, r),..., (c, g, l, r). Producing
each tuple of the extended encoding requires a selector of size O(c log c) and depth
O(log c). Thus step (2) has size O(c log c) and depth O(log c).

So the circuit CU has size O(c4) and depth O(log c log log ).
COROLLARY 1. For all n, c, d where c >= d >= log c log log c and c >= n there exists a

depth-universal circuit U U(n, c, d) with n regular inputs Xl, , x,, O(c log c) encod-
ing inputs and c outputs Yl, Yc such that" When supplied with the standard encoding,

of any n-input circuit cr with d(a)<= d and c(a)<= c the circuit U simulates a on
x1,. , x,,. The outputs Y1," ",Yc of U correspond to the nodes 1,. , c of a. Further-
more, U is UBc uniform and d( U)= O(d) and c(U) O(c4).
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5. Ruzzo’s theorem. The constructions in Theorems 1 and 2 can be used to give
an alternative proof of a theorem of Ruzzo [RuS1] which shows the invariance under
different uniformity conditions of complexity classes defined by uniform circuit
families. Slightly altering Ruzzo, let us define the extended connection language LEC
of a circuit family (an) to be the set of (codes for) tuples (n, u, r, g, l, r), where n is
in binary and (,, r, g, l, r) is a tuple in our extended encoding cn of cn. Then the
family (an) is UE uniform if and only if some DTM can determine whether an arbitrary
tuple (n, ,, r, g, l, r) is in LEc in time O(log c(an)).

Every UE uniform family is certainly UBc uniform, and in fact UE appears to be
a much stronger condition than UBc. Nevertheless, in [Ru81] it is proved that:

THEOREM 3 (Ruzzo). Let Z(n) and T(n) be any functions such that Z(n)>= n,
T(n)>-logZZ(n), and [log2Z(n)], T(n) are computable by deterministic Turing
machines given input n (in binary) in time O(log Z(n)). If a language A is recognized
by a UBC uniform circuitfamily ofsize Z(n)1) and depth O(T(n)), then A is recognized
by a UE uniform circuit family with the same size and depth bounds.

The main application of the above result is to the complexity classes NC k, defined
by the size and depth bounds n1) and O(logk n) respectively. The theorem implies
that for k >_-2, NCk remains the same whether the circuit families are required to be

UE or UB uniform.
The notion of UE uniform is interesting partly because alternating Turing machine

space-time complexity classes have precise characterizations in terms of UE uniform
circuit size-depth complexity classes (see [Ru81, Thms. 3, 4]). In fact, Ruzzo uses

alternating Turing machines to prove Theorem 3 above. We can use our universal
circuit construction from Theorem 1 to give:

Proof of Theorem 3. First note that we can make U to be UE uniform instead of
just Uac uniform. In this case, UE uniform means that some DTM can determine in
time O(log c) given a tuple (n, c, d, u, r, g, l, r) with c _>- n whether (,, r, g, l, r) is in
the extended encoding U for U(n, c, d). Thus h can be computed in time O(log c)
from the binary length of c + 1, and instead of taking q [d/h ], it is sufficient to use
the easily computed over-approximation q 2e, with e= 1 +(binary length of d)-
(binary length ofh). The codes for the gates in U can be chosen to explicitly incorporate
their position. For example, the binary number for a gate in the selector tree Si.j,k
would include the indices i, j, k in binary and a bit string indicating the path from the
root of the tree to the gate.

With similar care in numbering the gates, the conversion circuit CU in Theorem
2 can be made UE uniform.

Now suppose Z(n) and T(n) are as in Theorem 3, and (c,) is a Uac uniform
circuit family with size and depth bounds Z(n)) and O(T(n)) which recognizes
language A. We construct a UE uniform family (a’,) to recognize A as shown in Fig. 2.

The circuit a’, has three stages. First the stage /3n computes the description
next the circuit CU (n, Z(n), T(n)) converts that description to cn, and finally the
universal circuit U(n,Z(n), T(n)) takes the description dn and x,...,x, as inputs
and simulates an. The circuit/3n has no inputs, but simulates the DTM which transforms
1 to cn. The simulation applies a transitive closure circuit to the configuration-transition
matrix of the DTM, as described in Theorem 2 of [Bo77]. Thus c(n)= Z(n)) and
d(n)=O(logZZ(n)).

The conditions on Z(n) and T(n) ensure that all three stages can be made UE
uniform and that the bounds for the size and depth of a’ are satisfied.
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cv (n ,z (n )" (n ))

U (n ,Z (n),T (n))

Output

FIG. 2. Circuit tn recognizing language A.
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SEARCHING SEMISORTED TABLES*

HELMUT ALTO" AND KURT MEHLHORN

Abstract. A "semisorted table" is a one-dimensional array containing n data, which are not necessarily

sorted, but can appear in p different permutations of the ascending order. We consider the problem of

searching in such a table without knowing, in which one of the p permutations the data are stored (SST).
It is shown that any deterministic search algorithm for SST needs at least comparisons in the worst case.

This lower bound is generalized to average case performance even for nondeterministic algorithms. Some

examples are given where the lower bound is tight.

Key words, searching, implicit data structures, comparison trees

1. Introduction. This paper deals with searching semisorted tables (SST), by which
we mean the following problem:

Let U be an infinite, totally ordered universe. Let II be a set of permutations of
{1,..., n}, and p IIII. Assume that n elements of U may be stored in an array A
according to any permutation 7r II of their ascending order. How many comparisons
are necessary to search for a given x U?

Note, that the restriction of our search problem to data stored in an array is not
essential. In fact, even if they are stored in some arbitrary data structure, for a given
problem instance the assignment of elements of the universe U to the memory locations
of that structure will be unique and never will be changed. So we can give these
locations a fixed numbering 1,..., n, such that the statement that data are "stored
according to the permutation 7r of their ascending order" is well defined.

Lower and upper bounds for the degenerate cases of the problem are well known:
If p-1, i.e., the data can appear in only one fixed permutation, a (modified)

binary search can be done and [log n + 1 comparisons are necessary and sufficient.
If p- n l, i.e., data can appear in any permutation, linear search has to be done with
n comparisons being necessary and sufficient. Our problem is to find lower bounds
for any p somewhere between 1 and n I.

In 2 a comparison tree argument will show that fl(p) is a lower bound in the
worst case. This argument and, thus, the lower bound are then extended to nondeter-
ministic algorithms, and finally to the average complexity of SST. The final section of
the paper shows that these lower bounds are tight for some, but not for all cases.

Note, that our lower bound only depends on the numberp ofpossible arrangements
of data, and does not restrict the way to arrange them. One possible restriction is, for
example, to consider only data structures, where all possible arrangements of data are
compatible with a given partial order. Most of the standard comparison based data
structures like all versions of binary search trees, sorted arrays etc. have that property,
but others, like, e.g., rotated lists [MS], do not. For data structures satisfying the partial
order restriction an exact lower bound for searching has been found in a recent paper
by Linial and Saks [LS]. They show that any search algorithm for a given data structure
has to make at least log N comparisons, where N is the number of ideals of the
underlying partial order. That method can be applied to instances of SST which satisfy
a given partial order and gives better lower bounds in some of these cases (cf. second
example in 4).

* Received by the editors July 5, 1983, and in revised form May 30, 1984.
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The SST problem by itself seems interesting to us, but there also exists one
seemingly important application: Finding lower bounds for a case of partial match
retrieval in implicit data structures (cf. [MS], [R]), as has been done in [AMM].

The deterministic worst case lower bound for the SST problem was investigated
concurrently and independently by S. Cook ([B]).

The model of computation used here requires that comparisons are done only
between the element x searched for and some array element. It is an interesting open
question, if the lower bounds still hold, if comparisons between different array elements
are allowed, as well.

2. A worst case lower bound for SST. Let us now define the SST problem more
formally:

Let U be an infinite, totally ordered universe, let S {xill <_-i_-< n}__ U where
Xl <x2 <" "<xn. An array All n]is used to store S. If 7r is a permutation of{l,. , n}
then we say S is stored according to 7r, if and only if A[Tr(i)]= xi.

Let II be a set of permutations of {1,..., n}. Then SST (H) is the following
problem:

input: some x U
problem: decide, if x S under the precondition that S is stored according to

some zr FI (which one is not known though).

The following model of computation will be used:
Algorithms are based on comparisons of the form x? A[i] where x is the element

searched for and i {1,..., n}. So any such algorithm can be illustrated by a com-
parison tree T, each node of which is labelled by some {1, , n}, meaning that at
this point x is compared to A[i]. If the outcome of that comparison is "<" (">") the
algorithm proceeds using the left (right) subtree, if it is "=" the algorithm halts giving
a positive answer.

Certainly a computation (= path starting from the root) in T only depends on the
permutation of II in which the data are stored and the relative position of x within
the data but not on the particular choice of data. (For example, a search for 3 in a
table containing 4 3 5 1 2 in that order would take the same path in the comparison
tree as searching for 5 in the table 7 5 9 2 3.)

Now a lower bound for SST (II) will be shown, depending on the number p of
elements of II and on the number n of data.

THEOREM 1. For all n N, II any set ofp permutations of { 1, , n}, any algorithm
solving SST (H) makes at least ,7/p comparisons m the worst case.

Proof of Theorem 1. Call a sequence i,. , i, (1 <-_ k <= n) valid if there exists a
r II such that 7r(j) i (1 -<_j <_- k), i.e., if the k smallest elements may be stored in
table positions il,’’ ", ik. Denote by e the empty sequence over {1,..., n} and let it
be valid by definition. Clearly a permutation 7r is in II exactly if 7r(1),..., 7r(n) is
valid. Let T be a comparison tree solving SST (H) and let s be its depth, i.e., s / 1 is
the maximum number of comparisons for a search.

We will show that the number of permutations for which T works correctly is at
most (s+ 1) n.

LEMMA 1. Any valid sequence of length k (0 <-k < n) can be extended in at most
s + 1 ways to a valid sequence of length k + 1.

Proof. Let i,. , i (the empty sequence if k 0) be a valid sequence and r II
some permutation which makes it valid (i.e., zr(j)= i, 1 <-j-<_ k; any r H will do in
the case k 0). Assume that data are stored in the table according to or, i.e., A[r(i)] x.
In particular the k smallest elements are stored in ascending order in Alibi, , Alibi.
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Consider the path in T which is taken by a search for some x U with xk < X < Xk+l,

i.e., x: S, x>A[i] if i{il,..., ik}, x<A[i] otherwise (x<A[i] for all if k=0).
Such an x exists w.l.o.g, since U is infinite and the algorithm only depends on the
permutation in which data are stored (i.e., we can assume that there are "gaps" between
the data stored in the table.) This path now depends only on il,"" ", ik (is unique if
k =0). In fact it can be described by the rule: start in the root, take the >-branch if
the current node is labelled by some ij (1-<j <= k), take the <-branch otherwise (in the
case k 0 always take the <-branch).

Let L {11,. ", lt} be the set of labels encountered on the above path which are
not in {il,..., ik}, i.e., on the path they are the ones, whose left child is visited next
(see Fig. 1).

FIG.

Let ik+l 7r(k+ 1), i.e., A[ik+] contains xk+.
We claim: ik+ L. Assume otherwise. Then x would not be compared to Xk+ and

the outcome of all comparisons would be the same if we traverse T with Xk+ instead
of x. So the same path would be taken and T would give the same answer for Xk+ as
for x, namely that it is not in S, a contradiction. Now L depends on i,..., ik only
and it has -<s + 1 elements, since they are some of the labels of one particular path in
T. So the valid sequence il,’’ ", ik can be extended in at most s + 1 ways to a valid
sequence il,"" ", ik, ik+, which proves Lemma 1.

Now, applying Lemma 1 repeatedly, we have that there are at most (s+ 1) k valid
sequences of length k (1 =< k_-< n). Since all permutations in II give different valid
sequences of length n we have P =< (s + 1)", i.e., the number of comparisons s + 1 => (,
which proves Theorem 1.

3. Nondeterministic and average case lower bounds. In this section we want to show
that the lower bound of 2 also holds for nondeterministic algorithms and for the
average search time.
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A nondeterministic comparison based search, in one step of the computation
compares, just like a deterministic one, the element z searched for to some table entry
A[i]. But for any outcome "<" or ">" it may have several choices to which entry to
compare x next. So the comparison tree is not necessarily binary any more. The answers
the algorithm gives at the end of a computation may be "yes" (x S) "no", or
"undetermined". We require the algorithm to be complete and consistent" If x S
there must not be any computation for x answering "no" and there must be at least
one computation answering "yes". If x S there must not be any computation answering
"yes" but at least one answering "no".

Of course, if x e S, this can be determined by a nondeterministic algorithm in
constant time: Choose nondeterministically any table position i, answer "yes" if
x A[i]. We show that the same lower bound as in 2 holds in the nondeterministic
case for x S.

THEOREM 2. For all n N, II any set ofp permutations of { 1, , n}, any algorithm
solving SST (H) makes at least (p compartsons m the worst case, i.e., for any set S c U,
sl- n there exists an x U such that the shortest computation searching for x in S and
leading to a "yes" or "no"-answer has length >=-.

Proofi The proof is essentially the same as the one for Theorem 1.
Assume 0<= k < n, il,’", ik is a valid sequence, r H a permutation making it

valid, and data are stored according to 7r. Now again any search for x U with
Xk < X < Xk+l leading to a "no" answer has to compare x with Xk+. SO only the positions
appearing on every path in the comparison tree leading to a "no" answer for x can
be used to store Xk+l. So if Sk+l is the shortest length of such a path, there are at most
Sk+ possibilities to extend the above valid sequence to one of length k+ 1. So there
are at most s, s2,’’ ", s, valid sequences of length n, we need at least p to make the
algorithm work for all permutations in H. So there exists and e { 1,.__. , n } with si => (.
So the shortest search for an x with xi_ < x < xi makes at least (p comparisons.

Next it will be shown that the lower bound of Theorems 1 and 2 even holds for
the average case of unsuccessful searches, even for nondeterministic algorithms. Any
unsuccessful search can be associated with an interval (x, Xi+l)--{y Ulx < y < Xi+l
namely the one containing the element x searched for.

We assume that all these intervals have the same access-probability. Let II be a
set of permutations of {1,. , n}, for which we consider SST (II). To II a tree Tn is
associated in the following way:

The nodes of Tn except the root, are labelled with numbers of {1,.-., n}. There
are exactly p Itl leaves representing the permutations in II. Call the leaf associated
with 7r H, I.

For any r II the sequence of labels on the path from the root to l exactly
corresponds to the permutation 7r. (So Tn has height n.)

As an example consider: n 7, H the set of all permutations of {1,..., 7} not
displacing 1, , 4. So p 3!= 6. A suitable search strategy is to do binary search on
the first 4 positions and linear search on the others. The corresponding search tree (a
square denotes an unsuccessful search), is shown in Fig. 2.

The tree Tn, in this case, is shown in Fig. 3.
Furthermore, by definition, the labelling i,..., k (k >0) of any path in Tn

starting in the root, is a valid sequence. By the proofs of Theorems 1 and 2 a valid
sequence of length k (0_-< k < n) can only be extended to one of length k + 1 by using
the nodes on a certain path in the comparison tree. This path corresponds to an
unsuccessful search for an element x U with Xk < X < Xk+I. SO the outdegree of the
node in Tn corresponding to the valid sequence i,..., k is a lower bound on the
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FIG. 2

FIG. 3

number of comparisons for the above unsuccessful search, assuming that the elements
xl,’’’, xk are stored in positions il,- ., ik.

For a permutation r e II let c(r) be the average number of comparisons for
searches for elements x U with Xk <X <Xk+l (0< k < n) assuming that all "gaps" are
equally likely.

For a tree T and any leaf of T let Pr(1) be the set of ancestors of/. Then by
the considerations above

1
(1) c(r)_=- E deg (v).

/ g-rn(/)
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So, additionally assuming that all permutations are equally likely, the average number
of comparisons for an unsuccessful search is

1
E c().

p

This expression is because of (1) greater than or equal s(Tn) where for any tree T
with p leaves we define

s(T)=l Z
1

Z deg(v)
p lear of r depth (1)

which is the average outdegree of T’s nodes weighted according to their number of
descendants.

CLAIM. For any tree T with p leaves all having depth h 1:

ps(T)h.

oo (by induction on h). If h 1, the tree has the form of Fig. 4.

FIG. 4

Assume that the root has outdegree k. Then p s(T) k and thus, the claim is true.
For the inductive step assume that we have a tree T of height h + 1 and that its

root Vo has outdegree k. Let T1, , Tk be the subtrees of the root and pl, , Pk their
numbers of leaves respectively (see Fig. 5).

FIG. 5

Then

1 E Z deg (v)s(T)
p(h + 1) /leaf of T VePT(I)

(2) =---------1 2 2 deg (v)+deg (vo)
p(h + 1) i=l /leaf of Ti v.PTi(l)

1 k

E [p,k + p,hs(T)]
p(h+l) i=

since d(C)g (Vo)= k and by definition of s(T).
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We have to show

or, because of (2)

p<=s(T) h+l

ph+2<= ’h+ l
kp+ h E p,s(T)

i=1

Since by inductive hypothesis Pi <= s(Ti) h and hence s(T)>= (pi) 1/h it suffices to show

l+l/hph+2< kp+ h Pih+l i=1

Now note that
k

l+l/hP
i=1

is minimal (subject to the constraint E k
__1 pi p) if p pk for all i.

Therefore, it suffices to show:

[ 1ph+2< (kp+ hk(p/k) l+’/h)
h+l

or

(3)
1 h)] h+l

P<- h+ i (k+ h(p/k)1

The left-hand side of this inequation does not depend on k. Therefore, the proof
is finished, if it is possible to prove inequation (3) for that k, for which the right-hand
side is minimal. So, consider

Then, the derivative

equals 0, if and only if

f(k)=k+h(p/k) 1/h.

f’(k) 1 _pl/h. k-1/(h+l)

kh+l p,

1/(h+l)k=p

So, by (3), it suffices to show

P =< +i(1p/(h+) +h(p1-1/(h+l))l/h

The right-hand side equals

,1 pl/(h+l) hpl/(h+l) 1/(h+l)]h+l
h+l

+ =[p :p,

which finishes the proof of the claim.
Applying the claim to the tree Tn gives

pl/n < s( Tii).
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So, since s(Tn) is a lower bound on the average number of comparisons for
unsuccessful searches in SST (II), we have the following result:

THEOREM 3. For all n N, II any set ofp permutations of { 1,. , n}, any nondeter-
ministic algorithm solving SST (II) makes at least comparisons on the average.

4. Tightness of the lower bounds. Theorems 1 through 3, of course, only give
nontrivial lower bounds, if the number p of possible permutations is "sufficiently high".
In fact, p needs to grow more than exponentially in n, in order to have not bounded
above by a constant.

One case in which the lower bounds are tight, is p= n!. So every possible
permutation is allowed and by linear search we have O(n) worst case and average
algorithms. On the other hand Theorems 1 and 3 give an fl(n !)= fl(n) lower bound,
showing that linear search is asymptotically optimal. (Of course, this lower bound can
be shown by a much easier argument.) Linear search can be generalized in the following
way:

Let s fl(log n) and assume w.l.o.g, that s divides n. Let II be the set of all
permutations of {1,..., n} obtained in the following way:

{1, , n} is broken up into n/s blocks of size s. The first block contains {1, , s},
the second one contains {s+ 1,..., 2s} etc. Within a block the order of elements is
arbitrary.

So p=(s!)n/s and the lower bounds from Theorems 1 and 3 are

On the other hand, we have the following algorithm to solve SST (II):
Do a binary search on positions 1, s + 1, 2s + 1, etc., i.e., the first positions of the

blocks in order to find the only two blocks which possibly may contain the element
searched for. Then do a linear search in these blocks.

This algorithm performs in the worst case and on the average

O(log (n/s) + s) O(log n log s + s)

=o(s)

comparisons since s fl(log n). So the lower bound given by Theorems 1 through 3
are tight in all these cases. Note, that while s ranges from log n to n, p ranges from
(R)(2 ’’glg’) to (R)(n!).

But not in every case are the lower bounds of this paper tight. As a counter
example let II be the set of all permutations, where the elements {1,..., n/2} are in
their original positions, the other ones are permuted arbitrarily. Clearly

p=(n/2)!

and - (( n12) 0[(n12) /2] 0(/-).
On the other hand it is clear, that no algorithm can do better than O(n) even on the
average, because on the second half of the data a linear search has to be performed.

[AMM]
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ON APPROXIMATION ALGORITHMS FOR 4P*

LARRY STOCKMEYER"

Abstract. The theme of this paper is to investigate to what extent approximation, possibly together with
randomization, can reduce the complexity of problems in Valiant’s class 6 P. In general, any function in
P can be approximated to within any constant factor by a function in the class A’ of the polynomial-time

hierarchy. Relative to a particular oracle, A cannot be replaced by A in this result. Another part of the
paper introduces a model of random sampling where the size of a set X is estimated by checking, for various
"sample sets" S, whether or not S intersects X. For various classes of sample sets, upper and lower bounds
on the number of samples required to estimate the size of X are discussed. This type of sampling is motivated
by particular problems in 6P such as computing the size of a backtrack search tree. In the case of backtrack
search trees, a sample amounts to checking whether a certain path exists in the tree. One of the lower bounds
suggests that such tests alone are not sufficient to give a polynomial-time approximation algorithm for this
problem, even if the algorithm can randomize.

Key words. 4 P, approximation algorithms, probabilistic algorithms, computational complexity, relativiz-
ation

1. Introduction. There are several computational problems which can be formu-
lated as problems of counting the number of objects having a certain property. Valiant
[17] has introduced the class 4 P which includes a variety of counting problems such
as counting the number of perfect matchings in a graph, computing the permanent of
a matrix [17], finding the size of a backtrack search tree [8], and computing the
probability that a network remains connected when links can fail with a certain
probability [18]. For many problems in 4 P, including those just mentioned, no poly-
nomial-time algorithms are known. Indeed, it is not known whether these problems
can be solved at any fixed level of the polynomial-time hierarchy 1 ], 15]. The obvious
algorithm of explicitly counting the number of objects is not efficient since the number
of objects grows exponentially in the size of the input. For example, in computing the
permanent of an n n matrix with 0-1 entries aij, the objects are the n! permutations
on {1,..., n}, and the permanent is equal to the number of permutations r with

1-I’=1 ai,<)= 1. The best known general upper bound is that any 6 P problem can be
solved within polynomial space.

Two known approaches for reducing the computational complexity of problems
are approximation and randomization. Several NP-complete optimization problems,
which are apparently intractable to solve exactly, can be solved in polynomial time if
one is willing to settle for a solution within a constant factor of the optimum [3,
Chapter 6]. Randomization, that is, allowing algorithms to make decisions based on
the outcomes of random coin tosses but requiring that the probability of error be small,
has been useful in solving certain number theoretic problems faster than the best known
deterministic algorithms [12], [14]. The purpose of this paper is to investigate to what
extent approximation, or approximation together with randomization, can reduce the
complexity of counting problems.

Before proceeding to outline the remainder of the paper, we should explain
informally our definitions of "approximation" and "randomization." If f(x) is an

* Received by the editors October 25, 1983, and in revised form July 5, 1984. Portions of this paper
have been reprinted, with permission, from The complexity of approximate counting by L. Stockmeyer,
appearing in the Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 1983,
pp. 118-126, (C) 1983, Association for Computing Machinery, Inc.

f Computer Science Department, IBM Research Laboratory K51-281, 5600 Cottle Road, San Jose,
California 95193.
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integer valued function and r is a constant with r > 1, then a probabilistic algorithm
approximates f(x) to within the factor r if

(1) The value produced by the algorithm is between f(x)/r and r.f(x) with
probability -> 1/2 + e for some fixed e > O.

(In the case of # P problems, each input x determines a set X, such that membership
in X, can be checked in polynomial time, and f(x)- [X,[.)

Regarding previous work, Knuth [8] gives a polynomial-time probabilistic
algorithm for estimating the size of a backtrack search tree where the expected value
of the output of the algorithm is exactly the size of the tree. Lovasz does the same for
computing the permanent of a 0-1 matrix. However, for both of these algorithms the
variance is very large and the algorithms do not satisfy (1). By analyzing the variance
of Lovasz’s algorithm and related algorithms, Karmarkar, Karp, Lipton and Luby 10]
give probabilistic algorithms for the 0-1 permanent which satisfy (1) and whose running
times, although not polynomial in n, are better than the best known deterministic
algorithm for computing the permanent exactly.

One well-known approach for estimating the size of a set X is random sampling.
Assuming that X is a subset of a finite universe U of known size, one would randomly
choose elements of U, compute the fraction 2, of chosen elements which belong to X,
and give /[ UI as an estimate for the size of X. Goldschlager [5] suggests this as an
approximation method for computing the permanent. Since [UI is typically exponential
in n, this "singleton sampling" runs in time polynomial in n and satisfies (1) only if
[X[ >-[U[/n k for some constant k. For example, if IX[ is small, say IXI [U] /2, then
singleton sampling would require more than IU[/2 samples to reach a good estimate.

In 2 we define and study a class of restricted, but very natural, probabilistic
sampling methods motivated by the particular counting problems mentioned above.
Instead of "singleton sampling" the algorithm is allowed to sample a large set S

_
U

in one step; the information returned from the sample is whether S f) X . Depending
on the application, there might be restrictions on the types of subsets S which can be
sampled (some such restrictions are detailed in 2), so we are interested in how the
complexity, measured as the number of samples, depends on the types of samples
which are allowed. Two motivating examples are given in 2. The main technical
results of 2 establish, for two particular classes of sample sets, lower bounds on the
number of samples required to approximate IX I. One of these lower bounds suggests
that this type of sampling will not give a polynomial-time algorithm for approximating
the size of a backtrack search tree.

In 3 we attempt to classify the complexity of approximately computing functions
in # P. The classification is done in terms of the polynomial-time hierarchy (for short,
P-hierarchy) [15]. For any function in #P, it is shown that a machine-at the A level
of the P-hierarchy can compute approximate solutions that are accurate to within the
factor (1 / en-a) for any fixed constants d and e > 0. (As noted above, computing # P
functions exactly is not known to be possible at any finite level of the P-hierarchy.)
The proof is based on the technique, introduced recently by Sipser [13], of estimating
the size of a set by hashing the set into a second set of known size. In the relativized
world, cf. [2], we also can give a corresponding lower bound to the general problem
of approximately computing : P functions: there is an oracle A and a function in # pA
(# P relativized to A) such that the function cannot be approximately computed to
within any constant factor by a machine at the Ap’A level ofthe A-relativized P-hierarchy.
The A upper bound relativizes to an arbitrary oracle. (See [2], [15] for definitions of
oracle machines and the relativized polynomial-time hierarchy.)
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In 4 we give a relativization result that complements a recent result of Sipser
and Gics [13] that BPP is contained in the second level of the P-hierarchy. Recall that
BPP is the class, as defined by Gill [4], of languages accepted by probabilistic poly-
nomial-time Turing machines with error probability <-1/2- e for some fixed e > 0. Sipser
and Gics show that

BPP_ Xf VIH
and this result relativizes to an arbitrary oracle. Given this inclusion, it is natural to
ask whether BPP can be placed even lower in the P-hierarchy. The next lowest class
below EP (3 Hp is A2P, the class of languages accepted by deterministic polynomial-time2 2

Turing machines using oracles in NP. We show that there is an oracle A such that

BPPA A2P’A.
Thus, any attempt to prove BPP_ A cannot proceed by a proof that relativizes to an
arbitrary oracle. The connection between this result and the rest of the paper is that
there is an oracle such that a BPP machine can approximately count the number of
strings of a given length that are in the oracle whereas A2P machines cannot.

2. Intersection-samples.
2.1. Definitions and motivation. If U is a set, 2 u denotes the set of subsets of U,

and uI denotes the cardinality of U. For integer n >- 0, {0, 1}n denotes the set of binary
words of length n and {0, 1} --<n denotes the set of binary words of length n or less. If
x is a word, Ixl denotes the length of x.

It will be convenient first to define a framework which captures several counting
problems. In this framework, a problem is specified by a finite set (universe) U and
a collection of inputs T 2 u. Given an arbitrary input X , we want to approximate
Ixl to within a constant factor. Let N= U[. For the situations which motivate this
question, N is so large that the count cannot be done explicitly. For example, N 2"
where n is the natural measure of the "size" of the problem. We are also given a class
of sets, the samples,

%2u.
For an arbitrary S , a unit cost operation is computing the predicate

INT (X, S)= {10 ifSf3X#,
otherwise.

For what types of sample classes c can a probabilistic algorithm with running time

polynomial in n (=log N) compute an estimate to IX[ accurate to within a constant
factor? Before giving some answers, we should first give some motivation. In particular,
we must justify why INT (X, S) can be viewed as a unit cost operation even when S
is a large set. (Since we are only interested in distinguishing polynomial from nonpoly-
nomial running times, any operation which can be done within time polynomial in n
is viewed as a "unit cost" operation.)

1. Estimating the size of a backtrack search tree. Knuth [8] has considered the
problem of estimating the size of a tree X where X is described implicitly by a

polynomial-time backtrack search procedure. That is, given the name u of a node of
X, the search procedure tells us which sons of u, if any, are in X. Let n be a known
upper bound on the height of X, and to simplify the notation assume that X is binary.
Imagine that X is embedded in F, the full binary tree of height n. The nodes of F are
labeled by strings in {0, 1}-<-": the root is labeled A, and the sons of u are labeled u0
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and u l. Thus, the universe is Utree---{0, 1}<=". In this example, since the input X
_
U

is a tree with the same root as F, X must satisfy the following tree property:

if u X then w X for all prefixes w of u.

Let tree be the class of sets X satisfying the tree property. The tree size problem is

tree Utree, Ctree).

(We have actually defined a family of problems for n _-> 1. For simplicity in this example
and the next, the index n has been suppressed.)

For w an arbitrary node of F, we can determine in time polynomial in n whether
the full subtree of F rooted at w contains a node of X simply by attempting to follow
the search procedure from the root of F to w. Thus the relevant class of samples is
the class of subtree samples:

(subtree (Sw[W {0, 1} -<n }

where

Sw {u {0, 1}--<"lw is a prefix of u}

is the full subtree of F rooted at w. If we view the backtrack search procedure as a
"black box," i.e., if the only way we can access the procedure is by giving it inputs
and looking at its outputs, then subtree samples are, intuitively, the most general way
of accessing the tree X.

2. Counting perfect matchings. For some 4 P-complete problems such as counting
the number of perfect matchings in a graph (equivalently, for bipartite graphs, comput-
ing the permanent of a 0-1 matrix), the corresponding existential question, does there
exist a perfect matching, can be solved in polynomial time [9]. Can this fact be used
to estimate the number of perfect matchings in polynomial time? We do not have a
definitive answer to this question, but we have some preliminary evidence on the
pessimistic side. The problem fits the general framework as follows. Suppose we want
to solve this problem for graphs with n vertices. Let m=n(n-1)/2 and let E--
{el,’’’, ern} be the edges of Kn, the complete graph on n vertices. In this case the
universe is Uword-- {0, 1}m. A particular graph G (viewed as a subgraph of Kn) defines
a subset X of Uword as follows:

if u u/’/2" Urn {0, 1}m, then

u X iff { ej[ uj 1 } is a perfect matching in G.

The ability to check the existence of perfect matchings in subgraphs of G allows us
to compute a variety of intersection samples as follows. Given Ein Eout E with
Ein Eou , in polynomial time we can compute the predicate P(G, Ein Eout) defined
to be true iit G has a perfect matching M E with Ein_ M and Eoutf’)M =.
Specifically, if Ein contains an edge not in G or if Ein contains two edges with a
common endpoint then P(G, Ein, Eout) is false. Otherwise, remove from G all edges
in Ein and Eout and all edges incident on an endpoint of an edge in Ein. Then
P(G, Ein, Eout) iiI the resulting subgraph has a perfect matching. Note that
P(G, Ein Eout) is really an intersection sample in disguise. Specifically, if we define
w Wl wrn by setting w I for all e En, w 0 for all e Eout, and wj otherwise,
then

P(G, Ein Eout)= INT (Xo, Qw)
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where

Qw {u {0, 1}"lu matches w}.

Here, is a "don’t care" symbol that matches 0 and 1. Thus the relevant class of
samples, the partial match samples, is

qgp,, {Q,lw {O, l, .}"}.

Let al {XIX Uworo}. The word counting problem is

word Uword, all)"

An obvious weakness in this definition is the choice of the class of inputs as all
subsets of Uword rather than all X of the form X for some graph G. The reason for
this choice is discussed below.

Another #P-complete problem with a polynomial-time existential question is:
given a graph G and vertices s and t, count the number of subgraphs H of G for
which there is a path from s to in H [18] (this problem arises in network reliability).
In this case, a partial match sample asks whether there is a path from s to in a certain
subgraph of G.

Our formal model of computation in this section is a variation of the probabilistic
decision tree studied previously by Manber and Tompa 11 ]. Fix some counting problem

consisting of a universe U and a class of inputs , and fix a class of samples .
Each internal node of the decision tree is either a sample node or a randomizing node.
A sample node is labeled by a set S and has two branches that are taken depending
on the outcome of INT (X, S) where X is the particular input. A randomizing node
has any number d of branches; each branch is taken with probability 1/d. Each leaf
is labeled by an integer between 0 and N, where N UI. A decision tree solves to
within the factor r with error probability 6 if, for any input X , the tree reaches a
leaf with label between Ixl/r and rlXl with probability =>1- 6. The sample height of
the tree is the maximum number of sample nodes along any path from the root to a
leaf. As Manber and Tompa point out, a lower bound on sample height implies, to
within a constant factor, a lower bound on the expected number of samples (expectation
with respect to the choices made at randomizing nodes), since branches which are
much longer than the expected value can be pruned while increasing the error probabil-
ity only slightly.

DEFINITION. H(N, , , r, 6) is the minimum sample height of a probabiiistic
decision tree, using only samples from , which solves to within the factor r with
error probability , where N is the size of the universe of .

Throughout the rest of 2, r and are fixed constants with r > 1 and 0 < < 1/2.
2.2. Statements of results and discussion. In the case of subtree samples, the

following lower and upper bounds are proved:

H(N, tree, (subtree, r, )--’(N1/2),
n(N, tr, subtrCe, r, 8) O((N log N)1/).

(Here and subsequently, the constants implicit in the O- and l-notations depend on
r and &) Knuth [8] has reported success in practice with a simple O(log N) time
probabilistic procedure for estimating the size of a backtrack search tree. The f(N1/2)
lower bound is not meant to contradict this, but it does suggest that the success must
be linked to the properties of trees generated by particular backtrack search procedures,
It should also be noted that the lower bound fl(N1/-) is proved when the input X is
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further restricted to a subset ’ of tree. For 1 <_-d-<_ n, let X(d, 0) be the tree whose
nodes are {0, 1} --<a. For 1 -< k<-2a, let X(d, k) be the tree X(d, 0) together with the full
subtree of height n d attached to the kth leaf of X(d, 0). Then ’ is the set of trees
X(d, k) for 1 =< d-< n and O<-k<-2a. It is relevant that the input can be restricted to

’ because the trees in ’ can actually be generated by backtrack search procedures
of size O(n), whereas just naming trees in tree requires names of length 2n.

In the case of partial match samples we show that

H(N, word, pm, r, 8) 12(N1/5).
Since N is exponential in the size of the graph, the 12(N1/5) lower bound suggests
that this type of sampling does not give an efficient way of estimating the number of
perfect matchings. However, there are two loopholes in this interpretation. First, as
noted above, we do not restrict the input X to specify the set of perfect matchings of
some graph. Unfortunately, with this restriction an interesting lower bound cannot be
proved for the (nonuniform) decision tree model. To see this, let wi {0, 1, ,}m have
1 in the ith position and .’s elsewhere. If INT (Xc,, Qw,)= 1 then e is an edge of the
graph G. If INT (Xc,, Qw,) 0 then we can assume that ei is not an edge of the graph
since it is not used in any perfect matching. Thus, by making m samples, the decision
tree can determine the graph. Since the graph determines the number of its perfect
matchings, a nonuniform decision tree, using the samples w, can find the number of
perfect matchings within time polynomial in the size of the graph. The second loophole
is that it is conceivable that a different class of samples could lead to an efficient
estimation procedure. There is room for more work on this problem.

Remark. It is natural to ask whether the structure of the subtree and partial match
samples is being used to prove these lower bounds. Do lower bounds of the form N
hold for arbitrary classes of samples? It is not difficult to see that a much smaller
sample height suffices if any subset can be a sample. Letting

all g all) and

it can be shown that

H(N, all, (all, /’ 8) O(loglog N logloglog N),

H(N, al,, (lall, r, ) 12(loglog N).

The simple proofs are sketched in [16]. Of course, this upper bound is useless in cases
where N is exponentially large since time N is needed just to name a member of qall.
It is also noted in [16] that without approximation (i.e. r 1) or without randomization
(i.e./5 0), the obvious upper bound of N samples cannot be significantly improved,
even when any subset of U can be a sample:

H N,. all, (all, 1, ’(N),

H N, an, CaU, r, 0) 12(S).

2.3. Proofs. For the lower bound proofs it is useful to assume that any probabilistic
decision tree has the property that there is a constant p such that for any input X and
any leaf l, the probability that the leaf is reached is either p or 0. Any decision tree
T not having this property can be modified to have the property without changing its
sample height. First, by adding new randomizing nodes with outdegree 1, modify T
so that the same number, say c, of randomizing nodes appear on every root-to-leaf
path. Second, modify T so that all randomizing nodes have the same outdegree d
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(where d can be taken as the least common multiple ofthe outdegrees of all randomizing
nodes in the original T). Then p d -c. Details are left to the reader.

The proofs of the lower bounds for subtree and partial match samples are similar.
In both cases we assume that the problem can be solved by a probabilistic decision
tree T with sample height smaller than the desired lower bound. We find inputs D
and D U V, with rlDI < ID t_J VII r, such that a substantial fraction of the leaves with
label between IDI/r and rlDI which are reached by T on input D are also reached by
T on input D t_J V. From this we infer a contradiction, since an answer <= riD is incorrect
for input D U V. There are two main steps.

I. Find a set D U with IDI N/ such that if S and S is "large" (roughly
ISI >- N1/2) then D f) S . (Informally, if we restrict attention to inputs X with D X,
then all "large" samples supply no information about X-D since the answer to any
such sample is always that X fq $ .)

II. Find a collection of sets V1," ", V, U such that
(m) VI >- (r2 + 1)IDI for all j, and
(B) if $1, $2, , Sg c, each Sk is "small" (i.e., Sk f3 D for 1 --<_ k =< g) and

g_-< h where h is the lower bound on sample height to be proved, then the
union of Sk for 1 --< k -<_ g intersects at most the fraction (1/2- 6) of the V’s.

Given I and II, the lower bound h on sample height is proved as follows. Let T be a
decision tree with sample height h that approximates IxI to within the factor r with
error probability 6. If r is a root-to-leaf path and J

_
U, say that r is valid for J if

the answers given at sample nodes along r are consistent with the input being J. Let
rl," ", rs be the root-to-leaf paths in T that are valid for D and such that the leaf
label is between ID[/r and riD I. By letting the input be D, we must have sp >-1-6,
where p is the probability defined in the first paragraph of 2.3. Consider the s
0-1 array C { cij} defined as follows. For 1 _<- <= s and 1 -<j -<_ t, if $1, $2, , Sg are
the sample nodes on path ri that do not intersect D and if the union of the Sk for
1 =< k-<_ g intersects V then cij 1; otherwise, c0 0. By II(B), the density of l’s along
any row of C is at most (1/2-6). Therefore, there must be a column z such that the
density of l’s in column z is at most (1/2- 6), so the density of O’s is at least (1/2+ 6). But
Cz 0 means that the path r is valid for D t_J Vz. This is true because, by (I), any large
sample on the path r gives the same answer, " ," for any input containing D, and
by definition of cz no small sample on ’ intersects Vz. By II(A), the answer at the
leaf of any path ’, is <= riD < [D U Vzl/r. Therefore, when given the input D U Vz, the
tree gives a too small answer with probability at least

(1/2+6)sp>=(1/2+6)(1-6)>=1/2> 6.

THeOReM 2.1. H(N, @t, (subtree, r 6) -(N1/2).
Proof Recall from 2.1 that F is the full binary tree of height n. The depth of a

node of F is its distance to the root. N 2"+1-1 is the number of nodes of F. Let

d [(n- l-log (r2+ 1))/2J,

and let D be the set of (labels of) nodes of F with depth -<_ d. Let Ul, U be the
nodes of depth d. For 1 -<j-< t, let V be the set of (labels of) nodes in the full subtree
of F rooted at u. A simple calculation shows that II(A) holds by choice of d, and that

l-l(N1/2). From the tree structure it can be seen that if S (subtree and S is "small,"
i.e., if S fq D , then there is exactly one j such that S f’) V . (Specifically, if w
is the root of the subtree S, then S f-) D implies that the depth of w is greater than
d, so exactly one of Ul," ", u, is an ancestor of w.) Thus, a union of h subtree samples
can intersect at most the fraction h/t of the V’s. Taking h (1/2- 6) gives the result, l-I
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THEOREM 2.2. H(N, word, (pm, r, )--’(N1/5).
Proof Recall that N 2". Say for simplicity that m is even. Using only the fact

that (pm contains 3" subsets, a simple probabilistic argument shows that there is a set
D with [D} O(mN1/2) such that if Q e (pm and IQ[ >= NIl2 then Q tq D . Specifi-
cally, for each u e U, put u in D with probability q amN-1/2 where a is a constant
to be chosen later. By Chebyshev’s inequality,

Pr {ID[->- 2amN1/2} 0( N-1/2).

If O- U and [Ol >- N’/2,

Pr {D f’] Q } <- (1 q)lQI <__ e -o,m.

Choose the constant a so that 3" e-’-<1/2. Then for all sufficiently large N, with
nonzero probability IDI- O(mN and D intersects all Q (pm having N

If w {0, 1, ,}" is the name of a partial match sample Qw, let ,w be the number
of *’s in w. Note that IQwl 2*w. Choose integer d such that

2m/z+a >= (r2 + 1)[D[.

Note that d O(log m). Let

{V,..., V,}={Qwlw{0, 1,,}" and ,w=m/2+cl}.

II(A) holds by choice of d. If Qu is "small," i.e., if ,u <= m/2, we must find an upper
bound for f(u) defined to be the fraction of the V’s that Qu intersects. Note that
Q, fq Qw iff u matches w. Since f(u) is an upper bound, we can assume that
u m/2, and by symmetry assume that u ulu2 where ul is a string of m/2 O’s and

l’s and u2 is a string of m/2 ,’s. Consider the w’s with w m/2 + d that have k ,’s

in the first m!2 positions and therefore m!2 + d k ,’s in the last rn/2 positions. Letting
N(u, k) be the number of such w’s that match u,

N(u, k)=(m/k2)( m/2 )2k_d

m/2+d-k

t=
m/2+d

2

f(u (u, .
Since d O(log m), there is a constant c such that

>2 m
m/2+d

SO >= 23"/2-d / inc. Therefore,

[rnk2 (lqq/2) ][m/2._ (/____2)] "/22m/22-3"/2mf(U)<-
=d

2k k’d= d
2-3m/2m <--3

Therefore, a union of N/5(=2"/5) partial match samples intersects at most the fraction

2 "/5. f(u) _-< 2"/53 "/22-"m o(1)

of the V’s, and the lower bound follows as outlined above. [q
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THEOREM 2.3. H(N, itree (subtree, /’7 t) O((N log N) 1/2).
Proof. Number the nodes of F in inorder (to number a tree, number the left

subtree, then the root, then the right subtree). For u {0, 1}-<-" let d(u) be the inorder
label of the node u. If X is a subtree of F, define

d(x): x}.

For 1 -< a _<- b _-< N, let

[a,b]={k[a<-_k<-b},
and define INT (X,[a, hi) to be 1 iff d(X)fq[a, b] . Because the integer labeling is
inorder, for each interval [a, b] and any two nodes u and v with d(u), d(v)[a, hi,
if w is the least common ancestor of u and v, then d(w) [a, b]. Therefore, for each
[a,b] there is a unique w (=w(a,b)) such that d(w)[a, b] and, for all nodes
u, d(u)[a, b] implies that w is an ancestor of u. Since X satisfies the tree property

INT (X, [a, b]) INT (X, Sw(a, ,)).

Therefore, it suffices to estimate IX] using "interval samples" of the form [a, b]. For
some parameter M, the algorithm has two cases, IX[_-< M and IX[ >_-M. The first case
has M phases and does not use randomization. In the first phase, by asking questions
of the form INT (X, [1, k]) and doing binary search on k, find the smallest k, say kl,
such that k d(X); this takes O(log N) samples. During the second phase, by asking
questions of the form INT (X, [kl + 1, k]) and again doing binary search on k, find the
second smallest k with k d(X), and so on. The first case uses O(M log N) samples.
If IX] < M, then IX] will be found exactly at phase number IX[ + 1. If each phase in
the first case finds a new element of d(X), then we know that [X]>_- M, and the second
case is invoked. In this case, since IX[ >-M, Chebyshev’s inequality implies that there
is a constant c (depending only on r and 6) such that the algorithm approximates
to within the factor r with error probability 6 by making oN/M independent "single-
ton" samples of the form [k, k], calculating the fraction y of samples with
INT (X, [k, k]) 1, and answering [TNJ. The total number of samples for both cases
is O(M log N+aN so choosing M (N/log N) 1/2 gives the result.

3. A general upper bound. An NP-machine is a nondeterministic polynomial-time
Turing machine [3], [6]. Assume that NP-machines have at most two nondeterministic
choices at each step so that accepting computations on inputs of length n can be
represented as binary strings of length p(n) where p(n) is the machine’s polynomial
time bound. If M is an NP-machine and x {0, 1}* is an input, let AccM (x)

_
{0, 1}

be the set of accepting computations of M on input x. Define the function CM {0, 1}*
Nby

C(x)

Valiant’s [17] class # P is

# P { C1vt[M is an NP-machine}.

For A {0, 1}*, #pA is defined similarly except that M is a nondeterministic poly-
nomial-time oracle machine [2],[15] that can construct binary strings and make
decisions based on whether or not they belong to A. We also need a few classes of
the relativized P-hierarchy. Let pA(NpA) be the class of languages accepted by deter-
ministic (nondeterministic) polynomial-time oracle machines with oracle A. If is a
class of languages, let P()(NP()) be the union of pA(NpA) over all A . Let co-
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be the class of complements of languages in . Define
p,AE2

p,A NP(NpA), 1-I2
p’A co-E 2

pAA2P’A= P(NpA), A3P’A= P(2’ )"

When A is not present, the empty oracle is assumed. We extend the classes A2P’A and
A’A to include functions from {0, 1}* to N; since the "toplevel" machine is deterministic,
the definition of this extension should be clear.

DEFINITION. If f, g: {0, 1}* --) N and r:N, we say that g r-approximatesf if, for
all n and all x of length n,

f(x)
<

r(n)= g(x) <--_ r(n) f(x).

THEOREM 3.1. Let f P and let e, d>0. There is a gA such that g (1 +
en-d)-apprOximates f Moreover, this relativizes to an arbitrary oracle A.

Proof Let f C4 for some NP-machine M and let p(n) be M’s polynomial time
bound. Fix an input length n, and let p(n). Consider the following predicate.

Hash(x, m):
There exist m 0-1 matrices H1, , H, such that

(2) for each zAcc4(x), there exists an such that Hiz# Hiz’ for all z’
Acc(x) -{z}.

Here, Hz means multiplication of the rn matrix H by the t-vector z, yielding some
m-vector in {0, 1}", where arithmetic is done modulo 2. The key fact, proved by Sipser
[13], is that there is a fixed constant c such that

(3) IAcc (x)[ -< 2"- Hash(x, m).

(Actually, this holds for any subset of {0, 1}’, not just those of the form Acct(x).) On
the other hand, if Hash(x, rn) is true then, by (2), for each z Acc4(x) there is a
unique pair (i, Hz) where 1 -< _-< rn and Hz {0, 1 }’, so

(4) Hash(x, rn)lAcc(x)[ _-< rnZm.
Gics has observed that the predicate Hash(x, m) belongs to Z2p (see [13]). To see

this, first note that the existential quantifier, "there exists an i" in (2) has range
rn O(p(n)), so it can be replaced by a deterministic search. Once this is done, the
definition of Hash(x, m) has an obvious :IV form. Therefore, a deterministic poly-
nomial-time machine, making calls on an oracle for Hash, can find the minimum rn
such that Hash(x, rn) is true. If rn is this minimum then, by (3) and (4),

2"--’_-< IAcc(x)l _-< m2",

so we have computed C4(x) to within the factor rn2c+. To achieve the smaller factor
1 + en -a, by running M k times in series it is easy to modify M to an NP-machine R
with

C(x) (Cl(X))k for all x.

Applying the above hashing procedure to R, we can compute C(x) to within the
factor rn2+l, so we can compute Cl(X) to within the factor (rn2+)/, where now
m= O(k. p(n)). By choosing k to be a sufficiently large polynomial (k=O(na+)
works), this latter factor is less than 1 + en -a. The relativized case is identical.
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The next result shows that any attempt to replace A by A in Theorem 3.1 cannot
proceed by a proof that relativizes to an arbitrary oracle.

THEOREM 3.2. There are a recursive oracle A and a function f # pa such that, for
any constant r, if g r-approximates f then g

_
A.A.

Proof Let h(n)= ng". For A_ {0, 1}*, let

Ca( n lm f’l (O,1}"l.
The oracle A will be constructed such that, for all n,

(5) either Ca(n)<=h(n) or Ca(n)>=2"--h(n).

Let f(x)= CA(Ix[). Clearly fc # pA. Let

L= {xICa(lxl) <- h([x[)}.
If g A’A and g r-approximates f for some constant r, then by using property (5) of
A it is easy to see that L A’a. We construct A so that LA’a.

Let M1, M2,’’’ be an enumeration of all pairs (Dj, Nk) for j, k->_ 1, where D1,
D2, is an enumeration ofthe deterministic polynomial-time oracle Turing machines
and N, N2,’’’ is an enumeration of the nondeterministic polynomial-time oracle
Turing machines. Let pj (resp., qk) be the polynomial running time of D (resp., Nk).
If Le A’A then there is some Mi (D, Nk) such that D accepts L when D calls Nk
as an oracle and Nk calls A as an oracle.

The construction of A proceeds by stages. During the construction we have two
disjoint finite sets of strings B and B that grow dynamically. At any point, B (resp.,
B) is the set of strings that have been committed to be in A (resp., not in A). Strings
are never removed from B or B. Initially, B B . During the ith stage we extend
the definitions of B and B so that Mi does not accept L. Let/I be so large that

h(nl)<2"’-h(n,).

Place all strings of length _-< nl in B. The construction has the property that just before
the start of stage i, a string is committed (in either B or B) if[ its length is _<-n.

Stage i. Let M (Dj, Nk). Choose n > n so large that

p(n) qk(p(n)) < h(n).

Set/1i+1 qk(p(n)). If n, < Izl < n,+, and ]z] # n, place z in/. Let x=0". Start simulating

D on input x until D makes its first oracle call, asking whether the string y is accepted
by N with oracle A. Since [y[<-_p(n), any oracle query "z A?" made by N has
Iz]-< n+,. Thus, at this point, the answer to any such query with Izl n is determined
by the commitments to B and B made so far. There are two possibilities.

1. For all ways of extending B and B by adding uncommitted strings of length
n, Nk does not accept y. In this case, the answer to D’s query is that Nk does not
accept y. Continue simulating Dj until its next oracle call.

2. If the first case does not hold, then N has an accepting computation a on
input y. Let S be the set of uncommitted strings of length n that are queried along c.

Note that I 1-_< n,/,, so Isl_-</1i+1" For each z e S, commit z to be in either B or /
depending on whether the answer to the query "zeA?" in a is "yes" or "no,"
respectively. After these commitments, Nk will accept y no matter how B and B are
extended further, since a nondeterministic machine accepts if it has any accepting
computation, and further additions to B and B cannot invalidate the accepting
computation a. Continue simulating D until its next oracle call.
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Each subsequent oracle call of Dj is handled similarly by either case 1 or 2. At
the end of Dj’s computation, at most p(n) ni+l < h(n) strings of length n have been
committed. If D accepts (resp., rejects) x, place all uncommitted strings of length n
in B (resp., B). In either case, D makes an error, l-1

4. BPP and the P-hierarchy. A probabilistic oracle Turing machine has both coin-
tossing states as in the definition of probabilistic Turing machines [4] and oracle query
states as in the definition of oracle Turing machines [2], [6]. Following Gill [4] define
BPPa to be the class of languages accepted by polynomial-time probabilistic oracle
Turing machines which, for all inputs, have error probability <=1/2-e for some fixed
e > 0 when the oracle A is used.

Sipser and Gics [13] show that, for any oracle A,

BPPa 2
p’A I-I2p’A.

THEOREM 4.1. There is a recursive oracle A such that

BPPA 7 A2P’A
Proof. Let h(n), A and L be as in the proof of Theorem 3.2. Since LC:A"A we

only have to observe that L BPPA. Given an input of length n, the probabilistic oracle
Turing machine generates a random string z of length n and asks whether z A. If
z A then the machine rejects, or if z A then the machine accepts. The error probability
is _-< n lg n/2n which is less than 1/4 for all sufficiently large n. [3

5. Conclusion. It has been shown that any function in # P can be approximated
by a function in A. Concerning lower bounds, if the #P problem is based on an
NP-complete problem, for example, counting the number of satisfying truth assign-
ments of a given propositional formula, it is easy to see that computing r-approximate
solutions is NP-hard for any constant r. However, for approximately computing the
permanent of a 0-1 matrix, where the corresponding existential question is solvable
in polynomial time, the issue of lower bounds is open.

Question. Classify the computational complexities of approximately computing
the permanent of a 0-1 matrix and approximately counting the number of satisfying
assignments of a propositional formula. In particular, is the former problem NP-hard?
Is the latter problem -hard for some class of the P-hierarchy above NP?

Recently, Karp and Luby [7] have discovered polynomial-time probabilistic
approximation algorithms for certain problems in # P such as counting the number of
satisfying assignments of a propositional formula given in disjunctive normal form.

Acknowledgments. I am grateful to Richard Lipton for suggesting the question of
whether the size of a tree could be estimated using subtree samples and for many
helpful discussions. One of the referees provided an extensive list of comments which
helped improve the presentation of this material.
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AN EFFICIENT PARALLEL BICONNECTIVITY ALGORITHM*

ROBERT E. TARJAN’ AND UZI VISHKIN:I:

Abstract. In this paper we propose a new algorithm for finding the blocks (biconnected components)
of an undirected graph. A serial implementation runs in O(n + m) time and space on a graph of n vertices
and m edges. A parallel implementation runs in O(log n) time and O(n + m) space using O(n + m) processors
on a concurrent-read, concurrent-write parallel RAM. An alternative implementation runs in O(n2/p) time
and O(n2) space using any number p <= n/log n of processors, on a concurrent-read, exclusive-write parallel
RAM. The last algorithm has optimal speedup, assuming an adjacency matrix representation of the input.

A general algorithmic technique that simplifies and improves computation of various functions on trees
is introduced. This technique typically requires O(log n) time using processors and O(n) space on an
exclusive-read exclusive-write parallel RAM.

Key words, parallel graph algorithm, biconnected components, blocks, spanning tree

1. Introduction. In this paper we consider the problem of computing the blocks
(biconnected components) of a given undirected graph G (V, E). As a model of
parallel computation, we use a concurrent-read, concurrent-write parallel RAM
(CRCWPRAM). All the processors have access to a common memory and run
synchronously. Simultaneous reading by several processors from the same memory
location is allowed as well as simultaneous writing. In the latter case one processor
succeeds but we do not know in advance which. This model, used for instance in
[SV82], is a member of a family of models for parallel computation. (See [BH82],
[sv8], [V83c].)

We propose a new algorithm for finding blocks. We discuss three implementations
of the algorithm:

1. A linear-time sequential implementation.
2. A parallel implementation using O(log n) time, O(n + m) space, and O(n + m)

processors, where n wl and rn
3. An alternative parallel implementation using O(n2/p) time, O(n2) space, and

any number p _-< n2/log2 n of processors. This implementation uses a concurrent-read,
exclusive-write parallel RAM (CREW PRAM). This model differs from the
CRCW PRAM in not allowing simultaneous writing by more than one processor into
the same memory location. The speed-up of this implementation is optimal in the
sense that the time-processor product is O(n2), which is the time required by an optimal
sequential algorithm if the input representation is an adjacency matrix.

Implementation 2 is faster than any of the previously known parallel algorithms
SJ81 ], [Ec79b], [TC84]. Eckstein’s algorithm [Ec79b] uses O(d log2 n) time and O((n +
m)/d) processors, where d is the diameter of the graph. The first (resp. second)
algorithm of Savage and Ja’Ja’ [SJ81] uses O(log n) (resp. O((log- n) log k)) time,
where k is the number of blocks, and O(n3/log n) (resp. O(mn+ n2 log n)) processors.

* Received by the editors August 11, 1983, and in final revised form August 22, 1984. This is a revised
and expanded version of the paper Finding biconnected components and computing treefunctions in logarithmic
parallel time, appearing in the 25th Annual Symposium on Foundations of Computer Science, Singer Island,
FL, October 24-26, 1984, (C) 1984 IEEE.

f AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
Courant Institute, New York University, New York, New York 10012 and (present address) Depart-

ment of Computer Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
The research of this author was supported by the U.S. Department of Energy under grant DE-AC02-
76ER03077, by the National Science Foundation under grants NSF-MCS79-21258 and NSF-DCR-8318874,
and by the U.S. Office of Naval Research under grant N0014-85-K-0046.
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Tsin and Chin’s algorithm [TC84] matches the bounds of our implementation 3. These
algorithms use the CREW PRAM model, which is somewhat weaker than the
CRCW PRAM model. However, Eckstein [Ec79a] and Vishkin [V83a] present general
simulation methods that enable us to run implementation 2 on a CREW PRAM in
O(log2 n) time, without increasing the number of processors. On sparse graphs, the
resulting algorithm uses fewer processors than either our implementation 3 or the
algorithm of Tsin and Chin.

We achieve our improvements through two new ideas:
1. A block-finding algorithm that uses any spanning tree. The previously known

linear-time algorithm for finding blocks uses a depth-first spanning tree [Ta72]. Depth-
first search seems to be inherently serial; i.e. there is no apparent way to implement
it in poly-log parallel time. The algorithm uses a reduction from the problem of
computing biconnected components of the input graph to the problem of computing
connected components of an auxiliary graph. This reduction can be computed efficiently
enough both sequentially and in parallel that the running time of the fastest parallel
connectivity algorithm becomes the only obstacle to a further improvement in
implementation 2. (See the discussion in 5.)

2. A novel algorithmic technique for parallel computations on trees is introduced.
Given a tree, the technique uses an Euler tour of a graph obtained from the tree by
adding a parallel edge for each edge of the tree. Therefore, we call is the Euler tour

technique on trees. This technique allows the computations of various kinds of informa-
tion about the tree structure in O(log n) time using O(n) processors and O(n) space
on an exclusive-read exclusive-write parallel RAM. This model differs from the
CREW PRAM in not allowing simultaneous reading from the same memory location.
In the present paper we show how to use this Euler tour technique in order to compute
preorder and postorder numbering of the vertices of a tree, number of descendants
for all vertices, and other tree functions. Recently Vishkin [V84] proposed further
extensions of this technique. (See 5.) After the appearance of the first version of the
present paper Awerbuch et al. [AIS84] and independently Atallah and Vishkin [AV84]
essentially applied Euler tours on trees to finding Euler tours of general Eulerian
graphs. See [AV84] for an explanation of this connection. The previously best known
general technique for parallel computations on trees is the centroid decomposition
method, which gives O(log2 n)-time algorithms. See [M83] for a discussion of this
method and its use. The centroid decomposition method is the backbone of an earlier
paper by Winograd [Wi75].

The idea of reducing the biconnectivity problem to a connectivity problem on an
auxiliary graph was discovered independently by Tsin and Chin [TC84], who used the
idea in their block-finding algorithm. However, their algorithm has two drawbacks:

(1) Their auxiliary graph contains many more edges than ours. This complicates
the computation of the auxiliary graph and, more important, does not lead to a fast
parallel algorithm using only a linear number of processors. One of the elegant features
of our algorithm is that the same reduction is used in all three implementations.

(2) Their computation of preorder and postorder numbers and number of descen-
dants in trees takes O(log n) time using n2/log n processorsualmost the square of the
number of processors that we use.

The remainder of the paper consists of four sections. In 2 we develop the
block-finding algorithm and give a linear-time sequential implementation. In 3 we
describe our O(log n)-time parallel implementation and present the Euler tour tech-
nique. Section 4 sketches our alternative parallel implementation. In 5 we discuss
variants of the algorithm for solving two additional problems: finding bridges and
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directing the edges of a biconnected graph to make it strongly connected. We also
discuss possible future work.

Note. If a parallel algorithm runs in O(t) time using O(p) processors then it also
runs in O(t) time using p processors. This is because we can always save a constant
factor in the number of processors at the cost of the same constant factor in running
time.

Historical remark. A variant of the block-finding algorithm presented here was
first discovered by R. Tarjan in 1974 [T82]. U. Vishkin independently rediscovered a
similar algorithm in 1983 and proposed a parallel implementation and the Euler tour
technique [V83b]. Subsequent simplification by the two authors working together
resulted in the present paper.

2. Finding blocks. Let G (V, E) be a connected undirected graph. Let R be the
relation on the edges of G defined by el Re2 if and only if el e2 or el and e2 are on
a common simple cycle of G. It is known that R is an equivalence relation [Ha69].
The subgraphs of (3 induced by the equivalence classes of R are the blocks (sometimes
called biconnected components) of G. The vertices in two or more blocks are the cut
vertices (sometimes called articulation points) of G; these are the vertices whose removal
disconnects G. The edges in singleton equivalence classes are the bridges of G; these
are the edges whose removal disconnects G. (See Fig. 1.)

2 5

(a)

9

6 5

8 7

:11

5 11

FIG. 1. (a) An undirected graph. (b) Its blocks. Vertices 4, 5, 6 and 7 are cut vertices. Edges {6, 7}, {5, 10},
and {5, 11} are bridges.

We can compute the equivalence classes of R, and thus the blocks of G, in
O(n+m) serial time using depth-first search [Ta72], where n=lVI and
Unfortunately, this algorithm seems to have no fast parallel implementation. In this

In this paper a cycle is a path starting and ending at the same vertex and repeating no edge" a cycle
is simple if it repeats no vertex except the first, which occurs exactly twice.
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section we develop an O(n + m)-time serial algorithm that is well-suited for parallel
implementation. The algorithm can use any spanning tree, notjust a depth-first spanning
tree.

We shall define an auxiliary graph G’ of G whose connected components corre-
spond to the blocks of G. The vertices of G’ are the edges of G; if S is a set of edges
in G, S induces a block of G if and only if S induces a connected component of G’.
Let T be any rooted spanning tree of G. We shall denote the edges of T by v-> w,
where v is the parent of w, denoted by p(w). Let the vertices of T be numbered from
1 to n in preorder and identify each vertex by its number. G’ contains each edge of
G as a vertex and all edges of the following forms (see Fig. 2):

(i) {{u, w}, {v, w}}, where u--> w is an edge of T and {v, w} is an edge of G- T
such that v < w.

(ii) {{u, v}, {x, w}}, where u-> v and x--> w are edges of T and {v, w} is an edge
of G-T such that v and w are unrelated in T.

(iii) {{u, v}, {v, w}}, where u--> v and v--> w are edges of T and some edge of G
joins a descendant of w with a nondescendant of v.

1(1,11)

(2,4) x---x 3(2,11)

(c)

/,2,11)
.// ,(4,11)

8(8,c.,..)) .(4’9) 11(11’11)

"N\\\x 7(7,9) 10(10,10)

9(8,9)

(b) {z,4} {,4}

{4,e} {4,}

{-,} {,7}/
{,} {,}

{8,9} {7,9} {5,10}

FIG. 2. (a) A spanning tree of the graph in Fig. 1. Dashed e@es are nontree egges. Vertices are numbered
in preorder. Numbers in parentheses are the low and high number of each vertex. (b) e auxilia graph G’.

The intuition behind this construction is that every edge of G- T defines a cycle
consisting of this edge and the path in T joining its endpoints. All edges on this cycle
are in the same biconnected component. We add enough edges to G’ so that the vertices
in G’ corresponding to the edges on the cycle are in the same connected component.

THEOREM 1. TWO edges of G are in a common block of G if and only if as vertices

of G’ they are in a common connected component of G’.
Proofi Any edge {x, y} of G- T defines a simple cycle of G, consisting of edge

{x, y} and the unique path in T joining x and y. These cycles are a cycle basis of G;
the edge set of any cycle is the mod-two sum of the edge sets of appropriate basis
cycles [Be73]. Define the relation R’ by e]R’e2 if and only if e] and e2 are two edges
of G on a common basis cycle, and let R’* be the reflexive, transitive closure of R’.
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We claim R’* R. Since R is an equivalence relation and R’ c_ R, we have R’*
___

R.
To prove the converse, suppose el Rea. Then el and e2 are on a common simple cycle,
which is a mod-two sum of basis cycles C1, C2,’", Ck. Without loss of generality we
can order CI, Ca,’", Ck so that Ci for > 1 has at least one edge in common with
some Cj such that j < i. (Otherwise the mod-two sum of C1, Ca,"’, Ck would induce
a disconnected subgraph.) It follows by induction on k that all edges in C, Ca, , Ck
are equivalent under R’*, and in particular el R’*e2. Thus R c_c_ R’*.

Let {u, v} and {x, w} be adjacent in G’. If case (i) holds, {u, v} is on the basis
cycle defined by {x, w}. (In this case x v.) If Case (ii) holds, {u, v} and {x, w} are on
the basis cycle defined by {v, w}. If Case (iii) holds, say {y, z} is an edge with y a
descendant of w and z a nondescendant of v =x, then {u, v} and {x, w} are on the
basis cycle defined by {y, z}. Thus in all cases {u, v} and {x, w} are in the same block
of G.

Conversely, let {x, y} be an edge of G- T defining a basis cycle consisting of edge
{x, y}, edges on the tree path from z to x, and edges on the tree path from z to y,
where z is the nearest common ancestor of x and y. Without loss of generality suppose
x <y. By Case (i), {x, y} and {p(y), y} are adjacent in G’. The existence of {x, y}
implies by Case (iii) that any two edges on the tree path from z to x are adjacent in
G’. Similarly any two edges on the tree path from z to y are adjacent. If z x, the
tree path from z to x is empty. Otherwise (i.e. z x), x and y are unrelated, and by
Case (ii) {p(x), x} and {p(y), y} are adjacent in G’. Thus all edges on the basis cycle
are in the same connected component of G’. The theorem follows.

Theorem 1 gives the following O(n + rn)-time serial algorithm for finding blocks:
Step 1. Find a spanning tree T of G using any linear-time search method. Number

the vertices of G from 1 to n in preorder and identify each vertex by its preorder
number. Compute the number of descendants nd(v) of each vertex v by processing
the vertices in postorder using the recurrence nd(v)= 1+ {nd(w)lv-> w in T}. (We
regard every vertex as a descendant of itself.) A vertex w is a descendant of another
vertex v if and only if v <- w <= v + nd (v) 1 [Ta74a].

Step 2. For each vertex v, compute low(v), the lowest vertex that is either a
descendant of v or adjacent to a descendant of v by an edge of G-T, and high(v),
the highest vertex that is either a descendant of v or adjacent to a descendant of v by
an edge of G-T. The complete set of 2n low and high vertices can be computed in
O(n+m) time by processing the vertices of T in postorder using the following
recurrences:

low(v)=min ({v}t_J{low(w)lv--> w in T}U{wl{v w} in G- T});
high(v)=max ({v}t_J{high(w)lv-> w in T}t_J{wl{v, w} in G- T}).
Step 3. Construct G", the subgraph of G’ induced by the edges of T, as follows.

(The edges of G" are those implied by cases (ii) and (iii).) For each edge {w, v} in
G- T such that v+ nd(v)<- w, add {{p(v), v}, {p(w), w}} to G" (Case (ii)). For each
edge v--> w of T such that v 1 add {{p(v), v}, {v, w}} to G" if low(w) < v or high(w)>=
v + nd v (Case (iii).)

Step 4. Find the connected components of G" using any kind of linear-time search.
Step 5. Extend the equivalence relation on the edges of T (the vertices of G") to

the edges of G- T by defining {v, w} equivalent to {p(w), w} for each edge {v, w} of
G-T such that v < w (Case (i).)

It is easy to implement this algorithm to run in O(n + rn) time using standard
techniques. (See [Ta72]). If only a serial implementation is desired, the algorithm can
be simplified somewhat (see [Ta82]); the algorithm as presented is designed for easy
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parallel implementation. Note that each edge of G-T is a vertex of degree one in
G’, and G" contains n- 1 vertices and at most m- 1 edges.

Remark. Although we have assumed that G is connected, we can use the algorithm
to find the blocks of a disconnected graph by applying it to each of the connected
components (in series in the case of the implementation in this section, in parallel in
the case of the implementations in 3 or 4). This does not change the resource bounds
of the algorithm.

3. A fast parallel implementation. In this section we describe how to implement
the block-finding algorithm of 2 to run in O(log n) time using O(n + m) processors
on a CRCW PRAM. We shall emphasize the ideas involved, only sketching the details.
As the input representation, we assume that the vertex set is V { 1, 2, , n} and that
each undirected edge {i, j} is represented by two directed edges (i,j) and (j, i). Each
vertex has a list of its outgoing edges: adj(i) points to the first such edge and
next((i,j)) points to the edge after (i,j) on i’s list. (If there is no such edge, next((i,j))
null.) Each edge (i,j) also has a pointer to its reversal (j, i). Each vertex and each
directed edge (i, j) has its own processor, denoted by pr(i) and pr(i,j), respectively.

Remark. This input representation is the most convenient one for our purposes,
but it is not the only one that will work. For example, we can begin with an array of
the 2m directed edges in arbitrary order and use the O(log m)-time, O(m)-processor
sorting algorithm of Ajtai, Koml6s, and Szemer6di [AKS83] to sort the edges by first
component. Once the edges are sorted, it is easy to construct incidence lists. Sorting
the edges (i,j) lexicographically on (min {i,j}, max {i,j}) allows the construction of
pointers between each edge and its reversal. Thus we obtain the desired input rep-
resentation. While the asymptotic running time of this sorting algorithm is only
O(log m), the constant factor is huge. Instead of this algorithm, we can use the
randomized sorting algorithm of Reif and Valiant [RV83]. It will sort in time O(log m)
almost surely using m processors. A third possibility is to perform this sorting in time
O(log n) and m processors using an adaptation of the simple notion of "orthogonal
trees". However, this takes O(/12 space. For more information on such sorting
algorithms see Thompson [Th83].

Step 1. Construction of a spanning tree and computation of the preorder number
and number of descendants of each vertex.

First we construct an unrooted spanning tree by using a modification of the
Shiloach-Vishkin connected components algorithm [SV82]. We assume some
familiarity with this algorithm. The algorithm maintains for each vertex v a pointer
D(v). Initially D(v)--v for all vertices v. As the algorithm proceeds, the D-pointers
are the parent pointers of a forest, each tree of which contains vertices known to be
in a single connected component of the graph. (If v is the root of a tree in this D-forest,
D(v)- v.) The D-pointers are changed by two kinds of steps:

Shortcutting. Replace D(i) by D(D(i)) for some vertex i. Such a step changes
the structure of the D-forest by moving v and its descendants closer to the root of its
tree, but does not change the vertex partition defined by the D-trees.

Hooking. Replace D(D(i)) by D(j), where D(i) is the root of a D-tree, j is a

vertex in another D-tree, and {i, j} is an edge in the graph.
We modify the Shiloach-Vishkin algorithm so that all the edges are initially marked

as nontree edges, and each time a hooking step is performed, the corresponding graph
edge {i, j} is marked as a tree edge. When the algorithm finishes, all the vertices are
in a single D-tree, and the marked edges define a spanning tree. The original algorithm
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runs in O(log n) time using O(n + m) processors; these bounds are not affected by
the modifications for computing a spanning tree.

One detail of this method deserves further discussion. Processors corresponding
to several directed edges (i,j) may simultaneously try to write to the same location
D(D(i)) to cause a hooking, but only one succeeds. In order to keep track of which
one succeeds, we use an auxiliary array a. When a processor pr((i,j)) tries to cause
a hooking step to take place, it first writes its name into a(D(i)) by the assignment
a(D(i))pr((i,j)). For a fixed value of D(i), only one such processor succeeds. The
successful processor pr((i, j)) then carries out the actual hooking step and marks both
(i,j) and (j, i).

Remark. This idea for obtaining a spanning tree from a connected components
computation has been used before. In particular Savage and Ja’Ja’ [SJ81] used it to
derive a minimum spanning forest algorithm from the connectivity algorithm of
Hirschberg, Chandra and Sarwate [HCS79].

Having determined the edges of an unrooted spanning tree, we choose a root and
number the vertices of the resulting rooted tree in preorder. To do this we first construct
for each vertex a list of the outgoing edges corresponding to tree edges. We can do
this in O(log m) O(log n) time with O(m) processors by using a standard "doubling"
technique [Wy79]. For each (i,j), we initialize treenext((i,j))= next((i,j)) and then
repeat the following step, in parallel on all edges (i, j), [log m times (until none of
the treenext values change): if treenext((i,j)) is not null and not marked, replace
treenext((i, j)) by treenext(treenext((i, j))). Once all the treenext values are computed,
we define treeadj(i), for each vertex i, to be adj(i) if adj(i) is null or marked,
treenext(adj(i)) otherwise. The treeadj and treenext maps define incidence lists for the
spanning tree.

Next, we construct a circular list corresponding to an Eulerian tour of the directed
version of the spanning tree. For each edge (i,j), the next edge tournext((i,j)) in the
tour is treenext((j, i)) if treenext((j, i)) is not null, treeadj(i,j) otherwise. This tour
corresponds to the order of advancing and retreating along edges during a depth-first
transversal of the tree, starting at an arbitrary vertex. To root the tree, we break the
Eulerian tour at an arbitrary edge, causing some edge, say (i, j), to be the first edge
on the list. Vertex becomes the root of the tree. We call the broken list the traversal
list. This traversal list is the backbone of the Euler tour technique that is introduced
in this paper. In the sequel, we show that this list is the key to computing a number
of tree functions.

We can number the edges of the traversal list from 1 to 2n- 2 in traversal order
in O(log n) time with O(n) processors by using the doubling technique to compute
for each edge (i, j) the number of edges from (i, j) to the end of the list. We do this
by initializing numtoend((i,j)) 1 and ptr((i,j)) null for all ((i,j)). Once this compu-
tation is complete, the number of edge (i, j) is 2n- 1- numtoend ((i, j)).

Of two edges (i,j) and (j, i), the lower-numbered one corresponds to an advance
from to j along tree edge {i,j} and the higher-numbered one to a retreat from j to
along {i,j}. Using the edge numbers, we can thus mark each directed edge as either
an advance edge or a retreat edge. For each vertex j other than the root, there is exactly
one advance edge (i,j); the parent p(j) of j in the tree is i.

In the traversal list, the advance edges (i, j) occur in preorder on j. We can thus
number the vertices in preorder using doubling, much as we computed the edge
numbers. The only differences are that we initialize numtoend(i,j) to be if (i,j) is
an advance edge, 0 otherwise, and when the computation is complete, if (i, j) is an
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advance edge, we define n + 1- numtoend(i,j) to be the reorder number of vertex j.
Once preorder numbers are computed, we replace each occurrence of a vertex by its
preorder number, retaining an inverse map to restore the original vertex names when
the computation is complete. (For each number i, we remember vertex(i), the vertex
with number i.)

Remark. Although not needed in this paper, a similar computation will number
the vertices in postorder; for each vertex j other than the tree root, there is exactly
one retreat edge (j, i), and the retreat edges appear in the transversal list in postorder
onj.

The last part of Step 1 is the computation of the number of descendants nd(j)
of each vertex j. If j is not the tree root, nd(j) is just the number of advance edges
from (p(j),j) to the end of the list (including (p(j),j)) minus the number of advance
edges from (j, p(j)) to the end of the list. Two doubling computations, one of which
we have already done to compute preorder numbers, and a parallel subtraction give
the number of descendants of all the vertices.

Step 2. Computation of low(j) and high(j) for each vertex j.
We shall describe how to compute low; the computation of high is similar. Using

doubling on the adjacency lists, we can compute locallow(j)=min ({j}t_J{kl(j, k) is
an unmarked (nontree) edge}) for each vertexj in O(log n) time using O(m) processors.
Below we assume without loss of generality that n is a power of 2. We define an

auxiliary value globallow[i,j]=min ({locallow(k)li<-_k<-j}), i.e., globallow[ i, j] is the
minimum of locallow over the interval [i,i+l,... ,j]. For each 0<-a<-log n we
compute globallow of the intervals [(k- 1)2 + 1,. , k2] for 1 <- k<- n/2. (The total
number of such intervals is O(n). They have the property that any interval [i,..., j],
1 <- i<-j <- n, can be represented as a union of at most 2 log n of them.)

Initialization. Assign globallow[i, i]- locallow(i) for all 1 <_- i-< n.
for ce -1 to log n pardo

for O<-k<=(n/2)-I do
globallow[k2 + 1, (k + 1)2 -min (globallow[k2 + 1, (2k- 1)2-1],

globallow[(2k 1)2- + 1, (k + 1)2])
end for

end for

This computation takes O(log n) time using n processors. (Actually, n/log n processors
suffice but this is not important here.)

We compute low(j) for each vertex j using the formula

low(j) min {locallow(k)lj <= k <-_j + nd(j) 1}.

That is, we compute globallow[j,j+nd(j)-l], for each vertex j. The computation
below uses the property that the interval [j,...,j+ nd(j)-1] is a union of at most
2 log n intervals on which globallow has already been computed. The variables
little(j) and big(j) initially mark the endpoints of the interval. During the course
of the computation the interval [little(j),..., big(j)] contains the subinterval of
[j,...,j+ nd(j)-1] that has not yet been taken into account in the computation
of low(j).
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for 2 _<-j _-< n pardo
Initialize: little(j) #j; big(j) #j + nd(j) 1;

low(j) n + 1 (Comment: This is a default value)
forcrl to logn do

if little(j)- 1 is not divisible by 2
then low(j) - min (low(j), globallow[little(j), little(j)+2’-1-1])

little(j) - little(j) + 2-1

end if
if big(j) is not divisible by 2
then low(j) - min (low(j), globallow[big(j) 2- + 1, big(j)])

big (j) - big(j) 2-1

end if
if little(j) > big(j)
then Halt and output low(j)
end if

end for
end for

It is easy to verify the following. (1) All our requests for values of globallow are for
intervals that have been previously computed. (2) The intervals that are taken into
account in the computation of low(j) actually cover the interval [j, ,j/ nd- 1]. (3)
The whole computation of Step 2 takes O(log n) time using O(n) processors.

Step 3. Construction of the auxiliary graph G".
This computation requires only O(1) time using O(m) processors, since testing

the appropriate condition for each possible edge of G" takes O(1) time. After this test,
which takes place in parallel, we have a set of at most m 1 processors, each of which
knows an edge of G".

Step 4. Finding the connected components of G".
We apply the connected components algorithm of Shiloach and Vishkin. The

information computed in Step 3 is sufficient as input to this algorithm, which takes
O(log n) time and O(n + m) processors. Once the algorithm finishes, each vertex (i,j)
of G" (advance edge of the spanning tree) has a D-pointer to a canonical "vertex"
(x, y) representing the connected component containing (i, j).

Step 5. Extension of the equivalence relation found in Step 4 to the edges of G- T.
For each nontree edge (i,j) such that <j, we assign D((i,j))- D((p(j),j)). This

takes O(1) time and O(m) processors.
This completes the computation except for restoring the original vertex names.

An inspection of the various steps shows that none uses more than O(log m) O(log n)
time, more than O(n / m) space, or more than O(n + m) processors. The only place
concurrent writing is used is in the connected components algorithm, used in Steps 1
and 4.

4. An alternative parallel implementation. In this section we develop an
implementation of the block-finding algorithm that runs in O(log2 n) time using
O(nE/log- n) processors on a CREW PRAM, assuming that the input graph is represen-
ted by an adjacency matrix. Since we can always trade time for processors, this method
gives an O(nE/p) time algorithm using p processors, for any p<-n/log n. This
algorithm has optimal speed-up, assuming an adjacency matrix representation of the
input. We shall not go through the details of the implementation but merely mention
where it differs from the O(log n)-time implementation of the previous section.

There are two known connected components algorithms that run in O(log2 n)
time using O(n/log n) processors: the algorithm of Vishkin [V81], which runs on a
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CRCW PRAM, and the algorithm of Chin, Lam, and Chen [CLC81], which runs on
a CREW PRAM. Although the latter is more complicated, we shall use it instead of
the former in Steps 1 and 4, since it uses a less powerful computation model. Chin,
Lam, and Chen describe how to adapt their algorithm to compute a (minimum)
spanning forest.

Step 1. Construction of a spanning tree and computation of the preorder number
and number of descendants of each vertex.

We apply the algorithm of Chin, Lam, and Chen to mark the entries in the
adjacency matrix corresponding to tree edges. We can convert each row ofthe adjacency
matrix to an incidence list for the corresponding vertex (of edges incident in the
spanning tree) by using a balanced binary tree with n leaves to guide the computation.
(For each marked entry, we need to compute the next marked entry in the row.) The
computation is similar to a standard partial-sum computation and takes O(log2 n) time
with O(n/log- n) processors (see for instance IV81]). Since we can carry out the
computation for all rows in parallel, the total time is O(log n) with O(n/log n)
processors. Establishing pointers between each directed edge (i, j) and its reverse is
easy. Now we have the representation of the unrooted spanning tree used in 3. The
remainder of the Step 1 computation proceeds as in 3, taking O(log n) time on O(n)
processors.

Step 2. Computation of low and high.
Computing locallow(j) requires n parallel minimum computations. Each takes

O(log2 n) time using O(n/log n) processors [Wy79], a total of O(n2/log n) processors.
The remainder of the low computation proceeds as in 3 taking O(log n) time using
O(n) processors. The computation of high is similar.

Step 3. Constuction of the auxiliary graph G".
This is easy in O(log2 n) time with O(n/log n) processors.
Step 4. Finding the connected components of G".
Step 5. Extension of the equivalence relation found in Step 4 to the edges of G- T.
This is easy in O(log-) time with O(n/log n) processors.

5. Extensions and future work. There are two related problems that can be solved
using variants of our algorithm, in the same resource bounds. Neither of these requires
the second connected-component-finding step (Step 4). The first is the problem of
finding all bridges of a graph. The bridges are just the one-edge biconnected com-
ponents. Thus we can use the biconnected components algorithm directly. However,
there is a simpler algorithm. Suppose we number the vertices in preorder with respect
to any spanning tree; identify vertices by number; compute nd(v), the number of
descendants of the vertex, for each vertex v; and compute the low and high functions
defined in 2. A tree edge v- w with v the parent of w is a bridge if and only if
w<=low(w) and high(w) <= w+ nd(w)- l, i.e. if and only if both low(w) and high(w)
are descendants of w [Ta74b], [TC83]. No nontree edge is a bridge. By applying this
test, we can find all bridges in O(logn) time and O(n+m) processors on a
CRCWPRAM using the algorithm of 2, or in O(n2/p) time using any number
p =< n2/log2 n of processors on a CREW PRAM using the algorithm of 3. The latter
bounds for bridge-finding were first obtained by Tsin and Chin [TC83] using this
approach; the former bounds are new.

The second problem is that of directing the edges of a bridgeless graph so that
the resulting directed graph is strongly connected. Atallah [At84] proposed an algorithm
for this problem that runs in O(log n) time using O(n3) processors on a CRCW PRAM.
Vishkin [V84] gave an algorithm with the same resource bounds as our method for
finding bridges and biconnected components. We shall propose an alternative, simpler
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algorithm. As above, assume that we have found a spanning tree, numbered the vertices
in preorder, identified each vertex by its number, and computed low(v) for each vertex
v. Let {v, w} be a nontree edge. We call {v, w} a back edge if v and w are related in
the tree and a cross edge otherwise. We can determine in O(1) time and O(m) processors
the cross edges and back edges, since a nontree edge {v, w} with v < w is a back edge
if and only if w is a descendant of v, i.e. w<= v+ nd(v)-1. We define lowback(v)
analogously to low(v) but using only back edges, as follows:

lowback(v) =min ({v} t.J {lowback(v)lv w in T}t_J {wl{v, w} is a backedge}).

We can compute lowback just as we computed low, in the same resource bounds.
Now suppose G has no bridges. To convert G to a strongly connected directed

graph, we direct the edges as follows:
(i) If {v, w} is a back edge with v < w, direct {v, w} from w to v.
(ii) If {v, w} is a cross edge with v < w, direct {v, w} from v to w.
(iii) If { v, w} is a tree edge with v < w, direct { v, w} from v to w if lowback(w) < w

or if low(w)>= w, and from w to v otherwise.
The intuition behind this construction is to direct back edges from descendant to

ancestor and tree edges from parent to child. This suffices if there are no cross edges
(i.e. the tree is a depth-first spanning tree). To handle the cross edges we direct them
from lower to higher endpoint and reverse the natural directions of some of the tree
edges as described in (iii).

THEOREM 2. The directed graph formed by applying rules (i), (ii), and (iii) is

strongly connected.
Proof. We must show that every vertex is reachable from vertex 1 (the tree root)

and vertex 1 is reachable from every vertex. We show that every vertex v is reachable
from vertex 1 by induction on the preorder number of v. Obviously vertex 1 is reachable
from itself. Suppose vertices 1, 2,. ., v-1 are reachable from vertex 1 and consider
vertex v. There is some tree edge {u, v} with u < v. If this edge is directed from u to
v, then v is reachable from vertex 1. Otherwise, by rule (iii), low(v) < v and lowback(v) >-

v. This means that there is a cross edge directed from low(v) to some descendant of
v, say x.

Vertex x is reachable from low(v) and hence from 1 by the induction hypothesis.
Furthermore, v is reachable from x by a directed path consisting of tree edges and
back edges. Otherwise, let y v be the lowest ancester of x and descendant of v
reachable from v by such path. We know low(x) <= low(v) < v <= x. By rule (iii), it must
be the case that lowback(y)< y; otherwise the tree edge {p(y), y} is directed from y
to p(y), contradicting the choice of y. But this implies, also by rule (iii), that there is
a directed cycle containing y and p(y) consisting of a back edge from a descendant
of y to lowback(y) and all tree edges on the tree path between these vertices. This also
contradicts the choice of y. We conclude that v is indeed reachable from x, and hence
from 1. By induction all vertices are reachable from 1.

It remains for us to show that vertex 1 is reachable from every vertex. This will
follow if we can prove that from any vertex v 1 we can reach a vertex larger in
postorder. If lowback(v)< v, there is a directed path from v to lowback(v) by rule (iii).
If lowback(v) >- v but low(v)< v, there is a directed edge from v to its parent. The
only remaining possibility is low(v)>= v. In this case high(v)> v+ nd(v)-1, i.e. high(v)
is not a descendant of v, for otherwise the tree edge {p(v), v} would be a bridge. Let
{x, high(v)} be an edge connecting a descendant x of v to high(v). This edge must be
a cross edge, directed from x to high (v). We claim that every descendant of v, including
x, is reachable from v (by a directed path containing only descendants of v). This
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follows from the fact that low(v)>= v using an argument like that used to prove that
every vertex is reachable from vertex 1. Hence high(v) is reachable from v. In all cases
a vertex larger than v in postorder is reachable from v, and it follows that vertex 1 is
reachable from every vertex.

Directing the edges according to rules (i)-(iii) takes O(1) time using O(m)
processors once the vertices are numbered in preorder and low and lowback are
computed.

We close this section and the paper with a few remarks about future work. The
parallel tree computations we have used may have applications to other graph problems.
This deserves study. Also, there are still open problems concerning parallel biconnec-
tivity algorithms. The algorithm of this section, as does the algorithm of Tsin and Chin
[TC84], has optimal speed-up for dense graphs but not for sparse ones, whereas the
algorithm of 3 is off by a factor of log n from optimal speed-up. A question worth
exploring is whether there is an O((n+ m)/p)-time algorithm using p processors, for
p sufficiently small (say p<=(n+ m)/log2 n or p<-(n+ m)/log n.) Such an algorithm
is unknown even for the problem of computing connected components.

Suppose that an algorithm of time O((n + m)/p) could be found for the problem
of computing connected components. Then the implementation of 3 implies a block-
finding algorithm of time O((n log n+ m)/p) using p-< n log n+ rn processors, pro-
vided we are given a proper input representation. In order to see this, consider the
following representation of the input graph for the block-finding problem. The vertex
set is V {1, 2,. ., n}. Each edge {i, j} is represented by two directed edges (i, j) and
(j, i). The 2m directed edges of the graph appear in ascending lexicographic order in
a vector of length 2m. (That is, (il,jl)<(i2, j2 if i <i2 or i--i2 and jl <j2.) Each
vertex has a pointer to its first outgoing edge. The implementation of 3 still requires
the following modification. Recall the construction of the list of outgoing edges in the
tree for every vertex. This was done using doubling, which required O(log n) time
using only O(m/log m) processors. Instead, we construct a sorted vector (similar to
the input vector) of length 2n 2 that contains all directed edges of the tree. This takes
time O(log n) using O(m) processors: For each directed edge in the tree we need to
find its serial number relative to the other directed edge of the tree. We use a balanced
binary tree with 2m leaves, one for each input directed edge, to guide the computation,
which is a standard partial sum computation where each active leaf enters one and
gets in return its serial number relative to other active leaves. This is similar to the
computation following Step 1 of this section. A similar remark applies to the computa-
tion of locallow(j) (just before the construction of the tree).
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DISTRIBUTED MULTI-DESTINATION ROUTING:
THE CONSTRAINTS OF LOCAL INFORMATION*

JEFFREY M. JAFFE?

Abstract. In computer networks, message routing is often accomplished by network nodes using local
information. The unavailability of global information intuitively makes hard routing problems virtually
impossible. This paper formalizes this intuition by examining a hard (NP-complete) routing problem, the
problem of multi-destination routing. It is shown that with only limited information it is impossible to
optimize network utilization for the multi-destination routing problem. Moreover, it is impossible to even
approximate optimality to within a specific tolerance. Several versions of this result are proved; the versions
differ in terms of the amount of information available at a node, and the extent to which the problem cannot
be approximated. An improved local information algorithm is presented which is best possible amongst
local information algorithms.

Key words, computer networks, distributed algorithms, routing, Steiner trees, spanning trees

1. Introduction. In computer networks, the nodes of a network cooperate to
accomplish network service functions such as routing and flow control [1]. Each node
initially has a local view of the network, and through distributed protocols the nodes
enlarge their view of the network. However, due to the potentially large amount of
information about the network, it is rare that each node has global topological
information. In this paper we investigate the impact of nonglobal knowledge in the
context of message routing.

Message routing has tended to be from a single source node to a single destination
node. With the advent of office communications, there are likely to be applications
whereby a memo needs to be sent from a single source node to multiple destinations.
This paper focuses on the limitations of local information when a "multi-destination
routing algorithm" attempts to minimize the (weighted) number of links traversed. In
particular, we prove that with limited information, the multi-destination routing prob-
lem cannot even be approximated.

Routing to all destinations has been studied by some authors (e.g. [2]), but studies
on routing to a proper subset of all network nodes are relatively few [3], [4]. Neverthe-
less, the mathematical equivalent of multi-destination routing (the Steiner tree problem)
has been extensively studied (e.g. [5]).

Our intention here is not to devise polynomial time heuristics for the Steiner tree
problem, but rather to rigorously analyze the constraints of limited information as it
relates to computing Steiner trees. Thus our emphasis is on lower bounds; evaluating
the quality of algorithms that are restricted in the amount of information available to
them.

Thus, in this work we focus primarily on algorithms executed by the source node
to route to multiple destinations with local, nearby or destination information. With
local information, the source may route "optimally" to any single destination; with
nearby information; the source obtains the local information of its neighbors; and
with destination information, the source obtains (by querying the destinations) a subset
of the local information of all of the destinations. It is shown (in 3) that all local
and nearby information algorithms result in routings which are at least 2m/3 times
worse than optimal in the worst case (routing to m destinations). This serves to explain

* Received by the editors April 29, 1982, and in final revised form June 15, 1984.
IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598.
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why the best known algorithms are no better than 2m/3 times worse than optimal.
Any destination information algorithm is at least twice worse than optimal. This
explains why the best known algorithms are no better than twice worse than optimal
[3], [5].

While the primary emphasis is on lower bounds, the evaluation of limited informa-
tion constraints has led to the discovery of a new Steiner tree heuristic whose perform-
ance (2m/3) is surprisingly good considering the fact that it uses only local information
by the source node. This algorithm is described in 4.

In 5 we generalize the lower bound results to environments where the source
node cooperates with certain intermediate nodes to determine how to route the
messages. Even in that case, "destination" information does not suffice to do better
than twice worse than optimal in the worst case.

In a number of related papers (on locating a center [6], address assignment [7],
and flow control [8]), it has been shown that limited information does not permit one
to optimize certain functions. Here, we show that the multi-destination routing problem
cannot even be approximated. This is similar to results in [9] where it is shown that
"limited" information does not even permit the approximation of certain scheduling
problems.

2. Definitions. A computer communications network is modeled as an undirected
graph with node set N and link set L. With each L, a cost c(l) N specifies the
desirability of using link for routing messages (lower cost means more desirable).

An instance of a multiple destination routing problem consists of a graph (N, L),
a source node s N and a set of destination nodes D

_
N with s D. A routing R, for

an instance of the problem is a rooted directed multigraph that contains"
(1) a node set that is a subset of N;
(2) aroots;
(3) all nodes of D;
(4) an arbitrary subset of N-D.
When designing algorithms in which network nodes use only limited information,

it is sometimes impossible for a node to construct the precise link by link routing since
it lacks sufficient information. Nonetheless, in practice a node with limited information
can guide the selection of the routing by specifying in which order destinations are to
be routed. In particular, a node may construct a multigraph which contains s and D
and some edges between nodes in the multigraph. The convention is that any edge
between two nodes represents the shortest path between them in the original graph if
they are not connected in the original graph. If they are connected, the routing also
explicitly states (by labeling an edge with a "1 or 0") if the connection is to be via
the shortest path between them or by the direct edge between them. In general "guiding"
based on shortest paths is commonly used for single destination routing in the sense
that a source node often does not know the entire shortest path but just the first node
on the path, yet it knows the destination.

Thus the multigraph specifies the order in which nodes are traversed, and implies
the use of the shortest paths between them. Note that since this abbreviated form of
the routing is used, when interpreted as a set of paths from the source in the network,
it may actually no longer be a tree at all due to multiple traversals of links.

Given a routing one must decide how to assign a cost to a routing, to compare it
to other routings. Several possibilities suggest themselves. In one possibility, the
optimality criteria would be to minimize the average cost (delay) "experienced" by
each destination. That would model the situation where a short message must be routed



DISTRIBUTED MULTI-DESTINATION ROUTING 877

quickly to each destination. However, in the practical environment that motivated this
research, the actual problem was to distribute rather lengthy documents through the
network. In that case average delay was less important (it was not "interactive" type
traffic), but total network link utilization was important. This motivates the definition
of network cost (NC) of a routing R to be defined by

NC(R) E sd(e),
edges, in R

where sd(e) is the shortest distance in (N, L) between the two nodes adjacent to the
edge e in R. If the edge e represented a direct link in the original graph, then sd(e)
is taken to be the cost of that link.

Let f: N L s D c(L) - N be a function that takes all of the parameters of
a multiple destination routing problem and transforms (or reduces) them into some
integer (or tuple of integers represented as an integer in some canonical way). An
f-information multi-destination routing algorithm is a function g such that g provides
a routing for any instance of a multiple destination routing problem and such that the
routings oftwo problems are identical when the "f-values" ofthe problems are the same.

A local information algorithm is an algorithm in which a node "uses" its entire
shortest path to every node in the network and the costs of those paths. The idea
behind local information is that it is essentially the minimal information that is needed
to do any sensible routing calculation by a node. It must at least know some way to
get to each destination, and the shortest path is something which is easily calculable
and often calculated in networks in a distributed manner 10], 11]. In particular what
a node has available for every other node in the network is the "next node" on the
path to the other node as well as the total cost to that node. In case of ties, the node
may know each potential next node.

The formal way in which local information algorithms fit into the f-information
formalism is as follows: A function, fl on N, L, s, D, and c(L) is defined which maps
the input parameters into the "shortest path table at s" (see Table 1) and a listing of
the destination, D. Next any encoding function is used to map the shortest path table
and the names of elements of D into some integer format (e.g., concatenating all table

TABLE
Sample shortest path table at s.

Network node

N1

Next node

Neighbor1

Neighbor2

Neighbor1

Cost
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entries into a single integer) to yield the desired functionf. A local information algorithm
(presumably executed by s) then determines a routing based only on this shortest path
information, and will construct a routing. The same routing must arise from any
situation in which s has the same set of shortest path tables. The actual routing in the
network may differ due to differences in the way that edges in the routing are interpreted
as paths in the network.

A nearby information algorithm is one in which a node uses its own local
information and its neighbors’ local information. In such algorithms the node communi-
cates with adjacent nodes to obtain additional information. In [3] simulation studies
show that nearby information algorithms perform better than local information
algorithms. No cost is assigned to the communication cost of acquiring the neighbors’
tables for two reasons. First of all, if one assumes that network topology (i.e. the graph
structure) does not change too often, then a node may permanently store its neighbors’
tables. Furthermore, since the application environment assumes very large file trans-
missions, the cost of accumulating one’s neighbors’ shortest path tables would be
dwarfed, anyway by the actual file transmission costs.

The formal method of defining nearby algorithms is a trivial modification of the
formalism for local algorithms, and we do not elaborate in detail. Basically, the function

f maps N, L, s, D and c(L) into N using some standard concatenation of the shortest
path tables of s, s’s neighbors and a listing of elements of D.

In routing large (resource consuming) files, a node might be allowed to accumulate
distant information. A natural place from which to accumulate it (without learning
the whole topology) is from the destinations. We define destination information
algorithms to be those in which a node has both its own local information, plus the
shortest paths (and costs) between every pair of destination nodes and from the source
to each destination. Basically, destination information can be obtained by querying
the destinations about their paths, before sending the message. Once again we do not
charge a node for the cost of obtaining the destination information. For one thing, as
indicated earlier, any information accumulation may be considered cheap for routing
a large file. Moreover, in the above definition, one does not obtain the full shortest
path table from each destination. This, indeed would be costly--O(mn) entries for
n -INI and m -IDI. Only the shortest path information between destinations (O(m2))
is collected here.

Destination information algorithms for a node n are placed into our formalism as
follows. A standard encoding (as above) is taken of n’s shortest path tables, as well
as a table of shortest paths between every pair of destinations.

The performance of an algorithm is the worst case value of

NC(R)
NC(R*)’

where R is the routing chosen by the algorithm and R* is the optimal routing (i.e.,
the one with smallest value of NC).

To place the results of the next section in perspective, we cite some positive results
from [3]. There is a local (and nearby) information algorithm whose performance (as
a function of m, the number of destinations) is equal to m, and a destination information
algorithm whose performance is 2. In the next section we show that in fact all local
(and nearby) information algorithms must have performance at least as bad as 2m/3,
and all destination information algorithms must have performance at least as bad as
2. Thus it is impossible to improve the local information algorithms by much, and the
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destination information algorithm of[3] is, in a sense, the best possible for the practical
algorithms under consideration. Moreover in 4 we introduce a new local information
algorithm with performance of 2m/3 to tighten the corresponding lower bound of 3.

3. Limited information source node algorithms. In this section we explore the
limitations that occur when the source node has only local, nearby or destination
information. With local or nearby information, any algorithm is at least as bad as
2m/3. With destination information, every algorithm must be at least twice optimal.
The first result is proved for the nearby information case--the local information case
follows automatically.

THEOREM 1. Any algorithm in which the routing is determined by the source node
using only nearby information has worst case performance of at least (2m/3)- for any
8>0.

Proof. This result is proved by concentrating on the situation where the cost to
each destination from the source node equals 1 + e. The cost through its single neighbor,
N, is 1. (The neighbor is e distance from the source node.) Also, there are no nodes
in the network other than D, s and N, with s, N Z D (see Fig. 1). It will be shown
that under these very restrictive circumstances, no algorithm can approximate R*. To
accomplish this, we fix any given nearby information algorithm and analyze its behavior.

The first question we ask is" "What routing is chosen by s in this case?" There is
a unique routing R generated by the algorithm, irrespective of the internal interconnec-
tion pattern of D due to the fact that the local information of both s and N is
independent of the internal interconnection pattern of D. Without loss of generality
it goes from s to N and then somehow to the nodes of D. The key to the proof is to
show that whatever routing is chosen is 2m/3 times worse than optimal for some
configuration of the nodes of D.

Name the m destinations dl," ", d,, and let Fig. 2 represent the routing chosen
by s in this instance (i.e., when its nearby information is specified by Fig. 1). Every
such routing is essentially a tree rooted at N which indicates the directions in which

FIG. 2
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the messages are sent. For example, Fig. 3 gives the special case of Fig. 2 in which
the routing generated by s is that each node receive the message on the shortest path
from s.

FIG. 3

Those nodes which are connected directly to N in the routing (dl and d2 in Fig.
2) are referred to as first level nodes. Those nodes at distance from N in the routing
are called ith level nodes. It will be shown that any routing given in Fig. 2 is ineffective
by specifying an interconnection of D based on the levels of the nodes.

Consider Fig. 4 which indicates that all m destinations are roughly speaking in
two clusters both at distance 1 from N. Nodes within each cluster are within cost e
of each other, e << 1.

FIG. 4

Clearly NC(R*) for the network of Fig. 4 is 2+ 8 for some 8<< 1. However, the
routing, R, generated by the algorithm (Fig. 2) usually does much worse. The cost
from N to each first level node is 1. The cost from each ith level node (i= 1,... ,)
to its (i + 1)st level nodes that it connects to is 2. If there are k first level nodes and
m- k nodes at other levels, then NC(R) 2(m- k)+ k 2m- k. Thus

NC(R) 2m-k
(1) NC(R*)- 2+8

To get the result of 2m/3 stated in the theorem, we consider the configuration of
Fig. 5 where all costs are e within the cluster. In that case NC(R*)-<_ 1 / 8’. Once
again, if R is the routing with k first level nodes, NC(R) >_- k + 8" for the configuration
of Fig. 5. Thus

NC(R) k+8"
(2)

NC(R,)
>

Combining (1) and (2) proves the result of Theorem 1. If k>=2m/3, then in the
network of Fig. 5, NC(R)/NC(R*)>-(2rn/3)-8 for an appropriate 8"’. If k<2m/3

FIG. 5
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then in the network of Fig. 4,

NC(R) 2m-k 2m-2rn/3 2rn
6’"(3)

NC(R,)
->>-
2+6 2+6 3

for an appropriate 6’" (chosen as a function of m).
It is considerably more difficult to arrive at lower bounds on classes of algorithms

with more information available and intermediate node computation. As such, we will
slowly build up a series of more difficult results using similar constructions. We begin
by continuing our restriction to source node algorithms.

THEOREM 2. Any algorithm in which the source node calculates the routing using
only destination information has performance which is at least as bad as (2 rn/ rn + 1 )) 6

for any 6>0.
Proof Consider the network of Fig. 6. The optimum routing is through intermedi-

ate node Io with NC 5 + 5e. If s routes directly to each destination then NC equals
8. If there were rn destinations configured in a similar manner, NC(R*)= (rn + 1)(1 + e)
but NC(R)= 2rn, where R is any routing that bifurcates (i.e., splits to two or more
different nodes) only at s or nodes in D. The result of the theorem is thus proved,
unless s chooses a routing that bifurcates at I0.

FIG. 6

Let us assume then that s chooses to bifurcate at Io. All s knows about Io (from
its local information) is that Io is some node at distance 1 + e away from s. Additionally,
s learns nothing new about Io from its destination information. Now, consider Fig. 7,
which is identical to Fig. 6 except that there are k nodes I1," ’’, Ik that are identical
to Io from the point of view of s’s information. If s chooses to route to Io and then
"use" the shortest paths from Io to the destinations (by specifying only Io as its next
node in the routing), then the routing is at least as bad as 2rn/rn+ 1 as long as the
nodes are renumbered so that Io is not the central one. For if the routing ends up as
in Fig. 8, NC could be as large as rn(3 + e)+ 1 + e by bifurcating at/. Similarly, any
use of a combination of the/’s does not get NC to be smaller than 2rn. (Note that k
is chosen to be a large function of rn.) However, if the/’s are not used, then (as in
Fig. 6), the performance is still at least as bad as 2rn/rn + 1.
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FIG. 7

FIG. 8

4. A new local information algorithm. Theorem 2 is best possible in the sense that
there is a destination algorithm with performance of 2m/(m+ 1) [3]. However, the
best known local information algorithm has performance m [3], leaving a gap between
the lower bound of Theorem 1 and the best known local information algorithm. This
section provides the result that there is a source node, local information algorithm
with performance 2m/3. This is despite the intuition that one might expect that with
only local information, the source can do no better than to send to each destination
on its shortest path (with performance m).

The intuition for the algorithm comes from the proof of Theorem 1. In that proof,
it was essentially shown that s should not send to all destinations directly on their
shortest paths since they may all be very close to each other. On the other hand, if s
assumes that they are very close to reach other, they may in fact be far away. In the
new algorithm s will assume that some (m/3) destinations are close to each other, but
most (2m/3) are not. In this way, if all nodes are close to each other, the performance
will improve (over shortest path routing) due to the m/3 nodes that s assumed were
close. On the other hand, if the nodes are not close, the performance will be good due
to the 2m/3 nodes that s assumed were not close.

To describe the algorithm, let D={dl,..., d,,} be the destination set. Define
c(a, b) to be the cost of the minimal cost path from node a to node b. Node s will
choose a routing based only on the relative values of c(s, di) which are available in
s’s local information. For simplicity, we assume in the rest of this section that m is
divisible by 3.

Without loss of generality, assume that the di are indexed such that c(s, d)<-
C(S, dE) <" <= C(S, dm). The routing that s chooses is to send to each of the closest
k 2m/3 destinations directly on the shortest paths to them. The other m/3 are routed
to in a chain starting from dk. The order in which they appear in the chain is actually
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arbitrary, but for definiteness we assume an order of dk, dk+l, dk+2, d,,. That is, dk
routes the message to dk+l, who forwards it to dk+2, and so forth until d,, (see Fig. 9).
Note that it is quite possible that the routing will not be a tree in the original graph.

FIG. 9. New local information algorithm.

THEOREM 3. Given an instance of the multi-destination routing problem, the above
local information, source node algorithm has performance 2m/3.

Proof Given any instance of the problem, from the algorithm, we can write down

(4) NC(R)= E c(s, di)+ E c(ai, di+l).
i=1 i=k

Since dk is the furthest of the first k destinations, we may observe

(5) NC(R)<---c(s, at:)+ E c(di, di+l).
i=k

Consider the m- k costs from d to d. Let j be the index which has the largest
of those costs (i.e., c(dj, dj+) c(d, d+) for k,. , m 1). Then by our choice of
j, we may write

2m
c

m

3
(s,

The technique that will be used to prove Theorem 3 will be to examine the optimal
routing R* for the instance of the problem being studied and to locate dj, dj+ and d
in that routing (see Fig. 10).

FG. 10. Optimal routing.

Given the optimal routing R*, define R’ to be the subtree of R* consisting only
of the paths from s to ds, ds+l and dk. Note that this tree may consist of three distinct
chains (if the paths do not intersect) or may contain only one or two links leaving s

if the paths intersect at some point. One way to describe R’ is as follows. The tree is
routed at s, and the routing begins for some number of links (possibly none) as a

single chain. At some node, the chain splits into two or three pieces with the path for
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one of dj, dj+l and dk going off in one direction or stopping at that node, and the path
for the other two going off in the second direction (or all three in different directions).
Finally (if two stayed together), there is a splitting of[ of the final two nodes (see Fig.
11- d’, d", d’" are placeholders for d, d+l, dk).

dj

FIG. 11. Routing R’.

In Fig. 11, a, b, c, d, e represent the costs of the various path segments. The case
a c =0 is the case that R’ is three separate chains. If a # 0 and b =0, then d’ is on
the path to d" and d’", if c =0, three path segments split at a single point; if d =0
then d" is on the path to d’" and so forth. A case by case analysis on the position of
dk will prove Theorem 3.

Case 1. d’= dk. In this case c(s, dk) <- a + b since at least one path at cost a + b
goes from s to dk. Similarly c(d2, d2+l)<= d + e. Thus, from (6),

Since

2m m
NC(R) <=--(a + b) +-f (d + e).

NC(R*) _-> NC (R’) _-> a + b + c + d + e,

it follows immediately that

NC(R)/NC(R*) <- 2m/3.

Case 2. d’ dk. Assume, without loss of generality, that dk d". Then c(s, dk) <--
a+c+d. Also c(dj, d+l)<=b+c+e.

Note that c(s, dk) <= c(s, d’) since c(s, dk) <= c(s, d) <= c(s, d+l). Thus c(s, dk) <-
a+ b. It follows that c(s, dk)--< min {a+ b, a+ c+ d}_<-1/2((a + b)+(a + c+ d)). Thus,

NC(R)-< (2m/3)(1/2)((a + b) + (a + c+ d)) + (m/3)(b + c+ e)

=(m/3)(2a+2b+2c+d+e)<=(2m/3) NC(R*).

Thus although no local information, source node algorithm can perform better
then 2rn/3, this algorithm achieves that bound--and has better worst case performance
than shortest path routing.

5. Intermediate node algorithms. Until now we have assumed that from some
information base, the source node calculates the entire routing. In fact, although the
"routing" is calculated by the source, the actual node by node message transfer is
done with the assistance of intermediate nodes. Each node only knows the next node
on the shortest path to each destination; the next node then forwards the message to
its next node and so forth. In this section, we generalize the assistance provided by
intermediate nodes to include assistance in the actual determination of the routing.
Intermediate node algorithms often have more capability than source node algorithms.
In particular, the "nearest neighbor multi-destination routing algorithm" (an intermedi-
ate node, local information algorithm) has better worst case performance than the
shortest path algorithm (a source node, local information algorithm) [3]. In the next
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section we show that it is still impossible to have performance better than 2m/(m + 1),
even if intermediate nodes participate in the routing and all nodes have destination
information. We first formally define this class of algorithms.

A routing choice by a node, N, with responsibility for a destination set D is a
partition of D into k subsets D, 02,’’’ Dk, and an assignment of responsibility for
each subset, to neighbors N,..., Ng of N. The complete routing initiated by N in a
particular instance of a multi-destination routing problem in which N has responsibility
for D as above and assigns responsibility to N1,"" ", Nk is defined in the following
recursive fashion:

(1) The root is N.
(2) Nodes N,..., Nk are one link away from N.
(3) Rooted at each of N, , Nk is the complete routing initiated by N, , Nk

(for D1, Dk).
Note if D is empty, the complete routing is N itself. If the various nodes determine

routing choices in sufficiently uncoordinated fashions, the complete routing may be
infinite! Even if the structure is finite, the set of paths traversed may not form a tree
in the original graph, and the message may traverse the same link mutiple times. In
these cases, NC is counted slightly differently according to the actual utilization of
the communication links. In particular NC for an instance (with source s) is the sum
of the weights of the links in the complete routing of s (here weights are as defined
in the original graph).

An intermediate node algorithm is one with the property that every node (including
the source) accepts responsibility for a given destination set and makes a routing choice.

An intermediate node, destination information algorithm is an intermediate node
algorithm with the property that the routing choice made by any node, N, depends
only on the destination information of the list of destinations that N has responsibility
for. That is, N’s f-information consists of its local information and the shortest path
information between destinations for which it is responsible.

Another class of algorithms that may be of interest are those in which every node
passes its accumulated information set to its neighbors when it transfers responsibility.
A historical intermediate node, destination information algorithm is one where the routing
choice may depend on the destination information of any predecessor of N in the
routing. This gives N the advantage of seeing the local information of N’s predecessors.

6. Limitations of intermediate node algorithms. This section completes our dis-
cussion by showing that even potentially powerful sets of information are insufficient
from the point of view of approximating NC.

THEOREM 4. Any intermediate node destination information algorithm has perform-
ance which is at least (2m/(m + 1)) times worse than optimal.

Proof. Consider Fig. 12 which is a superset of the network of Fig. 7. If s tries to
do better than 2m/(m+ 1) by trying to route to Ioo at distance l+e (trying to give
responsibility to Ioo), it may end up being sent not to Ioo but to some other node, /k-
In that case, /jk has no choice but to return the message to s. But then s has the same
information as it did originally and will send it back to /jk and the message will loop
and never get anywhere.

On the other hand, if s sent responsibility to /jk for a subset of D, then looping
forever need not occur since s’s destination set has changed. But in that case, s has
incurred a cost of 2 + 2e without really accomplishing anything. For further exploration
of the /’s only incurs cost without serving to locate Ioo. In a similar manner, each
receiving destination cannot afford to send it to one of its neighboring //k’S SO it must
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send it directly to the other destinations. This continues until the entire routing is
completed at cost 2 per destination or 2m.

This result is slightly unsatisfying as it disallows the use of information gathered
at the source, by the source’s neighbors. The generalization of destination information
intermediate node algorithms to the case that histories are allowed would solve the
problem of the example of Fig. 12. The next result shows, however, that even histories
do not help in all cases.

FIG, 12

THEOREM 5. Any historical, intermediate node, destination information algorithm
has performance which is at least (2m/(m + 1))6 times worse than optimal.

Proof We start again with Fig. 12, and argue that s cannot afford to "explore"
its neighboring /k’S. As long as there are many of them (let’s say more than 2m of
them), in the worst case s will explore them all at excessive cost without having made
any progress on the routing. Thus, for reasons similar to those in previous proofs, the
routing essentially must start by s sending the message directly to one or many
destinations.

It is at this point that the proof becomes more complicated than that of Theorem
4. Consider for example the construction of Fig. 12, and assume that s transfers all
responsibility to dl. Since dl has access to s’s destination (and local) information, dl
can distinguish between Ioo and the I2j’s-Ioo is the only one at distance 1+ e from
both s and dl. Thus in Fig. 12, dl could use this information to route to Ioo, which
then routes directly to the other destinations.

The construction that shows that such routings do not work in general is quite
complex to be presented all at once, so we first give an example which shows that
routing from s to d to Zoo to the other destinations does not work in general. Consider
Fig. 13 which is the same as Fig. 12, augmented with nodes J1, JL at distance 1 + e

from s and dl. These nodes are indistinguishable from Ioo for dl if all that dl has is
s’s and dl’S local and destination information. The presence of the nodes effectively
prevents the usage of Ioo, unless more information is available than that of s, dl, the
Ji’s, the I1 k’S and the I2k’ s. Again, d essentially must route directly to other destinations.
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The general proof continues along the lines described above. Fix an algorithm,
and, assume that when s sees a collection of nodes 1 + e distance away, and a set of
destinations with a distance of 2 away, that it routes to dl. (We have essentially shown
that s must do so.) Assume further that if dl sees a collection of nodes that are 1 + e

away both from d and from s, and a set of destinations at cost 2 away, that it routes
to dj (again there is no choice!). Then the next step in the construction is to place a
large number of nodes at distance 1 + e from s, di and dj. Then d will have no choice
but to route directly to another destination. Continuing the construction forces the
algorithm to require at least cost 2 for every destination.

FIG. 13

In fact, a single construction simultaneously proves that all historical intermediate
node, destination information algorithms are at least twice worse than optimal, as we
proceed to sketch. The construction starts with s, D and Ioo as in Fig. 6. In addition,
for every subset S

_
{s} U D, there is a large collection of nodes at distance 1 + e from

every node in S, and not connected to any other node. Inductively assume that only
nodes in D ever receive responsibility. Then if d D has to make a routing choice
after a subset S has previously been on the path to d (and thus have contributed their
information), d cannot seek out Ioo since it would only find the blind alley corresponding
to S t.J {d}. Thus it must route directly to some destination and the induction is verified.

We remark that the construction can be enhanced to show that nearby information
does not help either. As in the proof of Theorem 1, one needs to place neighbors very
close to s (and to the nodes of D). The rather messy details of this construction are
left to the reader.

7. Summary. This paper has explained why it is hard to approximate the multiple
destination routing problem using various forms of local information. Under various
sets of assumptions, we have shown that the best known algorithms [3] that use certain
types of information are about as good as possible. Table 2 summarizes these results.
Open problems include tightening the bounds of Table 2 for intermediate node, local
algorithms.
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TABLE 2

Source, local
Source, nearby
Source, destination
Historical, intermediate, local
Historical, intermediate, nearby
Historical, intermediate, destination

Best known
algorithm

2m/3
2m/3

2
/ log m
+ log m

2

Best possible
algorithm

2m/3
2m/3

2
2
2
2
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FINDING MINIMAL PASS SEQUENCES
FOR ATI’RIBUTE GRAMMARS*

HENK ALBLAS"

Abstract. The generally used pass oriented evaluation strategies for attribute grammars, where different
instances of the same attribute in any derivation tree are restricted to be evaluated in one left-to-right or
right-to-left pass with for each derivation tree the same pass number, are referred to as simple multi-pass
strategies.

The determination of a shortest sequence of pass directions, such that an associated distribution of the
attributes over the passes meets the simple multi-pass requirements, is known to be NP-complete.

A polynomial time algorithm is discussed that delivers a shortest sequence of pass directions for several
simple multi-pass grammars. It starts from a given sequence of pass directions and tries to find a shorter
one by considering possible distributions of the attributes over the passes and crossing out empty passes.
An extension of the algorithm also reconsiders and possibly changes directions in order to find passes that
become empty. The resulting sequences of pass directions are minimal with respect to the subsequence
ordering, i.e., no subsequence exists for which an associated distribution of the attributes over the passes
meets the simple multi-pass requirements.

The algorithms discussed in this paper proved to be successful in delivering sequences of pass directions
of minimal length for several practical example grammars.

Key words, attribute grammars, multi-pass evaluators, minimization algorithms

1. Introduction. Attribute grammars [6] are used to describe the semantics of
programming languages.

For the generation of compilers from such a semantic description several tree
traversal strategies have been developed to evaluate the semantic attributes within the
derivation tree of a program.

In pass-oriented evaluation strategies, as suggested by Bochmann [2] and Jazayeri
and Walter [5], a bounded number of depth-first left-to-right and/or right-to-left
traversals of the derivation tree are made.

Both Bochmann and Jazayeri and Walter in their papers [2], [5] made the more
or less implicit assumption that different instances ofthe same attribute in any derivation
tree should be evaluated during the same pass with for each derivation tree the same
pass number. In [1] a multi-pass attribute grammar satisfying this restriction is called
simple, whereas the general (unrestricted) multi-pass attribute grammars are called pure.

An interesting problem is the determination ofthe minimal m for which a sequence
of m pass directions (left-to-right and/or right-to-left) can be found, such that an
associated distribution of the attributes over the passes meets the simple multi-pass
requirements. In [10], [11] this problem was pointed out to be NP-complete. Also in
10], 11] a polynomial time algorithm was developed that delivers a sequence of pass
directions of minimal length for a subclass of simple multi-pass grammars of practical
importance.

In this paper an alternative polynomial time algorithm is discussed. It starts from
a given sequence of pass directions and tries to find a shorter one. This process is
repeated until it is found that further improvements are imposs.ible.

This paper is organized as follows: Section 2 provides an introduction to the basic
concepts associated with attribute grammars. In 3 the principles of simple multi-pass

* Received by the editors September 13, 1983, and in revised form May 17, 1984.

" Department of Informatics, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, the
Netherlands.
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evaluation are summarized. In 4, for a given sequence of pass directions, two
sequences of pass functions are defined. A sequence of functions ranging from the
function with minimal pass numbers to the function with maximal pass numbers and
a sequence of functions in reversed order. Algorithms are discussed that compute the
next function in a sequence from the preceding one. In 5 it is pointed out that during
the successive computations of pass functions within a sequence, the sequence of pass
directions can possibly be shortened by crossing out passes that become empty. Finally
an algorithm is discussed where, during the computation of a pass function from the
preceding one in a sequence, pass directions are reconsidered and if necessary changed
in order to find empty passes. In 6 we discuss the effectiveness of the minimization
algorithms presented in 5.

2. Basic concepts. An attribute grammar (AG) is based on a context-flee grammar
G, which is augmented with attributes and attribute evaluation rules.

The underlying grammar G is a 4-tuple (VN, Vr, P, S), where VN and Vr denote
the finite sets of nonterminal and terminal symbols respectively, P is the set of
productions and S is the start symbol. We write V for VN

We assume that the grammar G is reduced in the sense that each nonterminal
symbol is accessible from the start symbol and can generate a string which contains
no nonterminal symbols.

A production p P is denoted as p: Xpo--.-) XplXp2 Xpnp, where np 0, Xpo VN
and Xpk V for l <- k <-_ np.

Each symbol X V has a set A(X) of attributes which can be partitioned into
two disjoint subsets I(X) and S(X) of inherited and synthesized attributes respectively.
For X S and X Vr we require I(X)=

The set of all attributes will be denoted by A, i.e., A v A(X). Attributes of
different symbols are different. An attribute a of symbol X is also denoted a(X).

Production p is said to have the attribute occurrence (a, p, k) if a A(Xpk). The
set of attribute occurrences of production p can be partitioned into two disjoint subsets
of defined occurrences and used occurrences denoted by DO(p) and UO(p) respec-
tively.

These subsets are defined as follows:

DO(p) {(s, p, O)[s S(Xpo)} U {(i, p, k)li I(Xpk) ^ 1 <--_ k <- np},

UO(p) {(i, p, O)li I(Xpo)} U {(S, p, k)ls S(Xpk) ^ l <-_ k <- np}.
Associated with each production p is a set of attribute evaluation rules which

specify how to compute the values ofthe attribute occurrences in DO(p). The evaluation
rule defining attribute occurrence (a, p, k) has the form

(a, p, k):=f((al, p, k,), (az, p, k), , (a.,, p, k.,))

where (a, p, k) e DO(p),f is a total function and (% p, kj) UO(p) for 1 =<j_-< m. We
say that (a, p, k) depends on (% p, kj) for 1 =<j =< m.

For each sentence of G a derivation tree exists. The nodes of the tree are labeled
with symbols from V. For each interior node there is a production Xpo- XplXp2" Xp,p,
such that the node is labeled with Xpo and its np sons are labeled with Xp 1, Xp2, , Xp,p,
respectively. We say that production p applies at that node.

Given a derivation tree, instances of attributes are attached to the nodes in the
following way: if node N is labeled with grammar symbol X, then for each attribute
a A(X) an instance of a is attached to node N. We say that the derivation tree has
attribute instance a, N).
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Let No be a node, p the production applied at No and N1, N2," , Np the sons
of No from left-to-right respectively. An attribute evaluation instruction

(a, Nk) := f((al, Nk,), (a2, Nk2), (a,,, Nkm))
is associated with attribute instance (a, Nk) if the attribute evaluation rule

(a,/9, k):=f((al, p, kl), (a2, p, k2), , (am, p, k,))

is associated with production p.
The task of an attribute evaluator is to compute the values of all attribute instances

attached to the derivation tree, by executing the attribute evaluation instructions
associated with these attribute instances. In general the order of evaluation is free,
with the only restriction that an attribute evaluation instruction cannot be executed
before the values of its arguments are defined. Initially the values of all attribute
instances attached to the derivation tree are undefined, with the exception of the
(synthesized) attribute instances associated with terminal symbols. The latter are
determined by the parser.

In this paper the visiting order of the nodes of the derivation tree is pass-oriented,
i.e., a bounded number of depth-first left-to-right and/or right-to-left traversals of the
tree are made during which the instances of the attributes are evaluated.

3. Simple multi-pass evaluation. From 1] we repeat some terminology, definitions
and theorems concerning simple multi-pass evaluation, i.e., attribute evaluation in
successive passes, where all different instances of the same attribute in any derivation
tree are evaluated during the same pass with the same pass number for each derivation
tree.

To describe the ordering of left-to-right and right-to-left passes and the distribution
of the attributes over the passes we use the following notation.

The directions of the successive passes are indicated by a sequence (d,..., d,,)
where di (1 _-< =< rn) denotes the direction of the ith pass, which is either L (left-to-right)
or R (right-to-left).

A partial partition of the set A of attributes into a sequence of mutually disjoint
subsets will be denoted by (A,..., A,). Such a partition is complete if (_J i% A A.
In this paper a partition may include empty subsets.

A partial partition (A,..., A,) of the set A of attributes is correct with respect
to a given sequence (d,. , d,,) of pass directions if the instances of all attributes in
set Ai (1 <_- <= m) can be evaluated during the ith pass of a simple multi-pass evaluator.

An attribute grammar is simple m-pass if with respect to some sequence
(dl," din) of pass directions a correct complete partition of the set A of attributes
exists.

An attribute grammar is simple multi-pass if it is simple m-pass for some m (this
is called simple BD multi-pass in [1], where BD stands for Both Directions).

With each complete partition (A, , A,,) of the set A of attributes of an attribute
grammar a passfunction pass: A- {1,. ., m} can be associated, as follows: pass (a)
if a Ai. The pass function is correct if the partition is correct.

The principle of simple multi-pass evaluation is that in each context the same
pass number is associated with different instances of the same attribute. This leads to
precedence relations [1] among attributes.

The relation a prec b between attributes a and b holds if a production Xpo-
XplXp2. Xpn exists with attribute occurrences (a, p, j) and (b, p, k) such that (b, p, k)
depends on (a, p, j).
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The relation a Lb between attributes a and b holds if a prec b and for each
production Xpo- XplXp2’’’ Xp, with attribute occurrences (a, p,j) and (b, p, k) such
that (b, p, k) depends on (a, p, j) the following condition is satisfied: if -<_ k <= np then
j<k.

The relation a L b between attributes a and b holds if a prec b but not a L b.
Figure pictures a production Xpo Xt,1...Xp;,...xpj...xpn, where k<=j.

Attributes a and b are associated with grammar symbols Xpj and Xpk respectively. The
arc from a to b indicates that inherited attribute occurrence (b, p, k) depends on
synthesized attribute occurrence (a, p, j). Such a dependency leads to the relation a b.

X Xp

FIG. 1. Dependencies which cause the relation a , b.

The relation a R b between attributes a and b holds if a prec b and for each
production Xo XplXp2" X,,, with attribute occurrences (a, p,j) and (b, p, k) such
that (b, p, k) depends on (a, p,j) the following condition is satisfied" if _-< k_-< np then
j=0 or j> k.

The relation a R b between attributes a and b holds if a prec b but not a R b.
Figure 2 pictures a production Xpo- X,,...Xj... Xok... Xp,, where k>-j.

Attributes a and b are associated with grammar symbols Xj and Xp respectively. The
arc from a to b indicates that inherited attribute occurrence (b,p, k) depends on
synthesized attribute occurrence (a, p, j). Such a dependency leads to the relation a/ b.

XpO

k=j

FIG. 2. Dependencies which cause the relation a b.

The following theorem characterizes the correct partitions in terms of the intro-
duced precedence relations.

THEOREM 3.1 [1, Thm. 4.1]. A complete partition (At,..., A,,) of the set A of
attributes ofan attribute grammar is correct with respect to a given sequence (d, , d,)
ofpass directions if and only iffor the corresponding pass function and for all attributes
a and b"

(i) if a prec b then pass (a) -<_ pass (b)"
(ii) if a L b and pass (a) pass (b) then this pass is a right-to-left pass"

(iii) if a R b and pass (a)= pass b then this pass is a left-to-right pass.
The precedence relations of an attribute grammar AG can be represented by a

directed graph in the following way"
Each attribute of AG is represented by a vertex. Arc (a, b) is contained in the

graph if the relation a prec b holds between attributes a and b. To each arc two labels
are assigned in the following way" if the relation a L b holds, then arc (a, b) has label
L, otherwise L" if the relation a R b holds, then arc (a, b) has label R, otherwise R.
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The graph associated with attribute grammar AG will be denoted by P(AG) and
will be called the precedence graph of AG. Notice that the vertices of the precedence
graph are attributes and not attribute instances. Paths, cycles and their labeling in the
precedence graph play an essential role in the theory of simple multi-pass evaluation.

From Theorem 3.1, it immediately follows that"
(i) all instances of all attributes of a cycle have to be evaluated during the same

pass;
(ii) for a pass direction d (left-to-right or right-to-left): if an arc labeled d is part

of a cycle, then it is impossible to evaluate the instances of the attributes of that cycle
during a d-pass;

(iii) if both arcs labeled L and arcs labeled R are part of a cycle, then it is
impossible to evaluate the instances of the attributes of that cycle during any pass.

In fact the labeling of the cycles conclusively decides whether an attribute grammar
meets the simple multi-pass requirements.

THEOREM 3.2 [1]. An attribute grammar is simple multi-pass if and only if its
precedence graph has no cycles with both L-arcs and R-arcs.

4. Pass directions and pass functions. Theorem 3.1 states that knowledge of the
precedence relations between the attributes of an attribute grammar AG suffices to
determine whether a given complete partition (A1, , A,) of the set A of attributes
of AG is correct with respect to a given sequence (dl,. , d,) of pass directions. In
this section we will use this theorem to get more insight in the set of correct pass
functions with respect to a given sequence of pass directions.

Given an attribute grammar AG with A the set of attributes of AG, let F be the
set of correct pass functions with respect to a given sequence (d,..., dm) of pass
directions. On F we define a natural partial ordering as follows.

For all f, g F:f<= g if and only if for all a A f(a) <- g(a).

The question is whether in F there exist unique correct pass functions with minimal
and maximal pass numbers respectively. To answer this question we define the functions
min (f, g) and max (f, g) for f .and g F, as follows:

min (f, g)(a)= MIN (f(a), g(a)) for all a A,

max (f, g)(a)= MAX (f(a), g(a)) for all a A,

where MIN and MAX are the usual minimum and maximum functions on natural
numbers.

LEMMA 4.1. Let F be the set ofcorrect passfunctions with respect to a given sequence
d, ., d,,,) ofpass directions ofan attribute grammar AG. For allf g F the functions
min f, g) and max f, g) are also in F.

Proof We prove the lemma for min (f, g). The proof for max (f, g) proceeds along
the same lines.

We have to prove that min (f, g) fulfills the criteria (i)-(iii) of Theorem 3.1. Let
a and b be attributes of AG.

(i) If a precb then f(a)<=f(b) and g(a)<=g(b). Hence, MIN (f(a),g(a))<=
f(a)<-_f(b) and MIN (f(a),g(a))<=g(a)<-g(b). Hence, MIN (f(a),g(a)) <-
MIN (f(b), g(b)).

(ii) Let ab and min (f, g)(a)=min (f, g)(b). Assume that min (f, g)(b)=f(b)
(the case that it is g(b) is symmetric). Ifmin (f, g)(b)=f(b) thenf(b) =min (f, g)(b)=
min (f, g)(a) <-f(a). Hence, f(a) =f(b). From Theorem 3.1(ii) it follows that dyb)= R,
and consequently dmin(f,g)(b)-- R.

(iii) Exchange L and R in (ii). lq
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THEOREM 4.1. Let F be the set of correct pass functions with respect to a given
sequence (d, dn) ofpass directions of an attribute grammar AG. If F is not empty
then in F there exist unique correct pass functions minpass and maxpass with minimal
and maximal pass numbers respectively.

Proof The set A of attributes of AG is finite and, hence the set of correct pass
functions A{1,..., m} is finite. Let the set F of correct pass functions be
{f,f2," ,fp}. From Lemma 4.1 it follows that the functions minpass=
min (f, min (f2,. min (fp-2, min (f-l, f)) ")) and maxpass max (f, max
(f, max (fp_, max (fp-l,fp)) ")) are correct pass functions. Clearly, minpass and
maxpass are the functions with minimal and maximal pass numbers respectively.

Remark. Let F be the set of correct pass functions with respect to a given sequence
(dl," , d,,) of pass directions of an attribute grammar AG. The relation <_- is a partial
ordering on F. Every pair of elements f g F has both a least upper bound (lub) and
a greatest lower bound (glb), namely:

lub of f and g max (f, g),

glb of f and g min (f, g).

Hence, F is a lattice under <=.
Theorem 4.1 now immediately follows because every finite lattice has a unique

minimal and maximal element (F is finite because A is finite).
Now, with respect to a given sequence of pass directions for an attribute grammar

AG, we consider some specific pass functions and also discuss algorithms to compute
them. The usually computed pass function [1], [2], [5], [10], [11] is the function min-
pass that associates with each attribute the minimal possible pass number. The opposite
result is the function that delivers maximal possible pass numbers. All the other pass
functions have their values in between these extremes.

In this paper we make, with respect to a given sequence (d,..., d,,) of pass
directions, use of two special classes of functions minmaxpassk (0<= k<= m) and
maxminpassk (1 <--_ k <_- m + ), defined as follows:

minpass a
minmaxpassk (a) =/maxpass (a)

maxpass (a)
maxminpassk (a)

minpass (a)

for minpass (a) -<_ k,
for minpass (a) > k,

for maxpass (a) _-> k,
for maxpass (a) < k.

The function minmaxpassk partitions the set A of attributes into two disjoint
subsets A<__k and A>k

(A1," ", Ak, Ak+, ", A,,,).

A<=k A>k

A<__k {alminpass (a) -<_ k}, i.e., the set of all attributes that can be evaluated within
the first k passes. A> k --{alminpass (a)> k}, i.e., the set of all attributes that cannot
be evaluated within the first k passes.

A<=k is partitioned into the sequence (A,..., Ak) of disjoint subsets such that
Ai {a]minpass (a) i} for -< <- k, i.e., (A,. , Ak) is the partition such that the
attributes of A<=k are evaluated at the earliest possible pass, (i.e., the first k elements
of the partition corresponding to minpass). A>k is partitioned into the sequence
(Ak i, ", A,,,) of disjoint subsets such that Ai a minpass (a) > k and maxpass (a)
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i} for k + 1 <- _-< m, i.e., (Ak+l, Am) is the partition such that the attributes of A>k
are evaluated at the latest possible pass.

Observe that minmaxpasso=maxpass and minmaxpassm_l=minmaxpassm=
minpass.

For the maxminpass functions analogous remarks hold, as follows. The function
maxminpassk partitions the set A of attributes into two disjoint subsets A<k and A>=k,

(A, ,Ak-,Ak, ,Am).

A<k A>k

A>=k -{almaxpass (a)_-> k}, i.e., the set of all attributes whose evaluation can be
postponed until after the (k- 1)th pass. A<k {a[maxpass (a) < k}, i.e., the set of all
attributes whose evaluation cannot be postponed until after the (k-1)th pass.

A>_k is partitioned into the sequence (Ak,’’’, Am) of disjoint subsets such that
Ai {almaxpass (a) i} for k =< i_-< m, i.e., (Ak," , Am) is the partition such that the
attributes of A>__k are evaluated at the latest possible pass (i.e., the last m k + 1 elements
of the partition corresponding to maxpass). A<k is partitioned into the sequence
(At,. , Ak_) of disjoint subsets such that Ai {almaxpass (a) < k and minpass (a)
i} for 1 =<i -< k-1, i.e., (A,..., Ak-) is the partition such that the attributes of A<k
are evaluated at the earliest possible pass.

Observe that maxminpassl=maxminpass2=maxpass and maxminpassm+l=
minpass.

Now we prove that the functions minmaxpassk (0<_-- k <- m) and maxminpassk (1 <_-
k _-< m + 1) are correct pass functions.

THEOREM 4.2. Let AG be an attribute grammar and (dl,""". dm) a sequence of
pass directions such that, with respect to (dl,..., din) a nonempty set of correct pass
functions for AG exists. Then the pass functions minmaxpassk (O<=k<-m) and
maxminpassk (1 --<_ k <-_ m + 1) are correct with respect to (dl, , din).

Proofi We prove the theorem for the functions minmaxpassk (O<-_k<=m). The
proof for maxminpassk (1 <_-- k <- m + 1) is analogous.

We have to show that with respect to (dl," , din) the function minmaxpassk (0<_-
k-< m) fulfills the criteria (i)-(iii) of Theorem 3.1.

Since the set of correct pass functions with respect to (dl, , din) is not empty,
there exist correct pass functions minpass and maxpass with respect to (dl," , dm).

Let a and b be attributes of AG. If a prec b then minpass (a)<_-minpass (b).
Hence, we consider 3 cases.

Case 1. a and b A<_k. From minmaxpassk (a) =minpass (a) and
minmaxpassk (b)= minpass (b) and the fact that minpass is a correct pass function
with respect to (d,..., din), it follows that criteria (i)-(iii) hold for the function
minmaxpassk on a and b.

Case 2. a and b A>k. From minmaxpassk (a) maxpass (a) and
minmaxpassk (b)= maxpass (b) and the fact that maxpass is a correct pass function
with respect to (dl,’", dm), it follows that criteria (i)-(iii) hold for the function
minmaxpassk on a and b.

Case 3.a A<_k and b A>k. From minmaxpassk (a) <_-- k and minmaxpassk (b) > k
it follows that minmaxpassk (a)<minmaxpassk (b). Hence, criteria (i)-(iii) hold for
the pass function minmaxpassk on a and b.

In the following we will show a correspondence between the two sequences of
pass functions (minmaxpasso, minmaxpass, , minmaxpassm) and (maxmin-
passm+, maxminpassm,..., maxminpass). For the explanation of that point for an
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attribute grammar AG we need, besides its precedence graph P(AG), also its reversed
precedence graph with arcs in the opposite direction. This reversed precedence graph
will be denoted by P(AG) and defined as follows.

For each vertex in P(AG) there is a vertex in/3(AG). Arc (a, b) is contained in
/5(AG) if arc (b, a) exists in P(AG). Both arcs (a, b) in/5(AG) and (b, a) in P(AG)
have the same labels.

In 3 precedence relations were defined between the attributes of an attribute
grammar AG. These relations were presented by a directed graph, called the precedence
graph of AG. More generally we can define a precedence graph as a directed graph
where each arc has label L or L and each arc has label R or R. Notice that, according
to this new definition, for each attribute grammar AG both P(AG) and /3(AG) are
precedence graphs.

Up to now we defined our precedence relations with respect to the attributes of
an attribute grammar, but we can also define precedence relations with respect to a
precedence graph as follows.

DEFINrrION 4.1. With respect to a precedence graph the following precedence
relations hold between the nodes a and b"

(i) a prec b if arc (a, b) exists;
(ii) a L b if arc (a, b) exists and has label L;
(iii) a L b if arc (a, b) exists and has label L;
(iv) a R b if arc (a, b) exists and has label R;
(v) a R b if arc (a, b) exists and has label R.
Up to now we considered correct partitions of the set A of attributes of an attribute

grammar AG with respect to a given sequence (dl,. ", d,,) of pass directions. This is
equivalent to the correct partitions of the set of nodes of P(AG) with respect to
sequence (dl, , d,,). In the following we will also consider correct partitions of the
nodes of /5(AG) with respect to sequence (d,,,..., dl), i.e., the sequence of pass
directions in reversed order.

For that reason, if necessary, we will talk of the partition of the set of nodes of
a precedence graph instead of the set of attributes of an attribute grammar. Similarly
we will also talk of the pass function for a precedence graph instead of the pass
function for an attribute grammar.

For the correctness of a partition of the set of nodes of a precedence graph and
its associated pass function with respect to a given sequence of pass directions, we
use Theorem 3.1 as a definition.

DEFINITION 4.2. A complete partition (A,..., A,) of the set A of nodes of a
precedence graph is correct with respect to a given sequence (dl,’", d,,) of pass
directions if for the corresponding pass function and for each pair of nodes a and b
holds"

(i) if a prec b then pass (a) <_- pass (b)
(ii) if a Lb and pass (a)=pass (b) then this pass is a right-to-left pass;
(iii) if a R b and pass (a)=pass (b) then this pass is a left-to-right pass.
Now we consider the mapping h which associates with each pass function p a

pass function h(p)- p’ as follows. If p is the pass function associated with partition
(A,. , A,,), then p’ is the pass function associated with (A,,, , A). Denoting the
partition (A,,,, , A1) by (A,. , A’) implies AI A,,,_i+ for 1 -< <= m and p’(a)
m-p(a)+ 1 for all a A.

Let F be the set of correct pass functions with respect to (dl,. , d,,) for graph
P(AG) and let F’ be the set of correct pass functions with respect to (d,,, , dl) for
graph /3(AG). In Lemma 4.2 we will prove that if pc F is correct with respect to
(d,..., d,,) for P(AG) then h(p)=p’ is correct with respect to (d,,,..., d) for
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P(AG), i.e., that h is a mapping from F into F’. In Lemma 4.3 we will prove that h
is a bijection from F onto F’.

LEMMA 4.2. h is a mapping from F into F’.
Proof. Let p be a pass function which is correct with respect to (dl,’", din) for

P(AG). Let h(p) =p’ be the pass function such that p’(a) m-p(a)+ 1 for all a A.
We have to prove that p’ is correct with respect to (d,..., d) for/5(AG), where

dd m--i+l"

We verify that p’ fulfills the criteria (i)-(iii) of Definition 4.2. Let a and b be
nodes of P(AG) and/(AG).

(i) If a prec b in/(AG) then b prec a in P(AG). From Definition 4.2(i) it follows
that p(b) <-_p(a). Hence p’(a) <-_p’(b).

(ii) We will prove that, if a f_,b in /(AG) and p’(a)=p’(b) then d,(b=R. If
a Eb in fi(AG) then b Ea in P(AG). If p’(b)-p’(a) then p(b)=p(a). From b Ea in
P(AG) and p(b)--p(a) follows (Definition 4.2(ii))" d,(b R and hence d’_,(b+l R
and hence d,(b R.

(iii) Exchange L and R in (ii). D
Analogously to the definition of mapping h from F into F’ we define the mapping

h- from F’ into F as follows. Ifp is a correct pass function with respect to (dl, , d,,)
for/3(AG) then p’= h-l(p) is a correct pass function with respect to (d, , d’m) for
P(AG), where d’i d,,_i+l and such that p’(a)-- m p(a)+ 1 for all a A. Clearly h -1

is the inverse of h.
LEMMA 4.3. h is a bijection from F onto F’.
Proof. Clearly h -1 h is the identity mapping from F onto F and hh- is the identity

mapping from F’ onto F’. U
In the following lemma we consider the way in which related pass functions in

F and F’ are ordered in both sets.
LEMMA 4.4. From fand g F such that f<= g follows that h(f >- h(g). Fromfand

g F’ such that f<- g follows that h-l(f) >= h-(g).
Proof. Follows immediately from the definitions of h and h -1. [3

From Lemmas 4.3 and 4.4 we immediately conclude the following theorem.
THEOREM 4.3. h is an isomorphism of the lattices (F, <-) and (F’, >-).
So lattice (F’,-<_) is isomorphic to the dual of lattice (F, _-<). This is the formal

way of expressing the duality between evaluating attributes as early as possible and
evaluating attributes as late as possible (by the pass functions minpass and maxpass
respectively) or combinations of these strategies.

When it is not clear from the context whether pass function p in F or p in F’ is
meant we denote them by F-p and F’-p respectively. Now, from Theorem 4.3
immediately follows the next corollary.

COROLLARY 4.1.

h(F- minpass) F’- maxpass,

h(F- maxpass) F’- minpass.

Finally we prove relations between the minmaxpass and maxminpass functions
in both sets F and F’.

THEOREM 4.4. (i) h(F-minmaxpassk) F’-maxminpass,_k+l (0 -< k_<- m).
(ii) h(F-maxminpassk)= F’-minmaxpass,_k+l (1 <= k<= m+ 1).
Proof. We prove (i). The proof of (ii) is analogous. By definition,

F
F

minpass (a)F minmaxpassk (a)
maxpass a

for F minpass (a) -< k,
for F minpass (a) > k.
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Hence, applying h to both sides,

f h(F- minpass) (a)
h(F-minmaxpassk) (a)

h (F maxpass) (a)
for h(F-minpass)(a)>-m-k+ 1,
for h (F minpass) (a) < m k + 1.

Notice that p(a) <-_ k implies h(p)(a) >- m k + 1 and p(a) > k implies h(p)(a) <
m-k+l.

By Corollary 4.1 the right side may be rewritten as

F’- maxpass (a)

F’- minpass (a)

for F’-maxpass (a) >_- m k + 1,

for F’ maxpass (a) < m k + 1.

Hence, h(F- minmaxpassk) F’- maxminpassm_k+l.
In the following, by a pass function and a partition of the set of attributes of an

attribute grammar AG with respect to a sequence of pass directions, we mean the pass
function and the partition for graph P(AG) and not for graph/3(AG), unless explicitly
stated otherwise.

We now discuss how to compute the partition associated with the pass function
minmaxpass k+ from the partition associated with the pass function minmaxpassk (0 =<
k < rn- 1). Notice that minmaxpassm minmaxpass,,_l.

Let AG be an attribute grammar and (d,..., dk, dk+, dk+2,’’’, d,) a sequence
of pass directions for which a correct complete partition of the set A of attributes of
AG exists and let (At,. , Ak, Ak+l, Ak+2, A,,) for 0 =< k < m- 1, be the partition
associated with the pass function minmaxpassk with respect to
(dl, dk, dk+l, dk+2,’’’, din). We have to compute the partition
(A, Ak, A/I, A+2, A’) associated with the pass function
minmaxpassk+l (0_-< k < m- 1).

Clearly the members of A,+I are all those attributes that cannot be evaluated
within the first k passes, but that can be evaluated at the (k + 1)th pass.

The computation of A+ proceeds as follows: Initially it is assumed that, besides
the attributes from Ak+ that certainly belong to A,+I also all the attributes from
.J im=k+2 A belong to A,+a. Nonmembers of A+ will be successively deleted. From
Theorem 3.1 it follows that all attributes a have to be deleted from A,+ for which an
attribute b A,+ exists such that arc (b, a) is labeled dk/l (i.e., if dk/ L then L else
R). Furthermore all those attributes have to be deleted that depend (indirectly) on
such attributes a. The deletion process continues until no more deletions are possible.

Finally we compute the sets A,/2, , A’m by deleting from Ak/," , A,, all the
attributes that made a forward move to A,/.

Algorithm 4.1 is a slightly extended version of the algorithm given by Bochmann
in [2], Jazayeri and Walter in [5] and Alblas in [1]. Besides the set A,+ it also computes
the sets Ak/, ., A,,. The distribution of the attributes over these sets plays an
essential role in our algorithm in the next section that minimizes the number of passes.

ALGORITHM 4.1. Computation of the partition associated with the pass function
minmaxpassk+l from the partition associated with minmaxpassk with respect to a
sequence (dl,’’’, dk, dk+l, dk+2,""", d,) of pass directions.

Input: P(AG); k (0<_- k< m-1); pass direction dk+l; partition
(A," Ak, Ak+l, Ak/2, Am) associated with pass function min-
maxpassk.

Output" partition (A Ak, A’k+I, A’k+2, , A,,) associated with pass function
minmaxpassk+l.
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Algorithm"
begin
D:= -J ?=k+2 Ai;
repeat

delete a vertex a from D
if in P(AG) there exists a vertex b and an arc (b, a) such that

(bAk+lt_J D and arc (b,a) has label dk+
o1"

b t.J k=+ A, t3 D)
until no more vertices can be deleted from D;
A+I := Ak+I [-J D’,
for from k/2to m
do A’i:=Ai-D od

end

Let n be the number of attributes of an attribute grammar AG. If we count the
number of times the label of an arc of graph P(AG) is examined, then Algorithm 4.1
takes time O(/I3) in the worst case and O(n2) in the best case.

In [1] for the special cases where only left-to-right passes or only right-to-left
passes are executed, for paths and attributes in graph P(AG) d-cost functions (d L
or R) are defined as follows.

DEFINITION 4.3. The d-cost of a path is the number of arcs labeled d on the path.
DEFINITION 4.4. For each pair of attributes a and b

the maximal d-cost over all paths from a to b

d-cost (a, b)= if a path from a to b exists,
/- if no path from a to b exists.

Using these cost functions we can formulate the following theorem 1, Lemma 6.1].
THEOREM 4.5. Let "pass" be a correct pass function with respect to the sequence

(d, d, . ofpass directions, where d L or d R, for an attribute grammar AG. If a
path exists in P(AG) from attribute a to attribute b, then pass (b)>_-
pass (a) + d-cost (a, b).

The d-cost functions can be used for the deletion of nonmembers from A,+ in
Algorithm 4.1. All attributes a A,+I for which an attribute b A,+ exists such that
dk+l-cost (b, a) >- 1 are precisely the attributes c A+I for which an attribute b A+
exists such that arc (b, c) is labeled dk/ and the attributes that depend indirectly on
such attributes c.

Using the d-cost functions the repeat statement of Algorithm 4.1 can be rewritten
as follows"

for all vertices a D
delete a from D
if in P(AG) there exists a vertex b such that
b Ak+ t3 D and dk+-cost (b, a) > 1.

In [1] it is pointed out that the computation of the d-cost functions takes time
O(n3), where n is the number of attributes of the grammar. If we count the number
of times d-cost (b, a) is examined for any b, a, then the revised version of Algorithm
4.1 takes time O(n2). Hence, the revised version is more efficient if a sequence of pass
functions minmaxpassk (for k from 1 to m-1) has to be computed.
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We end this section with the computation of the partition associated with the pass
function maxminpassk_l from the partition associated with the pass function
maxminpassk (2 < k -< m + 1). Notice that maxminpassl maxminpass2.

Theorem 4.4 states that for the computation of pass function maxminpassk (2 _--< k _-<

m) with respect to sequence (dl,..., din) of pass directions for graph P(AG), the
following 3 actions deliver the desired result.

1. put the sequence of pass directions into the reversed order;
2. compute the partition associated with the pass function minmaxpassm_k+l (2_--<

k _-< m) with respect to the reversed sequence ofpass directions for graph P(AG)
3. put the resulting partition into the reversed order.

Hence the pass function maxminpassk (2<_--k<_-m) can easily be computed using
the algorithm for minmaxpassm_k+l (2 -< k_-< m).

ALGORITHM 4.2. Computation of the partition associated with the pass function
maxminpassk_l from the partition associated with maxminpassk with respect to a
sequence (dl,’’’, dk-1, dk,’’’, dm) of pass directions.

Input" P(AG); k (2 < k _-< m + 1) pass direction dk_ partition
(A1," Ak-, Ak," Am) associated with pass function maxminpassk.

Output: partition (A,.. ",Ak_I, Ak, ",Am) associated with pass function
maxminpassk_l.

Algorithm"
begin

construct/3(AG) from P(AG);
apply Algorithm 4.1 to compute, with respect to sequence
(din,’’ ", dk, dk-,’’’, dl) of pass directions, the partition associated with
minmaxpassm_k+2 from the partition associated with minmaxpassm_k+l, with
the following input and output:
Input" /3(AG) m k / 1 pass direction dk-l’, partition

(Am,’’’, Ak, Ak-,’’’, A) associated with pass function minmax-
paSSm-k+ (2 < k m + 1),

Output: partition (Am,’", Ak, A,_,..., A) associated with pass function
minmaxpassm_k/2 (2 < k _-< m + 1);

the result is partition (A,..., A,_, Ak,’’ ", A,,) associated with the pass
function maxminpassk_l (2 < k -< m + 1).

end

The following example illustrates the minmaxpass and maxminpass functions for
a small and simple attribute grammar. The reader is invited to apply Algorithms 4.1
and 4.2 to compute the various pass functions.

Example 4.1. Consider attribute grammar AG1 with VN {Z, A, B}, VT-- { t} and
P= {Z AB, A- t, B t}.

The only possible sentence is tt. Figure 3 shows the attributed derivation tree of

FIG. 3. Attributed derivation tree of grammar AG1.
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tt with attribute instances and their dependencies. The associated precedence graph
is given in Fig. 4.

g k

P(AG1

h k

FIG. 4. P(AG1) and (AG1).

For sequence (L, R, L, R} of pass directions the partition associated with pass
function minpass is: ({a, b, c, d}, {e,f}, {g, h}, {i,j, k}>. (For an algorithm to compute
minpass see [1], [2] or [5].) The partitions associated with the various maxminpass
functions are

maxminpass5 ({ a, b, c, d}, { e, f}, {g, h }, { i, j, k}} minpass
maxminpass4 ({a, b, c, d}, {e, f}, { }, {g, h, i, j, k})
maxminpass3 ({a, b, c, d}, { }, {e,f}, {g, h, i,j, k})
maxminpass2 ({a, b}, {c, d}, {e,f}, {g, h, i,j, k}> maxpass
maxminpassl ({a, b}, {c, d}, {e,f}, {g, h, i,j, k}) maxpass

Now, from the partition associated with pass function maxpass the various min-
maxpass functions are computed.

minmaxpasso ({a, b}, {c, d}, {e,f}, {g, h, i,j, k})= maxpass
minmaxpassl =({a, b, c, d}, { }, {e,f}, {g, h, i,j, k})
minmaxpass_ ({a, b, c, d}, {e, f}, { }, {g, h, i, j, k})
minmaxpass3 ({a, b, c, d}, {e,f}, {g, h}, {i,j, k}) minpass
minmaxpass4 ({a, b, c, d}, {e,f}, {g, h}, {i, k}) minpass

Observe that with respect to sequence (L, R, L, R) of pass directions partitions
(A1, A2, A3, A4) exist for which A_ or A is empty. In the following section we will use
this information to cross out passes.

5. Minimizing the number of passes. Given a sequence (d,..., d,) of pass
directions for an attribute grammar AG, such that with respect to (d, , d,) a correct
pass function for AG exists, the question arises whether a subsequence (di,, di
(1 <= il < i2 <" < ik <= m) of (dl, , d,) exists such that with respect to this sub-
sequence a correct pass function for AG exists.

To answer this question we first consider the partition (A, , Ak, Ak+," ",

associated with the pass function minmaxpassk with respect to

(dl, dk, dk+l, d,,). For all a e Ak+ holds: minpass (a)>- k+ 1 and
maxpass (a) k + 1. Hence, the elements of Ak/I have pass number k + 1 for all correct

pass functions with respect to (dl,""’, dk, dk+l, dm}.
Similarly, for partition (A1," , Ak_, Ak, A,} associated with the pass func-

tion maxminpassk with respect to (dl, , dk-, dk, ,dm}, the elements of Ak-1 have
pass number k- 1 for all correct pass functions with respect to
(d,, d_,, d,""", d>.

From these two observations we immediately conclude the following theorem.
THEOREM 5.1. Given a sequence (d],..., d,..., d,,,} of pass directions for an

attribute grammar AG, such that with respect to this sequence a correct pass function for
AG exists.
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With respect to this sequence ofpass directions thefollowing statements are equivalent:
A correct pass function exists for which the ith pass is empty.
For pass function minmaxpassi_l (1 <- <- m) the ith pass is empty.
For pass function maxminpassi/l (1 <- <- m) the ith pass is empty.
Example 5.1. Consider the precedence graph P(AG1) in Fig. 4. From the various

minmaxpass and maxminpass functions for sequence (L, R, L, R of pass directions
(see Example 4.1) it follows that the second and the third pass are the only candidates
to be crossed out. Notice that the subsequences (L, L, R} and (L, R, R} are the shortest
possible subsequences for which a correct pass function exists and that it is not possible
to cross out both the second and the third pass.

Now we consider two algorithms to cross out passes systematically from a given
sequence (dld, dmld of pass directions, where m ms, the initial number of passes.

Algorithm 5.1 starts with the partition (Ald, Ad associated with pass func-
tion minmaxpass0 maxpass. Now for k from 0 up to m- 2 action 1 or 2 is taken.

1 If in the partition/anew Anew A/I Ak+2, A’ associated with min-\"1 Z-k

maxpassk with respect to sequence dnewl dneWk d/l, d’k/2, d’) of pass direc-
tions the set A/I is empty, then pass direction d/l is crossed out from the sequence
of pass directions and the set A+ from the partition associated with minmaxpassk.
The remaining pass directions and sets of the partition are renumbered such that again
a consecutive sequence of pass numbers results. Observe that after the deletion of the
(k / 1)th pass and the renumbering of the remaining passes the new partition has the
minmaxpassk property with respect to the new sequence of pass directions.

2. If the (k/ 1)th pass cannot be crossed out, then Algorithm 4.1 is applied to
compute the partition/anew Anew Anew

\,1 k "-k+l, Ak+_, ", A"m) associated with minmax-
paSSk+I from the partition/anew Anew

\’’1 -k Ak+I, Ak+2, ", A’) associated with min-
maxpassk, both with respect to the same sequence

(r/newel tkr/new, d/1, d/2,""" d
--( dnewl," ",dneWk,dneWk+l,d+2," .,d)

of pass directions.
/r/new dW) of pass directions and theThe repetition ends with the sequence

paition XlZnw, AW) associated with the pass function minmaxpass minpass,
where m my the final number of passes. If passes are crossed out then the final value
my of m is less than its initial value m.

ALGORITHM 5.1. Computation of a minimal subsequence (dw, dnew) of pass
directions and its associated pass function minpass from the sequence (d? dods
of pss directions and its associated pass function maxpass.

Input" P(AG)" sequence (dld dld Of pass directions" partition
(Ad, Ad associated with pass function maxpass.s

new Anew/new d of pass directions paition (nwOutput sequence r, ,..,
associated with pass function minpass.

Algorithm"
begin
m:: m; k::0;
(A’ A:=(A7’, A2
{maxpass paition with respect to sequence (dd, , dd ofpass directions}
(d’ dZ:= (dT’, d2
while k m 2
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do
consider partition /anew Anew A+I Ak+2, ", A’) associated with\1 "-k

minmaxpassk with respect to sequence
(d d d+l, d’ d’,.) of pass directions"k k+2

if Ak+l
then {cross out and renumber}

(A+I,’", A_I):= (Ak+2," "’, A);
(d+, ., d’

_
:= (d+, ., d"

m:=m-1
else apply Algorithm 4.1 to compute the paition associated with minmax-

pasSk+l from the paition associated with minmaxpassk, with the
following input and output:
Input" P(AG); k; pass direction d+; paition

/anew nw A+I Ak+2, ,A) associated with min-l k

maxpassk.

Output" paition (aw new Anew
" ,k ,k+l, Ak+2, .,A) associated

with minmaxpassk+
(A+2, .., A):= (A+2, A)’, d newk+l := d+ k := k + 1

fi
od;

mr:= m
end

Ifwe count the number of times the d-cost function between attributes is examined,
then the else-pa of Algorithm 5.1 takes time O(n2), where n is the number of attributes
of the grammar. Hence, Algorithm 5.1 takes time O(m. n2).

Example 5.2. Consider the application of Algorithm 5.1 to graph P(AG1) in Fig.
4 (see Example 4.1).

The input is P(AG1) sequence (L,R,L,R) of pass directions and paition
({a, b}, {c, d}, {e,f}, {g, h, i,j, k} associated with maxpass.

The second paition considered by Algorithm 5.1 is ({a,b, c, d},{ },{e,f},
{g, h, i, j, k}). This paition, associated with minmaxpass, includes an empty subset
on the second position. Hence, the second pass is crossed out. The remaining paition
is ({a, b, c, d}, {e,f}, {g, h, i,j, k}) associated with minmaxpass, which is correct with
respect to the sequence (L, L, R) of pass directions. The new value of m is 3.

Algorithm 5.1 finally delivers paition ({a, b, c, d}, {e, g, h}, {i,j, k}) associated
with minmaxpass2 minmaxpass3 minpass with respect to sequence (L, L, R) of pass
directions.

Remark. Algorithm 5.1 can easily be changed such that it finds all correct sub-
sequences: in Case 1 (when A+ is empty) consider both actions 1 and 2. A recursive
algorithm can be written to get all minimal (with respect to the "subsequence" criterion)
subsequences and so in paicular all minimal length subsequences.

Now, we consider the second algorithm to cross out passes systematically from a
given sequence ofpass directions. Algorithm 5.2 stas with the paitionxaod,... ,As)old
associated with pass function minpass with respect to sequence (dd, dd of pass
directions and ends with the paition/anew nwX, ,.., associated with pass function
maxpass with respect to sequence (ew dne of pass directions. As in Algorithm1 --mf
5.1 for each paition associated with a maxminpass function an empty pass is crossed
out and the remaining passes are renumbered in order to get a consecutively numbered
sequence of passes.
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d,ld,
c/newALt3ORrrHM 5.2. Computation of a minimal subsequence (dew,..(,__,r o pass

directions and its associated pass function maxpass from the sequence dld
of pass directions and its associated pass function minpass.

Input" P(AG)" sequence (dd dl% of pass directions" paition
(AIO, Ad5 associated with pass function minpass.

Output: sequence (new new new- , of pass directions paition/new
associated with pass function maxpass.

Algorithm"
begin

construct P(AG) from P(AG);
apply Algorithm 5.1 with the following input and output"
Input" P(AG)" sequence (dd dld) of pass directions" paition

A ld Ad) associated with pass function maxpass,
Output" sequence (d dew) of pass directions" paitionmf.. A associated with pass function minpass,
the result is sequence (anew... dnew

-1 _e, of pass directions and paition
Anew, ,- ,.., associated with pass function maxpass

end

Example 5.3. Consider the application of Algorithm 5.2 to graph P(AG1) in Fig.
4 (see Example 4.1).

The input is P(AG1), sequence (L, R, L, R) of pass directions and paition
((a, b, c, d), (e,f}, (g, h}, (i,j,

The second paaition considered by Algorithm 5.2 is: ({a, b, c, d}, {e,f}, { },
{g, h, i, j, k}), the paition associated with maxminpass4. The third pass is crossed out.
The remaining paition is: ({a, b, c, d}, {e,f}, {g, h, i,j, k}), the paition associated
with maxminpass3, which is correct with respect to (L, R, R). The new value of m is 3.

Algorithm 5.2 finally delivers paition ({a, b}, {c, d, e,f}, {g, h, i,j, k}) associated
with maxminpass2 maxminpassl maxpass with respect to sequence (L, R, R) of pass
directions.

Both Algorithms 5.1 and 5.2 consider all the passes of the initial sequence of pass
directions. Theorem 5.1 states that the remaining passes can not be crossed out. Hence,
both algorithms deliver a sequence of pass directions such that with respect to this
sequence a correct paition of the attributes can be found whereas for none of its
subsequences a correct paition of the attributes exists, i.e., the resulting sequences
are minimal with respect to the "subsequence ordering" (instead of length).

Notice that for grammar AG1 and sequence (L, R, L, R) of pass directions in
Example 4.1, Algorithms 5.1 and 5.2 deliver different sequences of pass directions of
the same length. In Example 5.4 we demonstrate that Algorithms 5.1 and 5.2 can give
results of different lengths.

Example 5.4. Consider attribute grammar AG2 with VN {Z, A, B, C, D}, Vr { t}
and P={Z-ABCD, At, B - t, C - t, D t}.

The only possible sentence is tttt. Figure 5 shows the attributed derivation tree of
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tttt with attribute instances and their dependencies. The associated precedence graph
is given in Fig. 6.

g h

F;O. 6. P(AO2).

For sequence (L, L, R, L) the partition associated with maxpass is" ({ }, { },
{a, b, c, d}, {e,f, g, h, i}) and the partition associated with minpass is ({a, b}, {c, d},
{ e, f}, {g, h, i}>.

Observe that the result of Algorithm 5.1 is sequence (R, L) with the associated
minpass partition ({a, b, c, d, e, f}, {g, h, i}) and that the result of Algorithm 5.2 is
sequence (L, L, L) with the associated maxpass partition ({a, b}, {c, d}, {e,f, g, h, i}).

Example 5.4 illustrates that it depends on the order in which passes are considered
and crossed out, which subsequence of the original sequence of pass directions is
found and whether the length of this subsequence is equal to the minimal possible
length. Notice that besides the orderings of Algorithms 5.1 and 5.2 other orderings are
possible. Hence, in general it is not clear whether a subsequence of minimal length is
found. Another drawback of Algorithms 5.1 and 5.2 is that the resulting sequence of
pass directions is always a subsequence of the original sequence. For this reason we
further try to shorten the number of evaluation passes by stepwise reconsidering and
if necessary changing pass directions in order to find empty passes that can be crossed
out.

Given a sequence (dTM dd of pass directions and with respect to this
sequence the correct complete partition (Ald, Ald associated with the pass

newfunction maxpass, we compute a sequence (dl dine, of pass directions, where
my<=ms, and with respect to this sequence the correct complete partition

Zt .Z new," ,..m, associated with the pass function minpass.
At the (k+ 1)th step we start with the sequence (d d k

d+1, d’k+a, ,dp) and with respect to this sequence the correct complete partition
anew Anew A,+ Ak/2, A’p) associated with the pass function minmaxpassg.
Now, all the pass directions except the (k + 1)th one are fixed. If A+l is empty, then
the (k+ 1)th pass is crossed out as in Algorithm 5 1 Otherwise for .new

k+l the best of
the original pass direction d/l (denoted by opd) and the reversed pass direction
(denoted by rpd) is chosen.

Clearly for (nw...,,1 dnewk opd, d’+, d) a correct pass function exists.
Now the question arises whether for the sequence dnewl ’’/newk rpd, d’k+2, d)
a correct pass function also exists. If for both sequences of pass directions correct pass
functions exist, then from the definition of minmaxpassk it follows that both sequences
have the same minmaxpassk partition. Hence, A+l must be the same for both d+l
opd and d/l =rpd. Hence (Theorem 3.1) for each pair of attributes a, be A’k/l such
that an arc (a, b) exists, its label must be rpd.

From this observation follows our selection criterion for Anew If A/l includesk+l.

attributes a, b such that arc (a, b) is labeled rpd, then opd is selected for .new
k+l.

The application of this criterion is illustrated in the following example.
Example 5.5. Consider attribute grammar AG3 with VN {Z, A, B, C, D}, VT { t}

and P {Z - AB, B - CD, A - t, C - t, D - }
The only possible sentence is ttt. Figure 7 shows the attributed derivation tree of

ttt with attribute instances and their dependencies. The associated precedence graph
is given in Fig. 8.
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Zlmq

FIG. 7. Attributed derivation tree of grammar AG3.

LR LR LR
o

k

FG. 8. P(AG3).

For sequence (dd, d’d)--(L, R) the partition associated with minmaxpasso is
({a, b, c, d, e), {f, g, h, i,j, k, l, m)). Notice that arc (b, c) has label R. Hence, for d
the original pass direction L is selected.

Now we consider the case where A,+ does not include arcs labeled rpd. In that
case we further compare the partitions associated with minmaxpassk+ with respect to
(d d opd, d’ d’)and/’nw "4new d)k k+2, p k rpd, d’k+2,

If for d k+l opd or d k+l rpd all the attributes of some A/ (2 _-< _-< p k) can
Anewbe moved to "-k+l, then it is possible to cross out the (k + i)th pass. If passes become

empty we select the pass direction for which the largest number of passes becomes
empty.

Example 5.6. Consider attribute grammar AG4 with Vn {Z, A, B, C, D}, VT { t}
and P {Z - ABCA, Z - DD, A - t, B - t, C - t, D - }

The possible sentences are tttt and tt. Figure 9 shows the attributed derivation
trees for these sentences. The associated precedence graph is given in Fig. 10.

FIG. 9. Attributed derivation trees of grammar AG4.

LR

R

FG. 10. P(AG4).
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For sequence (dld, dld, dd, d’Id)=(L,L,L,R) the partition associated with
minmaxpasso ({a, b}, {c, d}, {e,f}, {g, h}). A {a, b} has no R-label. Hence, correct
pass functions exist for both ’l/new L and "1anew R.

For "1anew= L, the partition associated with minmaxpass =({a, b}, {c, d}, {e,of},
{g, h}). Hence no passes become empty. For dew= R the partition associated with
minmaxpassl ({a, b, c, d, g, h}, { }, {e, f}, { }). Hence, the second and the fourth pass
become empty. So for dnew direction R is selected.

The following example illustrates that it may happen that dnew--k+ opd and ,new
tk+

rpd deliver equal numbers of empty passes. In such a case we need another criterion
to select the (k + 1)th pass direction.

Example 5.7. Consider attribute grammar AG5 with V {Z, A, B, C, D, E, F},
VT { t} and P {Z AA, Z BCCDD, Z EEDD, Z FFDD, A- u, B v, C w,
Dx, Ey, Fz}.

The possible sentences are uu, vwwxx, yyxx and zzxx. Figure 11 shows the attributed
derivation trees for these sentences. The associated precedence graph is given
in Fig. 12.

constant constant

I," constant constant ", ’.

FIG. 11. Auributed derivation trees ofgrammar AG5.

LR / LR LR

/_

LR

FIG. 12. P(AG5).
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For sequence (dld, dld, dld, d]d, ’5‘4d, dd) -(R, R, L, R, L, R) the partition
associated with minmaxpasso ({c, d}, {e,f), {k, l}, {g, h}, {i,j}, {a, b}). For ’‘4new L
the partition associated with minmaxpass ({c, d, k,/}, {e,f), { }, {g, h}, {i,j}, {a, b}),
in which the third pass is empty. For deW=R the partition associated with
minmaxpass ({a, b, c, d}, {e,f}, {k,/), {g, h), {i,j}, { )), in which the sixth pass is
empty. Hence, in this case it is impossible to select the pass direction for d by
counting the number of empty passes.

If no passes become empty or if for both directions of the (k + 1)th pass the same
number of empty passes is found, we try to move as many attributes as possible from

Anew Anew the easier it will be to combineA,+2 to k+. The more attributes can be moved to k+
the (k + 2)th pass with following passes.

Anew for pass directionWe compare the subsets of A,+2 that can be moved to k+
opd and rpd respectively. If one subset is contained in the other the direction for the
larger subset is chosen. If the subsets are equal, we compare the subsets of A,+ that

anew and so on. Observe that the intent of this order ofcan possibly be moved to k+,
comparing subsets is that first the attributes with highest priority are considered, i.e.,
the attributes of A+2 whose evaluation can be postponed at most one pass.

If however subsets are incomparable we need another selection criterion. Instead
of subsets cardinalities of subsets can be compared or the number of arcs labeled L
or R between attributes in subsets. Such criteria are not considered in this paper.

To get more insight in the possibility of selecting a pass direction by comparing
subsets, we discuss two examples.

Example 5.8. Consider with respect to sequence (..., d,+ L, d+2 L,...) of
pass directions the partition (..., A,+, A,+,...) associated with pass function min-
maxpassk for precedence graph P(AG6) as sketched in Fig. 13. The solid lines denote
paths composed of arcs without labels L and R, unless explicitly indicated otherwise.

path

path

path

FIG. 13. Part of P(AG6).

Now for the partition associated with minmaxpassk+ we have to choose between
,4 Anew

k+l L and d k+l R. For e,k+ R the subset of attributes from A,+ moved to Z-Xk+

is {bE,’",f2, ba,’.-,da, c4,...,f4, cs,...,ds} and for d%=L the subset of
attributes from A,+2 moved to A’ is {c4,. , f4, c5," , ds, es,. , fs}. These subsets
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are incomparable But observe that if paths 2 and 3 are not in the graph, then d_’ L
is selected and if path 5 does not form part of it, then d%’ R is selected.

Example 5.9. Consider with respect to sequence (. ., d/l L, d/2 R,. .) of
pass directions the partition (. , A/l, A/2, ") associated with pass function min-
maxpassk for precedence graph P(AG7) as sketched in Fig. 14.

path

path

path

path

path

anew isFor dnew:k+l L the subset of attributes from A,+2 moved to
{b2," ", f2, b3," ", d3, 4," ", f4, c5," ", ds} and for d%’ R the subset of attributes
from A+: moved to A%’ is {Ca,""" ,f4, c5,..., d, e,... ,f}. These subsets .are
incomparable However, if paths :2 and 3 are not in the graph, then for ,,/new

"k+l the reversed
pass direction is selected and if on the contrary path 5 is not in the graph, then for
d%’ the original pass direction is maintained.

/Anew Anew Aopd AopdLet \,1 ,..., k Z-Xk+l, Z-Xk+2,""" Apd) be the partition associated with the
pass function minmaxpassk+l with respect to the sequence
anew aew opd, d,+E,...,d) of pass directions and let (A’ew,...,Aew,t*l tk

Z-Xk+l,Arpd .,--Xk+2,Arpd Apd) be the partition associated with the pass function minmaxpassk+l
with respect to the sequence Anewt* tAnewk rpd, d’k+2, d,).

Arpd Aopd AopdNotice that k+2 c k+2 means that the subset of A+2 moved to k+l is included
Arpd Arpd Aopdin the subset of A+2 moved to k+l. Hence, if k+2 c k+2 then we select rpd as the

Aopd Arpddirection for the (k + 1)th pass and if ,-k+2 c k+: then we select opd as the (k + 1)th
Arpd and APdpass direction. If k+2 ’-k+2 are incomparable we have to use another criterion

Arpd Aopdto select a direction for the (k+ 1)th pass. If k+2 k+2 we continue the selection
Aopd Arpdaopd arpd The process continues until k+C k+ orprocess by comparing k+3 and "k+3.

rpd Aopd for some (2 < i<p- k). If finally the comparison of Apd and A,pd doesk+i C -k+i

not lead to a decision we may arbitrarily select a direction for the (k + 1)th pass.
Algorithm 5.3 starts with the partition (Am, A) associated with pass func-

tion minmaxpasso maxpass with respect to sequence (d, d) of pass direc-
tions, where m m the initial number of passes. Now for k from 0 up to m- 2 action
1 or 2 is taken.

Ak+2, A’,,) associated with min-1 If in the partition anew Anew A,+Ztl Z-tk 1,

maxpassk with respect to sequence (tAnewl tAnewk d :+1, d tk+2, d’) of pass direc-
tions the set A,+ is empty, then pass direction d,+l is crossed out from the sequence



910 HENK ALBLAS

of pass directions and the set A+ from the partition associated with minmaxpassk.
The remaining pass directions and sets of the partition are renumbered such that again
a consecutive sequence of pass numbers results. The resulting partition has the minmax-
passk property with respect to the shortened sequence of pass directions.

2. If the (k + 1)th pass cannot be crossed out, then procedure next minmaxpass
is applied. It selects the (k + 1)th pass direction and computes the partition associated
with the pass function minmaxpassk+. Starting from a sequence (deW, dew,
d+l, d+2,"" ", d) of pass directions and the partition associated with the pass
function minmaxpassk with respect to this sequence it delivers the sequence
Anewl tkAnew, d newk+l, d’k+2, d’) and the partition associated with the pass func-
tion minmaxpassk+l with respect to the resulting sequence of pass directions, where
dnew is the "best" direction.k+l

The repetition ends with the sequence (dew, , dew) of pass directions and the
partition \,/a"w..., Anew) associated with the pass function minmaxpass,,_
minmaxpass,, minpass, where m my the final number of passes.

AnewProcedure next minmaxpass makes use of the function nextmin to compute k+l,

the (k + 1)th subset of the new partition.
Function nextmin is useful for both the case where d_’ has the original value

d,+l and where d,_’ and d,+l are reversed directions (see also the optimized version
of Algorithm 4.1).

Function nextmin makes use of the following sets" A: the set of all attributes of
the grammar; B" the attributes that belong to preceding subsets in the partition, i.e.,

Anew; Anew i.e. A+1" D" the attributesU k__.-i C" the attributes that certainly belong to rXk+l,

Anewthat possibly belong to k/l, i.e., initially A-(B U C).

ALGORITHM 5.3. Computation of the partition associated with the pass function
minpass with respect to a sequence (’new dnew

--"V ofpass directions from the partition
associated with the pass function maxpass with respect to a sequence (dld, dld5
of pass directions, where mf-< ms.

Input" P(AG)" sequence (dla, dl% of pass directions" partition
(Al, A% associated with the pass function maxpass with respect toms
(d,... dOms/"

Output: sequence (d r/new Anew_,,y, of pass directions partition/anew
associated with the pass function minpass with respect to
(,4nw dnW

Algorithm:
begin

procedure maxpass to minpass (PG: precedence graph);
{globals (..aa,.. , da,".,. initial sequence of pass directions’,

(Aa, Al% initial maxpass partition of A"
new.(,w d final sequence of pass directionst’l mft.

(A Anew.,.. final minpass partition of A}
function nextmin (A, B, C: set of attributes; d: pass direction;

PG: precedence graph): set of attributes;
var D: set of attributes;
begin
D:=A-(BUC);
repeat

delete a vertex a from D
if in PG there exists a vertex b such that
bCUDandd-cost(b,a)>l
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until no more vertices can be deleted from D;
nextmin := D U C

end {of nextmin};
procedure next minmaxpass (k: integer; PG: precedence graph);

{global variables:
(d r/new d+ dk+2, ", d’m):tk

initial sequence of pass directions;
/anew Anew A+ Ak+2. A’,.)"\Xl Z-Xk

initial minmaxpassk partition of A;
(r/new r/new dnew d’ d)"k k+ k+2

final sequence of pass directions;
zinew Anew Anew, , ,+,,Ag+2, ,A’}:

final minmaxpass+ partition of A}
begin
opd:= d+l; rpd:= reverse (d+l); direction:= ?;
if A+l includes rpd-labels
then direction := opd

aPd Anew opd, PG)"else k+l := nextmin (A, k -- A,+l,
rpd .zlnew rpd, PG)"k+l :-- nextmin (A, U/ "-i A+l,

for from k/2to m
aPd APd" Apd := A’ arpddo --i :-- Ai---’-Xk+l, i-- z"k+l

if lempty opd setsl < lempty rpd setsl
then direction :-- rpd
else if lempty rpd setsl < lempty opd setsl

then direction := opd
else for from k + 2 to m while direction ?

do if apd"-i C Apd

then direction := opd
AoPdelse if ApO

c.-i
then direction := rpd
else if "’iAPd and Apd are incomparable

then direction :- other criterion
fi

fi

od

if direction ? then direction := arbitrary fi
fi;
k+l := direction,

if direction opd
then/Anew /Aopd Aopd AOmPd)\+x, A+2," ", A):= \k+, k+2,"

/Anew /Arpd Arpd Adelse \k+, Ak+2, ", A):= kk+l, k+2,

fi
end {of next minmaxpass};

begin
m:= m; k:=0;
(A,. A):= (Ald Ad)
{maxpass paition of A with respect to sequence (dld, -, dd) of pass
directions}
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,o d).(d’ d’):=(, ,."1

while k m 2
do

consider paition x,/anew kAnew, A+l, Ak+2,’ A)
associated with minmaxpassk with respect to sequence
(d d d+l, d’ d) of pass directions"k k+2

if A+l
then {cross out and renumber}

(A+,..., A_):= (Ak+,’’’, A);
(d+,..., d_):= (d+,..., d);
m:=m--I

else next minmaxpass (k, PG);
k:=k+l

fi
od;

mf
end {of maxpass to minpass};

call maxpass to minpass (P(AG))
end

Notice that Algorithms 5.1 and 5.3 deliver the same sequence of pass directions
if not a single pass ofthe original sequence is replaced by a pass in the opposite direction.

As for Algorithm 5.1 we count the number of times the d-cost function between
attributes is examined. The function nextmin is called twice in the body of function
next minmaxpass. Hence, Algorithm 5.3 takes time O(mf. n), where n is the number
of attributes of the grammar.

A similar approach as in Algorithm 5.3 is possible for the computation of the
paition associated with the pass function maxpass from the paaition associated with
the pass function minpass. As in 4 we make use of the correspondence between the
minpass to maxpass computation and the maxpass to minpass computation. After
putting the sequence of pass directions and subsets of the paition of A into the
reversed order, the minpass to maxpass computation can be realized by activation of
the procedure maxpass to minpass with the reversed precedence graph (AG) as its
argument.

Hence, our algorithm to reduce the number of evaluation passes by a repeated
application of Algorithm 5.3 is as follows.

ALGORITHM 5.4. Computation of a minimal (minimal with respect to the sub-
sequence ordering) sequence of pass directions and the pass function minpass with
respect to this sequence.

Input: attribute grammar AG.
Output: a sequence of pass directions and the minpass paition of the attributes

of AG associated with this sequence.
Algorithm:

begin
construct P(AG) and (AG);
construct a sequence of pass directions and the minpass paition with respect
to this sequence and P(AG);
apply Algorithm 5.2 to cross out pass directions and to compute the pass
function maxpass with respect to the resulting sequence of pass directions;
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repeat
old m := length of the sequence of pass directions;
call maxpass to minpass (P(AG));
put the pass directions of the resulting sequence and subsets of the resulting
partition into the reversed order;
call maxpass to minpass (/5(AG));
put the pass directions of the resulting sequence and subsets of the resulting
partition into the reversed order;
new m :--length of the sequence of pass directions

until new m old m
apply Algorithm 5.1 to cross out pass directions and to compute the pass
function minpass with respect to the resulting sequence of pass directions

end

The resulting sequence of pass directions is minimal with respect to the sub-
sequence ordering.

Any sequence of pass directions for which a correct complete partition of the set
of attributes exists can be used to start the optimization process. A possible sequence
could be (L, R, L, R...), i.e., the sequence where L- and R-passes strictly alternate.
In [1] an algorithm is presented that produces with respect to such a sequence the
minimal pass numbers and in case of failure indicates the attributes that cause the
rejection of the grammar, i.e., the attributes that are involved in a cycle whose labels
are not consistent with one of the possible pass directions.

The importance of this algorithm for strictly alternating simple multi-pass evalu-
ation follows from the fact that an attribute grammar is simple multi-pass with respect
to any sequence of pass directions if and only if it is simple multi-pass with respect
to the sequence of pass directions where left-to-right and right-to-left passes strictly
alternate 1, Thm. 8.1].

6. Discussion and conclusions. Algorithm 5.4 proved to be successful for several
small example grammars discussed in the literature, e.g., in [2]-[12]. As starting
sequences of pass directions both the strictly alternating sequences (L, R, L, R,...)
and (R, L, R, L,. .) were applied.

For all these examples handchecking showed that:
1. passes were crossed out from the original sequence and there was no need to

change the directions of the remaining passes, although in some cases the changing
of a pass direction into the opposite one would have given the same result;

2. sequences of pass directions of minimal length were produced. Hence, for the
more or less practical examples, referred to in the literature mentioned above,
Algorithms 5.1 and 5.2 deliver the same results as Algorithm 5.4. Changing of pass
directions seems to be needed only in complicated cases.

The construction algorithm in this paper starts from a given nonoptimal solution
and subsequently tries to shorten it by crossing out passes and changing pass directions.

Other algorithms, e.g. in [8], start from an empty sequence of pass directions and
successively extend it by selecting the direction for the next pass. These algorithms
compare the sets of attributes that can be evaluated during a left-to-right pass and
during a right-to-left pass. If one of these sets is contained in the other, the direction
of the larger set is chosen. Notice that this criterion is also implicitly included in
Algorithm 5.4 in this paper. If the two sets are incomparable, then for the next pass
direction the reversed of the previous pass is chosen.
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In [10], [11] a better criterion is explained. It is assumed that for the remaining
attributes, not yet evaluated, still another left-to-right pass has to be made. The next
left-to-right pass will be preceded by a sequence of zero or more right-to-left passes.
If the set of attributes evaluated during the left-to-right pass will not grow regardless
of the number of preceding right-to-left passes, there is no reason for delaying the
left-to-right pass. Doing some passes in the opposite direction will not help. Analogously
the completeness of a right-to-left pass immediately after a number of left-to-right
passes is investigated. In case these criteria do not lead to a decision other heuristics
are added to the selection function.

Notice that the algorithms in this paper start from given sequences of pass
directions, especially the strictly alternating sequences, while the algorithm in [10],
[11] repeatedly computes subsequences (Ln, R and (R n, L.

Both the algorithms in this paper and the algorithm in [10], [11] take time O(n3),
where n is the number of attributes of the grammar, and seem to deliver the same
results for practical example grammars. Artificial examples are needed to find differ-
ences.

An interesting point is that for a given sequence of pass directions several different
pass functions may exist. The distribution ofthe attributes over the passes may influence
the lifetime of the attributes, i.e., the span of time between the point when an attribute
is defined and the point when its value is used for the last time. Hence, the freedom
in the distribution of the attributes over the passes can be applied for space efficient
storage management in an attribute grammar evaluator, see [4].

Acknowledgments. I am grateful to Joost Engelfriet for his stimulating and critical
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OPTIMUM COMMUNICATION SPANNING TREES IN
SERIES-PARALLEL NETWORKS*

EHAB S. EL-MALLAHf AND CHARLES J. COLBOURN

Abstract. The optimum communication spanning tree problem is to locate a spanning tree which

minimizes the sum of the lengths of the shortest routes between all pairs of vertices in a graph, weighted
by traffic requirements. Although NP-complete in general, this problem has an efficient solution for

series-parallel graphs when all requirements are equal. This problem was introduced by Hu, who gave an

efficient solution for the restricted case when the network is complete and the distances are equal.

Key words, spanning tree, network design, series-parallel graph, 2-tree

1. Introduction. A common objective of most network design problems is to
construct a network to connect a set of sites while minimizing construction costs and
routing costs associated with satisfying the required flow. The optimum communication
spanning tree problem (OCSTP) is a special case of noncongested network design
problems, in which edge construction costs are all equal and totally dominate the
routing costs (see for example [10] for a survey of some network design problems). In
these cases the network topology that minimizes the construction costs while maintain-
ing connectedness is a spanning tree. The network under consideration is modelled
by an undirected graph G= (V, E), IV[ n and ]E[ m; the distance and the traffic
requirements between any two vertices and j is denoted by dij and rij respectively.
The problem asks for a spanning tree T of the graph G that minimizes the total routing
cost defined by the function F(T) Yi<, v roL, where Li is the sum of the distances
of the edges which form the unique path connecting and j in T. For example, if G
is the r-vertex complete graph K, with all possible distances and traffic requirements
equal to one, then the criterion function of any tree T isomorphic to the star tree
is (r-1)2. In this case, T is an optimum communication tree.

Hu [8] first introduced this problem and identified two interesting cases: the
optimum requirement spanning tree problem (ORSTP) where all the distances are
restricted to be equal and the optimum distance spanning tree problem (ODSTP) where
all the requirements are restricted to be equal. Hu solved the ORSTP and a geometric
ODSTP in polynomial time on complete graphs. Johnson, Lenstra, and Rinnooy Kan
proved that the OCSTP is NP-complete even in the restricted case where all distances
and requirements are equal [9]. Hence, an efficient solution for any arbitrary instance
of the problem is unlikely.

In this paper, we devise an algorithm that solves the ODSTP in O(t13+ m) time
on series-parallel networks. Note that the problem can not be characterized by a
forbidden set of subgraphs; hence, the divide and conquer algorithm [12] for solving
some graph problems on series-parallel networks is not applicable.

Throughout this paper we assume standard graph-theoretic terminology and
definitions (see, for example, [1], [6]). In addition, some basic definitions follow. Duffin
[3] characterized series-parallel graphs as those graphs with no induced subgraph
homeomorphic to K4. A 2-tree is defined recursively as follows. A triangle, K3, is a
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2-tree. Further, given a 2-tree and an edge (x, y) of the 2-tree, we can add a new vertex
z adjacent to both x and y to produce a 2-tree. A partial 2-tree is a subgraph of a
2-tree. Finally, it can be shown that the class of partial 2-trees is precisely the class of
series-parallel graphs without loops or parallel edges [14].

The rest of this paper is organized as follows. Section 2 describes an algorithm
to transform a series-parallel network to a 2-tree such that both graphs have the same
optimum distance trees. Section 3 describes a recursive algorithm for generating
spanning trees in a 2-tree; this algorithm is a prototype of the main algorithm. Section
4 defines two optimality criterion functions that will be used to identify the subtrees
that are considered candidates to appear in the optimum tree. Section 5 outlines the
algorithm and proves its correctness and the timing required.

2. Transforming a series-parallel graph to a 2-tree. In this section we outline a
method for transforming a series-parallel graph G- (V, E) to a 2-tree G"-( V", E")
such that a tree T is optimum in G if and only if it is optimum in G". The transformation
proceeds as follows. Reduce every set of parallel edges in G to one edge, namely the
one with the shortest distance. The resulting graph G’-(V’, E’) is the underlying
graph of the graph G without parallel edges, and hence it is a partial 2-tree (the two
classes of graphs are characterized by forbidden subgraphs homeomorphic to K4).
Since graph G is assumed to be connected and removing the parallel edges does not
interrupt its connectivity, we may assume that G’ is a connected partial 2-tree. Clearly,
both G and G’ have the same optimum distance spanning trees. The above step can
be implemented in O(m) time. If IE’I=21V’I-3 then stop; G’ is a 2-tree, otherwise
add one or more new edges to transform G’ to a 2-tree G" as follows.

In the following steps we associate a large distance with every new added edge
to ensure that none of them is included in any optimum distance spanning tree. One
such value is the criterion function of any spanning tree of (3’. First, add the necessary
edges to transform the graph (3’ to a biconnected partial 2-tree (3" using a standard
depth-first technique [13]. This step can be implemented in O(n + rn) time. Given a
biconnected partial 2-tree (3", transform it to a 2-tree as follows [14]. Form a queue
containing all vertices of degree 2 in (3". Then repeatedly perform the following
operations, on a copy G’’c of (3", until G is reduced to K2. Remove the first vertex
v from the queue; if there is no such queue element and (3" is not a K2, declare that
(3" is not a partial 2-tree and stop. Otherwise, locate the neighbours x and y of v in
G’’. If (x, y) is not an edge, add (x, y) to the graphs G" and G’’. Delete the vertex v;
if either x or y has its degree decreased to 2 in the graph G’’, add it to the queue.
This transformation requires O(n) time. As can be seen the transformation from the
connected series-parallel graph G to the 2-tree (3" requires O(n+m) time. We
henceforth assume that the input graph G is a 2-tree.

3. Recursive generation of spanning trees in 2-trees. 2-trees possess the following
edge separation property: each edge (x, y) of a 2-tree G partitions G into one or more
components which pairwise intersect at (x, y) and whose union is the entire 2-tree;
moreover, each component so obtained is a 2-tree. A subgraph (31 of G is called a
side of (x, y) if it is the union of one or more such components. Note that the edge
(x, y) and the entire graph G are the minimal and maximal sides of (x, y) respectively.

The above property enables us to view any spanning tree T of the 2-tree (3 as
the union of certain subgraphs of the sides of any edge (x, y). In fact, the subgraphs
of any side Gi of the edge (x, y) that can appear in any spanning tree T of G may be
classified into two types. Members of the first type are spanning trees of this particular
side and are referred to as the CT trees; we use the notation CTi(x, y) to refer to a
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spanning tree of the ith side of (x, y). Members of the second type are spanning forests
of the side under consideration; each forest contains exactly two disjoint subtrees, one
containing x and the other containing y, and are referred to as the DT forests. We
use the notation DT(x, y) to refer to such a spanning forest of the ith side of (x, y).
Following the above notations we can write any spanning tree of G as the union of
some CT and DT forests with respect to any edge (x, y) with k identified sides as

lj<--k
ji

DTj(x, y) U CT(x, y)

for some side Ci. Note that no other forest of any side Gi (that is not of type CT or
DT) can appear in any spanning tree of G since any other type of forests contains at
least one vertex v isolated from both x and y. Hence, this vertex v appears in the final
spanning subgraph isolated from all other vertices in all other sides.

The general scheme is to reverse the recursive construction process of the 2-tree
by repeatedly eliminating vertices of degree 2 until the graph is reduced to a base
component K2. During this vertex elimination procedure, summarize information about
the triangle (x, y, z), where z has degree 2, on the edge (x, y) prior to deleting z. For
our purpose, the summary information associated with every edge (x, y) consists of
two sets S_CT(x, y) and S_DT(x, y) whose members are spanning trees of type CT
and spanning forests of type DT respectively. At any time, the summary information
encodes information about the CT trees and the DT forests of the side which has thus
far been reduced onto the edge (x, y). This technique owes much to similar techniques
used to compute the center and diameter of outerplanar graphs [5] and Steiner trees
in 2-trees 14].

Initially, no side has been reduced onto the edge (x, y); the only member of the
set S_CT(x, y) is the edge (x, y) itself. Similarly, the only member of the set S_DT(x, y)
is the pair of vertices x and y. Subsequently, prior to eliminating any vertex z of degree
2 in the triangle (x, y, z) the two sets S_CT(x, y) and S_DT(x, y) are updated to
include all possible forests that can be constructed from the forests included in the
six sets S_CT(x, y), S_DT(x, y), S_CT(x, z), S_DT(x, z), S_CT(y, z) and S_DT(y, z).
The update operations are described using the cross product operation defined on
graphs as follows: let $1 and $2 be two sets of graphs; then $1 x $2 is the set containing
all possible graphs that can be constructed by applying the graph union operation on
every pair of graphs G S1 and G2 $2. The following procedure summarizes the
main steps of the algorithm.

GENERATE_SPANNING_TREES(G)
Input: A 2-tree G.
Output" All spanning trees of G.

1. For every edge (x, y)e E,
1.1. S_CT(x, y) - the edge (x, y).
1.2. S_DT(x, y) the trivial forest of the two separate vertices x and y.

2. Form a queue of degree 2 vertices in G.
3. Repeat until the graph is reduced to K2.

3.1. Remove vertex z from the queue. Locate its neighbours x and y.
3.2. Merge the four sets associated with the edges (x, z) and (y, z) into tem-

porary sets.
3.2.1. s_Crtemp(X y)- S_CT(x, z) S_CT(y, z).
3.2.2. S_Drtemp(X y) <-- {s_Cr(x, z) x S_DT(y, z)}

{S_DT(x, z) S_CT(y, z)}.
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3.3. Update the set of forests associated with the edge (x, y).
3.3.1. S_CT(x, y)-(S_CT(x, y) S_DTtemp(X, y))

U {S_DT(x, y) x S_CTtemp(X, y)}.
3.3.3. S_DT(x, y)- S_DT(x, y) x S-DTtemp(X, y).

3.4. Delete the vertex z. If either x or y has its degree decreased to 2 add it to the queue.
4. The set S_CT(x, y) associated with the last edge (x, y) is the set of all spanning

trees of G.

Note that in Step 3.2 the only omitted combination is S_DT(x, z)x S_DT(y, z).
Here every forest contains exactly three subtrees, and hence none of them is of type
CT or DT. Similarly, in Step 3.3 the only omitted combination is S_ CTtemp(X, y)x
S_CT(x, y) in which every graph contains a cycle joining the two vertices x and y.
Clearly, such graphs are not forests.

The main algorithm, as described in 5, generates in Steps 3.2 and 3.3 those
forests that are considered candidates to appear in the optimum tree selected according
to certain selection functions. In the following section, we introduce the selection
functions used.

4. Optimality functions for selecting optimal subtrees. The problem of finding the
optimum distance tree on a 2-tree can be regarded as the sequence of decisions
concerning the forests of type CT and DT that should be generated prior to eliminating
a degree 2 vertex and the information associated with the two edges incident with it.
To this end, we define two selection functions that are used throughout the algorithm
to decide the exact forests to be generated.

First, we extend a method adopted by Hu [8] to compute the criterion function
of a communication tree T in the ODSTP. Assume that the removal of the edge
(i, j), (i, j)e T, disconnects T into two subtrees of sizes ko and (n-ko) respectively.
The factor dokij(n kij) is the cost incurred by allowing the flow between the these two
subtrees to be routed through the edge (i, j). The sum of all such edge costs of T yields
F(T). For example, the cost of any edge of length one of the star tree Kl.r-1 is r- 1.
Another method of computing the criterion function is to view T as a union of one
or more subtrees and associating a cost with each subtree; the sum of all such costs
yields F(T). For our purpose, we introduce the following notations defined with respect
to a tree T1 containing nl vertices, one of them labelled x.

1. ki(x)= the size of a subtree not containing x that results from removing the
edge (i, j) from T 1 -<_ k < nl.

2. S(x)= the cost of routing the traffic from every vertex to the vertex x in the
tree T (ij)e T, dik (x).

For example, if x is a vertex of degree 1 in the unit distance tree Kl,r-1 then S(x) 2r 3.
The cost is computed by associating a cost of dk(x) with every edge in T1 and then
summing all such edge costs.

Using the above notation, if x is a distinguished vertex in a tree T, T and T are
two subtrees of T such that T T U T, and V V {x} then F(T) can be decom-
posed as follows.

F( T) d,jk,(x)(n k,(x))
(id)e T

=[ dijkij(x)(11-i- l12-1- kij(x)) ]i,j) r
d- [ dijkij(x)(rll + rl2-1- kij(x)) ]

ij)e T2
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=[ doko(x)(n-ko(x))+(n2-1) doko(x)]
ij T i,j T

q- [ ’ dijkij(x)(l’12- kij(x)) q-(l’l- l) Y dijkij(x)]
ij)e T ij)e T

=[F(T) + (n2-1)SI(X)]+[F(T2) + (nl- 1)S2(x)].

The term [F(T1)+(n2-1)Sl(x)] can be interpreted as follows" F(TI) is the total cost
incurred by the internal flow of the tree T, while the term (n2-1)S(x) is the cost
incurred by allowing the flow between the two subtrees to pass through tree T. In
addition, if y is a distinguished vertex in T then"

S(y) Sl(y) -}- S2(x)+(n2-1)Lxy.

Now, assume that (x, y) is an edge of the 2-tree G, Gi and Gj are two sides of
(x, y) such that G Gi U Gj. Furthermore, assume that T CTi(x, y)U DT(x, y) is a
spanning tree of G. Let T CT(x, y) and T2, T3) DT(x, y) where V ffl V2 {x}
and V1 f-I V3 {y}. Applying the above decomposition scheme to the two subtrees T1
and T2 in one step and the two subtrees T U T2 and T3 in a second step, we get

F(T) [F(T,) + (n2-1 )S,(x) + (n 1 )S,(y) + (n- 1)( n 1) L,y]

+IF(T2) q- (rl n2) S2(x if- F(T3) -t- n n3) S3(y)].

The terms between the first pair of square brackets can be viewed as a function
of the subtree T and the two numbers n2 and n3. The terms between the second
pair of square brackets can be viewed as a function of the forest (T2, T3). We
henceforth denote these two functions by FCT(G, T,x" n2,y" n3) and
FDT (G, T2, x" ha, T3, y" n3), respectively, and refer to them as the FCT and the FDT
selection functions. The FCT notation specifies the selection function of a spanning
tree T of the graph G (so n n) with two vertices labelled x and y when connected
to a spanning forest of the subraph induced by the vertices V- V + {x, y} such that
one tree in this forest contains n2 vertices and is attached to vertex x, while the second
tree contains n3 vertices and is attached to vertex y. The FDT notation specifies the
selection function of a spanning forest of the. subgraph G; containing two vertices x
and y, subtree T2 includes the vertex x and it contains n2 vertices and subtree T3
includes the vertex y and it contains n3 vertices.

Several notes are in order. First, this notation encodes more information than is
actually required since nl, na, n3 satisfy n + n2 + n3-3 n in the FCT function, while
n2 + n3 =n; in the FDT function. Note also that because Gi and G; intersects at the
two vertices x and y, we have n + n-2 n. Thus we can omit either n2 or n3 and
substitute for it the mark #. This alternative notation is used to make the equations
more readable.

We use the notation CTopt(Gi, x" a, y" #) and OTopt(Gi, x: o, y: ) to refer to a
spanning tree of type CTi(x, y) and a spanning forest of type DT(x, y) of the subgraph
G that minimizes the corresponding FCT and FDT functions respectively among all
possible spanning trees and forests of G.

Moreover, the parameters

(F(T1) SI(X), SI(y), Lxy, n,) and (F(T2) F(T3) S2(x), S3(y), n2, n3)

are all we need to know about the subtree T and the forest (T2, T3) to compute its
selection function. Hence we call them the summary parameters. In the next section
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we state the necessary equations to compute these parameters recursively for the
generated trees and forests. It should be pointed out that maintaining such sets of
parameters contributes to the efficiency of computing the selection functions.

The idea of the algorithm is to summarize a subgraph Gi by the following set of
CT spanning trees

T: T CTopt( Gi, x" Ol, y" #), 1 <= a < n n + 1

and the following set of DT spanning forests

{H" H=DTopt(Gi, x:a.,y’#),l<-a<n-l}.

$. The algorithm. Let (x, y, z) be a triangle in a 2-tree G, where z is a degree two
vertex, G,, Gxz and Gyz are three edge disjoint sides of the three edges (x, y), (x, z)
and (y, z) respectively, their union is the subgraph Gxyz. We first develop a few lemmas,
and subsequently modify the prototype introduced in 3 to generate the required
forests.

LEMMA 1.

CTopt( Gxz Gyz, x" o, y"/3 CTopt( Gxz x" ol, z" [,.J CToot( Gyz, y: 1, z" # ).

Proof Let T be a spanning tree of the subgraph Gxz U Gyz. T is the union of
two subtrees T of G,z and T2 of Gyz. It is required to show that T=
CToot(Gz (_J Gyz, x" a, y: ) if and only if T CTopt(G,z, x" a, z" #) and T2
CTopt( Gyz, y" , z" # ).

Since T T U T: we can deduce the summary parameters for T in terms of the
summary parameters for T1 and Tz as follows.

(1.1) F(T) F( T,) + F( T2) + n2- 1)S,( z) + n, 1)S2( z),

(1.2) S(x) SI(X) - $2(2) q- (n2 1)txz

(1.3) S(y) SI(Z) + S2(y)+(nl-- 1)Lyz,

1.4) L,y L, + Lyz,

(1.5) n n + n2-- 1.

We want to minimize"

FCT (Gz U Gyz, T,x’a,y’8)=F(T)+(a-1)S(x)+(Cl-1)S(y)
(1.6)

nt-(ot -1)(- l)Lxy.

Substituting for F(T), S(x) and Lxy in (1.6) we get:

FCT(G,,zUGyz, T,x’a,y’l)

IF(T,) + (rt2 + 1 2)S,(z)+ (a 1) S,(x) + (a 1 )( n2 +/3 2)L,]

q" F(T2) q-- M, -[- ff 2) $2(z) --[-- (] S2(y) + (/3 )(

and the requirement of the proof follows immediately.
LEMMA 2.

DTopt( Gz tO Gvz, x" a, y"

_{CTopt(Gxz, X:#,z:(ce-nxz+l))(-J DTopt(ay,Y’,z’#), a>=nxz,
DTopt(Gxz x: o, z" #)[,.J CTopt( Gyz, y" #, z" (nxz- a)), a < nz.
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Proof. We prove the lemma for the case where a->_ n,,, the other case is similar.
since a >-_ nxz then a DT spanning forest of the subgraph G,, t.J Gyz is a union of two
subgraphs: a spanning tree T1 of G,z and a spanning forest (T2, T3) of Gyz where
z V2 and y V3. Note that in the forest T1 T, T3) we have/3 n3 and a n + n- 1.
It is required to prove that (T1 (_J T:, T3)= Vropt(axz ayz, x: OZ, y’. fl) if and only if
Tl= CTopt(Gx,X:, z:(a-nx+ l)) and (T2, T3)-- DTopt(Gyz, y:fl, z: ).

We first define the summary parameters of the subtree T (_J T2 in terms of the
summary parameters of the subtrees T1 and T as follows.

(2.1) F(Tl t_J T2) F(T1)+ F(T2)+(nz-1)SI(Z)+(nl-1)S2(z),

(2.2) Sl,(x) Sl(X) + S(z)+(n2- 1)Lxz,

(2.3) n. nl + n- 1.

We want to minimize"

(2.4)
FDT(Gz t_J Gyz, TI U T2, x: a, T3, y: fl

F( T1U T) + F(T3) + (n (n, + n- 1))S,,(x) + (n n3)S3(y).

Substituting for F(T1 t_J T), S,2(x) in (2.4) we get

FDT(Gz Gy, T t.J T2, x: a, T3, y" fl

=[F(T)+(n2-1)S(z)+(n-(n+n2-1))Sl(X) +(n-l)(n-(nl+n2-1))Lxz]

+IF(T2) q- F(T3) + (n n3)S3(y)+ (n n2)$2(

IF(T,) + (a nx)S,(z) + (n a) Sl(X) + (a nxz)(n a)Lz]

+ F(T2) + F(T3) + n -/3 S3(y) + n a nz + 1 ))S(z)]

and the requirement of the proof follows immediately.
Lemmas 1 and 2 provide the basic tools required to modify Step 3.2 of the

procedure introduced in 3 to generate the required set of forests. The modification
required is now summarized.

3.2. Merge the four sets associated with the edges (x, z) and (y, z) into temporary
sets as follows.
3.2.1. Compute the following numbers.

in (xz, yz) the number of vertices
that are included in the two subgraphs
Gz and Gyz, i.e., (nz+ny-l).

out (xz, yz) the number of vertices
that are not included in the two subgraphs
G,z and Gy except the two vertices x and y, i.e.,
n in(xz, yz) + 2).

3.2.1. For a 1, 2, , out (xz, yz)- 1,

S_CTtemp (X, y)- S_CTtemp (X, y)

[J { CTopt( axz x: ol, z" i [.J Cropt( ayz, y" #, z" n,z + a 1)}
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3.2.2. For a - 1, 2, , in (xz, yz) 1,

S-DTtemp(X, Y) S_DTtemp(X Y)

CTopt(Gx, x: #, z" (a n,z + 1))
[.J J DTopt( Gyz, y" JC, z" a nz + l ), a >- nz,

DTopt( Gxz, X" a, z" l,.J CTopt( Gyz, y" #t, z: nxz O ), a < nxz.
LEMMA 3. Let in (xz, yz) be the number of vertices in the subgraph G,z Gyz, i.e.,

in (xz, yz n,,z + nyz 1. Then

CTopt( Gzyz, X" ce, y"

e { CTopt(Gxy, x" a + index 1, y: #)

[..J OTopt(Gxz[,.J Gyz, X" index, y" #)" index= 1,2,... ,in (xz, yz)-l}

CI { DTopt( Gxy, x" index, y" #)

U CTopt(Gz U Gyz, x" a + index- 1, y" #): index 1, 2,. , ny 1}.

Proof Let T be a spanning tree of the subgraph Gxyz. We prove the lemma in the
case where T is the union of a spanning tree T1 of Gzy and a spanning forest (T2, T3)
of G,,z t3 Gyz, where {x} V2 and {y} e V3. The remaining case is similar.

It is sufficient to show that

FCT Gxyz, T, x: a, y" fl )= FCT Gxy T,, x" o1-1- n2 1, y" #
(3.1)

U FDT G,z U Gyz, T, x" n2, T3, y" #)

and the proof follows by considering all possible values of n2.
Since T T1 U T2 U T3 we can write the parameters of T in terms of the parameters

of the three subtrees T, T2 and T3 as follows.

F(T) IF(T1) + (n- 1 Sl(X) + n3 1 Sl(y) + (n2 1)( n3 1 L,y]
(3.2)

+[F(T2) + F(T3) + (nl + n3- 2) S2(x) + (n + n2- 2) S3(y)],

(3.3) S(x)= S(x)nt- S2(x) -k- S3(y)+(n 1)Lxy

(3.4) S(y) S(y)+ S2(x) + S3(y)+(n- 1)Ly,

(3.5) n=n+n+n3-2.
Substituting for F(T), S(x) and S(y) in (3.1) we get

FCT(Gxyz, T, x" a,

F(T)+(a-1)S(x)+(fi-1)S(y)+(a-1)(,8-1)Lxy

IF(T) + (a + n: 2)S(x) + (8 + n3 2) S(y) + (a + n2 2)(/3 + n3 2)Lxy]
+[F(Tz) + (n -k n q- c q- fl 4)S2(x)]
+[F(T3) + (n, + n2 + a +/3- 4) S3(y)],

and (3.1) follows immediately.
Following the same strategy of the proof one can verify the following lemma.
LEMMA 4.

DTopt( Gxyz, x" o, y" #

{DTopt(Gxy, x" index, y" #)

I,.J DTopt(Gxz Gyz, X" a-index+ 1, y’#)" index= 1, 2,... ,min (nxy--1,
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Lemmas 4 and 5 provide the basic tools for modifying Step 3.3 of the prototype
to generate the required forests as follows.

3.3. Update the set of forests associated with the edge (x, y). Note that all spanning
trees and forests of the subgraph G,z U Gyz have been previously generated
in Step 3.2 and are stored in the two sets S_CTtemp(X y) and S_Drtemp(X y).
3.3.1. Compute the following numbers"

in (xy, xz, yz) the number of vertices
that are included in the three subgraphs
Gx,, Gx and Gyz i.e. (nxy+ nz+ ny-3).

out (xy, xz, yz) the number of vertices
that are not included in the three
subgraphs G,y, G and Gy except
the two vertices x and y i.e.
(n -in xy, xz, yz + 2).

3.3.2. For a 1, 2, , out (xy, xz, yz) 1,
S_CT(x, y)- S_CT(x, y)tA a minimum selection cost
tree among the trees in the set

{ Cropt( axy x: og .-]-index- 1, y: #)

[.J DTopt(Gxz Gyz, x: index, y: #): index 1, 2,. , in (xz, yz)- 1}

I,.J { DTopt( Gxy, x: index, y: #)

_J CTopt(Gxz J Gyz, x: ol -[-index- 1, y: #):

index 1, 2,. , nxy- 1}.

3.3.3. For a 1, 2, , in (xy, xz, yz) 1,

S_DT(x, y) S_DT(x, y) tA a minimum selection cost
forest among the forest in the set

DTopt( Gxy x; index, y: #)

U DTopt( Gxz U Gyz, x: a index + 1, y: #):

index 1, 2,. ., min (nxy- 1, a)}.

LEMMA 5. For an n vertex 2-tree (3, the optimum distance spanning tree can be
computed in O(n3) time.

Proof We derive the worst case time required by the algorithm using the following
prototype.

1. Initialization: for every edge (x, y) in G, initialize the two sets S_CT(x, y) and
S_DT(x, y). Every set contains one simple subgraph. Hence, the time required
by this step is O(n) since a 2-tree contains 2n- 3 edges.

2. Form a queue of degree 2 vertices in (3. This step requires time which is linear
in n.

3. Repeat until the graph is reduced to a single edge. The following steps are
repeated O(n) times.
3.1. Remove vertex z from the queue. Locate its neighbors x and y. This step

requires O(1) time.
3.2. Merge the four sets associated with the edges (x, z) and (y, z) into tem-

porary sets. This operation computes at most n subgraphs. Each subgraph
is constructed by performing a union of two forests and computing their
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associated summary lists. Performing a union of two forests, each forest
containing at most 2 trees, may be accomplished by establishing at most
four pointers to them, thus requiring O(1) time. Computing their associated
summary list requires O(1) time as described in the proofs of Lemmas 1
to 4. Hence this step requires O(n) time.

3.3. Update the set of forests associated with the edge (x, y). Again, this step
computes at most n subgraphs. The computation of any such subgraph
requires generating O(n) forests and selecting the one which minimizes
the appropriate selection function among those generated forests. Hence,
the time required by this step is 0(n2).

3.4. Delete the vertex z. If either x or y has its degree decreased to 2 add it to
the queue. This step requires O(1) time.

4. Extract the optimum distance tree from the tree of pointers constructed
throughout the algorithm. This step requires O(n) time.

It follows that the total time required to find the optimum distance tree on 2-trees is
O(/13) in the worst case. [

THEOREM 6. For an n-vertex, m-edge series-parallel network G, the optimum distance
spanning tree can be computed in O(/13+ m) time.

Proof. We have already established that a series-parallel network can be trans-
formed to a 2-tree such that both networks have the same optimum distance trees in
O(n + m) time. This fact together with Lemma 5 establishes the required proof. U

6. Conclusions. In this paper we presented a polynomial time algorithm to find
the optimum distance spanning tree on series-parallel networks and 2-trees. We doubt
that a similar scheme would result in a polynomial time algorithm for the general
optimum communication spanning tree problem or even for the optimum requirement
spanning tree problem. In such problems the size of the set of forests that should be
maintained appears to grow exponentially with the size of the problem instance.

Another problem that extends the OCSTP is the optimal networkproblem, discussed
by Scott [11] and Boyce et al. [2]. This problem allows different edge construction
costs and asks for a network that minimizes the total routing costs subject to the added
constraint that the total construction costs cannot exceed a given budget. However,
this problem is NP-complete even if the requirements are all equal [9]. In this case
the knapsack problem reduces to the problem on a series-parallel network. It is also
interesting to note that a similar technique solves the optimum distance problem on
k-trees for fixed k in polynomial time [4].
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A LINEAR RECOGNITION ALGORITHM FOR COGRAPHS*

D. G. CORNEILf, Y. PERL AND L. K. STEWARTf

Abstract. Cographs are the graphs formed from a single vertex under the closure of the operations of
union and complement. Another characterization of cographs is that they are the undirected graphs with
no induced paths on four vertices. Cographs arise naturally in such application areas as examination
scheduling and automatic clustering of index terms. Furthermore, it is known that cographs have a unique
tree representation called a cotree. Using the cotree it is possible to design very fast polynomial time
algorithms for problems which are intractable for graphs in general. Such problems include chromatic
number, clique determination, clustering, minimum weight domination, isomorphism, minimum fill-in and
Hamiitonicity. In this paper we present a linear time algorithm for recognizing cographs and constructing
their cotree representation.

Key words, cographs, permutation graphs, perfect graphs, linear algorithms, examination scheduling

1. Introduction. Following Cook’s pioneering work in establishing the NP-
completeness of the satisfiability problem [2], thousands of other problems were also
shown to be NP-complete or NP-hard [6]. Since many practical problems are "intract-
able" in this sense, hopes for producing algorithms which would find optimal solutions
in a reasonable amount of time had to be abandoned and instead attention was directed
to the development and analysis of heuristic algorithms. It was soon realized that the
very pessimistic worst-case analysis included in the NP-complete results did not
accurately reflect the success which heuristic algorithms were achieving on real-world
combinatorial optimization problems. As Karp noted "one of the great mysteries in
the field of combinatorial algorithms is the baffling success of many heuristic
algorithms" [9].

The search for a theoretical answer to this question leads to three main approaches.
The first allows approximations co be made to the optimal solution. In a very few cases
a constant bound on the ratio of the approximation to the optimal may be proven
however in most cases such a bound is not known. Furthermore even if such a bound
is known, in practice the observed behaviour of the algorithm is often much better
than the bound. The second approach substitutes either expected case or average case
analysis for worst-case analysis. Typically this type of research involves the probabilistic
analysis of a particular heuristic algorithm. Often this is accomplished by analyzing
the algorithm’s average behaviour on some form of random input, for example random
graphs. One shortcoming of this approach is that usually the graphs encountered in
practice have some structure which violates the assumption .that all edges have the
same independent probability of being present. For this reason the algorithm’s perform-
ance in a real-world environment often is not as good as predicted by the optimistic
expected case or average case analysis.

The third approach, and the one we take in this paper, maintains the worst-case
analysis and restricts the class of input to be considered. The hope here of course is
that the intractable problem will be solvable in polynomial time on this restricted class
of input and furthermore that membership in this restricted class can be recognized
quickly. Examples of families of graphs which have received this type of study include
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t Department of Computer Science, Rutgers University, New Brunswick, New Jersey 08903, and
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comparability graphs 11 ], permutation graphs 11 ], interval graphs 1 ], chordal graphs
[10] and planar graphs [8]. The difficulty with this approach is that one can usually
provide only an intuitive justification that the restricted class is a good model for the
input expected in practice. Furthermore, even if the restricted class does meet this
criterion, it may happen that a particular input is very close to being a member of the
restricted class but in fact is not. The algorithms developed for such a class must be
sufficiently robust to allow adaptation to these "near misses".

In this paper, we are concerned with combinatorial optimization problems where
the input graphs are expected to obey a certain "local density" property. In particular
the application suggests that the graphs are unlikely to have more than a very few
induced paths on four vertices. Thus if any four vertices a, b, c, d form a path then it
is expected that at least one of (a, c), (b, d) and (a, d) is also in the edge set. Applications
where this structure is expected to occur include examination scheduling and automatic
clustering of index terms. In examination scheduling, the vertices represent courses
and the edge (i, j) signifies the existence of a student taking both courses and j. The
weight of the edge indicates the number of such students. In any colouring of the
graph the colour classes represent courses whose examinations may be held concur-
rently. It is anticipated that such conflict graphs are very unlikely to have long induced
paths. In the second application we want to generate clusters (subsets of vertices with
a high density of edges) on a graph where edges represent the proximity or self-
referencing of index terms. Again it is expected that if four index terms form a path,
then at least one of the other edges will also be present (see [7]). As we shall see, the
P4 restricted graphs are precisely cographs.

Cographs (or complement reducible graphs) are defined as the class of graphs
formed from a single vertex under the closure of the operations of union and comple-
ment. Cographs were independently discovered under various names and were shown
by Lerchs (see [3]) to have the following two remarkable properties. First they are
exactly the P4 restricted graphs described above and secondly a cograph has a unique
tree representation. This tree, called a cotree, forms the basis for fast polynomial time
algorithms for problems such as isomorphism, colouring, clique detection, clusters,
minimum weight dominating sets, minimum fill-in and Hamiltonicity [3], [4], [5].

Naturally before such algorithms can be employed it is necessary to have a fast
cograph recognition algorithm which also produces the cotree on recognition of a
cograph. In 3 the outline of such a linear time algorithm is presented. This algorithm
follows from a new theorem on the structure of cographs that forms the basis of a
heuristic algorithm to deal with graphs which are almost cographs. Before discussing
this material we present examples and properties of cographs.

2. Cographs. Cographs are perfect and in fact form a proper subset ofthe permuta-
tion graphs. Furthermore, cographs are precisely the underlying undirected graphs of
transitive series-parallel digraphs [12]. Although there is a linear time algorithm for
recognizing if a digraph is transitive series-parallel [13], this algorithm does not seem
to be amenable to the cograph case. In fact, as noted by Spinrad "recognition of
transitive series-parallel graphs seems easier than recognition of cographs" [11]. We
will show that this is not the case.

An example of a cograph and its cotree is presented in Fig. 1. In the cotree
representation leaves of the cotree represent vertices of the graph. Internal nodes of
the cotree are labelled 0 or 1 in such a way that (0) nodes and (1) nodes alternate
along every path starting from the root which is always a (1) node. The root will have
only one (0) node child if and only if the represented cograph is disconnected. Two
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vertices x and y of the graph are adjacent if and only if the unique path from x to
the root of the tree meets the unique path from y to the root at a (1) node.

b c

G:

e

R
t

(I) c d e .f

FIG. 1. A cograph G and its cotree T. The * and (*) symbols refer to procedure MARK in 3.1.

Cograph algorithms typically associate operations with the (1) nodes and the (0)
nodes of the cotree and assign weights or numbers to the leaves. The algorithm then
uses the operations on the interior nodes to calculate particular values associated with
the subgraph rooted at the interior node. The value assigned to the root is the value
assigned to the cograph. For example, if the leaves are assigned the value a 1 and
the (1) nodes have a H k

i=1 ai and the (0) nodes have a =Y,/k=I ai where al,..., ak
are the values associated with the children, then the a value of the root is the number
of maximal complete subgraphs in the given cograph. For the example in Fig. 1, the
number of such maximal complete subgraphs is 6 corresponding to the subgraphs
abd ), (abe), (abf), cd ), (ce), (cf).

3. Cograph recognition.
3.1. Theoretical foundations of the algorithm. In 12] an O(n2) algorithm is presen-

ted for the recognition of cographs and the construction of the corresponding cotrees.
Both that algorithm and our algorithm are incremental in the sense that the vertices
are processed one at a time until the entire graph has been handled. Since cographs
are hereditary (i.e., every induced subgraph is a cograph) we assume we have a cograph
G with cotree T and present an algorithm which determines if G + x is also a cograph
and, if so, modifies T to represent G+ x. Given the list of the vertices of G adjacent
to x we percolate this adjacency information up the tree from the leaves to the root
using a simple marking scheme. Before presenting that algorithm we introduce the
following notation. For a node w of T (rooted at R), d(w) denotes the number of
children of w in T and md(w) is the current number of children of w which have
been both "marked" and "unmarked". For all nodes w, the value of md(w) is initially
0 and is reset to 0 when w is "unmarked". The following procedure uses the adjacency
information of the new vertex x to "mark" and then "unmark", where appropriate,
the nodes in T.

MARK(x)
Mark all leaves of T which are adjacent to x
For each marked node u of T with d (u) =md(u)

do unmark (u);
md(u)O;
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ifu R then mark w) where w is the parent of u;
rod(w)<- md(w)+ 1;
insert u at the head of a linked list of marked

and unmarked children of w
end

If any vertex remains marked and d(R)- 1 then mark R
end MARK

Let M denote the set of internal nodes of T which remain marked after the
procedure MARK has been performed, and let a be a node in M with lowest level
in the tree and let fl be a node in M\{a} with lowest level. We say a marked (1) node
y is properly marked if and only if md (y) d (y)- 1. A legitimate alternating path in
a marked cotree is a path of adjacent alternating properly marked (1) nodes and
unmarked (0) nodes, the extreme points of which are (1) nodes.

The procedure MARK is illustrated for adding a vertex x adjacent to the vertices
a, d, e and f in the graph of Fig. 1. We associate * with marked nodes and (*) with
nodes which are subsequently unmarked. See Fig. 1. In this example M-{R,
parent(a)}, a parent(a) and/ R.

We now show that the marked set M determines whether or not G + x is a cograph.
Later we use this theorem as the basis of our linear time cograph recognition algorithm.

THEOREM 1. If G is a cograph with cotree T then G + x is a cograph if and only if
1. M is empty or
2. (i) M\{a} consists of exactly the (1) nodes of a (possibly empty) legitimate

alternating path which ends at R and
(ii) a is either a (0) node whose parent is fl or a is a (1) node whose grandparent,

if it exists, is ft.
Proofi Only ifi If the conditions of the theorem do not hold then we have at least

one of the following:
(i) M\{a} contains a (0) node.
(ii) ::l a (1) node in M\{a} which is not properly marked.
(iii) :17 R in M\{a} s.t. the grandparent of V is not in M\{a}.
(iv) The vertices of M\{a} do not lie on one path to R.
(v) a is a (0) node whose parent is not ft.
(vi) a is a (1) node which has a grandparent which is not/.

By definition, any vertex in M has been marked but not unmarked, and this implies
there is at least one descendant leaf adjacent to x and at least one not adjacent to x.
Using this fact, it is fairly straightforward to show that any of the above six conditions
implies the existence of an induced P4 in G/ x. As an example, we demonstrate an
induced P4 in the graph G+ x if condition (i) is found to be true. The following
notation is used: for any internal node 0 of T, des (0) denotes the set of descendant
leaves of 0, that is, the leaves of the subtree of T rooted at 0. Let 3’ be a (0) node in
M\{a} and let 8 be the lowest common ancestor of a and y in T. Note the possibility
that 8- y. There are four cases to be considered, depending on the labels (0) or (1)
of a and &

Case 1. a and are both (0) nodes.
Proofi There is an induced P4 on vertices (b, c, x, d) if x and c are adjacent in

G+ x, or on (b, c, a, x) if x and c are not adjacent, where: a des (a) and is adjacent
to x; bdes (a) and is not adjacent to x; cedes (parent(a))\des (a); d des (3) and
is adjacent to x. If 8 =),, we require that d des (y)\des (0), where 0 is the child of
3’ on the a-3’ path.
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Cases 2, 3 and 4 follow similarly.
If. We complete this part of the proof by constructing T’, the cotree representing

G+x.
1. If M is empty, then x can be added as a child of the root if G + x is connected,

or as a child of the only child of the root in the case where G+ x and G are both
disconnected. If G+ x is disconnected but G is connected the root of T and x both
become children of the only child of a new root.

2. There is a lowest marked node a M. Let A be the children of a which were
marked and subsequently unmarked by procedure MARK. Similarly, let B be the
children of a which were not marked by MARK. The fact that a M implies that

IAI>=I and IBI>_-1. To construct T’ there are two cases to consider.
Case ). a is a (0) node.

In this case, the elements of A and B are either leaves or (1) nodes.
If IAI 1 and a A is a leaf then we add a new (1) node in place of a and make

a and x children of this node. If IAI- 1 and a A is a (1) node then we simply add
x as a new child of a.

If [A > 1 then we remove all elements of A from a and add a new (1) node in
their place. Children of this new node are x and a new (0) node with elements of A
as children.

Case ii ). a is a (1) node.
The proof follows exactly as in case (i), except that B is examined instead of A, and
the roles of (0) nodes and (1) nodes are reversed.

To see that T’ is an accurate representation of G + x, we observe that the alterations
to T correctly reflect adjacencies of x with vertices in the subtree rooted at a, and the
fact that we have a legitimate alternating path from a to R guarantees that all other
adjacencies of x are correctly represented. Adjacencies among vertices of G remain
unchanged as required.

3.2. The cograph recognition algorithm. As stated previously, the algorithm for
recognizing cographs and constructing their cotrees is an incremental one. We begin
with the cotree for two vertices and incorporate the remaining vertices into the tree
one by one. Each iteration essentially consists of an efficient implementation of the
preceding theorem. The complete algorithm follows.

ALGORITHM COGRAPH-RECOGNITION. Given a graph G-(V, E) with ver-
tices arbitrarily indexed Vl," ", vn, this algorithm determines whether or not G is a
cograph and constructs G’s cotree T if G is a cograph. We assume that md is set to
zero for all new nodes including leaves as they are added to T.

1. (Initialize.)
Create a new (1) node R
If (Vl, v2) E

then add Vl, v2 as children of R
else create a new (0) node N;
add N as a child of R; add Vl and v2 as children of N

2. (Iteratively incorporate v3, , vn into T.)
For x - I)3, I.) do:

2.1. Call procedure MARK (x)
2.2. If all nodes of T were marked and unmarked

then add x as a child of R;
goto endloop
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2.3. If no nodes of T were marked
then if d(R) 1

then add x as a child of the only child of R
else create a new (1) node R with one child (a new (0) node)

and two grandchildren: x and the old root;
goto endloop

2.4. u # FIND-LOWEST
2.5. Let A(B) denote the set of children of u which were (were not) marked

if label(u) 0(= 1)
then if Ial 1 (Inl- 1)

then if w A( B) is a leaf
then add a new (1) node ((0) node) in place of w

and make w and x children of this node
else add x as a new child of w

else remove all elements of A from u and add them as children
of a new node y with label(y)= label(u)
if u is a (0) node
then add a new (1) node asa child of u; children of

this new (1) node are x and y
else remove u from its parent and add y in its place;

add a new (0) node as a child of y; children of
this new (0) node are x and u

endloop
end COGRAPH-RECOGNITION

Function FIND-LOWEST. This function checks whether G+ x is a cograph and,
if so, returns u, the lowest marked vertex of T. To form the cotree for G + x, x must
then be added to the subtree of T rooted at u. The following notation is used: u is
the lowest marked vertex so far examined; w denotes the lowest marked (1) node
examined before u; y is a marked (1) node which is not properly marked or a marked
(0) node, if either exists in T. Whenever the procedure finds that G+ x is not a
cograph, an accompanying comment indicates which of the conditions (i)-(vi) from
the proof of the theorem holds. When this occurs, we assume the entire algorithm is
terminated.

1. (Initialize and check root.)
y#A
If R is not marked
then G+ x is not a cograph/* condition (iii)
else do if rod(R) d(R)- 1

then y - Runmark R md R - 0;
u-w-R

end
2. (Choose an arbitrary marked vertex u and follow the path from u to w, checking

for a legitimate alternating path and unmarking vertices along the path.)
while there are marked vertices remaining in T
do choose an arbitrary marked vertex u

2.1. ifyA
then G+ x is not a cograph/* condition (i) or (ii)
if label (u)= 1
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then do if rod(u) # d(u)- 1
then y - u

if parent (u) is marked
then G/ x is not a cograph/* conditions (i) and (vi)
else -parent (parent (u))

end
else do y - u- parent (u)

end
unmark u md u - 0

2.2. (Now check if the u-w path is part of the legitimate alternating path
u-R.)
while w
do
ift=R
then G/ x is not a cograph/* condition (iv)
if is not marked
then G+ x is not a cograph/* condition (iii) or (v) or (vi)
if md(t) d(t)- 1
then G/ x is not a cograph/* condition (ii)
if parent (t) is marked
then G/ x is not a cograph/* condition (i)
unmark md (t) - 0;- parent (parent (t))

end
2.3. (Reset w for next choice of marked vertex.)

end (step 2)
end FIND-LOWEST

3.3. Example of the algorithm. To illustrate the algorithm, assume we have the
cograph G and cotree T of Fig. 1 and consider the graph G+ x where x is adjacent
to a, d, e and f. When procedure MARK terminates, the following vertices have been
marked: a, d, e, f, parent (a), parent (d), R; and the following have been unmarked:
a, d, e, f and parent (d); leaving parent (a) and R marked. See Fig. 1. Function
FIND-LOWEST unmarks R and sets u <- w - R in step 1. Thus in step 2 there is only
one remaining marked vertex to examine: u -parent (a). Since u is a (1) node with
md(u)= d(u)- 1 and parent (u) is not marked, the only actions taken in step 2.1 are
<- R and unmark (parent (a)). The loop of step 2.2 is never executed because w R.

In step 2.3 we set w - parent (a) in preparation for the next step 2 loop, but this loop
is not repeated in this case since no marked vertices remain. The FIND-LOWEST
function terminates with u parent (a), indicating that G+ x is a cograph. Back in
step 2.5 of the main procedure, we identify A {a} and B {b}. Since u is a (1) node,
IBI 1 and b B is a leaf, we need only add a new (0) node in place of b and make
b and x children of this node. The resulting cotree T’ representing cograph G+ x is
shown in Fig. 2.

Let us also consider the graph G’ in Fig. 2 and add vertex z where z is adjacent
to a, c, d, e and f. Procedure MARK will mark the following: a, c, d, e, f, parent (a),
parent (c), parent (d), R; and unmark a, c, d, e, f and parent (d); leaving parent (a),
parent (c) and R marked. In FIND-LOWEST we unmark R and set u - w - R in step
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FIG. 2. Cograph G’= G + x and its cotree T’.

1. Assume uparent (c) is chosen in step 2. As label (u)=0, we end step 2.1 with
y u, R and parent (c) unmarked. Step 2.2 is not executed because w R and
in 2.3 we set w-parent (c). Now u parent (a) and we see in 2.1 that G’+ z is not
a cograph because y A, indicating in this case that M\{a} contains a (0) node
(condition (i) of the proof). If u-parent (a) is chosen first in step 2, we find that
G’+ z is not a cograph in step 2.1, where we find that label (u)= 1 and parent (u) is
marked. Fig. 3 shows the graph G’+ z with a P4(b, a, z, c) indicated.

c

x

FIG. 3. The graph G’+ z is not a cograph--vertices b, a, z, c form a P4.

3.4. Timing analysis. The timing analysis for the algorithm relies on a time bound
of O(deg (x)) for the iteration adding x to T, where deg (x) is the degree of x in G+ x.

Since all internal nodes of T, except possibly the root, have at least two children,
we know that the MARK procedure will examine only O(deg (x)) nodes. For each of
these nodes, the processing is done in constant time, and thus the time bound for
procedure MARK is O(deg (x)). It is clear that IM[ is also bounded by O(deg (x)),
and since FIND-LOWEST examines each marked node once in constant time, the
time for this function is O(IMI)= O(deg (x)).

All but one of the tree alterations can be done in constant time. The only cases
which may require more than constant time are those where the lowest marked node
is a (0) node ((1) node) which has two or more children which have been marked and
unmarked (not been marked). In both cases, we are careful to move the children which
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were both marked and unmarked, since the cardinality of this set is O(deg (x)) whereas
the cardinality of the set of children which were not marked is not similarly bounded.
In procedure MARK we have maintained a linked list of the children which were
marked and subsequently unmarked, and hence, they can be accessed in time bounded
by O(deg (x)). Therefore, all of the tree modifications can be done in O(deg (x)) time.

Thus, we have the required bound for each iteration, implying an overall time
bound of O(m + n) for the entire algorithm.

4. Concluding remarks. As noted in 1, in most typical applications, the graphs
encountered may not be cographs but in fact will be very close to being a cograph. It
may be necessary to add or delete a few edges in order to destroy all P4s and thus to
achieve a cograph. For this purpose one would want to find as large a subcograph as
possible. Not surprisingly this problem is intractable, however using Theorem 1 it is
possible to get a good heuristic algorithm. We first note that applying the recognition
algorithm to the graph and rejecting any vertex whose addition does not yield a cograph
does result in a subcograph. This procedure has two drawbacks. First, it greatly depends
on the order in which the vertices are presented. One would expect that a non-increasing
degree order would help in obtaining a large subcograph. Secondly, some particularly
bad vertex may be included in the subcograph and thereafter cause many other vertices
to be rejected. Obviously, a complete backtracking scheme is out of the question;
however using Theorem 1 it is possible to develop a limited backtracking procedure.
Under this scheme any time a vertex is rejected, a note is made of the existing vertices
which cause the rejection. Once an existing vertex has accumulated enough such notes
it is removed and other rejected vertices are tried again.

Acknowledgments. The authors wish to thank the Natural Sciences and Engineer-
ing Research Council of Canada for financial assistance.
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EQUATIONS BETWEEN REGULAR TERMS AND AN
APPLICATION TO PROCESS LOGIC*

ROHIT PARIKH’, ASHOK CHANDRA:I:, JOE HALPERN AND ALBERT MEYER

Abstract. Regular terms with the Kleene operations LI, and * can be thought of as operators on

languages, generating other languages. An equation zl z2 between two such terms is said to be satisfiable
just in case languages exist which make this equation true. We show that the satisfiability problem even for

-free regular terms is undecidable. Similar techniques are used to show that a very natural extension of
the Process Logic of Harel, Kozen and Parikh is undecidable.

Key words, regular sets, context free languages, logic of programs

1. Introduction. Process Logic is an outgrowth of Propositional Dynamic Logic
(PDL), introduced by Pratt in [Pr] and is essentially at attempt to combine the best
features of both PDL and Temporal Logic (TL). Briefly, the difference between PDL
and TL is as follows. In PDL, we consider simultaneously the behavior of several
programs, and a formula of PDL depends for its truth or falsity on all its component
programs. However, PDL talks only about the "before-after" behavior of programs,
and program behavior during a computation cannot be referred to by PDL in a direct
way. Sometimes it can be done in an indirect way, since the behavior of a program a

during a computation of a can often be reduced to the before-after behavior of some
component program fl of a. TL on the other hand looks at a single computation of a
single program in a detailed way and has constructs which allow us to state what
happens during the computation. However, TL normally talks only about one program
at a time. Thus expressing the interaction of several programs becomes cumbersome
in TL, though it can be achieved, for example by introducing "At" predicates which
refer to the labels of statements. In process logic we have program constructs as in
PDL as well as temporal constructs as in TL. Thus process logic becomes a general
purpose, flexible framework for yalking about programs at the propositional level.

In [Pall there was introduced a very powerful version of process logic called
SOAPL. This logic was shown to include both PDL and TL, and it was shown in [H2]
that SOAPL was properly stronger than Pratt’s version of process logic in [Pr]. SOAPL
was shown to be decidable by reducing it to SnS [R]. However, SOAPL had restrictions
on formula formation which were essential to proving decidability, and this made the
language unclear to many people. A simplified language, closely related to SOAPL
was introduced by Nishimura in [Ni] and a further simplification was given in [HKP]
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where also were proved a completeness result and a decidability result. We now proceed
to give a brief description of the [HKP] language and semantics. The operator construct
"chop" was not included in the [HKP] version of process logic, but we have included
it here. This extension leaves the system decidable provided that no other changes are
made at the same time.

(i) P1," Pn are atomic formulae.
(ii) al, ", a, are atomic programs.
(iii) If a,/3 are programs, so are a;/3, a LJ/3, c*.
(iv) If A, B are formulae, so are -A, A v B.
(v) If A is a formula and a is a program, then (a)A is a formula.
(vi) If A, B are formulae, so are fA, A suf B and A chop B.
In (iii) above, we have described program formation under the Kleene connectives.

(iv), (v) and (vi) describe, respectively, formula formation under Boolean connectives,
program modalities and temporal connectives. Dropping (ii), (iii) and (v) would give
us TL and dropping (vi) would give us PDL. We shall use [a]A as an abbreviation
for -(a)A. Similarly we shall use A v B as an abbreviation for -((-A)v (B)).

A model of process logic is a triple M (W, p, R). W is a set of states. A path
is a finite or infinite sequence of states, and p and R are assignments of sets of paths
to the atomic formulae and programs respectively. States will be denoted by the letters
s, t,..., and paths will be denoted by p, q,.... If p=(so,..., Sk) is a path and
q (to, tl," ") is a path, then pq, the fusion product of p and q is defined if and only
if Sk to, and equals (So,’’’, Sk, tl,’" "). The path q need not be finite for pq to be

defined, but p must be.
The length l(p) of a path p (So, , Sk) is k. A state can be thought of as a path

of length 0. Fp (So) is the first state of p. If p qr and neither q nor r has length 0,
then q is a prefix of p and r is a suffix of p. Thus p is not its own prefix or suffix.

We now define the semantics of process logic. First we extend R to a mapping
on all programs inductively via"

R,;3 {pqlp R, and q Ro},

Ru R LJ R,

R. U (R(-): n >_- 0.

We are now ready to define what it means for a path p in M to satisfy a
formula A:

(i) p Pi if[ pc p(Pi);
(ii) p A if[ p A. Similarly for v
(iii) p(a)A if[ ::iq R such that pq is defined and pq A;
(iv) pfA if[ Fp A if and only if the first state of p satisfies A;
(v) p A suf B if[ :lq suffix of p such that q B and for all suffixes r of p such

that q is a suffix of r, r A;
(vi) p A chop B if[ :lq, r such that p qr and q A and r B.
The following notions can be defined from the ones given above. See [HKP]. In

(viii) p (So,’’’, Sk), for some k. Of course, p may be infinite in (ix) and (x) and so

Sk might not exist.
(vii) p Lno if[ k =0; p Lnl if[ k 1.
(viii) p last A iff (Sk) A.
(ix) p nA if[ (Sl, Sk) A.
(x) pA chomp B lit p A chop (nB); i.e., =lj < k such that (So, , s) A

and (s+,. , Sk) B.
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The difference between chop and chomp is that in chomp there is no overlap
between the pieces into which p is split. In chop the last state of one is the first state
of the other.

We will say that a formula A is local in a model M if for all paths p, p A iff
p fA. Equivalently, every p satisfies A :> fA. Thus a local formula depends only on
the first state of the path. A model M is local if and only if the basic predicates Pi
are local. Local process logic is process logic with the semantics restricted to local
models. The following theorem is due to Dexter Kozen and is stated here with his
permission.

THEOREM. The validity problem for formulae of local process logic is decidable but
not elementary.

TL with chop can also be shown to be nonelementary by the same sort of argument
which involves the coding of Turing machine computations.

The obvious question is what happens if we drop this locality condition. Note
that both PDL and TL are embeddable in local process logic. A related question is
the following. Note that both programs and predicates have the same semantics, namely
states of paths. Do we really need two kinds of objects? What happens, for instance,
if we allow the construct Mem, whose semantics is defined by:

"(xi) p Mem (a) iff p R," ?

We shall show that in either case process logic becomes undecidable. This fact
may be thought of as a confirmation of the intuition that even though both programs
and properties are represented in process logic as sets of computations, they are very
different kinds of animals. A program produces computations, a property evaluates
them. This is why it does not make any sense to talk of the complement of a program,
though it is perfectly natural to talk of the negation of a property.

2. Equations between regular terms. Suppose we consider regular terms " formed
from symbols a, b, c, and variables X, Y, Z, by means of the Kleene operations
U and ;. The operation is not needed for the undecidability result. Let E be some
finite alphabet. Then we can interpret these terms as operators which take subsets of

* (languages) as inputs and provide a new subset of E* as output. For example, if
the term r is (X;a) Y and the input languages are L and L’ respectively, then the
output language r(L, L’) will be (La) L’. (We shall suppress for the sake of reada-
bility.)

DEFINITION 1. An equation r(X1, ", Xk) r’(X1," ", Xk) is said to be satisfi-
able over E if there exist languages LI,. ., Lk over such that

-( L,, Lk " L,, Lk).

THEOREM 1. The satisfiability problem for .-free regular terms in the sense above
is undecidable.

The proof of this theorem depends on two auxiliary lemmas. We remark in passing
that the validity problem is decidable as the reader can easily verify by applying K6nig’s
lemma.

LEMMA 1. Given a context-free language L E*, there exists a finite, satisfiable
system 4p of ,-free regular equations such that for any alphabet F with E

_
F, and for

any solution L1, Lk

_
[’*, L is L.

Proof. We first assume that L L(G), where G is a grammar in Greibach normal
form, i.e., all the productions of G are of the form N-> x, where x is a string whose
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leftmost symbol is a terminal. As an illustration, we take G to be the grammar:

S bDE,

D cEclb
E - bDbEclc.

Corresponding to G we have the system of equations:

X bX)_X3,

X cX3c U b,

X3 bX2bX3c U c.

It is easy to check that L1 L(S), L:z L(D), L --L(E) is a solution to these
equations. Moreover, this solution is unique. For suppose (M1, M2, M3) is another
solution, M1, M2, M3 c_c_ F*. Then we can show by induction on the length of w e F*
that w e M1 (resp. M2, M3) if[ w e L1 (resp. L2, L3). For example, if w e M1 and w is
of length k, then w bM2M3. Thus there are strings u e M2 and v e M3 of length < k
such that w buy. By the induction hypothesis u e L1 and v L2, and since (L1, L2, L3)
is a solution of , it must be the case that w e L1. The converse is similar. Q.E.D.

It should be clear that this technique works for an arbitrary grammar H in Greibach
normal form. Note that the fact that H is in Greibach normal form assures us that
any string of length > 1 can be written as a product of shorter strings to which the
induction hypothesis applies.

For the general case, it is well known that given any grammar H we can effectively
find a grammar H’ in Greibach normal form such that L(H) is L(H’) or L(H’)U e,
depending on whether or not the empty string e is in L(H) (see, for example, [H3]
for a proof). In the latter case we can apply the above techniques to H’ to get a system
of equations H’. Then we adjoin to the system the equation Xo =X1U{e}. If
(Lo, L1,’’’, Lk) is a solution to this new system of equations, then by the above
L1 L(H’), so L0 L(H). Q.E.D.

Note that in Lemma 1 the alphabet F for the solution is allowed to be strictly
greater than the alphabet in which the equations are stated. This is necessary since
the proof of Lemma 2 involves the addition of extra symbols and we have to make
sure that the uniqueness property is not lost thereby.

LEMMA 2. Given a finite system of regular equations as in Lemma 1, it can be
reduced to a single equation.

We introduce new symbolsProof. Let the system P be rl r,..., %=r,.
hi," , b,, and consider the equation (big’l) I-J" U (bm’m) (bird) LJ. U (bmr). It
is straightforward to check that a system of languages L1, , Lk satisfies the system

if and only if it satisfies the single equation.
We now prove the main theorem by using the fact that the equality problem for

context-free languages is undecidable [H3]. For let L(H) and L(H’) be two context-free
languages whose equality we wish to decide. Let PH, PH’ be systems of defining
equations for H and H’ as in Lemma 1. Rename the variables of cpq, CpH,, SO that X1
is the variable corresponding to H, Y1 is the variable corresponding to H’ and CPH,
PH’ have no variables in common. Now take the system eH [-J eH’U (X1 Y1) and use
Lemma 2 to compress it to a single equation. It is easy to see that this equation is
satisfiable if and only if the unique solutions of PH, CPH’ are equal if and only if
L(H) L(H’). Q.E.D.
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Remark. The theorem also holds if we restrict ourselves to terms r containing a
single variable X1. However, we shall need the operation in that case. We briefly
sketch the details.

We reduce the Post correspondence problem (PCP) to a regular equation involving
only one variable. Suppose we are given two sets of strings in {0, 1}/, say {wl," ", Wk}
and {ul," ", t/k}, with wi ui, (where in general we use E+ to denote E. E*).

Let

s {(x, y)lx wu,. w, y uj,. uj,, m >-- 1,j, <= k},
and let

$2 {(x, y)lx w, w, y u, u, m >-- 2,j, _<-- k}.

It is well known (see [H3]) that the question of whether there is a string z such
that (z, z) e S (or equivalently, (z, z) e $2) is undecidable.

Notation. For w e {0, 1 }*, let w the reverse of w. Let 0’ 0b, 1’ 1 b, 0" b0 and
1"= b l. We extend’ and to homomorphisms on all of {0, 1}*. Let (w’)- denote w’
without the trailing b; i.e., w’= (w’)-b. Similarly, let (w")- denote w" without the
leading b; i.e., w" b(w")-. Let E {0, 1, b, c}. Note that for all u e {0, 1}/, (ur) is the
same as (u’) r.

We define languages R, M, M1, P and Q as follows:

R {strings in E* which have an occurrence of 00, 01, 10, 11, cc, Oc, cO, l c, cl or bb}

E*(O0 U O1 (.J IOU 11 (_J ccUOcU cOU lcU cl (3 bb)E*,

M {x’c(y)"lx, y {0, 1}*, x y},

M 0’(0’ [,.J l’)*c(O"U I")*I"U 1’(0’ U l’)*c(O" U 1")*0"

Il (0’ I1 l’)+c I,J c(O" U 1")+,
P={w’x’c(yr)"(wr)"l(x, y)eS2, we{O, 1}*},

Q {bx’c(y)"bl(x, y)e S}.

If the given PCP has no solution, then P M. On the other hand, if there is a

solution (z,z)eS2, then z’c(zr)"eP-(RUMUQ). Hence RUMUQ=
R U M t3 P (J Q if and only if the PCP has no solutions.

Using methods similar to those in Lemma 1, it is straightforward to check that
the equation (A) below has the unique solution R U M U Q, while (B) has the unique
solution R U M U P LI Q:

(A)
X R U M1U 0’X0" U I’XI"U b(w)-X((uT)")-b

U bw’ b (for each < k);,c(u)"

X R (_l M1U 0’X0" U I’XI"

(B) U b(wl)-X((uT)")-b U bw’ic(uT)"b

U (w’i)-X((uT)")- (for each iN k).

(In fact, any equation which is of the form X r(X), where r(X) is in "Greibach

normal form" can be shown to have a unique solution.)
Thus, if (A) is denoted X rl(X) and (B) is denoted X r2(X), the final equation

is:
dX U eX d-,(X) U er2(X).
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This equation has a solution (- R LJ M 3 Q) if and only if the Post correspondence
problem has no solution.

We note that we can reduce the total alphabet from {0, 1, b, c, d, e} to just {0, 1}
by appropriately encoding each symbol into 3 bits. Q.E.D.

We now raise the question of what the solutions of these equations look like in
case there are solutions.

THEOREM 2. If a system , of regular equations has a unique solution, i.e., if all
the languages corresponding to the variables are uniquely determined by the equations,
then that solution is recursive. If there is amnot necessarily unique--solution, then at
least one solution is recursive in the halting problem.

Proof. Let L be a language. Then given a number k, we will denote by L(k) the
set of all strings in L of length <_-k. Given two regular expressions 7.1 and 7.2 as in the
previous theorems, and a set of languages L1,"’, Lm, we will say that L1,..., L,
are k-consistent (with 7.1 "-7’2) if and only if finite sets 7.(L(k),..., L,(k))(k) and
7.2(Ll(k)," ", Lm(k))(k) are equal. In other words we get the same result if we chop
both before and after plugging into the 7.i. Clearly (L1,"" ", L,,) is a solution of the
equation 7.1 7.2 if and only if it is k-consistent with it for all k. This is because strings
of length <_-k in 7.(L,..., L) can only be produced by strings in the Li of length
<-k. A tuple of the form (Ll(k),.’., L,(k)) will be called a k-piece.

Suppose now that the equation has a unique solution (L1,. , L,). Then we will
show that we can effectively construct the k-pieces (L(k), , L,(k)) of the solution.
Let us say that a proposed k-piece is consistent if and only if it is k-consistent. Suppose
now that a given k-piece is in fact the correct one. Then it has n-consistent extensions
for all n > k. Conversely, suppose some k-piece has n-consistent extensions for all
n > k. Then the tree of its consistent extensions is infinite, and hence, by K6nig’s
lemma, has an infinite branch, which must be correct, so that the k-piece was correct.
Thus a piece is incorrect if and only if the tree of consistent extensions is finite and a
piece is correct if and only if the finitely many alternatives of the same length are all
incorrect. This gives us a decision procedure for correctness of k-pieces, and hence a
decision procedure for a string to be in the solution: A string is in Li if and only if it
is in the ith place of some correct k-piece.

This argument works if the solution is unique. If the solution is not unique, then
the set of incorrect pieces is still r.e., though it may no longer be recursive. Hence the
set of correct pieces is co-r.e. Since every correct piece has a correct extension, a
solution that is recursive in the halting problem exists. For instance, the leftmost
solution will be recursive in the halting problem, where "leftmost" is in the tree of
k-pieces. Q.E.D.

An interesting application of the results of this section is as follows. Consider two
flowcharts made up of some (unspecified) atomic actions and tests, as well as some
black boxes representing some unknown subroutines. Now consider the question,
whether it is possible to find actual (not necessarily regular) subroutines to put in these
black boxes so that the resulting flowcharts are equivalent over all interpretations. This
question is easily seen to be another form of the problem of Theorem 1 and is therefore
undecidable.

3. Undecidability in process logic. We now show that nonlocal process logic as
described above is undecidable. This result does not need the full power of the construct
suf. All we need are n, last and chop.

THEOREM 3. The satisfiability (and hence the validity) problem for nonlocal process
logic is undecidable.
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Proof. We proceed much as in Theorem 1. We first show that a context free
grammar in Greibach normal form can be "coded up" in process logic. Again we use
the grammar G of Lemma 1 for illustration.

We define the formula AG to be the conjunction of Lno (defined in (vii) in 1)
and the following three formulas (where P, D, E and S are atomic formulae, B
abbreviates P ^ Lno and C abbreviates -P ^ Lno):

A1".
A:
A3:

[a*](last ([a]Lnl))
[a*](last ((a) last (B) ^ (a) last (C)));
[a*](last ([a*](Sczchomp (B, D, E)

^ D: (chomp C, E, C) v B)

^ E: (chomp (B, D, B, E, C) v C))))
(where chomp (B, D, E) is an abbreviation for
chomp (B, chomp (D, E)), etc.).

We now explain the intuitive meaning of the formulae A1,’", A3. Suppose
M (W, p, R) is a model such that for some state s in M we have (s) Ac We can
assume without loss of generality that every state of W is accessible from s by a*.
(Otherwise we can restrict M to this set of states.) A forces all the a paths in M to
be of length one. A2 implies that for any W, there exist states Ul and u2 in W
reachable from by doing one a such that (ul) P (or equivalently, (ua) B) and
(U2) -IP.

Let b, c be two symbols. We define the map r: W- {b, c} via r(s)= b if (s) P
and (s) c if (s)-P. By extending r to be a homomorphism we can associate with
every finite path in M a unique string in {b, c}*. For example, if p (So, s, s2), where
So P, s P and $2 P, then r(p) is bcb. Then using the fact that (s) A3, we can
show that for all paths p in M, p is in p(S) (resp. p(D), p(E)) if and only if r(p) L(S)
(resp. L(D), L(E)). The proof is by induction on the length of p, and is similar to the
proof of the analogous statement in Lemma 1. We leave the details to the reader. Again
it is easy to see that this technique works for arbitrary grammars in Greibach normal
form.

Now we can conclude the proof of Theorem 3. Given two grammars H and H’
in Greibach normal form, consider the formula An ^ An,. Apart from the common
start symbol S, H and H’ are assumed to have distinct nonterminals. An forces p(S)
to look like L(H), while An, forces p(S) to look like L(H’). Hence the conjunction
is satisfiable if and only if L(H)= L(H’). Since the equality problem for languages
not containing the empty string is undecidable, the satisfiability problem for process
logic is also undecidable. Q.E.D.

THEOREM 4. (Local) process logic without the construct chop but with the operation
Mem is undecidable.

The proof of this theorem is quite similar in style to that of Theorem 3. Instead
of using primitive propositions to do our encoding, we do it all by means of programs
(which is why the question of locality does not arise here). The terminal symbols are
represented by primitive program symbols which are associated only with paths of
length 1; the nonterminals are represented by other program symbols. Chomp is
replaced by a combination of Mem and ;. For example, the grammar G of Lemma 1
is encoded as follows:

The programs/3 and y encode the terminals b and c. We force them to have the
right properties by the formula Al:

[(fl U 2,)*](last ([fl]L1A [/]L1A (fl) true ^ (3’) true)).
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Then we let the programs a, d and r/represent the nonterminals S, D and E respectively.
The formula A2 (which corresponds to A in the previous proof) is:

[(flu y)*](last ([(flu 3’)*](mem (a)<=>mem( r/;/3)

^ mem (15):> (mem (3’; r/; y) v mem (/3))

Amem (r/)=> (mem (/3; 8;/3; r/; 3’)vmem (3’))))).

As above, if (s) A1 ^ A2, we can assume without loss of generality that the only
states in M are those reachable from s by (/3 t_J 3’)*. Moreover we can assume (by
adding extra copies of states if necessary) that if (s, t)p(fl) (resp. p(3’)), then
(s, t): p(3") (resp. p(fl)). Thus to each path p in M we can associate a unique string
tr’(p) in {b, c}*. Then as above we can show that pc p(a) (resp. p(15), P(7)) if and
only if tr’(p) L(S) (resp. L(D), L(E)). The rest of the proof proceeds just as in
Theorem 3. Q.E.D.

Conclusion. We have shown that even a slight extension of process logic as defined
in [HKP] is Undecidable. Thus the language as defined there (with the inclusion of
chop, but retaining locality) is as rich as we can hope to have. It is open if local process
logic with suf and f, but without chop is nonelementary.

Postscript. Bob Streett has recently shown that nonlocal process logic with suf
and f is also undecidable. Moreover, David Harel has pointed out to us that using
the methods of [HPS], nonlocal process logic with f and chop can be shown to be
complete. See also [HMM] for a program free version. We thank Richard Ladner for
pointing out an error in our original version of the remark following Theorem 1.
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THE PURE LITERAL RULE AND POLYNOMIAL AVERAGE TIME*

PAUL WALTON PURDOM, JR.? AND CYNTHIA A. BROWNS

Abstract. For a simple parameterized model of conjunctive normal form predicates, we show that a

simplified version of the Davis-Putnam procedure can, for many values of the parameters, solve the
satisfiability problem in polynomial average time. Let v be the number of variables, t(v) the number of
clauses in a predicate, and p(v) the probability that a given literal appears in a clause (p(v) is the same

for all literals). Let e be any small positive constant and n any large positive integer. Then a version of the
Davis-Putnam procedure that uses only backtracking and the pure literal rule uses average time that is
polynomial in the problem size when any of the following conditions are true for large v. (1) t(v) =< n In v;
(2) t(v)>=exp(ev); (3) p(v)>=e; or (4) p(v)<-n(ln I)/1))3/2. Until recently the best previous bounds for
cases (1) and (4) were t(v) <_- (In In v)/(In 3) and p(v) -< exp (-v/In In v). These results show that the problem
types for which the pure literal rule works well are quite different from those for which backtracking works
well. Our present knowledge suggests this random problem sets with t(1)) somewhat larger than 1) and with

p(v) somewhat larger than v-1 are particularly difficult to solve.

Key words, backtracking, pure literal rule, average time, searching

1. Introduction. Many important and interesting sets of problems are NP-complete
[7]. For such problem sets every algorithm that has been analyzed has a worst case
time that is an exponential function of the problem size. There are, however, interesting
random NP-complete problem sets that can be solved in polynomial average time.

The set of satisfiability problems (determining whether an arbitrary predicate in
conjunctive normal form (CNF) can be satisfied) is a fundamental NP-complete
problem set. Goldberg [8], [9], 10] showed that satisfiability for random CNF predicates
with clauses and probability p that a given literal appears in a clause (p is a constant
that is the same for all literals) can be solved in polynomial average time using the
pure literal rule (plus splitting) from the Davis-Putnam procedure [3], [4]. Using a
different model of random CNF problems, Brown and Purdom [1] showed that for
some problem sets backtracking takes average time exp O(v3/4) for problems with v
variables, which is a great improvement over the exp O(v) time required for exhaustive
search. However, the type of problems for which backtracking is fast is quite different
from the type for which the pure literal rule does best.

This difference in performance led us to investigate the average time for several
satisfiability algorithms on a wide range of random problem sets. We used a model of
random CNF predicates similar to Goldberg’s, parameterized by using arbitrary func-
tions t(v) (t(v) => 1) for the number of clauses and p(v) (0 -<_ p(v) =< 1) for the probability
that a literal appears in a clause. We found that by using three simple algorithms
random CNF problems can be solved in time polynomial in the problem size whenever
any of the following four conditions is satisfied [16]; (1) t(v) <= (In In v)/ln 3, (2)
t(v) >- exp (ev) (trivial because the problem has exponential size), (3) p(v)>= e, or (4)
p( v) <= exp (-v/ (ln ln v)) (e is any small constant). These results show that random
CNF problems can be solved in polynomial average time whenever either t(v) or p(v)
is extremely large or extremely small.

In this paper, using an improved analysis of the pure literal rule, we show that
random CNF problems can be solved in polynomial average time whenever (1)

* Received by the editors July 14, 1982, and in final revised form July 3, 1984. The research reported
herein was supported in part by the National Science Foundation under grant MCS 7906110.
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t(v)-<_ n In v or (2) p(v)-< n(lnv where n is any large positive constant. These
limits depend on using only two algorithms, the pure literal rule and backtracking.
Figure 1 summarizes our results. The random problem sets corresponding to points
away from the center can be solved in polynomial average time. In the center there is
a hard region where backtracking is known to require exponential average time and
where other algorithms are likely to require exponential average time. For random
problem sets corresponding to points outside the contour surrounding the hard region,
it has been proven that the problems can be solved in polynomial average time. See
3 for more discussion of the figure.

nlS(v In v}

exp(-)
0

Pure Literal

Easy

1 I In v’ , v v exp(tv)

FIG. 1. A diagram showing the regions of [p(v), t(v)] space where random CNF predicates can be solved
in polynomial average time. This diagram shows both the results of this paper and of several previous papers.
The various boundaries are labeled with the algorithm for producing polynomial average time in that region of
the diagram. Along the backtracking boundary, exponential average time is required just inside the boundary,
so the boundary is marked with a solid line. All the other boundaries result from upper bound analyses, so they
are marked with hashed lines. Outside of the regions marked with hashed lines, random problems can be solved
in polynomial average time. Inside such boundaries it is not yet known whetherpolynomial or exponential average
time is required. The dashed line separates the region where the expected number of solutions per problem is

exponentially large (upper left side) from where it is exponentially small (lower right). The results given in this
paper are that the Davis-Putnam procedure can solve problems outside the polygon in polynomial average time.
(The time that it requires inside the polygon has not yet been determined.) The lower right boundary results
from an analysis of backtracking. The top, upper left, left, and lower left boundaries come from the analysis of
the pure literal rule. See the text and references for the functionalform of the boundaries. The label / (n In v)
on the right side is a correction to previously published versions of this figure.)

The running time of a satisfiability algorithm is essentially determined by the
number of binary nodes in the search tree it generates. It is clear that the full
Davis-Putnam procedure runs at least as fast (to within a factor of v2 to allow for
possible extra overhead) as either the pure literal rule or backtracking, as long as all
three algorithms use the same order of selecting variables (whenever the pure literal
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rule or the unit clause rule [3], [4] does not force the order of selection, which happens
only at unary nodes). This is because the binary nodes of the search tree for the full
Davis-Putnam procedure are a subset of the binary nodes for the trees for each of the
other algorithms.

We have identified random sets of CNF problems for which a quick (polynomial
average time) solution method is known. It is likely that other NP-complete problems
sets with similar characteristics can also be solved quickly using similar techniques.
Our present knowledge suggests that random CNF problems with t(v) somewhat larger
than v and with p(v) somewhat larger than v-1 are particularly difficult to solve.

2. Random CNF predicates. To form a random problem set, let v be the number
of variables; the variables can take on the values true and false. There are then 2v
possible literals, one for each variable and its negation. A random clause is formed
by independently selecting each literal with probability p(v), and a random predicate
is formed by independently selecting t(v) random clauses. For each variable, the
probability that it and its negation both occur in a clause is p(v)2, so trivial clauses
are common when p(v)>-_ 1)

-1/2 and relatively rare when p(v) << v-/2.
This model of a set of random predicates differs slightly from the model developed

by Goldberg [8], [9], [10], and more significantly from the one used by us [1, 15] in
earlier work. The present model has the virtue of simplicity: the predicates that result
from setting a few variables and simplifying are essentially the same as the original
predicates. This property makes the analysis straightforward. Clauses in Goldberg’s
model are not permitted to contain both positive and negative literals, which makes
the proportion of trivial problems in a random set smaller. The results of the present
paper are the same, however, whether that model or our model is used; this may be
seen by replacing the factor (1-p)’ by (1-2p)’ in (1) and the following derivations.

It is not as easy to compare results obtained with this model with the fixed clause
size model of [1], [15]. The initial form of the predicates in the fixed clause size model
is quite different from that in the present model. As variables are set and predicates
simplified, however, the predicates begin to resemble those obtained from the present
model. This may explain why the results obtained from the present model are at least
qualitatively the same as those that would be obtained from a fixed clause size model.

3. Comparison of algorithms. A fundamental difficulty with average time analyses
is that the average depends not only on the algorithm being evaluated, but also on the
weights assigned to the problems. Some algorithms will be good on some problem
sets, while other algorithms will be good on other problem sets. Our approach to this
difficulty is to include two parameters in our models, t(v) and p(v). By varying these
two parameters we can generate problems where the typical problem sets have widely
different characteristics.

The most complete way to compare two algorithms when using such a model is
to compute the average running time of each algorithm for each function p(v) and
each function t(v). The analytical techniques we have given here and in [14], [16] can
be used to produce such results (see Theorems 3, 4, and 5 of this paper, for example).
These results, however, give too much data for easy interpretation. We find that a plot
such as Fig. 1, which shows for several algorithms the curve that divides polynomial
time from exponential time, is a particularly useful summary of the results of an
analysis. Imagine a rectangular space with various functions p(v) labeling a vertical
axis along the left edge, and functions t(v) labeling a horizontal axis along the bottom.
The functions are arranged so that the most rapidly growing t(v) are at the right and
the most slowly decaying p(v) are at the top. This quasigraphical representation should
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not be taken too literally; the functions for t(v) and p(v) do not form a complete
ordered field.

Each point in Fig. 1 represents a set of random problems characterized by a
particular choice of functions p(v) and t(v). When one algorithm gives a curve that
is inside the curve produced by a second algorithm, then the first algorithm is clearly
a much better algorithm for our model of random problems. It is probably also a much
better algorithm in practice. When two algorithms produce contours that intersect,
then each algorithm is good for some problems that the other algorithm is not good
for:

A problem set that contains an exponentially small fraction of hard problems can

still have an exponential average solution time, if those problems are hard enough
(e.g. eXVe-yv- e(x-y)v grows exponentially with v if x-y > 0). Algorithms that work
well on satisfiability problems do so because, after a few variables have been set, most
problems reduce to a trivial problem. Since predicates in our model tend to look about
the same before and after some variables are set, there is a tendency for problems to
be either easy or difficult from the start. More realistic looking models have similar
transitions from polynomial to exponential average time, but the complications of the
models tend to obscure what is going on.

The lower boundary of the polygon in Fig. 1 divides the region where backtracking
takes polynomial average time from that where it takes exponential average time. (See
[16] for the derivation of these results.) The lower part of that contour divides the
region where problems have, on average, an exponential number of solutions from
those that have a polynomial number. This line is extended into the upper part of the
figure as a dotted line. Since the backtracking algorithm we studied finds all solutions
to a problem, backtracking must take exponential time in that region. The shaded part
of the figure shows the region where backtracking takes exponential time on problems
that have, on average, a polynomial number of solutions; it is labeled "difficult".

The bounds shown in Fig. 1 for the pure literal rule, reflecting results obtained
in this paper, are a big improvement over the bounds obtained by previous analyses.
Still, the bounds occur in regions where the typical problems are somewhat strange.
At the top boundary the clauses become large as the number of variables becomes
large. Each particular clause is extremely easy to satisfy. At the left boundary there
are very few clauses compared to the number of variables. Along much of the lower
boundary the typical clause contains no variables, so the typical predicate in it is
obviously unsatisfiable. Still, for each of these regions, for problem sets just inside the
innermost contour line, there are enough difficult problems that no one has yet shown
how to solve them in polynomial average time. Consider for a moment the point on

the contour for backtracking where p(v)= 1/v2. The typical predicate here contains
empty clauses and backtracking usually determines this quickly. Nonetheless, to the
left of the boundary the average number of solutions per problem is exponential
(because some problems have a very large number of solutions), and backtracking that
finds every solution takes exponential average time.

It is more difficult to make any definitive statements about the pure literal rule
becauseno lower bound analysis has been done on its performance. At present all
that we can say is that we have an upper bound on its speed, and that for some regions
this upper bound is much better than any previous upper bound. Without a lower
bound analysis, we cannot tell how tight the upper bound for the pure literal rule is.
It may be that the pure literal rule algorithm can only solve trivial problems quickly.
However, many of the problems that can be solved quickly by the pure literal rule
apparently cannot be solved quickly by other simple algorithms.
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Once a lower bound analysis of the pure literal rule is done, so that the location
of the boundary of the hard region (for the pure literal rule and backtracking) is
determined, problems just inside the boundary should be of particular interest to the
developers of new algorithms. Such problems are difficult for current algorithms, but
perhaps for trivial reasons. Each time one can find a trivial reason for a problem being
difficult, one can hope to develop an improved algorithm.

Another interesting question is whether algorithms can be found to completely
eliminate the hard region. In other words, can an algorithm be found that will solve
the problems corresponding to each point in Fig. 1 in polynomial average time? At
present there is no reason to believe that such an algorithm exists. Random CNF
satisfiability appears to be quite difficult for any known algorithm, as long as the
parameters in the random distribution are adjusted to avoid generating mainly trivial
problems. Of course, if anyone ever proves that random satisfiability is hard for every
algorithm, that will be a major achievement equivalent to proving that NP P.

4. The algorithm. Goldberg’s simplified version of the Davis-Putnam procedure
selects variables in a fixed order. The algorithm is"

(1) If all variables have been selected, stop. The predicate is satisfiable if it contains
no clauses; it is unsatisfiable if it contains empty clauses. (If all variables have
been selected, then one of these two conditions must hold.)

(2) Select the next variable. If both it and its negation occur as literals generate
two subproblems by setting the selected variable to true and to false and
simplifying the two resulting predicates. (To simplify a predicate drop all
clauses that contain a true literal and drop any false literals.) Otherwise, the
variable corresponds to a pure literal. In this case, generate one subproblem
by setting the variable to the value that makes the literal true. (If the variable
does not occur at all, it can be set either way.)

(3) Solve recursively the subproblems that have been generated. The original
predicate is satisfiable if any subproblem is satisfiable; otherwise it is
unsatisfiable.

The use of a fixed order for selecting the variables greatly simplifies the analysis.
To do the analysis, we assume that the time required for one step of the algorithm is
vt(v). The average time is then given by the recurrence

a(t, v)=vt+2 i>= (1) pi(1-p)t-iA(t-i’ v-1)+(1-p)2tA(t’ v-1)’

(1)
A(t,O)=A(O,v)=O.

Here the summation accounts for the ways in which subproblems can arise when the
selected variable occurs in the predicate; the term (1-p)2’A(t, v-l) allows for the
case where the selected variable does not occur at all. (We use the convention that
()--0 for i> and for i< 0. Summation limits are omitted whenever the summand is
zero outside of the desired range.) A more detailed derivation is given in [10].

5. Analysis. The basic technique that we use to bound A(t, v) is developed in
Theorems 1 and 2. In Theorems 3, 4, and 5 we derive bounds for A(t, v).

THEOREM 1. Let B(t, v) be any function such that A( t, v)<-B(t, v) for v Vo-1,
0 <-- <-- to. Then

(2) A(to, Vo)<-toVo+2 .,,<_ (t)p’(1-p)t-B(to-i, vo-1)+(1-p)2B(to, Vo-1).
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Proof The coefficients on the right sides of (1) and (2) are equal and positive.
Since A(t, v)<-_ B(t, v) for all the values in question, the right side of (2) is greater
than or equal to the right side of (1).

TI-IEOREM 2. Let B( t, v) be any function such that A( t, v) <-_ B( t, v) for v Vo- 1,
0<= t<= t, and for Vo<= v<= D1, 0<= <- to. If

(3) B(t, v)>- tv+2 l<=i (1)pi(1-p)t-iB(t-i, v-1)+(1-p)2tB(t, v-1)

for Vo <- v<= Vl, to< <- t, then A(t, v) <- B(t, v) for Vo-1 <= v <- Vl, 0<= t<= tl.
Proof The right side of (2) is the same as the right side of (3), so the theorem

can be proved by double induction.
For any B (t, v) define

(4) X(t,v)=B(t,v)-2 1<=i (i) pi(1-p)’-iB(t-i’v-1)-(1-p)2’B(t’v-1)

+((-p’-(-p’(, v- .
Note that B(t, v) satisfies condition (3) in Theorem 2 if and only if X(t, v)>= tv. We
are interested in small functions B(t, v) for which X(t, v) satisfies this condition. We
proceed in a way similar to the method of repertoire [11]: we select easy to sum
functions for B(t, v) and adjust parameters so that the hypothesis of Theorem 2 is
satisfied.

One of the more complex functions of for which it is clear how to do the sum
over is given by

(6) B(t, v)= cg,(t) ht
v(v+ 1)

g 2

where c, g, and h may depend on p, but not on or v. For this function,

X(t,v)=-g! g
h’v 1-2(1-p)g 1- h p

(7)

TORM 3. A(t, v)<--2-2v(v+l).
Proof. Let c=1/2, g=0, and h=2 in the above formula, making B(t, v)=

2-v(v+ 1) and

(8) X( t, v) 2-v 1-2 1- +2(1-p)-(1-p) (v-l)+2

We have B(0, v)= v(v+ 1)/4 and B(t, 0)= 0, so Theorem 2 can be applied with vo 1,
to 0, v oo, and q oe, provided we can show that X(, v) >- tv for all v ->_ 1 and
t>-l. Now, X(t, 1)>-_2-l>-t for t>_-l, so we have X(t, v)>-tv for v->_l provided the
coecient of v- 1 in (8) is positive. If we call this coefficient C(p, t), then we need

((9) C(p,t)=l-2 1- +2(1-p)’-(1-p)->_0 for0-<_p-<_l,l-<_t.
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The easiest way to see that C(p, t)>= 0 is to write

(10)

(11)

C(p,t) 1-2(1+(1-p))’ +2(1-)’-(-p)’2

(l’ + (l -p)’>__- +2(l _p), (l _p)-,

Proof Let

A(t,v)<= +2g-2 v(v+l) forg= -lnl-p) +land0<p<l.

+ v(v+).
g

Note that (1-p)g <= (1-p)/2 and 2(1-p)’ (1-p)2’ -> 0, so by applying (7) to each
of the two terms of the formula for B(t, v) we have

(13) X(t, v) >-- v[p(v-1)+2]+2g-2v[-(v-1)+2].
P

For -< g 1, () 0 and B(t, v) 2g-Zv(v + 1) => A(t, v) by Theorem 3. For g, () 1
and

B(t, v)= [+2g-2] v(v+ l)>-2gv(v+ l)>=a(t, v).

For v=0, B(t, v)=0=A(t, v). Now, X(t, 0)=0 (tv for v=0) and

2g+l
X(g+l, 1)>=(g+l)+2g-l>=g+l (tvfort=g+l,v=l).

P

Since () increases more rapidly than linearly with for t> g+l, we will have
X(t,v)>=tv for v>=O, t>=g+l if the sum of the coefficients for v-1 in (13) is
nonnegative for => g + 1. The coefficient is

[2g (t) _2g_23 /)0 for t>=g.
g

Thus, by Theorem 2 with Vo 1, to g, vl m, t oc, we have A(t, v)<= B(t, v).
THEOREM 5.

A(t,v) <-

where U= 2-2(1-p)’ +(1 _p)2,.
Proof. Let

[u/’-(v+l)U+v]
B(t,v)=t

(1 U)2 =t (v-i) Ui.

Now U 1 +(1-(1 _p)t)2 is an increasing function of t, so B(t, v) is also an increasing

t[UV+-(v+l)U+v]
(l-U)-

(12) (l-p)’- (1-p)’ >_-- 0.

Thus A(t, v)-<_ B(t, v) by Theorem 2.
THEOREM 4.
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function of t. Therefore,

X(t, v)=B(t, v)-2 ,>_1(:) p’(1-p)’-’B(t-i’ v-1)-(1-p)2tB(t’ v-1)

=B(t, v)-B(t, v-1)[2-2(1-p)’+(1-p)2’].

But B(t, v) is the solution of the recurrence

B(t, v)= UB(t, v-1)+ tv,
(15)

(t,0)=0,

so X(t, v)>= tv. Also, B(t, 0)= 0, so, by Theorem 2, A(t, v)=< B(t, v).

6. Asymptotics. In this section we give brief derivations of the asymptotic behavior
of the bounds obtained in Theorems 3-5. Figure 1 summarizes these results. The
contours in Fig. 1 indicate where the average time has been shown to be a polynomial
function of the problem size. In this section we determine where the average time is
polynomial in the number of variables. These concepts are equivalent where t(v) is a
polynomial function of v; they differ where t(v) increases more rapidly than poly-
nomially.

For the average time to be polynomial in v, it is sufficient that

(16)

for some positive integer n.

A(t(v),v)
lim =< 1, or

In (A(t(v), v))
lim =< 1
v- n In v

(17)

Using the bound from Theorem 3, we have polynomial average time when

2t(v)-20(Vq-1)_<--,V", or

(18)
n In v-In (v(v+l))

In 2

n -2)-2
In 2 In v +lower order terms.

Therefore, the time is polynomial when

(19) t(v) _-< ]- In v.

The best previous bound for low t(v) (for polynomial time when t(v) is below a certain
bound) was t(v) <= (In In v)/(ln 3) [16].

Using Stirling’s approximation for factorial on Theorem 4 gives

(20)
A(t(v), V)=p(i Trg(v) \ g(v) J

1- t(ij

[ (__lv) (1) ( 1 ) ( )]1+0 +0
g(v)

+0 +O(p(v))+O
g(v)

t(v)-g(v) t(v)
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=Pi) \ g(v

+0
t(v)-g(v)

+O(p(v))+O t--v)/
The g of Theorem 4 is no more than ln2/p(v)+2 for large v. When t(v)>g(v)+,
the limit in Theorem 4 is an increasing function of g. Assuming that p(v) goes to zero
and that t(v)p(v) approaches a number less than 3 In 2/2, using the upper bound of
In 2/p(v) + 2 for g in Theorem 4 gives

k2 In 2 In 2/p(v)+2
(22)

x +o +o(p(v))+o
p(v(v)

If the right side of (22) is bounded by v for some integer n, then the time A(t(v), v)
is polynomial. If lip(v) is bounded by a polynomial function of v, then all of the
right side of (22) is polynomial except for the term raised to the In 2/p(v) power. Thus
we have polynomial time when

In 2
(23) t(v)p(v)NvP(/[polynomialin v, t(v), lip(v)]p(< v

2e

for some integer n. The derivation of (23) assumes that 1/p(v) is bounded by a

polynomial function of v, but the results given below also imply that (23) is still true
when 1/p(v) does not have a polynomial bound. For p(v)= e, (23) is the same result
as in [10], but it is better for smaller values of p(v). The boundary given by (18) and
the one given by (23) intersect at

(24)
p(v) ( a 2"241

n In n In v’
nlnv
In 2

where a is the root of the equation

c In 2 In c + In
(ln 2)

+ lower order terms.

The bound of Theorem 5 gives polynomial time (for polynomial t(v)) when

(25) Uv<_-v or lnU-<_n(lnv)/v.

This can be true only if U 1, so in this case we have

(26) In U=ln (1 +[1-(1-p(v))’v]2)[1-(1-p(v))’]2.

Polynomial time results when

In v
(27) 1-(1-p(v)) ’)-< or In 1- v <-t(v) ln(1-p(v))"
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For large v and small p(v) this is equivalent to

(28) 4nlnv 1 /nlnv<--t(v)p(v) or t(v)<-
v p(v) v

(for small p(v))

for any large integer nl.

This is a new type of bound for the pure literal rule. Previous bounds showed
that the rule is good for large p(v); this one shows that it is good for small p(v). The
result is similar to, but better than, a result in [17]. It is interesting that (28) is also
the condition for polynomial time for the algorithm that: (1) finds all variables that
are initially pure literals; (2) assigns values to make all the pure literals true; and (3)
solves the resulting problem using exhaustive search (a similar algorithm is analyzed
in [17]). Further analysis may lead to a better bound on the performance of the pure
literal rule in this region. The intersection of the boundaries given by (18) and (27) is
at

(29)
p(v) (In 2) n-1/2(v In v) -/,
t(v)=nln v.

In [16] we show that backtracking requires polynomial average time (for p(v)<=

(ln 2- e)v

(In 2)/v) when

-ln (1-exp (-vp(v)))"(30) t(v)<-_

This boundary intersects with (27) (ignoring the e) when

(ln2)v 1 4n(31)
-In (1-exp (-vp(v))) p(v)

In t

7. Conclusion. The pure literal rule (with backtracking) can solve many sets of
problems in polynomial average time. The results of the present analysis represent a
major improvement over the previous analysis [10] of the pure literal rule; moreover,
the loose nature of the approximations used in the analysis suggests that further
improvements are possible, particularly when p(v)t(v) is small. No lower bound
analysis has been done for the pure literal rule. Although it is unlikely that all the
problem sets in the figure can be solved in polynomial average time using that rule, it
would be interesting to see where the region of problems that are hard for the pure
literal rule lies.

The algorithms that have been analyzed so far each contain only a subset of the
useful features of the Davis-Putnam procedure. The interaction between backtracking
and the pure literal rule has not been analyzed ([2] gives the first step of such an
analysis). The effect of the pure literal rule and the unit clause rule on the order of
selecting variables has been omitted (see [14] for the effect of the unit clause rule on
backtracking). No analysis of the effect of stopping the search as soon as one solution
is found has been done. (The pure literal rule causes some solutions to be skipped.)

Since vp(v) is small at the intersection, for large v we have

(ln2)v 1 /nlnv
/ or

-In vp(v) p(v) v
(32) 4 (lv) 3/ 2(ln 2)v

P 21n2
and t=

lnv
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The interactions of all these basic techniques are potentially important and should be
analyzed.

There are several more sophisticated techniques that also should be analyzed for
their effect on average time. These include selecting variables from short clauses [12],
other generalizations of the unit clause rule [18], and two generalizations of the pure
literal rule [12, 13]. The algorithm developed by Monien and Speckenmeyer [12] has
a good worst-case time for solving CNF predicates.

Another approach for analyzing satisfiability problems was developed by Franco
and Paull [6]. They studied the probability that an algorithm completes the search for
a solution in polynomial time when doing exhaustive search for the first solution.
Franco used the same technique to study the pure literal rule [5]. The results of analyses
of satisfiability algorithms help to identify the types of problems that each algorithm
does well on, and should provide insights that will lead to better algorithms.

Acknowledgments. We would like to thank Professor George Minty for his help
with Theorem 3, and we would like to thank a referee for the proof presented here
and for carefully checking the rest of the paper.
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ALGORITHMIC APPROACHES TO SETUP MINIMIZATION*

ULRICH FAIGLEt, GERHARD GIERZ AND RAINER SCHRADER"

Abstract. Construction of classes of ordered sets are given for which the setup minimization problem
can be solved by an efficient algorithm. Those constructions generalize series-parallel connections. Special
classes of ordered sets are exhibited for which the greedy algorithm yields an optimal linear extension. In
particular, it is shown that the class of N-free ordered sets is both defect optimal and strongly greedy.

Key words, partially ordered sets, scheduling problems, NP-complete problems

1. Introduction. The setup minimization problem arises from a special scheduling
problem: n jobs are to be processed on a single machine subject to precedence
constraints given by a partial ordering. Every job processed after a job which is not
constrained to precede it causes a "setup." We seek to determine the setup number
of an optimal schedule.

By Szpilrajn [15] every ordered set P allows a feasible schedule L. However, in
general no good algorithms constructing optimal schedules are known. As a matter of
fact, Pulleyblank [13] has shown that the problem is NP-complete. Nevertheless it
turns out that the problem to find the setup number of optimal linear extensions can
be solved for a large variety of ordered sets. Duffus et al. [6] have shown that the setup
number of an ordered set containing no "crown" equals its width minus one. Although
the width of the ordered set P is easy to compute it appears difficult to recognize
whether P contains no crown. Cogis and Habib [4] have demonstrated that an optimal
extension for "series-parallel" partially ordered sets can be constructed by a greedy
algorithm. Rival [14] has extended this result to the more general class of ordered sets
whose Hasse diagrams do not contain N as an induced subgraph. For related graph-
theoretic investigations see [3], [16] and [17].

A different approach is taken by the second author and Poguntke [8] who study
defect optimal ordered sets, namely sets whose setup number equals the defect minus
one of its reduced incidence matrix. They prove that this class of ordered sets is closed
under substitution (i.e., lexicographical sums) and series-parallel composition and thus
includes the series-parallel ordered sets.

In this paper we broaden the above results by providing general composition
techniques, called bipartite sums, for ordered sets. We show that for these bipartite
sums the setup number can be computed whenever the setup numbers ofthe components
are known. Moreover, we present efficient algorithms to test whether an order is
generated from singletons under bipartite sums, and, if so, simultaneously solve the
setup problem.

We introduce the notation we need in 2 and present some basic results. In 3
we consider weakly linear sums of ordered sets and show that the properties of being
defect optimal or "strongly greedy" are preserved under this construction. N-flee
ordered sets form an important class of examples which are both defect optimal and
strongly greedy. The upper bipartite sums in 4 also generalize series-parallel composi-
tions. The class of ordered sets generated by upper bipartite sums from singletons
properly contains the N-flee ordered sets. Moreover, ordered sets which are not
necessarily "greedy" may be obtained in this way and we give conditions under which

* Received by the editors July 16, 1984.
t Sonderforschungsbereich 21 (DFG), Institut fiir Operations Research, Universitit Bonn, Bonn, West

Germany.
$ Department of Mathematics, University of California, Riverside, California 92521.
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upper bipartite sums yield strongly greedy sets. An efficient recognition algorithm is
available. Finally, in 5 we present a decomposition algorithm for classes of ordered
sets generated from arbitrarily given sets of irreducibles under series-parallel composi-
tions. If the setup numbers of the irreducibles are known the setup numbers of the
composed order can be computed from its decomposition tree.

2. Definitions and preliminaries. In this section we collect some basic facts about
(partially) ordered sets and their linear extensions. We assume the reader to be familiar
with the elementary terminology of ordered sets (see, e.g., Birkhott [1]). Additional
notation will be introduced in the sequel. Let P- (E, <-) be an ordered set with finite
ground set E, EI n. A linear ordered set L (E, <_-) with the same ground set E is a
linear extension or schedule of P if for all a, b E, a <_- b in P implies a <_- b in L.

If L is a linear extension of P and if a, b E are such that b is an upper neighbor
of a in L but a b in P, then the pair (a, b) is called a setup (or jump) of L. By s(L)
we denote the number of a setups of L. The problem consists in determining the setup
number s(P) of P defined by

s(P) =rain {s(L): L is a linear extension of P}.
The setups divide the linear extension L-ala2""an into subchains Cj which

are also chains in P. We denote such a decomposition of L by L CI + C2/"" / Ck.
Clearly, k-s(L)/ 1. It follows from the definitions that for every 1_-< i_-< n, Li
ala2’’" ai forms an (order) ideal in P, i.e., for every y L, x E, x<_-y in P implies
) Li.

We now continue with the definition of greedy setups. In some sense, greedy
setups are those setups in a given linear extension "which cannot be avoided." Let
b E be given. We define

N-(b) {a E: a is a lower neighbor of b in P}
and

N/(b) {a E: a is an upper neighbor of b in P}.

Note that upper and lower neighbors are defined with respect to P and not with respect
to linear extensions of P. We define a setup (A, a/l) in the linear extension L to be
greedy if a does not have an upper neighbor b E\L such that N-(b) Li. Let

g(L) I{(a, b) E E: (a, b) is a greedy setup}l

be the number of greedy setups of L and let

ng(L) s( L) g( L).

A linear extension is greedy if g(L)= s(L). The ordered set P is called greedy if
ng(L) 0 implies that L is optimal and strongly greedy if s(P)- g(L) for every linear
extension L of P. Thus, in particular, greedy schedules and optimal schedules coincide
for strongly greedy ordered sets.

A greedy schedule can always be obtained via the following algorithm: Choose
any minimal element a P. We then construct a linear extension recursively as follows"

If a al, a2,. , a have already been chosen, then do one of the following two
things"

(1) There exists an upper neighbor b N+(a) such that all lower neighbors of b
have already been chosen. In this case let a+l b.

(2) No such choice is possible. Then let ai+l be any element minimal in
E\{a,,. ,a,}.
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The following result is well known.
LEMMA 2.1. There always exists an optimal greedy schedule.
Proof. Let C1 + C_ 4-. 4- Ck be an optimal linear extension. If the setup from C1

to C2 is not greedy, then there exists a minimal element b of P\C1 such that C t_J {b}
is a chain of P and N-(b)c C. Furthermore, b must be the initial element of some
chain Ci, where i> 1. Hence (C11.3 c b})+...+(Ci\{b})+...+ Ck is also an optimal
schedule. Repeating this argument yields the proof. [3

We now fix an arbitrary field K. Let M(P) be the (reduced) incidence matrix of
P, i.e., M(P) (m,,b) a,, where

1 ira < b,
ma’b= 0 otherwise.

The defect defK (P) of P with respect to the field K was introduced in [8] as

defK (P) IEI-rk/((M(P)),

where rk/ (M(P)) means the rank of the incidence matrix of P. Note that the defect
of P is independent of the index order used for the incidence matrix.

The following fundamental relation was proved in [8]:

w(P) 1 -< def (P) 1 _-< s(P),

where w(P) is the width of P, i.e., the maximum size of a subset of P whose elements
are pairwise incomparable. In view of Lemma 2.1, our next result improves this
inequality.

THEOREM 2.2. Let L-ala2... an be a schedule of P. Then

def/ (P)- 1 <= g(L).

Proof. We assume w.l.o.g, that the rows and columns of M(P) are indexed in the
order given by L. Let IN be those indices with ai < ai+l, let IM be those indices for
which there is a nongreedy setup from ai to a+l and set I IM U IN. We must show
that rk: (M(P)) ->_ n 1 g(L) III, First of all, note that III + g(L) n 1 ): Indeed,
if i-<_ (n- 1), then passing from a to a+ either is a nonsetup, a nongreedy setup or
a greedy setup.

To show ]II_-<rk/((M(P)), we define a mappingf:I{1,..., n} by

i+1 ifieIN,
f(i)=

min {j" a N-(aj)c Li} otherwise.

Then the second expression for f indeed defines f also on IN showing that f(i) -> 4-1
and that f is injective.

Consider now the (ili III) -submatrix B of M(P) induced by the rows correspond-
ing to I and the columns corresponding to f(I). We claim that B is invertible. To see
this, we rearrange the columns of B in the order given by f-. Hence B becomes
B’= (blj)ai where the indices carry the order given by the natural numbers and where

b’ 1 ifa <= (0 otherwise.

By the definition of the mapping f, we have b 1 for every i, since a < af(i). Now
assume that j < i. We want to show that b’0 O. Supposing that ai < ayes), we consider
two cases:

(a) f(j) =j + 1. Then j < implies j 4-1 _-< i. Now, a < a+ ayj and the fact that
L aa2.., a, is a linear extension of P yields i<j + 1, a contradiction.
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(b) f(j)>j + 1. Then j IM and therefore we have a nongreedy setup from a to

a/l. From the definition of f we conclude that ay() is an upper neighbor of a and
that all lower neighbors of ay() are contained in L. By assumption, ai < ay(). Pick a
lower neighbor ak of ay(j) which dominates ai. Then we have ai =< ak e L. Since the set
Lj is an order ideal, aie Lj, contradicting j < i.

Hence we obtain a contradiction in either case. Therefore, a < ay( is impossible.
Thus B’ is an upper triangular matrix of full rank and the proof is complete. [3

A partially ordered set P for which def/ (P)- 1 s(P) holds we will call K-defect
optimal Defect optimal partially ordered sets were studied in [8].

COROLLARY 2.3. IfP is K-defect optimal then every optimal schedule ofP is greedy.
The ordered sets given by their Hasse diagrams in Fig. 1 show that the notions

of defect optimality and greediness generally are different.

PI P2

FIG.

It is easily verified that P1 is (strongly) greedy but not defect optimal with respect
to any field whereas P2 is defect optimal but not greedy. In spite of this example the
notions of defect optimality and (strong) greediness are closely related. We will clarify
this relation in the subsequent sections.

3. Composition. We now investigate two compositions of ordered sets and show
that both the class of defect optimal sets and the class of strongly greedy ordered sets
are closed under these compositions. The first composition is substitution, the second
generalizes a construction in [7].

Let P1 and P2 be two ordered sets on disjoint ground sets E1 and E2. Fix an
element a El. We define a new partially ordered set (P, a, P2) as follows:

(I) The ground set of (P1,. a, P2) is given by E (E\{a})LJ E2.
(II) The order relation -<_ on (P, a, P2) is given by x=< y if one of the following

cases holds:
(i) x,yEandx<=yinP,
(ii) x, y E2 and x-< y in P,
(iii) x-< a in P1 and y E2,
(iv) a<=yinPlandxE2.

The ordered set (P, a, P2) is.called the substitution of P2 in P at a.
Note that (P, a, P) is a special case of lexicographical sums. As a matter of fact,

lexicographical sums can be obtained by successively applying substitutions. Especially,
if P and P2 are defect optimal, then (P1, a, P2) is defect optimal (see [8, 4.12]). The
next result shows that substitutions behave similarly with respect to the property of
being strongly greedy. First of all, however, we need a technical lemma.

Let us assume that L is a linear extension of (P1, a, P2). We then can define linear
extensions L(PI) of P and L(P) of P2 as follows:

L(P1) is the restriction of L to P1, where we replaced the first element of E2
occurring in L by a.

L(P) is the restriction of L to P2.
LEMMA 3.1. Let L be an arbitrary linear extension of (P, a, P2). Then g(L)=

g(L(P,)) + g(L(P)).
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Proof. First of all, let (ai, ai+l) be a greedy setup of L. Then for every upper
neighbor b of a there is a lower neighbor c of b such that c L al’’" a.

Assume that a E1 and assume that ai is not a lower neighbor of a. Then every
upper neighbor of ai belongs to E1 and so does every lower neighbor of every upper
neighbor. If also ai+l El, then clearly (a, ai+l) is a greedy setup of L(P1). Let us
assume that a+l E2. Let j > be the smallest index such that a E. Let

fa if i+ 1 is the smallest index k such that ak E2,
at= a otherwise.

Then a follows ai in L(P). In order to show that (a, a) is a greedy setup of L(P)
Pick an upper neighborAssume that we had a < at.it is enough to show that a at.

b of a which is bounded by a., i.e., b <= a. If ak is a lower neighbor of b, then (1)
and (2) ak E, thus k <j. Since the elements a/l, , a_ E2, we concludeak < aj

that k =< i. Hence we have found an upper neighbor of a, namely b, such that for every
lower neighbor c of b we have c Li, contradicting the fact that (a, a+l) is a greedy
setup.

Next, assume that a E1 and that a is a lower neighbor of a. Let rn be a minimal
element of P2. Then ai is a lower neighbor of m in (P1, a, P_). Hence there is a lower
neighbor c of m in (P1, a, P) such that c Li. Clearly, c is a lower neighbor of a in

P1. Hence we conclude: For every upper neighbor b of a in P there is a lower neighbor
c of b in P1 such that c L. Let again j>i be the smallest index such that a E.
Define a as before. Again, it can be shown that a a and therefore (ai, a) is a

greedy jump of L(P1).
We now assume that ai E. Again, we consider the cases a+ E1 and a+ E2.

Let us assume that a+l El. Let j > be the smallest index such that a E. Then a
follows a in L(P2). We first establish the fact that there is indeed a setup between ai
and a in L(P). Assume not. Pick an upper neighbor b of a such that b <-at. Then
b ak for a certain k and hence k =< j. We conclude that k j, i.e., a is a lower neighbor
of at. Thus at cannot be minimal in P2 and therefore every lower neighbor of a in
(P, a, P2) belongs to E2. Let as be any lower neighbor of at. Then as < a and hence
<j. If i< l, we would get a contradiction to the choice of j. Hence we obtain l_-< i.

Hence every lower neighbor c of a belongs to L, contradicting the fact that we have
a greedy setup at a. If now b is any upper neighbor of ai in P, then again b cannot
be minimal in P2. Hence every lower neighbor of b in (P1, a, P2) belongs to E2. From
the fact that we have a greedy setup at a we conclude that there is a lower neighbor
c E of b such that c L. Hence (a, at) is a greedy setup of L(P2).

Let us now assume that a, a+ E2. A slight modification of the arguments given
in the last paragraph shows that (a, ai/) is also a greedy setup of L(P.).

These arguments show that

g(L) <- g(L(P1)) + g(L(P2)).

We now launch a proof of the reverse inequality: Let (x, y) be a greedy setup of
L(P). We have to consider three cases:

x # a # y. Then x a and y a for certain indices <j. If j + 1, then (x, y)
(a, ai+l) is a greedy setup of L: Indeed, let be E1 be an upper neighbor of a with
respect to (P1, a, P2). Then, since (a, at) is a greedy setup of L(P1), there is a lower
neighbor c E of b such that c L. The only complication occurs in the case where
c is not a lower neighbor of b in (P1, a, P2). This can only happen if either b a or
c a. If b- a, then substitute b by a minimal element of P2. This minimal element
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will then be an upper neighbor of ai which has c as a lower neighbor. Assume then
that c a. In this case, we substitute c by a maximal element m of P2. Then m Li,
because otherwise a c would have to be listed before a in L(P1) by the definition
of L(P1), contradicting the choice of c.

Now assume that j> i+ 1. In this case ai+l E2. We show that (a, ai+l) is a setup
of L. Assume not. In this case a would be a lower neighbor of a+l in (P1, a, P2). But
then ai is a lower neighbor of a and by the construction of L(P1), a would have to
be listed immediately after a in L(P1). This would imply a a > a, contradicting the
fact that we have a setup at (ai, as). Now a slight modification of the argument given
above for j i+ 1 shows that the setup (a, ai+l) is in fact greedy.

Consider now the case where y a. Assume that x ai. In this case ai+l would
have to be a minimal element of P2, and, since x ; y, we have a = ai+l. Again we see
that (ai, ai+l) is a greedy setup.

If x a, let y a+l. In this case the element a E2. Moreover, since a x y
ai+l, we have a setup at (a, ai+l). We verify that this is a greedy setup: First of all, we
can pick an upper neighbor b of x a and a lower neighbor c of b, all belonging to
El, such that c is listed after x in L(P1). We would like to show that c is listed after
ai in L. To this end, let k be the smallest index such that ak E. Then L(P1) looks like

L(P1) ala2 ak_l(a x)(y ai+)

Since all the elements ak,’’’ a have to belong to E2, and since c is not among
al, ak-1, a, we conclude that c =a where j > i.

Now let (a, as) be a greedy setup of L(P2). If j i+ 1, then obviously (a,
would have to be a greedy setup of L. Hence let us assume that j > + 1. In this case
ai+l El. Assume, if possible, that a < ai+ 1. Then aj+ a and therefore ai+l is an
upper bound in (P1, a, P2) for every x E2. Especially, a < ai+l, contradicting the fact
that i/ 1 <j. Hence we have a setup at (a, a+l). It is readily verified that this setup
is a greedy setup.

We are now allowed to conclude that g(L)>-g(L(P1))+g(L(P)) and therefore
equality holds. []

THEOREM 3.2. If P1 and P2 are strongly greedy, then so is P- P1, a, P2).
Proof Let L be an optimal greedy extension of P, and let L be an arbitrary

linear extension of P. We use the lemma and the fact that by assumption s(P1)=
g(L(P1)), s(P2)= g(L(P2)), in order to compute

s(P)=g(L)

g(L(P1))+ g(L(P2))

s(P1) + s(P2)

g(L(P1))+ g(L(P2))

g(L).

Hence P is strongly greedy. ]

It is easy to see that in fact the converse of Theorem 3.2 must also be true. Let
us note that a substitution decomposition of an ordered set can always be carried out
efficiently (cf. Buer and M6hring [2]).

The following corollary deals with lexicographical sums. For the definition of
lexicographical sums, we refer the reader to [8].
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COROLLARY 3.3. Let S be a strongly greedy ordered set, and let (Ps)ss be a family
of strongly greedy ordered sets. Then the lexicographical sum of the family (Ps)s is

again strongly greedy.
We now turn to another construction, which is very closely related to substitution.
Let P and Q be ordered sets such that P CI Q , let A c p, and let C c Q. We

define the ordered set P Q with respect to A and C as follows:
The ground set of P, Q is the disjoint union of P and Q.
(i) x,yP and x<=y in P,
(ii) x,yQandx_-<yin Q,
(iii) x P, y Q and x-< a, c-<_ y for certain elements a <_-A, c C.
Several special cases of this construction are already known:
(a) If A or C , then P Q is the parallel composition of P and Q.
(b) If A is the set of all maximal elements of P and if C is the set of all minimal

elements of Q, then P Q is the linear sum of P and Q.
(c) Bipartite sums in the sense of [7] are also a special case of our present

construction.
In this paper, we would like to consider two other special cases of P * Q:
(d) If there is an element a P such that A is the set of all lower neighbors of a

or if A consists only of maximal elements of P while C consists only of minimal
elements of Q, then P, Q is called a weakly linear sum of P and Q. Weakly linear
sums will be denoted as P Q.

For the second case, we need a little bit of preparation: Let us agree to call a set
A P to be submaximal if A B U I where I consists only of isolated points of P and
where either (i) B contains only maximal elements of P or (ii) no element of B is
maximal, every upper neighbor of an element of B is maximal and every lower neighbor
of an upper neighbor of an element of B belongs to B again.

(e) If A P is submaximal and if C consists of minimal elements of Q only,
then P Q is called an upper bipartite sum of P and Q.

LEMMA 3.4. (i) We always have s(P)+s(Q)<=s(P, Q)<-s(P)+s(Q)+l.
(ii) If P, Q is an upper bipartite sum and if A contains a maximal element of P,

then s(P)+ s(Q)= s(P Q).
(iii) IfP Q is an upper bipartite sum, and ifA contains no maximal element of P,

then s(P Q)= s(P)+ s(Q)+ 1.

Proof (i): Let L(P) be an optimal schedule of P and let L(Q) be an optimal
schedule of Q. Then L(P)+L(Q) is a schedule of P, Q and we have s(P, Q)<=
s(L(P)+ L(Q))<- s(L(P))+ s(L(Q))+ 1 s(P)+ s(Q)+ 1.

For the other inequality, let L be an optimal schedule of P, Q with chain
decomposition C1 +"" + Ck. In this case we have s(P, Q)= k-1. By the definition
of P, Q there is at most one chain Ci such that Ci f-)P C f)Q. Indeed, let
x, y Ci be such that x is a lower neighbor of y, x P and y Q. Then x must belong
to A and y must belong to C. Moreover, since y is an upper bound of all elements of
A, all the other elements of A must occur in one of C1,. , C_, or, in case A is not
an antichain, in the part of C before x. Clearly, this can happen only once. If there
is a chain C which contains elements of P and of Q, split this chain in halfs: C’i Ci P
and C’ C 71Q. From these (new) chains, let D,..., D,, be the chains contained
in P and let E,..., Ek be the chains contained in Q. Then rn + k_-< n + 1 and, since
D+...+D,, is a linear extension of P, s( P) <= m -1. Similarly, s(Q)<-k-1. This
gives s(P) + s(Q) -< m + k 1 _<- n s(P Q).

(ii) Observe that there is an optimal linear extension L(P) of P such that the
last element ti of A occurring in L(P) is maximal in P. This is obvious in the case
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where A contains an isolated element, since isolated elements give rise to singleton
chains in the chain decomposition of L(P) which may be switched to every arbitrary
position. On the other hand, if A does not contain any isolated point, then A consists
of maximal elements only and the assertion is clear in this case, too. We now decompose
L(P) into L(P) and Lz(P) such that the last element of L(Q) is ti. Similarly every
optimal linear extension L(Q) of Q splits into L(Q) and L(Q) where the first element
of L2(Q) is the first element of C occurring in L(Q). Then L= L(Q)L(P)Lz(Q)Lz(P).

(iii) To see (iii) we claim that there exists an optimal linear extension L of P * Q
such that every chain induced by the setups either lies completely in P or completely
in Q. Since in this case the induced chains yield linear extensions L(P) of P and L(Q)
such that s(P, Q)-s(L(P))+s(L(Q))+I. Now (i) implies the first inequality in
s(L(P))+s(L(Q))+I<=s(P)+s(Q)+I<=s(L(P))+s(L(Q))+I, hence (iii) will
follow.

So let L be any optimal schedule of P Q with chain decomposition C +. + Ck.
As we already remarked in the proof of (i), there is at most one chain Ci which
intersects both P and Q. Let a A be the last element of P in C and split C into C’
and C" as before. Now note that every upper neighbor of a in P must form a chain

C in the chain decomposition of L. Hence combining C’ and C to a new chain yields
a linear extension of P * Q with the desired properties.

PROPOSITION 3.5. Let K be any field and let P Q be a weakly linear sum ofP and
Q with respect to A and C.

(i) If A C and if A contains only maximal elements of P, C contains only
minimal elements of Q, then def: (P0)Q) =def/ (P)+defr (Q)-I.

(ii) IfA f or if C or if there is an element b P such that A N-(b), then
def/ (PQ) =def: (P)+def/ (Q).

Proof Let us show (i) first. It suffices to verify that rk (P0) Q) rk (P) + rk (Q) + 1.
To this end, we index the incidence matrix M(PQ) by a linear extension
PP’"P,qlq"" qm ofP Q, where Pl" P, is a linear extension of P, q... q,, is
a linear extension of Q and p, A, ql C.

Let S be the (m+ 1) (m+ 1)-submatrix of the incidence matrix M(PO)Q) deter-
mined by the rows and columns indexed p,, ql,’", q,,. We claim rk(S)=
rk (M(Q)) 4- 1. But this is easily verified by making use of the fact that the pth column
is zero and the qlst column is just the unit vector.

Furthermore, let T be the (n-1)(n-1)-submatrix given by the rows and
columns with indices p,...,p,_l. Since p, is maximal in P, we obtain rk (T)=
rk (M(P)).

Hence it remains to show that rk (M(PQ))=rk (S)+rk (T).
The matrix M(PQ) has the following form:

(P(R)Q=
0

Note that the pth row of R is either 0 (in case p is not bounded by any element of
A) or it has l’s exactly at those columns q for which q is an upper bound of an
element of C. Hence all the nonzero rows of R agree with the p,th row of M(P@ Q).
Subtracting this p,th row from all the nonzero rows of R does not change the rank of
M(P( 0) and transforms this matrix into

This shows that rk M(P Q)) rk (S) + rk (T).
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(ii) The case where A Q3 or C is straightforward. We only consider the case
where A N-(b) for a certain b P.

We define two linear mappings f, g"KPKP in the following way: The
function f is the "incidence function" of P Q, i.e.,

f(v)(y) , v(x).
x<y

The function g is the sum of the "incidence function" gl of P and the "incidence
function" g2 of Q. Here we have to identify KPq with the direct sum KP03 K of
the vector spaces KP and Kq:

v(x) ifyP,
x<y,x P

g(v)(y)
Y v(x) ifyQ.

x<y,xQ

We will show that im (f) im (g). Let z P Q. Then the characteristic function
Vz KP)Q of Z is a typical "unit vector." We have to consider three cases"

(1) z P. Then f(vz)= g(vz).
(2) z Q and c ; z for all c C. In this case we also have f(Vz) g(
(3) z Q and c-<_z for a certain c C. Let b be such that A= N-(b) and let Vb

be its characteristic function. Then for any y P we have that y < z if and only if y < b.
This yields

f(Vz)=g(v)+g(Vb)

and, since we already know from case (1) that g(Vb)=f(Vb),

g(Vz) =f(vz)--f(Vb).

Since the unit vectors span the whole vector space, we conclude from these three
cases that im (f) im (g). Thus dim (im (f)) dim (im (g)) dim (im (gl)) +
dim (im (g2)) or rk (Pq) Q) --rk (P)+rk (Q), and the corresponding equality for the
defect follows. [3

COROLLARY 3.6. The class of defect optimal ordered sets is closed under forming
weakly linear sums.

Proof Let P and Q be defect optimal ordered sets and let P@ Q be a weakly
linear sum with respect to A c P and C c Q.

If A or C , then the claim follows from [8, Prop. 4.12].
If A contains only maximal elements and if C contains only minimal elements,

then from Lemma 3.4 we know that s(P@Q)=s(P)+s(Q). Since by (3.5(i)) we
also have def/ (P@Q)-l=defK (P)-l+defK (Q)-I, it follows that s(P@Q)=
def (P@ Q) 1.

Finally, let us assume that there is an element b P such that A N-(b). Then,
by (3.5(ii)) we have

deft P03 Q) 1 (def/ (P) 1 + (deft (Q) 1 + 1

=s(P)+s(Q)+l.

Since we always have def/ (PO3Q)-l<=s(PO3Q)<-s(P)+s(Q)+l, the statement is
also true in this case.

Let us remark a few interesting facts: The proof of Theorem 2 in [7] can without
problems be adjusted to our present situation of weakly linear sums. In this case, we
obtain the result that a partially ordered set P is N-free ifand only ifP can be constructed
from the empty set by a sequence of weakly linear sums with singletons (allowing only
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series or parallel compositions gives us the class of series-parallel ordered sets). If we
connect this result with our last corollary, we obtain:

COROLLARY 3.7. Every N-free ordered set is defect optimal.
Note that the description of N-free ordered sets as a weakly linear sum of singletons

gives an easy procedure to algorithmically test whether P is N-free: we successively
take away maximal elements which must have been added by a weakly linear sum.
We will return to this idea in the next paragraph.

The next proposition in connection with the previous results again exhibits the
close analogous behavior of the defect of a partially ordered set and the property of
being strongly greedy.

PROPOSITION 3.8. Let P and Q be partially ordered sets. Then a weakly linear sum
P0)Q is strongly greedy if and only if both P and Q are strongly greedy.

Proofi The proof is analogous to the proof of [7, Thm. 1] and is a modification
of the proof of Theorem 3.2. [3

4. An algorithm for upper bipartite sums. The preceding section shows that the
class of ordered sets generated by singletons under weakly linear sums can be efficiently
recognized by an algorithm (see the remark following (3.7)). It will follow from the
results in this section that this algorithm can be modified to simultaneously construct
an optimal linear extension if the ordered set is N-free. However, to obtain more
generality we will discuss upper bipartite sums instead of weakly linear sums.

Let be the class of finite ordered sets constructed by sequentially forming upper
bipartite sums with singletons. We will see that members of this class can also be
recognized algorithmically and the optimization problem can be solved efficiently for
every ordered set in this class.

THEOREM 4.1. Let P 1. If P is an upper bipartite sum P P1 * Y of P1 and a
singleton, then P .

Proofi The proof is by induction on PI. By hypothesis there exists P and a
(maximal) element x P such that P is the upper bipartite sum P. x of P and x. If
x-y there is nothing to prove. Assume x y and let Ax N-(x) and Ay- N-(y).

We claim that either Ax-Ay or Axt3 Ay =. Suppose Axf3 Ay , then y
N+(A,) and x N+(Ay) hence A Ay by the definition of upper bipartite sums. But
now in either case P-P’, y where by induction hypothesis P’ , and where
represents an upper bipartite sum. Clearly, this implies P P’ x y, i.e., P1 P’ * x

Based on the above theorem and Lemma 3.4 we now describe an algorithm which
tests membership in the class and which for P computes the setup number s(P).

UBS ALGORITHM 4.2.
Input: A finite ordered set P.
Output: The setup number s(P) of P or the information P .

1. s-0;
2. If P , STOP. In this case, P g and s s(P);
3. Choose a maximal element a P such that P--P, a is an upper bipartite

sum. If no such a exists, STOP. In this case, P ;
4. If N-(a) contains no maximal element of P, then s s + 1;
5. PP;
6. GOTO 2.

Let Go c consist of those ordered sets P such that in the construction of P the
set A contains no isolated elements. We call those sums nonsingular upper bipartite sums.
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PROPOSITION 4.3. For every P Go, Pis strongly greedy.
Proof In view of Lemma (3.4) the proof may be carried out similarly to the proof

of Theorem (3.2) by a straightforward induction on [PI.
PROPOSITION 4.4. If P is N-free, then P
Proof Choose a P such that B N+(a) contains only maximal elements and

observe that for every b 6 B and a’ N-(b) A, N+(a ’) contains only maximal elements
(otherwise P would not be N-free). Moreover N-(b’) A for every b’ B and N+(a ’)
B for every a’ A. Hence P (P- b) b and this sum is a nonsingular upper bipartite
sum. Noting that A contains maximal elements of P-b if and only if IB[ 1 the
proposition follows by induction on IPI.

We remark that strictly contains Go and that there are strongly greedy ordered
sets in Go which are not N-free.

Ol 0 2 a 02

PI BO P2B/BO

FIG. 2

Note that Algorithm UBS above can be modified as to simultaneously construct
an optimal linear extension if P is N-free: always choose, if possible, the element a
such that a is a lower neighbor of a’, where a’ was the preceding element chosen.

We leave it to the reader to verify that the class Y3 is closed under upper bipartite
sums and that the class Y3o is closed under nonsingular upper bipartite sums.

5. Series-parallel classes. Our investigation so far has concentrated on classes of
ordered sets which can be decomposed to singletons and for which the setup problem
can be solved. We will now give a construction principle for classes of ordered sets
generated by "irreducibles" with respect to series-parallel composition such that the
setup optimization problem can efficiently be dealt with provided the setup numbers
of the irreducibles are known. Recall that series-parallel compositions are special
weakly linear sums where A is either empty or A contains all maximal elements and
C contains all minimal elements. The cycle-series-parallel ordered sets of [8] constitute
an example of a special such class.

An ordered set P is (series-parallel) irreducible if P cannot be expressed as a

nontrivial series or parallel composition of two other ordered sets. Let I be a class of
irreducible ordered sets and let 5 5(I) be the class of finite ordered sets generated
by taking successively series or parallel composition with members in I.

The first observation is immediate; 5 is closed under series and parallel composi-
tion. The following result is fundamental.

THEOREM 5.1. If P 3 is either a series or a parallel composition of P1 and P2,
then both P1 and P2 belong to .

Proof We discuss only the case where P is a series composition of P1 and P2.
The case where P is a parallel composition is handled similarly. The proof is by
induction on lP I" Since P O and since every series composition leads to a connected
ordered set, P is a series composition of a certain P 5e and an irreducible Q I.
Since Q is irreducible, we have either Q c P1 or Q c P2, since otherwise we could write
Q as a series composition of Q f-)P1 and Q f)Pz. W.l.o.g. we assume that Q c P. In
this case, we can write P as series composition of Q and a certain P’. Hence P is a

series composition of P2 and P’. Since PI > I/5[, the induction hypothesis yields that
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P2 and P’ belong to 5. Hence the series composition P1 of P’ and Q belongs to
too.

Theorem 5.1 suggests the following algorithmic procedure to test whether the
ordered set P belongs to 5(I)"

1. If the Hasse diagram of P is not connected then we obtain a parallel decomposi-
tion from the connected components.

2. If the Hasse diagram of P is connected, choose a maximal chain K al < a2
< an in P. For each a K choose b N+(a) and test whether N-(b) and N+(a)

induce a complete bipartite subgraph in the Hasse diagram of P. Moreover, test whether
for each x P either x < b or x > a. If no such a exists, P is irreducible and P 5(I)
if and only if P I. Otherwise N-(b) and N+(a) give rise to a series decomposition
of P.

Note that the algorithm is valid. Indeed, if P P+ P2 is a series composition,
then every maximal element of P1 must have the properties required in Step 2 of the
algorithm.

A more direct decomposition algorithm exists for special cases I. If no maximal
element of any irreducible set properly dominates all minimal elements we let in step
2 the ordered set P2 consist of all elements of P which dominate all minimal elements
of P. This includes the cases considered in [8] and [17].

In general, the algorithm above decomposes every P 5(I) into irreducibles in
I. By Lemma 3.4 the setup number s(P) can be computed efficiently from this
decomposition tree.
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AN EXTENSION OF LIOUVILLE’S THEOREM ON INTEGRATION
IN FINITE TERMS*

M. F. SINGER, B. D. SAUNDERS AND B. F. CAVINESS

Abstract. In Part of this paper, we give an extension of Liouville’s Theorem and give a number of
examples which show that integration with special functions involves some phenomena that do not occur
in integration with the elementary functions alone. Our main result generalizes Liouville’s Theorem by
allowing, in addition to the elementary functions, special functions such as the error function, Fresnel
integrals and the logarithmic integral (but not the dilogorithm or exponential integral) to appear in the
integral of an elementary function. The basic conclusion is that these functions, if they appear, appear
linearly. We give an algorithm which decides if an elementary function, built up using only exponential
functions and rational operations has an integral which can be expressed in terms of elementary functions
and error functions.

Key words. Liouville’s theorem, integration in finite terms, special functions, error function

Introduction. In 1969 Moses [MOSE69] first raised the possibility of extending
the Risch decision procedure for indefinite integration to include a certain class of
special functions. Some of his ideas have been incorporated as heuristic methods in
MACSYMA and REDUCE. However, little progress has been made on the theory
necessary to extend the Risch algorithm. One step in this direction was the paper by
Moses and Zippel [MOZI79] in which a weak Liouville Theorem was given for special
functions (this result also appears in [SING77]).

In Part I of this paper, we give an extension of Liouville’s Theorem [RISC69, p.
169] and give a number of examples which show that integration with special functions
involves some phenomena that do not occur in integration with the elementary functions
alone. Our main result generalizes Liouville’s Theorem by allowing, in addition to the
elementary functions, special functions such as the error function, Fresnel integrals
and the logarithmic integral (but not the dilogorithm or exponential integral) to appear
in the integral of an elementary function. The basic conclusion is that these functions,
if they appear, appear linearly.

In Part II of this paper, we use the results of Part I to examine the question of
when the integral of an elementary function can be expressed in terms of elementary
functions and error functions. We give an algorithm which decides if an elementary
function, built up using only exponential functions and rational operations has an
integral which can be expressed in terms of elementary functions and error functions.

Some of the results of this paper have been announced in [SSC81]. We wish to
thank Barry Trager for drawing our attention to Example 2.1 in 2.

Finally, all fields in this paper are assumed to be of characteristic 0. C, Q and Z
stand for the complex numbers, rational numbers, and integers respectively.

I. An extension of Liouville’s Theorem.
1. Statement and discussion of results. We begin by defining a generalization of

the elementary functions. Let F be a differential field of characteristic 0 with derivation
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and constants C. Let A and B be finite indexing sets and let

{G (exp R,,( r))},eA,

= {Ht(Iog S( Y))}z,
be sets of expressions where"

(1) G, R, H, St are in C(Y) for all a A, fl e B, i.e. they are all rational
functions with constant coefficients;

(2) for all fl B, if H(Y) P( Y)/Q(Y) with P, Q in C[, then deg P
deg Q + 1.

We say that a differential extension E of F is an -elementary extension of F
if there exists a tower of fields F Fo F = F, E such that F F_(0) where
for each i, 1 n, one of the following holds:

(i) Oi is algebraic over Fi_;
(ii) 0 u’0 for some u F_;
(iii) 0[ u’/u for some nonzero u F_;

(1.1) (iv) for some a A, there are u, v F_ such that
0’ u’G(v) where v’= (R(u))’v;

(v) for some fl B, there are u, v in F_ such that
O=u’H,(v) where v’=(S,(u))’/S,(u) and S(u)O.

Informally, we could write (1.1) cases (ii)-(v) as
(ii’) 0 exp u;
(iii’) Oi log u;
(iv’) 0 u’G(exp R(u)) dx;
(v’) Oi u’H(log S(u)) dx.
Cases (ii)-(iv) and (ii’)-(iv’) are not equivalent since, for example, (ii) determines

0 up to a multiplicative constant while (ii’) refers to a specific function, exp. Although
this distinction is not usually emphasized in the standard Liouville Theorem, it is not
a pedantry here. The distinction between (iv)-(v) and (iv’)-(v’) is crucial to prevent
transcendental constants from being introduced by integration. This will be discussed
in detail in 2.

The definition of -elementary functions is broad enough to include such
functions as the error function, the Fresnel integrals and the logarithmic integral. Let
F C(x), C the complex numbers. The error function is defined by

erf(u)= u’ e dx

where G(exp R(g)) exp (- g) with G(W) W and R(Y) Y.
The Fresnel integrals are defined by

For S(u) we have that

G(exp R(Y))
eir/2 Y2]2 1

i’tr 2 y22ie
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where G(W) (W2-1)/2iW and R,(Y) i,n’y2/2. For C(u) we have a similar
expression.

The logarithmic integral is defined by

u’. dxli(u)=
logu

with Ht(W) 1/W and St (Y) Y.
$-elementary functions do not include the dilogarithm (or Spence function)

defined by

Li2 (u) / u’ log u
dx

u-1

nor the exponential integral

u,e
Ei (u) dx

since they both violate condition (1) of the definition. Of course, Ei (u)= li (eU), so
the exponential integral is implicitly covered by our analysis. One would like a theory
that explicitly includes these functions but this remains an open problem.

We can now state the generalization of Liouville’s Theorem.
THEOREM 1.1. Let F be a differentialfield of characteristic zero with an algebraically

closed subfield of constants C. Let y be in F and assume there exist an -elementary
extension E of F and an element y in E such that y’= y. Then there exist constants ai,

bi,,, cit3 in C, wi in F, and ui,,, uit3, vi,, vit3, algebraic over F, such that

(1.2) y=W’o+ ai--+ 2 Y biu’iG(vi)+ c,t3uitHt3(vt3)
i=1 Wi ot6A ial flB iJo

where I,, and J are finite sets of integers for all a and fl and

(S(u,))’
l) :a Ra tli )t l)ia’ l)ti ---(’i S tli 0

for all a, fl and i.
The proof of Theorem 1.1 will be given in 3. Now some comments about the

hypotheses and conclusion of the theorem.
Condition (2) in the first paragraph of this section seems artificial, but the theorem

is false without it. Consider the following example.
Example 1.1. Let F C(x, log x), where C is the field of complex numbers,

and {(log Y( Y+ 1))2}. In this case the index set B is a singleton and H y2. This
is excluded by condition (2) since deg (numerator of H)= 2> deg (denominator of
H)+I.

Claim. (a) log x/ (x + l lies in an -elementary extension of F but
(b) logx/(x+ l) w+ ciw’i/wi+ diuiv2 for any wi, ui, v algebraic over F with

v (u(ui + 1))’/ui(ui + 1) and constants ci, di in C.
To verify (a), compute (log x(x/ 1))2 dx by parts. First we have that

log x)2 dx x(log x)2- 2x log x + 2x,

(log (x + l)) dx=(x+l)(log(x+l))E-2(x+l)log(x+l)+2(x+l),
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and

Hence

log x)(log (x + )) clx x(og x) og (x + 1)-(x + ) log (x + )

log x
log x + 2x + /

x+l

(log x(x+ 1))z dx= I (lg x+lg (x+ 1))2 dx

to obtain

wlog x_ W’o+, ci---t’+ diu’(ri log x+ ki)2
x+l w

log x Nwi)’
/Zx / i (Tr Wo)’+ E c, Nw"--,

where/z is a positive integer and Nw is the norm of w. This contradicts the fact that
log x/(x + 1) is not elementary and hence (b) is verified.

Unlike the standard Liouville Theorem, the above theorem only guarantees that
there exist w, ui, uo, vi,, rio, algebraic over F such that (1.2) holds. One would have
hoped that these elements could be chosen to lie in F but this is not the case in general.

Example 1.2. Let F C(x, exp x, exp (-exp x + x/2)), g’ {exp (- y2)},
Note that F is a purely transcendental extension of C.

Claim. (a) exp(-expx+x/2)dx lies in an g-elementary extension of F.
(b) exp (-exp x + x/2) W’o + Y ci w/ wi + diu’ivi, where v’ (-2uiu’i)vi, for any w,
vi in F.

To verify (a), we see that

f exp (-exp x+) dx=Iexp(-expx) exp(-) dx =x/--- erf(exp ).
Note that exp (x/2) F.

To verify (b), assume such an expression existed. By the structure theorem in
ri(exp x + x/2) + six + a where ri and si are rational numbers[ROCA79], we have ui

and ai C. Since F is a purely transcendental extension of C, this is only possible if

To verify (b) assume that logx/(x+ 1)= w+Yi= ci w’i/wi+Z,= diu’ivi with wi,

u, v algebraic over F and vl (ui(u + 1))’/ui(ui + 1). From the structure theorem
([ROCA79, p. 359]), we have for each i, 1 -< -< m, that u(u,,+ 1) cix r, for some rational
number ri and c C. We can assume that neither c nor ri is zero. We also have
vi=rilogx+ki for some kC. Furthermore, each ui is algebraic over K=
C(x, log x, xr, , x r,.) and satisfies the irreducible equation u(u + 1) cx, =0. Let-
ting Tr be the trace function from K(ul," , u,,) to K, we see from this equation that
Tr (ui) is an integer. Therefore, Tr (u’i)= (Tr ui)’= 0. Apply the trace to both sides of

=f (logx)2+2 f (logx)(log(x+l)) dx+ I (log(x+l))2 dx

x
elementary function + 2 - dx.
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ri=si=0 and uiC. Therefore we would have exp(-expx+x/2)=W’o+
contradicting the fact that the error function is not elementary.

Ci Wti/Wi,

2. The question of constants. In this section we will discuss the question of
transcendental constants appearing in our integral when we express this integral in
terms of ’-elementary functions. We will rely heavily on the notion of a constrained
extension of a differential field and other concepts from differential algebra. We refer
the reader to [KOL73] as a general reference for differential algebra and explicitly to
page 142 for an exposition of the concept of constrained extension.

We quote two facts from [KOL73]: 1) Let F be a differential field of characteristic
0, P a differential ideal in the ring of differential polynomials F{yl,’’’, Yn} and B a
differential polynomial in F{yl,... ,y,} such that B C=P. There exist elements
r/,..., r/n in some extension of F such that (r/l,’", r/,) is a zero of P,
B(r/1," , r/,) 0 and (r/l," , r/,) is constrained over F; 2) Let F be as before. If
(r/, .., r/n) is constrained over F, then the constants of F(r/1, , r/,) are algebraic
over the constants of F.

PROPOSITION 2.1. Let F be a differential field of characteristic O, I a differential
ideal in F{y,..., y,,} and De F{y,..., y,} such that D I. If there exist an .-
elementary extension E of F and elements ,..., , in E such that (,..., ,) is a
zero of I with D(, ,) O, then there exists an ;-elementary extension E of F,
whose constants are algebraic over the constants of F, and , -) O.

Proof Let E F(O1,..., 0,) where each 0 satisfies (i), (ii), (iii), (iv) or (v) of
(1.1). Each of these conditions defines 0i in terms of differential equations involving
elements of F(0,. ., 0-1). These elements can be written as quotients of elements
in F[O1,’’’, 0_]. Let Ci be the product of the denominators of all elements of
F(01,- ", 0_1) appearing in the definition of 0i. Similarly each ’ can be written as
i--Ai(O," ", On)/Bi(O1," ", On). Let G(yl," ", Yn): D(I-Ii=I Bi)(1-Ii=l Ci). We can
write F{01,. ", 0n} as F{y,. ., Yn}/P for some prime differential ideal P. Note that
G P and I P. Using 1) above, we can find r/,..., r/,, constrained over F such
that (r/,..., r/,) is a zero of P and G(r/,..., r/,) 0. One can easily check that
F(r/1,..’, r/,) is an -elementary extension of F which, by fact 2) above, has
constants which are at worst algebraic over the constants of F. Furthermore, letting
’=A(r/l,..., rln)/Bi(rl,’’’, ft,), we have that (’,..., st,,) is a zero of I and
D(,, ., m) O. [’

COROLLARY 2.2. Let F be a differential field of characteristic 0 and
has a solution in some ;-elementary extension of F, then y’= 3" has a solution in some
-elementary extension of F whose constants are algebraic over the constants of F.

Proof. Let " be a solution of y’= 3’ lying in an -elementary extension of F and
let F{r} F{y}/! for some prime differential ideal/. Let D 1 and apply Proposition
2.1.

As mentioned in 1, we took care to define -elementary functions in terms of
differential equations without explicitly mentioning the functions exp and log. This is
to prevent the appearance of constants that are generated transcendentally, e.g., as
values of exp or log. If we insist upon using the functions exp and log, i.e. those
functions satisfying y’=y, y(0)= and y’= l/x, y(1)=0 respectively, we are forced
to deal with this kind of constant as the following example shows.

Example 2.1. Let Q be the rational numbers and let F=Q(x, exp (-x2+ 1)),
{exp (- y2)}, , and 3’ exp (-x2 -[- 1).
Claim. (1) There exist u, v in F such that 3’ u’v where v’= (-u2)’v and so, a

fortiori, there is an -elementary extension E of F, with the same constants as F,
and a y in E such that t’= 3’.
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2(2) 3’ cannot be written as 7 w+., ci(w[/wi).-- E diui exp (-u,) for any elements
w, u, exp (-u,2.) algebraic over F and constants c, d algebraic over 0.

To prove claim (1), let u x, v exp (-x2 + 1). Then u’= 1 and v’ (-x:+ 1)’v
(-x:)’v (-uZ)’v. Let 0 be defined by 0’= u’v. One can show that 0 is transcendental
over F and that F(O) has the same field of constants as F. E F(O) is then an
-elementary extension of F and y 0 satisfies y’=y.

To prove claim (2), assume that we could write

W
exp (-x2 + 1) Wo+ c;--2’+ Z d,u’ exp (- u),

i=1 Wi i=1

with w, ui, exp (-u) algebraic over F and constants ci, d algebraic over Q, and m
2as small as possible. Since u and exp (-u) are algebraic over Q(x, exp (-x2+ 1)) we

have, by [ROS76, Thm. 2], each ui is algebraic over Q(x). We now apply an old
result of Liouville (see [RITT48, p. 49-1 or [ROS75, p. 295] for a modern proof): If
fl,"" ,fk, gl,’’’, gk are algebraic functions, such that no two of the g differ by a
constant, then f exp (g)+. +fk exp (gk) is the derivative of an elementary function
if and only if each f exp (g) is. To apply this result rewrite (2.1) as

exp (-x2+ 1)+Y diu: exp (-u)= w+Y.
Wi

Since exp (--X2" 1) is not elementary, we have either: (i) -u2 and :-u differ by a
constant for some j, or (ii) -x:+ 1 and -u differ by a constant for some i. In case
(i), we see that the constant (which is algebraic over Q) must be 0, otherwise exp (-u)
(exp (-u})) -a would be a transcendental constant lying in an algebraic extension of

2 2F, a contradiction. We must therefore have -u =-u so u +/-ug. This implies that
we could combine terms in (2.1) to yield an expression with smaller rn. In case (ii),

2the constant again must be zero., Therefore -x+l =-ui for some i. Letting I
2
X

2 2
X
2{ u -- 1 } and J { il- U " 1 } we have

’) exp (-x:1 + Y diui + 1) + L d,u’, exp (-u) W’o + E c,w;/w,.
iI iJ

Applying the result of Liouville and the previous argument, we must get J and so

( ) Wi1+ du exp(-x:+l)=w+c.
i W

2Since exp (-x+ 1)dx is not elementary we must have 1 +Y ditli--O. Since -u
x:+l, we have Tr(ui)=0, where Tr is the trace with respect to the extension
Q(x,u,...,u,,) of Q(x). Therefore, 0=Tr(l+ d,u)=l+., d(Tr(u))’=l, a
contradition.

3. Proof of Theorem 1.1. We will need the following three easy lemmas.
LEMMA 3.1. Let k be a field containing the algebraic closure of the rationals and let

X and Y be indeterminants. Let A(Y) and B(Y) be relatively prime elements of k[ Y].
Furthermore, assume A/B is not an nth power in k(Y) for any positive integer n. Then
the polynomial B( Y)X A(Y) is irreducible in k(X)[ Y] for any positive integer m.

Proof. By Gauss’s Lemma B( Y)X A(Y) factors in k(X)[ Y] if and only if it
factors in k[X, Y] if and only if X"- A(Y)/B(Y) factors in k(Y)[X]. Now apply
[LANG65, Thm. 16, p. 221].
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LEMMA 3.2. Let k be afield, X and Yindeterminants, and A(Y) and B(Y) relatively
prime elements ofk[ Y]. Ifa and b are elements ofk with a O, then A(Y) aX + b)B(Y)
is irreducible in k(X)[ Y].

Proof. This again follows from two applications of Gauss’s Lemma and the fact
that aX + b-A(Y)/B(Y) is irreducible in k(Y)[X]. [3

LEMMA 3.3. Let k be a differential field with algebraically closed field of constants
C. For any S(Y) in C(Y), any u, v in k such that v’=(S(u))’/S(u) and for any a,
be C, there exist Wo," ", w, in k, Cl," ", c, in C such that u’(av/b)= W’o+ ciwiwi.

Proof. It is enough to show that u’(av / b) has an antiderivative in some elementary
extension of k and then apply Liouville’s Theorem. If we write S(Y) =/3 I] (Y-ci) n’

where the ai are in C and ni are integers, then we can write v’= n(u- ai)’/(u- ce).
Thus v rlil for v in some elementary extension of K such that v’ (u oi)t/(//-- Oi),
One can then check that u’(avi+b)=(a(u-ai)(vi-1)+bu)’. 1-1

Proof of Theorem 1.1. First of all, we may assume that for all /3 in B, S0(Y) is
not an mth power for any positive integer m. If some So(Y)= (So( y))m then in the
definition of and in condition (v) of (1.1) we could replace S0(Y) by S0(Y) and
H(Y) by H(Y) H(mY), so that H(log So(Y)) H(log So(Y)). In this way we
get a new set , prove our theorem for g-elementary extensions and then switch back.

Furthermore, assuming the hypothesis of the theorem, Corollary 2.2 states that
we can assume that y’=y has a solution in an g-elementary extension of F, with
no new constants.

We first assume F is algebraically closed. In this case, we proceed by induction
on the transcendence degree of E over F. When the transcendence degree is zero, the
result is trivial. When it is positive we apply induction and the problem is reduced to
showing:

Let E be an algebraic extension of F(O) where 0 is transcendental over F and
satisfies conditions (ii), (iii), (iv) or (v) of (1.1). Let 2’ F and assume that E has no
new constants and that there exist w, u, uo, v, vo in E and constants a, bi, co
such that

(3.1)
w’,

3/= w)WZ ai--/E Z bi,uG(vi)+ Z ciu’iH(vi),
wi

where

(s(,))’v (R,,(ui))’vi, and v’i S(ui)

Then there exist ff, a, tTi, 3i, 3 in F and constants ai, b, in F such that

where

and

We shall deal with each of the cases (ii)-(v) separately. The main idea is to take
the trace of both sides of (3.1) to force everything to belong to F(O). We then will
equate terms in the partial fraction decomposition with respect to 0 and show that the
term not depending on 0 on the right-hand side can be put in the prescribed form.
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Case (ii). 0’= u’O for some u in F.
For each a,/3, we have v’i=(R(ui))’vi, and (S(u,))’= v’iS(u,), then by

[ROS76, Theorem 2] we have that

(3.)

for some rational numbers ri ri, and elements f, f, of F. Fuhermore we have

R(ui) riu + gi,,
(3.3)

i riu + gi,

with gia and go in F. Note that we can arrange that r and ro are actually integers.
To see this, let r, si/n and ro so/n, where si,, s, and n are integers. Let ff 0 /".
We then have 0’= 1/n u’O and F E E(0). If we replace E by E(0) and 0 by 0,
we still have fields of the appropriate form and fuhermore, v =f0% and So(uo)=
fO*,,, where s and so are integers. We shall use the old notation but from now on
assume that r and ro are integers.

We want to take the trace of both sides of (3.1) over F(O). Note that from (3.2)
and (3.3), the vi and So(uo) are in F(O) and the R(ui) and vo are in F (which
implies that u, is in F). The only elements which may give us trouble when we take
the trace are the uo which, a priori, are only algebraic over F(O).

To calculate the trace of the ui, write

S, (Y) A(Y)

n(Y)

where Ao and Bo are relatively prime polynomials. Then u satisfies

A,( Y) -,O,B,( Y) 0

which, by Lemma 3.1, is irreducible over F(O). Therefore the trace of uo can be
calculated from the coefficients of this polynomial. The coefficients are all of the form
6(f,O,,) + e where and e are constants. Dividing by the leading coefficient, we get

Tr

where m is an integer and , e, , are constants. We then have

(Tr ui,)’ m
((0,,) + )

Note that the coefficient of 0 in the paial fraction decomposition of this expression
is 0, assuming that ri, O.

We are now ready to take traces in equation (3.1). Doing this we get

(Nwi)’
(3.4) Mr (Tr Wo)’+E

Nw
where M is some integer and, abusing notation, the a, b, c, are possibly different
constants. Let us collect the coefficient of 0 on the right-hand side of this equation.
If we write Tr Wo (a0/(0 )) + P(O), the standard calculations (as in [RISC69,
p. 169]) show that the coefficient of 0 in (Tr Wo)’ is

(3.)
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where fro is the coefficient of 0 in P(0). Considering the next expression in (3.4), we
write

ai Nwi =i ai\li+ni(O--)]
where Nwi
here is

(3.6) Z a,-+ ainiju’.

Next we consider the expression

Z Z b,au’,aOa(faOr’) + Z Z b,aulaOa(fa).
ria 0 ria 0

The coefficient of 0 in the expression corresponding to the sum over those i,

1II(0-/xj)"q for some li, /x; in F and integers n. The coefficient of 0

a with
ria -: 0 is Y Y bdao u,, where dao is the coefficient of yO in Ga (Y), which is a constant.
The expression corresponding to the sum over i, c with ria 0 has no occurrence of
O, so the coefficient of 0 in Y biau’Ga(va) is of the form

(3.7) v’+EE biuaGa(v,a)

where v, uia, v,, are in F and v’a (Ra (Ua))’Via. Finally, we consider the expression

Y Y ci3 Tr ui H3 vq3
(3.8)

Y Y @3 (Tr ui )’H3 Vi + Z E Ci (Tr ui )’H (vi)
0 ri 0

where r9 is defined in (3.2). Note that by (3.3) H(v) is in F and that if r =0 then
u is in F so that Tr u is in E Therefore the sum corresponding to r 0 has no
occurrence of 0. If r 0, we showed that the coecient of 0 in (Tr u)’ is zero, so
the coecient of 0 in the term corresponding to r 0 is 0. Therefore the coecient
of 0 in c, (Tr ui)’H (vi) is

E E ci (Tr ui)’H (vi)
ri 0

where v=(S(ui))’/S(ui) and ui, v F. Combining (3.5), (3.6), (3.7) and (3.8),
we see that the coefficient of 0 on the right-hand side of (3.4) is of the prescribed
form and, since, for i# 0, 0 does not occur on the left hand side, we have that My
equals this prescribed form.

Case (iii). 0’= u’/u for some u F. Again [ROS76, Thm. 2] implies that

(3.9) R Uia diaO + gia, Vi dO + gig,

for some constants di,, do and elements gi, g in F and that the vi and the So(uo)
are in E So in paaicular, we have that the vi, v, and the ui are in F(0). We only
know that the u are algebraic over F(0) and so must calculate their trace.

Let
A(r)

n(r)=
n(r)

where A and B are relatively prime polynomials with constant coefficients. Each ui
satisfies A(u) (dO + g)B(ui) 0. By Lemma 3.2, the polynomial A(Y)
(dO+g)B(Y) is irreducible over F(O) so the trace can be read off from its
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coefficients. As before, we see that

( (dio,O+gio,)+ _v)Tr uio, m
Ix(didO+

where , e, Ix, v are constants. Therefore

element of F
(Tr uio, )’

(Ix (d,o,O + g,o, + v)2"

Note that if/zdi 0, then the coefficient of 0 in this expression is 0. If Ix =0 and
di, 0, then

(Tr u,)’ =--m 5 d--+ g’, mR, (u,

Now let us take the trace of both sides of (3.1)"

(Nwi)’+Z E bi,(Tr Uio,)’Go,(vio,)+., ., citu’i,oHt3(vi,)M/= (Tr Wo)’+ ., ai
Nwi

and let us consider each of the terms on the right separately.
Recalling from (3.9), that each vi di30+ gi3 we can write the last sum as

(3.0) E E c,uH(vi)= Z c,uH(v,)+ c,uH(v)
di 0 di 0

The sum corresponding to d 0 has u and v in F and is of the desired form. To
deal with the sum corresponding to d 0, recall that we have assumed that
deg (numerator H) deg (denominator H) + 1 so the paial fraction decomposition
of H is

y_ a)j
+ P( Y)

where Pe is a polynomial of degree 1. We can therefore write

E E c,uH(v,)= L c,u’,(H(v,)-P(v,))+ E c,uP(v,).
di 0

The first term is a proper rational function of 0 (i.e. the degree of the numerator is
less than the degree of the denominator). By Lemma 3.3, the second term is of the
form v’+ dv/v. Therefore we can write (3.10) as

an expression whose 0 term is cuH(v),
di 0

(3.11) with no terms containing 0 for > 0

+ an expression of the form v+ d
v

where ui and v are in F, v are in F(0) and the d and c are constants. We shall
deal with the 0 term of v’+ dv/v later.

We now look at the next term which we write as

E bi(Tr ui)’G(vi)= ma E biuG(vi)+ E bi(Tr ui)’G(vi,).
dia 0 di 0

Note that if d 0, then u and v are in F so Tr u is an integer multiple of u.
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This integer is designated by m. If dis 0 we have shown that the 0 term of (Tr uis)’
is zero or a constant times R(uia)’. Therefore the 0 term of the sum corresponding to
dis 0 is of the form

VaeisR(uis)’Gs(vis) eiaGs(vis)= V’o+ di
vi

dia 0 die, 0 Vis Vi

where eis and di are constants and the vi are in F(O). This last equality follows from
the fact that Gs(via)/Vis is a rational function of vis with constant coefficients.
Therefore, we have

(3.12)

bis(Tr uis)’Gs(vis)

an expression whose 0 term is Y Y bisu’isGs(vis),
die 0

with no terms containing 0 for i> 0

+ an expression of the form v6+ di-’
Vi

where uia and via are in F, vi are in F(0) and the bia and di are constants.
From (3.11) and (3.12) we can conclude that

(3.13)

y= v+Y di’+an expression whose 0 term is a constant multiple of
Vi , bisu’is Gs (via) + , cit3u t3 He (vie) and with no terms

dia =0 di =0

containing 0 for > 0

where Uioz, Uie Via Vie are in F, vi are in F(O) and bis Cis di are constants. We now
want to calculate the 0 term of V’o+Y di v’i/vi. If we write vi i 1]/j (0-/zj) n’j, iS 0,
where i, u are in F, then the 0 term of v’i/vi is ’i/. Letting Vo Y=o kiOi + terms of
degree <0 in 0, we have that the 0 term of v is k’o+klu’/u. If l> 1 or k is not a
constant, we would have that the right-hand side of (3.13) would contain an expression
of the form 0 with i=> 1. Therefore we have that 1, kl is a constant and the 0 term
of v+ div/v is of the form Uo+Y ai u/u with the U F and ai constants. This
and (3.13) shows that has the correct form.

Case (iv) and (v). O’=u’Gs(v) or O’=u’He(v) where v’=(Rs(u))’v or v’=
(Se(v))’/Se(v) with u, ve F.

In this case we can assume that 0 is not elementary over F, otherwise the problem
could be reduced to the above considerations. Since 0’ F, we have that the S(Uie)
and vis are in F and that R ui disO + gis and Vie die 0 + gie with the dia, die constants
and gis, gu in F. We must have dis die 0, otherwise 0 would be elementary over
F. Therefore, we can write (3.1) as

U
(3.14) "y-,, b,,u’iaGs(v,s)-Y cit3u’it3He(v,t3)= U’o+ a,--

U

with all terms on the left in F. Liouville’s Theorem now applies and tells us that the
expression on the right must equal g+Y di g I/gi for some ti F and constants di.
This completes the proof of Theorem 1.1 in the case that F is algebraically closed.

Now we remove the assumption that F is algebraically closed. The above argument
shows that (1.2) holds with ai, bis, cie in C and wi, uis, uie, vs, ve algebraic over F.
Let K be a finite normal extension of F containing wi, uis, uie, vis, vit and let o- be an
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element of the Galois group of K over F. Then

+E Z biao’( uio )tGa ’via - Z Z ci[3o’( ,li[3 )tH[3 ’vii3

where (trvi)’ R o’ui )’crvi and (trvit)’ So rui )’/ St o’ui ), So truit # O.
Summing over all tr in the Galois group of K over F yields, for some M in Z,

(Nwi)’
My (Tr Wo)’ +Z ai

Nwi
+ ’, Z ’. bitr( uia )’G (ovi)

+Z Z Z cit3tr( uit )’Ht3 (trvio).

Since Tr Wo and the norms Nwi, are in F, this yields the final conclusion of the
theorem. [3

II. The error function.
4. Statement and discussion of results. In this section we shall specialize the results

of the previous sections to the case when {exp (_y2)} and =, that is, to
integration in terms of error functions and elementary functions. To be more explicit,
we say that a differential field E is an erf-elernentary extension of F if there exists a
tower of fields F Fo c. c F, E such that Fi Fi-l(0i) where for each i, 1 <_- -<_ n,
one of the following holds:

(i) 0i is algebraic over F-I;
(ii) O’i=ui’Oi for some ui in Fi-1
(iii) 01 u’/u for some u s 0 in Fi_l;

2UiUti(iv) 0i= uivi for some ui, v in F_ with v’ /’/t2" Vi Vi"
Recall that a differential field F is a Liouvillian extension of a differential field k

if there exists a tower k ko ... km--F such that ki k_(:i) where for each
1 <_- <- n, we have either:

(i) : is algebraic over k_, or
(ii) :’ k_, or

(iii) ’/ k,_.
We then have the following result.

THEOREM 4.1. Let F be a Liouvillian extension of its field of constants C. Assume
C is of characteristic zero and algebraically closed and let y be an element of F. If has
an antiderivative in some erf-elementary extension of F, then there exist constants a and
bi in C, elements w in F, and elements u and vi algebraic over F such that

W
(4.1) y= w+Z ai----’+Z biu’ivi

Wi

_. 2where v (-u;)’vi and u2, v and u ivi are in F.
Proof By Theorem 1.1, we know that there exist constants a and bi in C and

elements w in F, u and vi algebraic over F satisfying (4.1). We want to show that
these can be chosen such that u2, v2 and uv are in F. The lemma of [ROSI77, p. 338]
implies that each u 2i is in F and some power of v is in F. Let E be a normal extension
of F containing all the wi, ui and v and let tr be an automorphism of E over F. We
then have trui +u and o’v ,ivi where sri is a root of unity. Therefore,

O.Wi)
T trT (t:rWo)’ +Z ai h-Z

O’Wi
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If we sum over all automorphisms of E over F we get"

W

for some integer m. In the expression Yi bi(Y+G)uv we shall implicitly assume
that we are only summing over those for which + ’ 0. For such an i, we have

u’ ’vi)

so ul vi is left fixed by all automorphisms of E over F and so must lie in F. Furthermore,
’)= 1/4((u,)’)/ I) (u’(u, u,, so (u F. Since v,=(u,v,)2/ )2 2we have viF. [3

The example at the end of 1 shows that the ui and v cannot be guaranteed to
lie in F. Despite this fact we are able to obtain a decision procedure (presented in 7)
when 3’ is built up using only exponential functions and rational operations.

Let F and k be differential fields of characteristic zero. We say that F is a purely
exponential extension of k if F=k(01,.’’, 0,) where 0 is transcendental over
k(01,..., 0_1) and 0= u’O for some u in k(01,..., 0_). The main result of 7 is
the following. Here, we use the term computable field to mean a field in which one
can effectively carry out the field theoretic operations and over which one can effectively
factor polynomials. Any finitely generated extension of Q is computable as is the
algebraic closure of Q.

TI-IZORZM 4.2. Let C be a computable field, C(x) a differentialfield with derivation
defined by x’= and c’= 0 for all c in C, and let F be a purely exponential extension

ofC(x). Given y in F, one can decide in a finite number ofsteps ify has an antiderivative
in an erf-elementary extension of F and if so find a, bi, u, vi, and w satisfying (4.1).

The rest of this paper is devoted to proving this result.

5. Purely exponential extensions. In practice, when we are asked to integrate a
function 3’, we are not given a differential field F containing 3’. In this section we shall
show how to make a good choice for a field of definition containing 3’. This field will
be chosen so that the exponentials appearing in this field satisfy as few relations as
possible and so that the ui and v which could possibly appear in (4.1) are already in
F. To do this we need some facts about purely exponential extensions.

Let F be a purely exponential extention of k. When we refer to such a field, we
shall always consider it as being given by a fixed set of generators 0,. ., 0, over k,
so F k(01,. , 0,). Renumbering the Oi, we may write k Fo c... c F --F where
F F_(O, , 0,,,) for 1, , r and where the 0j’s are algebraically independent
over k and satisfy 0’i ujO for some u in F_ with u not in Fi_2. Note that, one
can always uniquely arrange the 0’s in groups to satisfy the above. We define the
rank off k(O,..., 0,) over k to be the r-tuple (m, ..-, ml) and we designate this
by rankkF.

Let us consider two examples.
Example 5.1. Let k C(x), F k(exp x, exp (exp x), exp (exp (x2) + x)). k

C(x) Fo c F1 Fo(exp (x2)) c F2 F(exp (exp x), exp (exp (x2) + x)). We have
rankk F (2, 1).

Example 5.2. Let k be as above and k(exp x2, exp x, exp (exp x2)). We can
write k =/o/ o(exp x2, exp x) 2 =/l(exp (exp x2))=/. We have rankk/=
(1,2).

Note that F-F; only the generating sets are different. This underlines the
important fact that the rank depends on the particular 01," , 0, we chose to generate
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F over k. Note that if rankk F (m, , ml) then ml +" + mr is the transcendence
degree of F over k.

We can also define the tank of an exponential in F. Let F be a purely exponential
extension of k and let Fo,’’’, Fr be as above Let u, v be elements of F such that
v’= u’v. We define the rank ofv (rankk v) to be the smallest such that v Fi. Note
that if rankk v i, then u Fi_l. Also note that in Example 5.1, rankk exp (x) 2 while
in Example 5.2 rankk exp (x)= 1.

Given two sequences (m,...,m) and (rhs,’",r) we say (m,...,ml)<
(rs, , r) if r < s or if r s and (m. , m) is less than (r, , rl) in the usual
lexicographical ordering. We say that a purely exponential extension F of k is of
minimal rank over k if for any algebraic extension F of F, where F is also a purely
exponential extension of k, we have rankk F=<rankk/. For example C(x, exp (x2),
exp (exp x2), exp (exp x2 + x)) is not of minimal rank over C(x), since it is contained
in (in fact equal to) C(x, exp (x), exp (x), exp (exp x2)) which is of smaller rank. We
will show later that C(x, exp (x2), exp (x), exp (exp x2)) is of minimal rank over C(x).

We will need the following technical lemma in Proposition 5.2.
LEMMA 5.1 Let E F(O,. 0,,,) where 0’= liO with ui in F(01, ", Oi_l).

Assume that E andFhave the samefield ofconstants and that 0, , Or are algebraically
independent over F. If is an element of E such that ’ is in F, then is in F.

Proof Proceeding by induction on m, we an assume that m 1. In this case write
E F(0) where 0’/0 F. Since 0 and " are algebraically dependent over F, we have,
by [ROS76, Thm. 2], that sr is algebraic over F. Since F(0) is a transcendental extension
of F, we must have

PROPOSITION 5.2. Let F be a purely exponential extension ofk C(x), where x’ 1
and c’= 0 for all c in C, and let k Fo Fr F where Fi Fi-l( Oil, , 0,,) with

O uOi for some ui Fi_, ui : Fi_2. Then F is of minimal rank over k if and only if,
for each 2, , r the following holds:

(5.1) nuo F_: for some integers n implies n 0 for all n.
j=l

Proof Assume that F is of minimal rank over k and that for some i, there exist
n,. ., nr,, not all zero, such that Y"=’ nu F_:. Without loss of generality, we can
assume n 0. Let

0= 0/n and v= ’, nJuj.
j=l j=l nl

We then have 0’= v’0. Let

F= F,

F,_I F,_I( O),

..,0,,,

F,+l Fi"

where Fk" Fk/ is the compositum of these two fields. Note that Fr is an algebraic
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extension of F. The rank of Fr is (m,..., mi+l, mi-1, mi-l+ 1,..., ml) which is
smaller than rankk Fr (m, , m, m_l, , ml). This contradicts the fact that Fr F
is of minimal rank over k and so (5.1) must hold.

Now assume that (5.1) holds. We wish to show that F is of minimal rank over k.
Let F be a purely exponential extension, algebraic over F, such that rankkF=
(if/s," ", if/l) (m," , ml) rankk F. Let k Fo c F c. c Fs F where F
F_I(Oi, ,0,) where 0 0’ tTij0i for some e F_l and F_. We will show that
for each i, F is algebraic over F and therefore that N m for each and s N r. Since
tr. degk F tr. degk F, we have i= m =1 m and so m for each i. Therefore
rankk F rankk F.

To prove that F is algebraic over F, we proceed by induction on i. If i=0,
F k F, so we are done. Now assume that is algebraic over for j i. Since F
is algebraic over F, we have that 01," ", 0, are algebraic over F. By the lemma of

--N[ROSI77, p. 338], we have that 0 F for some nonzero integer N. Fuhermore,

0) N’ OF= Fij Fi_
_

-N0
since by induction F_ is algebraic over F_ and F_ is relatively algebraically closed
in E Ifwewrite F=C(x)(0I 01, 0,... Om) where 0=u’00thenbyij

[ROCA79, Thm. 3.1] we have that

Fabab C
lbm
lar

for some rational numbers 0 and constant c. Since tT’tab ijE Fi_l, we have by Lemma 5.1
that t70 ’. 0 0 0 with a > i, we would contradict (5.1)Fab Uab dr_ C Fi_1. If some tab
Therefore riJab 0 if a > and

a=l b=l

This implies that 0 is algebraic over Fi and so F is algebraic over F.
Using Proposition 5.2, we now can show that C(x, exp x2, exp x, exp (exp x2)) is

of minimal rank over C(x). Here Fo =C(x) CF=Fo(expx,expx2) F2=
F1 (exp (exp xZ)). We must check if no exp x2 Fo has a nonzero solution no in the
integers (which it clearly does not). Similarly we can reaffirm that
C(x, exp (x2), exp (exp x2), exp (exp x2+x)) is not of minimal rank. Here Fo=
C(x)F=Fo(expx2)F=F(exp(expx),exp(x+expx)). Here 01=expx,
ul x2, 0 exp (exp x2), u21 exp x2, 022 exp (x + exp x2), u22 x + exp x2. Note
that u2- u22 -x F0"

PROPOSITION 5.3. Let C be a computable field and F a purely exponential extension

ofC(x). We can construct an algebraic extension Foffsuch that F is a purely exponential
extension of C(x) and such that F is of minimal rank over C (x).

Proof We will use the criterion (5.1) of proposition 5.2. Let C(x) Fo F
F with Fi F_I(0," ., 0,,) as before. For each i, we check if there exist no, not all
zero such that Y, nouo F_. If, for some i, such a set of n exists, say with ni 0, let

j=l
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Let

F F forj < i- 1,

F,_, F,_,( O),

#, L-,( ’),

F F Fi forj > i.

We then have that Fr is a purely exponential extension of k, algebraic over F and
of smaller rank than F over k. We claim that if we continue this process, it will end
after at most N2 steps where N tr. degk F. This is because each time we repeat this
process we decrease one of the integers in (m, , ml) by one and increase its neighbor
totherightbyone. Thiscanbedoneatmostrmr+(r-1)m_+. .+m<=rN<=N2. [3

PROr’OSITON 5.4. Let C be an algebraically closed field and F a purely exponential
extension of C(x), where x’= 1 and c’= 0 for all c in C. One can construct a purely
exponential extension F* of C(x), containing F, which has the following property:

If u and v satisfy v’= u’v and u and v are algebraic over F with v2 in F, then
(5.2) u and v are in F*.

Proof Let F C(x, 01 0,) where 01 u’,’" iOi with U in C(x, 0, ", 0i-1) and
let F*= C(x, 0/2, 0/). One can easily show that F* is a purely exponential
extension of C(x) containing F. Since u and v are algebraic over F, we have by
[ROCA79, Thm. 3.1], that v= d I-Ii=l 0i’ where d is in C and the rg are in Q. Since
v= da [I___1 0,2’ is in F and F is a purely transcendental extension of C, we have that
2r is an integer, for each i. Therefore v is in F* and so u is in F*.

6. Squares in purely transcendental extensions. In our decision procedure, we will
be called upon to decide when certain elements of a field are squares. We discuss this
algebraic question in this section. Let K be a field and K(xl,’’’ ,x,) a purely
transcendental extension of K. Let P be an element of K(xl,.’’, x,) with P not in
K and let K be the algebraic closure of K. We wish to show that the set of a in K
such that P + a Q2 for some Q in/ (xl, , x,) is finite (or empty) and computable
if K is a computable field. We first prove the following ancillary lemma.

LEMMA 6.1. Letf and g be elements of K[xl, x,] with no common factors and
assume that either f or g is not in K. Then the set of a in I such that f2 + ag2 h for
some h in K[xl,’’’, x,] is a finite set and can be constructed if K is a computable
field.

Proof Let f and g be of degree <=k, let N be the dimension of the vector space
of all such polynomials.and let pN be the projective space of dimension N over K.
Let S be the subset of K PN consisting of all (a, (cl," , on, d)) such that d:(f+
og2) h2 where h is a polynomial with coefficients cl,’’ ", on. S is a Zariski-closed
subset of/ Pu and if we let p"/ Pn/ be the projection map, then p(S) is the
set mentioned in the lemma. By classical elimination theory ([MUM76, p. 33] or

[VDW50, p. 6]), we know that p(S) is a Zariski closed subset of K and so is either
finite or all of K. Furthermore, we know that if K is constructible, we can find the
defining equations of p(S). We need only check that p(S) K.

Assume that p(S) K and that Of/Oxl 0 (since either f or g is not in K we may
assume one of them, say f, depends on some xi, say x). Let u be any element in
such that g(u)30 and let au be a nonzero element in K such that f(u)2+ oug(U)2--O.
Since we are assuming that p(S) =/, there is some polynomial h, such thatf+ ceug2
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h2,. Note that hu(u)=0. Differentiating h2, we get

Ohm_2h
Ohu 2foO_fx 2aug

g__g
Ox ’ +

OXl OXI

We therefore have the following identities

f(u)" f(u)+ aug(U)" g(u)=0,

f(u)" Of(u)+ aug(U)" O.___g
0X1 0X1

(/,/) --0.

From this we can conclude that

f(u) O___g of
ox, (u)-g(u)(u)ox, =0.

Since this holds for all u in the open set where g(u) O, we have that

Of=o"gox
Since f and g have no common factors, we have that f divides Of/Ox, a contradiction.
Therefore p(S) K and so must be finite. [-1

PROPOSrrION 6.2. Let Pc K(x,. ., xn) with PC_K. Then there exist only a finite
number of values a in 2 such that P + a Q2 for some Q e K(x, , xn). Furthermore,
if K is computable, we can find these a.

Proof. As before, we can show that the set of such a is a Zariski closed subset
of K, whose defining equations can be calculated if K is c.omputable. To show that
this set is finite, it is enough to show that it is not all of K. Assuming that it is, we
would have 0 being an element of this set and so P would be a square. Write P =f-/g2
where f and g have no common factors. For each a, we could find relatively prime
f, g, such that

S2 S2 S2g2

g-+=g2 or S+g- 2

From this we see that g is a constant multiple of g so f2 + ag2 cf2 for some constant
c. Now apply the preceding lemma to get a contradiction.

7. The decision procedure. In this section we shall prove Theorem 4.2. Let C be
a computable field, F a purely exponential extension of C(x) and y F. Extend F to
F* as in Proposition 5.4 and use Proposition 5.3 to extend to a field E which is of
minimal rank over C(x). We may assume that C is algebraically closed since the
algebraic closure of a computable field is still computable. Using Theorem 4.1 and
Proposition 5.4, we see that we want to decide if there exist c and d in C and w, u,
vi in E such that

(7.1) y= W’o+Y c,--+ Y diu’ivi where v’i=(-u2i)’vi.
Wi i

We can assume that if -’iJ v has an elementary antiderivative for some subset
J c I and constants d, then di 0 for all in J. This just means that all of the elementary
part of the antiderivative of y is contained in W’o+., c(w’/w). The idea behind the
procedure is to first determine the possible expressions of the form u’v, with u, v e E
and vi (_ 2,’= Ui) V, which could appear in (7.1). This is done as folJows.
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Let C(x)= Eo c c Er- E where Ei Ei_I(OI, Om.), and u’ij u’o0i with
uo e E_ and u
have rank s (i.e. v e E but v E,_). The Structure Theorem of [ROCA79] permits us
to write

(7.2) v d
NjN
lis

with n0 Z, d C. For notational convenience, our n are the negatives of those in
[ROCA79]. Note that ranges from 1 to s but no fuher since E is of minimal rank
and that n0 Z and not just in Q since E is a purely transcendental extension of C.
We also have

(7.3) u= 2 nou+c
lNiNs

where c e C. We need one more piece of notation. Given any 00, we can write in its
paial fraction decomposition with respect to 0 over the field C(x)
(0,. ., 00,. ., 0). (Where over an element means this element is omitted). Let

P.b( O)=A_O +...+Ao+...+AOo+
,b b 0)

where Qb is an irreducible polynomial in 00. not equal to 0. We define o0()
max (m, l). We claim that given v of rank s appearing in (7.1), we have ln N o()
for 1 Nj N m. We are saying that if v is of rank s, those 00’s which are also of rank s

appear to a power of absolute value less than o(v) in (7.2). This claim will be proven
below, so let us assume it for a moment. We still must bound the other exponents
appearing in (7.2). It would be natural to conjecture that n01 o(), but this is not
true, as the following example illustrates.

Example 7.1. Let C(x, exp x, exp (-exp (2x) + x)). This is of minimal rank
over C(x). Letting exp (-exp (2x) + x), 0 exp x and 0 exp (-exp (2x) + x) we
have = u’v where u =exp x= 0, v=exp (-exp (2x)) 00 and v’=(-u)’v. Note
that both v and 0 are of rank 2 and that the exponent of 02 in v is bounded by (in
fact equal to) o(). Here 0 does not appear in % yet it does appear in v, ui.e. n -1
while o() 0.

We will bound the n0 for < s using the results of 6. Rewrite (7.3) as

U slsl + + SmsUSms + ijij + C
lNjN
lNi<s

Let
P ns t’ls -t- -t- lSmslsm and a= nuo+c.

lNj=
li<s

Note that since E is of minimal rank over C(x), we have that P Es_l, P
_
Es-2, and

a Es-2. This is precisely where the notion of minimal rank is crucial. Ifwe let K E_2,
we can apply Proposition 6.2 and find, for each choice of (nl,"" ", n,s) satisfying
In,j[-<_ os(y), all a E_ such that P+ a Q for some Q in E_. Each such a can
be written in at most one way as noui + c since if nuj / c u+ we would
have (no- o)uo C, so the 00 would be algebraically dependent over C unless
n0 ti and c g. The a’s which can be written as such a sum will give us the exponents
for the 00’s of lower rank. Therefore, using our claim and Proposition 6.2, we can
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determine for each s, 1 <-s-<_ r, all u and v in E which may appear in (7.1) such that
v’= (-u2)’v and v is of .rank s. We now wish to decide if there exist ai, bi in C and
w in E such that

"/- 2 auv Wo + b--.

A procedure to decide this is presented in [MACK76]. Since this paper has never been
published we have included in the Appendix a proof of the relevant theorem.

All that remains to be done is to prove that for v of rank s appearing in (7.1),
In,jl-< Oj(Y). The proof of this claim follows closely Risch’s proof of [RISC69, Main
Theorem] and will yield a proof of Theorem 4.2 independent of [MACK76].

We will proceed by induction on the number of generators of E over C(x). If
we write E Er Er_l(Orl,’’’ Ormr) as before,^let 0-exp (u) denote one of the Ori
and write E K (0), where K Er_(0rt, ,,0r,, -, 0,,r). Expanding 3/ in partial
fractions with respect to 0, and assuming that y satisfies (7.1) we have

y AgO g
+" + AiO + Ao+ A_ 0- +. + A_,,,O-"

(7.4) B,O’ +" + B10-t- Bo + B_ 0- +. + B_!O-!

diu’ fv + d,u v, + c log D, 27

Blk’l B f Blo
"k
p k -+- +-k-

P P

Bg B 1" Bo

where the A’s, B’s and D’s are in K, the pi’s are irreducible polynomials in K[0],
Bo/pi=Y co(qo/q) where pa=H q in/[0], v’i-(-u2)’v and ow is the set of such
that v k while ff is the set of such that v K. Note that [ROS76, Thm. 2] implies
that in either case u in K. Some justification is required for our implicit assumption
that p- appears to a power of at most ki- in the second expression. This follows
from the fact that for , vi =fO", for some f/ K (again by [ROS 76, Theorem 2])
and so when differentiating the second expression we get no cancellation in this

expression. Note that for ow we can write v cO ’ 1-I 0 !/., where n - 0. We shall first

prove our claim for v with i 5e, that is, that nl <--max (k, m). Assume not and let

n--maxib (n). We then have

B.O" )’ + Z d,u’i v, 0
y,

where ’ is the set of such that n n. This implies that Y,, du’v has an elementary
antiderivative, contrary to our assumptions. This proves our claim for the v with ow.
Furthermore, we see by comparing powers of 0 in our two expressions that k and
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We now proceed to determine those vi with 9 which may appear in (7.4). We
do this using the results of 6 as above. Let

E d,ulv,= E CO
i9 j#O

-rnjk

where C is of the form diCo with Cij known elements of K and di constants to be
determined. Equating powers of 0 in (7.4) we get

A B’ + ku’B, + diCi,,

A1 B + u’B q-- diCil,

A-1 B’_I u’B_I + ., dC._l.
A B[ mu’B_ + difi,-m.

For each j we must determine if there exist constants d and elements B such that

Bj +ju’B A E d,Co.
This can be done using [RISC69, Main Theorem, pa (b)]. Note that a solution is
uniquely determined if it exists. In this way determine the Bj’s and d’s (for i ).
Proceeding as in [RISC69, p. 183], we can determine the B.k-," ", B. until we get
down to an equation of the form

A,, B,o++ao= B+ Z a,u’,v,+(Z og D)’

Again we proceed as in [RISC69] and reduce the problem to deciding if

Ao u’ 2 mc Bo+ c log D + du’v

This is equivalent to deciding if

Ao= Bo+glogD+ du’

for some Bo, D, u, v in K. Note that oo(Ao N o() so by the induction hypothesis
we have

o(v) o(o) o()
for all v appearing in (7.1). S

Aei. In this section, we present a proof of the result of Carola Mack alluded
to in 7. We must first recall some definitions from [ROCA79]. Let kCK be differential
fields. For K with t’ k, we say that is simple logarithmic over k if there exist
u, , u in k(m 1) such that for some constant c, +c k(log u, , log u).
We say it is nonsimple over k if it is not simple logarithmic over k. K is a regular
log-explicit extension of k if K and k have the same subfield of constants and there
exists a tower k KoC" CK K such that K K_(0) where 0 is transcendental
over K_ and either

(i) 0 e Ki-1 and 0 is nonsimple over K_, or
(ii) 0’= u’/u for some.u e K_, or
(iii) 0 u’0 for some u e K_.
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We shall use the following fact several times in the proof of Theorem A1 below.
Given a system L1 of linear equations over a field K in n+m variables
(xl,’’’,x,,yl,’’’,y,,), there exists a system L2 of linear equations over K in n
variables (Xl, , x,) such that (al, , a,) K" satisfies L2 if and only if there exists
(b,..., b,,) K" such that (a,..., an, b,.’., b,,) satisfies L. This follows from
the fact that .the projection to K of an affine subspace in K n+" is still an affine
subspace. We will refer to L2 as the projection of L1 onto the first n variables.

THEOREM A1. Let K be a finitely generated extension of Q and let F-
K(z, 01,’", 0,) be a regular log-explicit extension of K (z), where z’- and c’-0 for
all c in K.

(a) Let fo, fl,""" ,f be elements of F. Then one can determine in a finite number
of steps a system L of linear equations in N variables with coefficients in K so that
fo + df +. + dsfs has an integral in an elementary extension of K for d, ., ds in
K (the algebraic closure of K) if and only if (dl,’’’, dN) satisfies L. For each
(dl,"" ", dN) in t satisfying L, we can find Vo F, vi gF for i- 1,..., m and
cl," ", C,n in K such that

fo + dlf +" + dNft V’o + c,v’/’.
i=l

(b) Let f, gi, 1, , rn be elements of F. Then one can find, in a finite number
of steps h, , hr in F and a set L of linear equations in rn + r variables with coefficients
in K, such that y’ +fy =1 cg holds for y F and c in K if and only if y Y= yih
where y are elements of K and cl, , c,,,, Yl, ", Yr satisfy L.

Proof. We shall mimic the proof of [RISC69, Main Theorem] (and assume that
the reader is familiar with that paper) and so proceed by induction on n. If n --0, then
F--K(z) so we may take L {0, 0}, since any element in K(z) has an elementary
integral. The proof of part (b) is the same as in [RISC69]. To proceed with the induction
step, let D= K(z, 0,..., 0,,_) and F= D(O) where 0= 0,.

(a) Case 1. O’ D. Let f =f+ dlf +" + dufu. We can write

AkO +" + Ao
A! k, All+ +...+
Pl" Pl

A,k.,. A+ p.,. +’"+
Ps

0 k+lBk+! +’’’+Bo +ej logDj

Bi kl-!

Bs k-I
k.-I

B1 [" B o+... +-+
P P

B i Bo+... + +
P P

Here the A’s are linear polynomials in d,. ., dN with coefficients in D and the B’s
are to be determined. Equating powers of 0, we have

0= B,+

so Bk + K, and

Ak =(k+ l)Bk+O’+ B’.
We can write Ak=ak,o+dak,+’’’+dNak,N with ak, in D for i=0,-.., N, so this
last equation can be written as

0’(A.1) B’ ak,o+ da,, +...+ dNak, N -(k + 1)Bk+

Using the induction hypothesis for (b), we conclude that there exist h,..-, h,.a in
D and L, a system of linear equations in N+ r +1 variables with coefficients in K
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such that (A. 1) has a solution Bk in D if and only if Bk rk Yikhik where Yik E K andi=1

(dl, dN, Bk+I, Yk, Yrkk) satisfies Lk. Notice that for each choice of dl," , dN
in K there is at most one choice of Bk+ in K for which there exist Ylk, Yrkk in K
such that (dl, dN, Bk+I, Ylk,’’" Yrkk) satisfies Lk. NOW let Bk _.rgi=l Yikhik where
the hik are indeterminants. We then have

A_I =kBO’+ B’_ k yh 0’+ B_.

We can write A_ a_,o+ da_, +. + da_,, so

(A.2) B_I ak-l,0 + dlak-l,1 +" "+ dNak-l,N + yik(khikO’).
i=1

Using the induction hypothesis for (b) allows us to conclude that there exist

h,k-1, hrk_,k--1 in D and Lk-, a system of linear equations in N + rk + rk- variables
with coecients in K such that (A.2) has a solution Bk_ in D if and only if

Bk_ rk-1
i= Yi,k-hi,k-a where Yi,k-1 K and (dl, ds, Y,k, Yr,,k,

Yl,k-,’’’, yr_,k-1) satisfies L_. Again, for each choice of d,..., d, there is at

most one choice of (Yk, ", Yrk) for which there exists (Y,k-, ", Yr_,k-1) satisying

Lk-. We continue in this way, getting linear systems Lk-2,’’’, L2 whose solutions

guarantee the existence of Bk-2, , B2. Finally, we have Ao B 0’ + B+ e(log D)’.
If we set Ao aoo + d al,o +" "+ das,o and B1 r= Y, h, we get

(A.3) aoo+ daa,o+"" "+ aa,o- E hi,(y,,O’)= n+E e 0og O)’.
i=1

Using the induction hypothesis for pa (a), we see that there exists a linear system
L* in N+r variables such that an equation of this form holds for some

(d, d, h, hrl) satisfying L*.
Now consider

(A.4) 2 ....
We can find unique R, S, linear in d, , d in D[ O, d, , dN], with degoR < degop
and dego S < degop such that

Rp + Sp ,
Let -(k-1)B,k_ S, substitute into (A.4), and obtain a new relation

Continuing in this manner, we determine B _,..., B,,, all linear in d,..., d.
We are left with an equation of the form

11

P P A

Here B o/P 21 cuqu/qj where p jL q is a factorization of p into monic
irreducible factors over D. We must determine if c exist in such that the equation
holds. Let

(**---

p =1 q
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where Qij is linear in dl,’", dN and let L** be the system of linear equations in
dl," dN, 1,’’’, sl gotten by equating terms in the partial fraction decomposition
of

Q._L= _, cijq.
Similarly we get L**, , L** for P2, ",Ps. We now get L by projecting Lk ]

L2 L* L**""" Ls** onto the first N variables (see the remark preceding the
statement of the Theorem 5.

Case 2. 0 exp sr. Let

AkOk d- A- AoO
+ A_,O-" +" + A_I 0-1 + A

Alk, +..
f= +pk, Pl

Askew.. As
+P) Ps

BkOg d-" + B 0

+ B_,O +" "+ B_IO- + Bo+_, ej log Dj

+Blk-1+. +BI+ f Blo
pk,- Pl J. Pl

B_, + +Bs [ Bso++ P- P J Po

where the A’s are linear polynomials in dl," ", dn. We have

Ai B’+i i’Bk
for all i, -m -<_ -<_ k, 0. Setting A-- ao/ aId +. .+ andn we get for each i, -m -<_

i<=k,iO,

(A.5) B’i / i’Bi all + ail dl +" + aisds.

Using the induction hypothesis for (b), there exists Tj in D and linear systems Li such
that B- y,jTo is a solution of (A.5) for yj in U if and only if the dl,’’ ", dn and

y,j satisfy L,.
Determine Blk,_, ", B; B2k,_," B2,; "; Bsk-," Bsi as before until

we obtain

t(**’)’, +Ao
B,o

)’.+B+ (2 e log D
=: p i= Pi

The A** and Ao are linear polynomials in all, , d. Let p 1-[ q0 be the factoriz-
ation of p into monic irreducible factors over KD and let degree q0 n. We then
have for each

A * + n [ ’Y’, c,.i p Bi.._.o ,,
Pi Pi q.

For each i, we get a linear system L* in the cj and d,. ., ds by equating terms in
the partial fraction decomposition. We finally must check to see that

Ao ’ ’ nco (Bo+ ,, e. log D)’.

Using the induction hypothesis for part (a), this gives a linear system L** in d, , dn
and the c. We now get L by projecting L_,,, Lk L* L* L** onto the
first N variables d,..., dn.

(b) Case 1. 0’ D. For y=A/pT,.., p we proceed as in [RISC69, p. 184] to
determine bounds for the a. Using these bounds we can set y Y/p, p, substitute
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in y’ +fy Y ciqi, clear denominators and get

(A.6) RY’ + SY Z ciTi.

We set

Y yO +y_0t-1 --" "4- YO,

R rO +. + to,

S svOV+... +So,

ciTi tO +" + to,

with yj, r, sj in D and t linear in the c with coefficients in D. Substituting these
expressions in (A.6) and comparing powers of 0, we get: (1) when y’ 0, either (a)
a+/3=<+l or (b) a+y-<+l or (c) a+/3=a+3,>8+l; (2) when y’ =0, either
(a) a +/3 1 <_- or (b) a + 3’ <-- or (c) a +/3 1 a + 3, > & Case (la), (lb), (2a), and
(2b) yield bounds for a.

Case (1 c) occurs when ry’ + svy 0 and ry’,,_l + s,y_l + r-ly’ +
(.aO’r + sv_)y, 0. Letting y_ vy with v D we have

r3y,v’ + ry + s.y v + r_,y’ + aO’r + s/_l)y, O,

v’- r_s,/ r2 + s_/r + 0’ O,

(f r-’sv-rzsv-’)-aO=v.
We now deal with the cases when 0 is nonsimple over D and when 0 log r/for some
r/ in D (this is the only place where the hypothesis of a log-explicit extension comes
into play). If 0 is nonsimple over D, then using the induction hypothesis we find a
linear system L in one indeterminate a such that a satisfies L if and only if

(f r-s’-rs’-l) -aO
is elementary over D. Furthermore, there is at most one a in K satisfying L, since
the existence of two such values would imply 0 is simple. Therefore we can bound a

in this case. if 0 log 7 for some r/ in D, we use the original Risch Algorithm to
determine a such that

r_ sr rs_
r v + a log r/

for some v in D. If such an a exists it must be unique, otherwise log r/ would be in
D. This allows us to again bound a.

To bound a in Case (2c), note that this case occurs when r(y’_ + aO’y)+ sy
0, or

+aO-
Y,

Treating the nonsimple and logarithmic cases separately as in Case (lc) above yields
the bound for a. The rest of the proof is the same as [RISC69, pp. 185-186]. l-]

We can deduce the following corollary from Theorem A.1. By a regular Liouvillian
extension we mean a Liouvillian extension (see the definition in 4) where each 0
used in building up the tower is transcendental over the preceding field.
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COROLLARY A.2. Let K be a finitely generated extension of Q and let F=
U(z, 01, ", On) be a regular Liouvillian extension of K(z), where z’= 1 and c’=0 for
all c in U. Let fo, fl, "’, fry be elements of F. Then one can determine in a finite number
of steps a system of linear equations in N variables with coefficients in K so that
fo+ dlf+" "+ dvfv has an elementary integral for d,..., ds in K if and only if
d, dv) satisfies L. For each dl, dN) in v satisfying L, we can find Vo F,
vi KFfor i- 1,. ., m and c, ., cm in K such that

fo + dlfl +’’" + dsfs V’o +
i=

Proof. This follows from Theorem A.1 and the fact, shown in [ROCA79], that
one can effectively embed a regular Liouvillian extension of K(z) into a regular
log-explicit extension of K(z).

Since any purely exponential extension of K (z) is a regular log-explicit extension
of K(z), Theorem A.1 gives the result needed in 7. A result similar to Theorem A.1,
for regular elementary extensions of K(z) was stated and proven in [MACK76].
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CONCURRENT PROBABILISTIC PROGRAMS, OR:
HOW TO SCHEDULE IF YOU MUST*

SERGIU HARTS" AND MICHA SHARIRf

Abstract. Consider a finite set of processes, such that each one may use randomizations in its course
of execution; these processes are running concurrently, under a fair interleaving schedule. We analyze the
worst-case probability of termination, i.e., program convergence to a specified set of goal states. Several
methods for computing this probability are presented, and characterizations of the special case where it is
identically are derived. Specializations of these characterizations to the case of deterministic and nondeter-
ministic programs, and to the case of programs with finite state spaces, are also discussed.

Key words, concurrent probabilistic program, scheduler, fairness, program termination, Markov chains

1. Introduction. This paper continues the study, begun in [HSP], of termination
of concurrent probabilistic programs. The model that we assume is that of a finite set
K of concurrent processes, each of which is allowed to use randomization, i.e., draw
randomly according to probability distributions. These processes execute asyn-
chronously, and we can thus consider each process k K as a discrete Markov chain
(with stationary transition probability matrix pk) on the set I of common execution
states. The overall execution behavior of these processes is described in terms of the
interleaving pattern in which they are scheduled by some imaginary scheduler r. Each
process k scheduled at a state can reach more than one subsequent state, so that to
specify tr we need to consider all these transitions simultaneously. We may therefore
represent tr as a tree (referred to as the execution-tree or the transition-tree induced
by tr) each of whose nodes is labeled by a pair (i, k), where ! is the state reached
at that node, and where k K is the process to be scheduled there next. A node (i, k)
will be a son of (i, k) in the tree if there exists a positive transition probability of
reaching il from under a single execution step of process k, and if process kl will
be next scheduled at i, provided that this transition has indeed taken place.

Given such a r, it induces in a standard manner a probability measure/z on the
space of all infinite sequences of states.

We consider here general schedules r, with the sole restriction that they be fair,
meaning that no process stops being scheduled; i.e., that the/-measure of the set of
all tree paths on which each process k K is scheduled infinitely often is 1.

This model is discussed and justified more fully in [HSP]. We note that it coincides
with the model assumed by Lehmann and Rabin in [LR], and also with that used by
Dubins and Savage [DS] in their study of optimal gambling strategies (with the essential
exception that they do not require fairness). It does differ, though, from various other
models used in the literature (cf. [Ral], IRa2], [RS1], [RS2]). The crucial distinction
lies in the degree to which the imaginary scheduler can base its scheduling decisions
on the outcome of random draws made by the processes, or, more generally, on their
internal states. These more restrictive scheduling models usually correspond to situ-
ations in which the execution time of a single step of a process is independent of its
current state and of the outcome of the random draws it has made. Our model is more
general, and allows for such dependence, thereby being a more realistic model for

* Received by the editors September 15, 1982, and in revised form August 1, 1984.
t School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
t The work of this author was supported in part by the Bat-Sheva Fund at Tel Aviv University, and by
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general concurrent or distributed probabilistic execution. Moreover, properties estab-
lished for concurrent probabilistic programs under our model will continue to hold
under the more restrictive models mentioned above, but not necessarily vice-versa (for
example, Rabin’s synchronization algorithm described in [Ral] is shown in [HSP] to
fail in our model).

In the preceding paper [HSP], we have analyzed termination of concurrent prob-
abilistic programs having a finite state space. We have obtained there necessary and
sufficient conditions for such a program to reach (with probability 1) a given set X of
goal states from some initial state, under any fair schedule. These conditions can be
checked mechanically, and are independent of the particular values of nonzero transi-
tion probabilities of the processes involved.

In this paper we generalize and extend these results to programs with infinite state
spaces. As in the case of a single Markov chain, the analysis of program termination
becomes much more complicated in the general case, and becomes dependent upon
the actual values of the nonzero transition probabilities involved. The basic problem
that we treat in this paper is the computation of the function on the set of states I,
where, for each /, (i) is the minimum probability of program termination starting
at state i, under any fair schedule. We establish various properties and characterizations
of , and derive from them several techniques for the calculation of this function. This
theory enables us to gain a better understanding of the structure of the (worst-case)
convergence of the program towards termination. For example, one can interpret this
convergence process as a game between the program and the scheduler, in which each
move of the program requires the scheduler to schedule one of the processes and the
scheduler responds by scheduling this process eventually, but only after scheduling
some other processes prior to it, in a way which would hurt as much as possible the
program’s probability to terminate. We show that the optimal payoff for the program
in this game is the function , provided that the game is long enough, where the length
of such a game is measured by some (infinite) ordinal.

The various characterizations of are next used to obtain necessary and sufficient
conditions for the special case rp 1 (i.e. for worst-case almost-sure termination from
any initial state) to hold. Some of these conditions generalize similar conditions given
in the preceding paper [HSP] for programs with finite state spaces. These characteriz-
ations of program termination are next specialized to the case in which the processes
are deterministic or nondeterministic. Some of these characterizations are shown to
reduce to the conditions given by Lehmann, Pnueli and Stavi [LSP] for the termination
of nondeterministic programs, while others are new. Finally, the special case of
probabilistic programs with finite state spaces is reconsidered from the viewpoint of
the general theory developed in this paper, enabling us to obtain the decomposition
of the state space described in [HSP] in a different manner. The results of this paper
are exemplified on several running example programs. The techniques developed in
this paper can be immediately interpreted as (sound and complete) proof methods for
almost sure program termination.

This paper is organized as follows: Section 2 presents the notations and terminology
used in the paper, and begins the analysis of q by establishing some more elementary
properties of this function. Section 3 develops the main technical tools for the analysis

A nondeterministic program is one where each execution step of any of its processes may lead from
a state i I to several succeeding states, but where there is no probability distribution associated with these
states; instead, each of these succeeding states must be considered as being potentially the sole successor
of i. Such a program is said to terminate if every execution sequence terminates.
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and characterizations of , and obtains as the limit of a certain transfinite sequence
of functions. Section 4 gives further characterizations of . Section 5 treats the special
case -= 1 (i.e. of almost-sure worst-case termination), and derives various characteriz-
ations of this property. Section 6 specializes the preceding results to the case of
deterministic and nondeterministic programs. The new characterization of termination
of such programs is also given a direct proof. Section 7 treats the special case of
probabilistic programs with finite state spaces. Some concluding remarks are presented
in8.

2. Preliminaries. In this section we present our model of probabilistic concurrent
programs in more precise terms, introduce some notations, and establish several
preliminary properties of the worst-case termination probability of the program.

A concurrent probabilistic program consists of a finite set K of processes acting
on a state space I; each I is a common execution state of the processes, and is
specified by the program location at each process, by the values of all variablesmshared
and privatemetc. Each k K can be regarded as a stationary discrete Markov chain
on L (This extra restriction of discreteness, which is quite adequate for actual programs,
simplifies the analysis considerably, by avoiding the technical difficulties of treating
non o’-additive measures, which would be otherwise necessary as in Dubins and Savage
[DS].) Under this assumption, each process k K is specified in terms of its transition
probability matrix pk, that is, for each i, j I, pk,g is the probability of reaching state
j from state in a single (indivisible) execution step of process k. The nonnegative
matrix pk is stochastic: for each i, pk pk, > 0 for at most countably manyj, and, i,j 1.

As already stated, program execution is assumed to consist of interleaving execu-
tion steps of the processes, each executing in its turn one indivisible step. Let I be
an initial execution state. Let H(i) denote the set of all finite execution histories starting
at i; formally,

An (infinite) schedule r starting at is simply deftned as a function o-: H(i)- K, that
is, for each finite history h H(i), o(h) is the next process to perform an execution
step, given that execution has proceeded so far through the states in h. The set of all
schedules starting at will be denoted by ; (i). To each such schedule o- there
corresponds an execution tree, defined inductively as follows. Each node of this tree
is labelled by a pair (j, k) where j is the current execution state, and k the next process
to be scheduled in this node. The root of the tree is labelled by (i, o-(i)). For each
node , in the tree, let h e H(i) be the sequence of states along the path from the root
to ,, let j be the last state in h, and let k o-(h); then , is labelled by (j, k), and its
sons are nodes labelled by (j’, o-(h,j’)), (where (h,j’) is the concatenation of j’ to h)
for j’ e I such that P., > 0.

Let H*(i) denote the set of all infinite execution histories starting at i, that is,

H*(i) {i} x I where I I
---1

Each schedule o-e (i) induces a probability measure on the cylindrical o--field
on H*(i), such that for each cylinder (i, i, i, , i,,), consisting of all histories whose
initial n+l states are i, i,...,

/x{(i, i, i,)} I-I Pksis, is+l
s-----0

where io i, ks tr(io, il, , is). Expectation with respect to/x will be denoted by Eo
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Let H*=UH*(i). Throughout the paper we will use the following notational
convention" Elements of H*uwhich we call paths or histories--will be denoted by
7r; for each such 7r and each n => 0, the (n + 1)th state along 7r will be denoted by in,
and the subpath consisting of the first n+ 1 states in 7r will be denoted by 7rn
(io, il," ", in). A path 7r is a fair path with respect to a given schedule cr if each k e K
appears infinitely often in the sequence {tr(Trn)}__o; the schedule o- is a fair schedule
if/x{Tr" 7r is fair} 1. For each e ! we denote

EF(i) {tr E (i)" cr is fair}.

Let X c I be a given set of goal states, fixed henceforth. Our aim is to study the
convergence of program execution to states in X; we will therefore assume in the
sequel, without loss of generality, that all states in X are absorbing for each k K;
i.e., that pk

i.i 1 for each X and each k K.
The basic problem studied in this paper is that of analyzing and computing the

worst-case probability of the program to reach X (i.e., to terminate) when executed
from a given initial state under a fair schedule. To formalize this notion, let Xx be the
characteristic function of X (defined on I); we extend this function to H* by putting
Xx(Tr)=limn_xx(in) (recall that 7r (in)n_>_0). Since X is absorbing, Xx(Tr)= 1 if X
is ever reached along r, and 0 otherwise. The probability of reaching X under tr is
then simply E(Xx). The following standard observation, which also establishes the
measurability of the extended Xx, will be quite useful in the sequel: For each n >_-0

define a "truncated" extension X of Xx by putting X)(Tr) 1, if X is reached during
the first n steps of 7r, and 0 otherwise. Then E(X)) is the probability of reaching X
during the first n steps of tr, and we have

lim E(X)) sup E(X)) E(Xx).

The worst-case termination probability that we seek is defined, for each initial state
iI, as

(i)= inf E(Xx).
o’Y,F(i)

We will shortly establish several preliminary properties of the function , but first
we introduce additional notations concerning finite portions of program execution.
Let denote the set of nonnegative integers, and out U{c}. A stopping time N
is a mapping from H* into t such that if N(r) m then N(Tr’)= m for each path 7r

which coincides with 7r at all steps up to, and including m. In other words, N(Tr) may
depend only on io, il," ",/n--i.e., on states visited before this step, but not on future
steps (i.e., on iN+l," "). Afinite subschedule at I is a pair " (tr, N) where tre E (i),
and where N is a stopping time on H*(i) such that/x(N < (x)) 1 (this corresponds
to the notion of "policy" of Dubins and Savage [DS]). The intuitive meaning of such
a pair is the initial portion of tr up to, and including N; in particular, the actual value
of tr is relevant only up to the stopping time N. The set of all finite subschedules at
will be denoted by T(i) (note that the empty subschedule--i.e., when N---0--is
included in T(i)).

In the sequel we will occasionally use the following standard decomposition of
an infinite schedule tr E (i)" Let N be a stopping time, /x(N <)= 1; then tr is
equivalent to its initial portion " (r, N), followed by the collection of continuation
schedules; that is, for each 7r H*(i) (with N < ), the continuation tr E (in) of
tr after the end state in of ’. Note in particular that r is fair if and only if each of the
continuations rN is fair.
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Let a be a real function on/. Then for each finite subschedule " (tr, N) T(i),
the expectation of a with respect to r is defined as

E(a)=E(a(iN)).

For example, let tr (i), and define, for each n->_0, ’, =(tr, n) T(i) (i.e., with the
stopping time N=-n). Then, as already noted, E(Xx)=lim,,_.E.(Xx). Note also
that Eo(Ce)= a(i), and that E,(a)=(Pka)(i), where k= tr(i).

Having introduced all the required terminology, we begin by establishing a few
elementary properties of the function

PROPOSITION 2.1. (a) q9 >-- 0; qlx 1.
(b) q(i)=minkr (Pkq)(i) for each iL
Proo.f. (a) is trivial, since X is absorbing; note also that q <_-1.

(b) To show that q(i)<--(pkq)(i) for k K, i/, use a schedule o-,F(i)which
starts by scheduling k at i, and then continues so as to approximate q at each of the
resulting states. For the converse inequality, take a sequence of schedules tr, in EF(i)
such that E(Xx) converges to (i) and such that they all start by scheduling the
same process k K (since K is finite this is always possible); then it is easily seen
that (Pkq)(i)<--_(i). More details can be found in [HS]. Q.E.D.

Extending standard notations in Markov chain theory, we say that a real function
c on I is subharmonic if c <_- Pka for each k K. Similarly a will be called rain-harmonic
if a minkK Pka (note that each min-harmonic function is subharmonic).

In the special case where K contains a single process k, the function q is harmonic
(i.e., 0 pkg,). Moreover, it is well-known (cf. [SPH] for example) that q is the smallest
nonnegative harmonic function which is 1 on X. This might lead us to conjecture that
for a general (finite) K, q is also the smallest nonnegative min-harmonic function
which is 1 on X. This, however, is not true in general, as can be seen from the following
simple example: Let I {0, 1}, X {0}, and K {1, 2}, with the nonzero transition
probabilities Pl,o= P, 1. Obviously, any fair execution of this program brings it
into X with certainty, so that p 1, yet the function q(0)= 1, q(1)=0 is a smaller
nonnegative min-harmonic function which is 1 on X. The reason for this phenomenon
is that fairness is not directly connected to the min-harmonicity of q. Indeed, let us
define a function 0 on I by

q(i) inf E(Xx), I.

(i.e., infimum over all schedules, not necessarily fair). Then it can be shown that
PROPOSITION 2.2. is the smallest nonnegative rain-harmonic function which is 1

on X.
Our next result is a strong form of a "zero-one law" for q, which generalizes the

zero-one law established in [HSP] for finite state spaces.
THEOREM 2.3 (zero-one law). infq(i) is either 0 or 1. Moreover, for each I

and cr ,F( i) define a sequence {f}_->o offunctions on H*( i) by putting f, r) q i ),
7r H*(i), n >- O. Then {f, } converges Ixa.s. to Xx (extended to H*(i)).

Proof. Let I and r EF(i) be given. The subharmonicity of p implies that the
sequence {f} is a submartingale; on H*(i). Since 0_-<f,_-< 1 for each n>_-0, it follows
from the (sub)martingale convergence theorem that {f,} converges/xa.s, to a limit

f. Put ’ (r, n), n _-> 0. Then

E,(Xx) E.(E.(Xx)) >= E() E(f.)

i.e., for all n => 0, E(fn+lTr,) =>fn, where zr, is any history of length n with/-o-(,) > 0.
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(since each r is fair). Letting n-> oo, we obtain

Eo.(Xx) -> E,(f) >- 1"/z,{r: fo(r) 1}.

But for each 0tell(i), if X is ever reached along rr then f.(r)=(i.)=l for all
sufficiently large n, so that foo(r)= 1. Thus

/z.{ or: foo(r) 1 } _>-/z.{ r: X reached along or} E.(Xx).

Therefore we must have equalities throughout; that is

E(Xx) E,(foo) ,{or: foo(zr) 1 }.

This, however, implies that foo is almost everywhere either 0 or 1, and that foo(r)= 1
if and only if X is ever reached along or. The zero-one law is now immediate, because
if o is not identically 1, take i I, cr XF(i) such that E(Xx)= c < 1. Then q(i,)-0
on a set of paths whose -measure is 1 c > 0, thus there exists states with arbitrarily
small 0, or infz o(i) 0. Q.E.D.

As a final preliminary note, we would like to point out that, unlike the case of a
finite state space, the actual values of nonzero transition probabilities of the processes
involved can have significant influence on the termination probabilities 0. This is
indeed well known even for a single Markov chain. (Consider e.g. the case of a random
walk on the nonnegative integers, where the "leftward" transition probability is p.
Then the probability of converging towards 0 is identically 1 ifp >- 1/2, and is exponentially
decreasing otherwise; cf. [Ch] for details). Thus, for infinite state spaces there is no
hope to obtain purely combinatorial analysis techniques (as have been developed in
[HSP] for finite state spaces), and more complex techniques are needed. Development
of such techniques is indeed the main purpose of the present paper.

3. -iterates. Direct calculation of the function o from its definition is rather
complicated. The purpose of this section is to develop machinery needed for a simpler
calculation and characterization of q. Specifically, we will show that is the limit of
a transfinite sequence of iterates of a certain operator. We will call these p-iterates.

DEFINITION. W define an operator Q, and an auxiliary set of operators {Qk}kC,
on the space of all bounded real functions on I, as follows: For each bounded real
function a on I, each i I, and each k K, put

(Qka)(i)= inf E(a),
T( i,k

where T(i, k) is defined as

{(or, N+ 1): o’X (i), N an a.s. finite stopping time with cr(zr)-- k}c T(i);

i.e., T(i, k) is the set of all subschedules which start at i, schedule k eventually almost
surely, and stop right after scheduling k. Q is then defined as

(Qa)(i) max (Qka)(i).
kK

Let R be any of the operators Qk or Q; then plainly R is monotone (i.e., a l<--a2
implies Ral-<-Ra2), R0-0, and R1 1. The following lemma gives two characteriz-
ations of the operators Qk, one of which is constructive while the other is not.

LEMMA 3.1. Let a be a bounded real function on I. For each k K, Qko is the
largest subharmonic function which does not exceed Pka (i.e., (1) Qka <_ pka, (2) Qka
is subharmonic, and (3) if fl <- pka is subharmonic, then fl <- Qka). Furthermore, Qka
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is the limit (or infimum) of the following nonincreasing sequence offunctions:
fl(i)=(Pka)(i), i I,

fl"+l(i)=min{ fl"(i)’min(Plfl")(i)},eK iI, n>l.=

Proof. Let/3 be the limit of the nonincreasing sequence {/3,}; then/3 is the largest
subharmonic function <=Pka. The rest follows by noting that, for each n >= 1

/3,(i)= inf E(a),
Tn(i,k)

where T,(i, k) consists of those subschedules in T(i, k) which stop after at most n
steps. Q.E.D.

LEMMA 3.2. For each subharmonic function a and each k K we have

ot <--_ Qkot <-- pk

Proof. By Lemma 3.1, Qkot is the largest subharmonic function which is <--pko.

Since a itself is subharmonic we have a <_-Pkot, SO that a <-Qka. Q.E.D.
DEFINITION. For each ordinal a we define on I real functions y and yk, k K,

by the following transfinite inductive process"

3’0 Y Xx, k K,

/ak sup QkTb for each ordinal a > 0 and k K,
b<a

7 max yk for each ordinal a.
keK

The functions ),k and 3, are called the -iterates oforder a of the program (the reason
for this terminology will be apparent at the end of this section).

Since X is absorbing, Qkxx >-- Xx, thus /k __> ),0k for each k K, hence / -> 70. Also,
by definition, /k>a__ Ybk for each pair of ordinals a > b > 0. Thus, for each k K the
transfinite sequence {yk}>_0 is nondecreasing, and so is the sequence {Y}-_>o. From
this it follows that k

Ta+ Qk’ya for each ordinal a, and that yo =SUpb<aTb for limit
ordinals a.

Since the transfinite sequence {y}__>o is nondecreasing, and each of its elements
is obviously bounded between 0 and 1, this sequence must converge to a limit function
7, and there must exist an ordinal c such that 3’ =% (Indeed, for each i I the
transfinite sequence {7(i)} is a nondecreasing and bounded sequence of real numbers,
and so must attain its supremum at some ordinal c; the required ordinal c is simply
sup/e/Ci.) Obviously Qy Qy "Yc+l Yc 3/. Moreover, using standard fixpoint argu-
ments, it is easily seen by transfinite induction that y is the smallest fixpoint of Q
which is >_-Xx.

Remarks. (1) To motivate these definitions, it is helpful to consider the following
interpretation of the functions y and yk: To(i) is just an indication whether i X.
ylk(i) is the smallest probability of reaching X by any subschedule which starts
execution at i, and is forced to schedule k eventually (a.s.). Thus y(i) is the smallest
probability of reaching X that must be yielded by any subschedule starting at which
is forced to schedule any one of the processes at least once. Arguing inductively, y,(i)
is the smallest probability of reaching X that must be yielded by any subschedule
starting at which has to schedule any sequence of n processes one after the other.
(Note that this sequence need not be specified in advance; rather the first process k
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to be scheduled is specified, then the second process to be scheduled is specified, but
it may depend on the state reached after scheduling kl, and so on.)

(2) yn(i) can be viewed as the minmax value of a two-person zero-sum game
Fn(i). In this game, the aim of the first player, called "player X," is to reach X during
program execution with the highest possible probability, whereas the aim of the second
player, called "the scheduler," is to prevent the program from reaching X as much as

possible. The game Fn(i) consists of n stages. Each stage starts at some state j e I
(stage 1 starts at i). Player X chooses some k e K, and then the scheduler chooses
some r e T(j, k). The program is then run according to z; when it stops, the next stage
is played. After n such stages, player X receives a payoff of one unit from the scheduler
if a state in X has been reached, and zero otherwise.

This interpretation can be extended to higher-order ordinals. Specifically, for each
ordinal a we define a collection of games Fa(i), for each e I, in the following transfinite
inductive manner"

(i) Fo(i) is the "empty" game; player X receives a payoff of 1 from the scheduler
if e X, and zero otherwise.

(ii) If a is not a limit ordinal, say a b + 1, player X first chooses a process k
and then the scheduler chooses a subschedule re T(i, k), and the program is run
according to ’; for each end state j of r, the game continues as Fb(j).

(iii) If a is a limit ordinal, player X first chooses an ordinal b < a, and then the
game continues as Fb(i).

The definitions (ii) and (iii) imply that after each stage, games with smaller ordinals
are played; since every strictly decreasing sequence of ordinals is finite, it follows that
every play of any of these games is finite, so that Fo is reached eventually, and the
payoff is therefore well defined. Moreover, by the definition of the sequence {ya}aO,
one easily obtains by transfinite induction, that 7a(i) is precisely the value of Fa(i).
Indeed, an e-optimal strategy for player X is constructed as follows (for each e > 0):
If a b+ 1, player X first chooses ke K for which y(i) y(i), and from each end
statej of the subschedule z e T(i, k) subsequently chosen by the scheduler, he continues
with an e-optimal strategy of Fj(b). If a is a limit ordinal, player X first chooses an
ordinal b<a such that ya(i)--yb(i)<e/2, and then continues with an e/2-optimal
strategy of Fb(i). As for the scheduler, at the first ordinal b + 1 _-< a where he is called
upon to move, he chooses re T(i, k) such that E(/b)--el2 < (Qk/b)(i) Tbk+l(i), and
then he continues with an e/2-optimal strategy in the corresponding Fb(j).

Furthermore, the ordinal c (at which ’)/c+l "-’/c is first obtained) is such that the
expected payoff that player X can guarantee in the game F(i) is the largest possible
among all games {F(i)}_o--uniformly in the initial state i. As we shall see later in
this section, this maximum payoff is exactly p(i).

(3) Note that if Q were o’-order continuous, i.e., if for any nondecreasing sequence
{h,} of uniformly bounded functions we had

Q(sup hn)=sup Qh,

then convergence of the y’s would be attained at c to (the first infinite ordinal) or
earlier. This is indeed so when I is a finite set, since then each such sequence {h,}
converges uniformly to its supremum, in which case Q is clearly continuous. However,
this does not hold in general, and so higher ordinals may be needed. (A similar
phenomenon is noted by Lehmann, Pnueli and Stavi [LPS] concerning nondeterministic
concurrent programs; see 6 for a detailed comparison between their technique and
ours.)
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To illustrate the possible discontinuity of Q (and hence the need for higher
ordinals), consider the following example (in which both processes involved are actually
deterministic).

Example 1. Let K { 1, 2}, and let I I1 U 12, where I 1 { 1 }, I2 N x {2}, and
X {(0, 1)}. The nonzero transition probabilities are

(n,l),(n-l,1) (n,1),(n.1) 1, n>O,

p1 2
(n,2),(n+l,2) P(n,2),(n,1) 1, n->_O.

These transitions are displayed in the following diagram:

It is easily seen that

%(i, 1)={ 0, i>-n,

1, i<n,

By definition of y,o we thus have

On the other hand, %(i, 2)=0 for each i, n N (to obtain (Q2%)(i, 2), schedule
process 1 sufficiently many times so as to reach a state (j, 2) with j_-> n, and then
schedule process 2). Thus

y,o(i, 2) 0, i6N.

But Y,o+l Q%o > %. Indeed, for each (i, 2) I2 we have

y,o+l(i, 2)=(Qy,o)(i, 2)=(QZy,o)(i, 2) y,o(j, 1)= 1 (where j => i).

Thus %o+1 1, and convergence of the q-iterates is attained at the ordinal w + 1.
Remarks. (1) In the game-theoretic terminology established earlier, player X

cannot achieve a nonzero payoff in any of the games F,(i, 2), nN, or even Fo,(i, 2),
because if the number of rounds n is fixed in advance, the scheduler will initially
schedule process 1, n + 1 times, and this will prevent player X from reaching X in n
moves. On the other hand, a payoff of 1 is guaranteed in Fo+l(i, 2) as follows: Player
X first chooses process 2; no matter what subschedule in T((i, 2), 2) will be chosen
by the scheduler, it will end at some state (j, 1) in 11, and the game continues from
there as F (j, 1). Now player X chooses the ordinal j < w, and this guarantees its entry
into X after j additional moves, by requiring to schedule process 1 in each of these
moves.
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(2) One can easily obtain along similar lines examples where higher and higher
ordinals are needed to attain convergence.

1/2 (instead1/2 (instead of 1) and Pl,1)(o,2)(3) If we take in Example 1, Pl,1),(o,)
of 0), it can be verified that the first ordinal c where yc =q-- 1 is c to 2.

The main purpose of this section is to prove that 3’ q. The proof of this assertion
is quite involved and will be split into proving both inequalities 3’ =< q and 3/>- q. It
consists of the following sequence of lemmata.

LEMMA 3.3. Each of the q-iterates yk and Ya is subharmonic.

Proof Lemma 3.1 and the fact that the supremum of subharmonic functions is
subharmonic. Q.E.D.

LEMMA 3.4. For each k
Proof For each tr,F(i) let N be the first time k is scheduled, and let

(tr, N+ 1) T(i, k). Then, if tr=N+, denotes the continuation of tr after the end of ’,
we have

E,(Xx E[E,.N+,(Xx )]

>-- E.[qg(iN+l)]

>= Qkq )( i)

(because N + 1 is a stopping time)

(because r=N+, EF(iN+))

(by definition of Qk).
Since this holds for each cr EF(i), we have q(i) >- (Qkq)(i). Q.E.D.

PROPOSiTiON 3.5. q Qq QKq, for each k K.
Proof By the preceding lemma, Qq maxkK Qkq _<_ q- On the other hand, for

each kK, Qkq>_q by Lemma 3.2, since q is subharmonic by Proposition
2.1(b). Q.E.D.

LEMMA 3.6. y =< q.

Proof We will show, using transfinite induction, that Ya -< q for each ordinal a.
For a=0, q>-_Xx=Yo (see Proposition 2.1(a)). Assume yb<=q for each b<a; then
Qkyb <= Qk =q by the preceding proposition, thus yk<qa= for each k K, so that
y,, <- q. Thus y y -< q. Q.E.D.

LZMMA 3.7. q =< y.

Proof Note that, since 3’ maxks: Qy, we have

(.)
y(i) >_- ifi.k) E(T), I, k K,

(actually, with equality holding for at least one k, although we will not make use of
this fact). Let i I be given. Choose e > 0 and a sequence e, $0 such that Y,, e, e.
Let {k,},__> be a fixed sequence of processes in which each k K appears infinitely
rnany times. We will use (.) to construct a fair schedule tr starting at by building it
layer-by-layer from subschedules, as follows: Suppose that the first n layers of tr have
already been constructed, the union of which being some subschedule -, starting at
(initially, % is "empty"). The (n + 1)th layer of tr is defined by appending to ’, at
each of its end nodes j a subschedule p T(j, k,,+) such that

T(j) >= Ev.(T) e,,

(such a subschedule exists by (,)). Repeating this process inductively, we obtain the
required (infinite) schedule r, which is fair by our choice of the sequence

Let {N,},o be the increasing sequence of stopping times defined by our construc-
tion; namely--the nth layer (i.e., ,) ends at N,, (in particular No--0). For each n _-> 0
define the function

g,(vr) y(vr,), 7r H*(i);



CONCURRENT PROBABILISTIC PROGRAMS 1001

in particular, go-- Y(i). By the choice of the subschedules pj we have

(**) g. >= E(gn+ll’fl’N.)- en+l, /1 >-- 0.

Hence, the sequence of functions {g’,},->_0 given by

g’,=-g,- era, n>=O
m=l

forms a supermartingale, which is bounded between 1 and -e. Hence it converges
almost surely to a limit g, so that {g,} converges almost surely to the function

goo=-g’+ , e,,,=g+e.
m=l

Note that Y[x-- 1; thus, if X is reached along 7r, then go(Tr)= 1, because for all
sufficiently large n we will have g,(Tr)= 1. Hence, by (**),

3"(i) g >- E,(g) Eo.(goo) e

_->/x(goo 1)- e

_->/x(X is reached)- e

Eo.(Xx)- e >- r#( i)- e.

Since e was arbitrary, the proof is complete. Q.E.D.
Thus we have shown

THEOREM 3.8. 3’.
Next, we give an example of explicit calculation of as the limit of the -iterates.
Example 2. Let I , X {0}, K {1, 2} such that each process is a random walk

on I (with X absorbing). It turns out that a fair interaction of two random walks,
under the worst kind of schedules, yields essentially the same absorption probabilities
as those yielded by the "worse" ofthe two walks alone. We exhibit here one simple case"___, p1 =, i>1,P i-1 i,i+

2Pi,i-1-- 1, _--> 1.

It can be inductively shown that the q-iterates for this program are

3’,-1(i)
O,

where sci= 2 1, => O, and

O<__i<__n,
n_-->l,

i> n,

1
To,(/) To+l(/)= q(i)=, i_-->O.

Z"

Comparison with the iterates , and their limit for the case in which only process
1 is activated shows that 3’ / but 3’, > 4/, for each finite n. Thus the fair interleaving
of process 2 with process 1 increases the probability of convergence under any finite
number of fairness constraints, but does not affect the overall (worst-case) convergence
probability.

4. Characterizations of o. This section contains the main results of the paper.
Using the machinery developed in 2 and 3, we will derive several characterizations
of , which provide a variety of rather simple techniques for its calculation, or for
deriving various properties of this function. Obviously, the most important such
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property is whether 1 (i.e., whether the program terminates almost surely from
any initial state). Relaxation of the characterizations of 0 given here will enable us to
derive necessary and sufficient conditions for program termination, and these conditions
are presented in 5.

THEOREM 4.1. (a) o is the smallest fixpoint of the equation

q

which is >- Xx.
(b) o is the smallest simultaneous solution of the equations

q Qkq :for each k K,

which is >-_Xx.
Proof. By Propositions 3.5 and 2.1(a), o Qo Qkq for each k K, and o => Xx.

To prove (a) we repeat the argument used in the proof of Lemma 3.6. That is, let
>= Xx be such that Q. Then $ >-3’0, thus $ Q$ => Q3’o 3"1, and by transfinite

induction -> 3’a for each ordinal a, thus >= 3’ . As for (b), note that Qk$ for
all k K implies $ Q$, and then use (a). Q.E.D.

Next we restate the second assertion of Theorem 4.1 in a manner which makes it
more convenient for actual calculation of o.

DEFINIXON. Let a be a real function on L We say that a has property (A) if the
following are satisfied:

(A.1)
(A.2) a is subharmonic;
(A.3) for each k K the only subharmonic function lying between a and Pka is

a itself.
(Note that the constant function 1 has property (A).)
THEOREM 4.2. q is the smallest nonnegative function on I having property (A) (i.e.,

if a >- 0 satisfies (A), then t(i) >- ga(i) for each I).
Proof. By Lemmata 3.1 and 3.2, (A.2) and (A.3) imply a- Qka for all k K, or

a- Qa. We now use Theorem 4.1. Q.E.D.
Theorem 4.2 suggests the following procedure for computing q: Take any nonnega-

tive subharmonic function a >-Xx. For each k K compute the largest subharmonic
function which is --Pko, and require that it coincide with a. Find the general solution
of these constraints, and obtain q as the smallest such solution. Later on in this section
we will use this procedure to compute rp for several exemplary programs, and show
that this technique is quite feasible in practice.

Put
(A.2’) a is min-harmonic,

and let property (A’) be defined as the conjunction of (A.1), (A.2’) and (A.3). Then
we also have

COROLLARY 4.3. tp is the smallest nonnegative function having property (A’).
Proof. Immediate, since rp itself is min-harmonic, by Proposition 2.1(b), and every

min-harmonic function is also subharmonic. Q.E.D.
Remark. In carrying out the calculations of the procedure just outlined, it may

sometimes be more convenient to employ the "l-complement" version of Theorem
4.2; that is, instead of computing q we compute the function -- 1- q, which is then
the largest function _<-1 which is a fixpoint of the equation

O(i)=min sup E(O)
kK T(i,k)
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or, alternatively, is the largest function/3-<_ 1 having property (B), defined as
(a.1) fllx O;
(B.2) /3 is superharmonic, i.e., fl >- pkfl for each k K
(B.3) for each k K, the only superharmonic function between pkfl and /3 is /3

itself.
(Again, we can replace (B.2) by (B.2’), namely require that/3 be max-harmonic,

that is/3 maxkK pkfl.)
The usefulness of this complementation lies in the fact that property (B) is

positively homogeneous (i.e., /3 satisfies (B) implies Aft satisfies (B) for every A >0,
where (Aft)(/)-= A. fl(i)); note that (A) was not such (due to (A.1)). For example, we
obtain

COROLLARY 4.4. q -= 1 if and only if no bounded function having some positive
entries has property B).

Proof. Assume fl satisfies (B) so that A -=supilfl(i)<c and is positive. Then
(l/A)/3 also satisfies (B) and is _-<1. Q.E.D.

We can also give now a second short proof of the Zero-One Law for ; namely,
that infii qg(i) is either 0 or 1 (see Theorem 2.3; however, the original proof is more
elementary).

Second proof of the zero-one law (Theorem 2.3). Let = 1-tp and put A
supi(i). If 0<A <1, then the function 0’= (1/A) is larger than , satisfies (B),
and is <_-1--contradicting the fact that 0 is the largest such function.

Examples. We will now apply the techniques presented in this section to several
programs, to compute the function for each of these programs. These examples
include two programs with finite state spaces (which had already been analyzed in a
preceding paper [HSP] by different special techniques developed there for finite-state
programs), and another program having an infinite state space.

Example 3. Let K { 1, 2}. The following program arises in an analysis of freedom
from lockout in a simple synchronization protocol (cf. [HSP, Example 1] for details).
Using a notation slightly different from that of [HSP], we have I X U {i, i2, i3, i4},
with nonzero transition probabilities

P,,x 2Pil,i 1,

p!. 2
t2,l P i2,i4 P i2,i

P i’3. i3 P i23,i2 1,

P i4, 2
i4 Pi4,i3 1.

To compute , we first write down the form of the general subharmonic function which
is 1 on X. Such a function a=(al, a2, a3, a4) (where ct is a shorthand for a(it),
1 =< _-< 4) must satisfy

al,

a4a3.

Next, we spell out condition (A.3) for such an : First consider k 1. It is easily
checked that the function

Pa (1, 1/20 -" 1/204, 03, O4)
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is also subharmonic. Hence we must have a Pla, i.e.,

al 1, a=1/2al+1/2a=
Similarly, for k 2 we have

P2a (al, 1/2al -{-1/2C4, if2, O3),

which is also seen to be subharmonic. Hence a P:a, i.e.,

Thus we have a 02-- a3 04-- 1. That is, the onlymand thus, the smallest--function
satisfying (A) is o---1.

Example 4. This example is also taken from [HSP], and arises in the analysis of
another synchronization protocol. Here K { 1, 2}, I X U {il, , i6}, and the transi-
tion probability matrices are

vl

i, i2 i3 i4 is i6 X

p2

il i: i4 i5 i6 X

It is straightforward to check that a general subharmonic function a (a 1,"" ", O6)
which is 1 on X must satisfy

Eel 2 06 1.

It now follows that (A.3) holds for each such function a, because any function
constant on I-X and lying between
(since Pla (resp. Pa) coincides with a at some of these states). Thus o, which is the
smallest nonnegative such function, is

Example 5 (" The Two Combs"). Let K { 1, 2}, I X 13 7/ (where 7/denotes the
set of signed integers); the nonzero transition probabilities are

Pn,n+l Pn, Pl.,x P; 1 -p,,,
n 7/.

2 2P,,,,,-1 q,,, P,,,x q 1 q,,,

To avoid degeneracy, we assume that 0 < P,,q,,+l < 1 for each n 7/. Denote, for n 7/,

and by (C-) the condition

(C-) H q. >0 and limsupp.=l.

Pn-’[IPm, Q.= qm.
m=-oo

Denote by (C+) the condition

(C+) H p.>0 and limsupq.=l,
tl0
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PROPOSITION 4.5. (a) If neither (C+) nor (C-) hold, then q =-- 1.
(b) If (C+) holds but (C-) does not hold, then q, 1- P,, n 7/.

(c) If (C-) holds but (C+) does not hold, then q.- 1- Q,, n 7/.

(d) If both (C+) and (C-) hold, then q 1-max {P, Q,}, n 7/.

Proof. It will be more convenient to work in "l-complement" mode, calculating
b 1- , and using property (B). The calculation of , proceeds through the following
steps (for details, see [HS]).

(1) If ft, 0 for some n 7/, then , 0.
(2) Put ,= PO, ,2= p2; if ,--0 then it is impossible to have for some n 7/,
p, and =+n+l 1"

(3) , > ,1, ,, > , for each m =< n, and ,, > p ,, > , for each m _-> n.
(4) Thus only the following four cases are possible:
(a) g, q,’= C= o;
(b) q,. 61. > ,. for each n 7/;
(c) q. q2. > q, for each n e 7/.

(d) there exists noeT/ such that q. , >q,2. for each n> no, and q. 4,2.< 4,
for each n < no.

(5) Suppose q,>0. If, for some no 7/, q,. q,. for each n> no, then I-I.>.oP. >0.
Similarly, if q,. q2. for each n < no, then 1-I.<.o q. > 0.

(6) In particular, if l-I.>o p. H.<o q. o, then q, =- 0.
(7) Suppose q,>0. If, for some no7/, q.=q,, for each n>no, then

lim sup._ p.q.+ 1. Similarly, if q. q2. for each n < no, then lim sup._._ p.q.+ 1.
(8) The following is a partial converse to (7): Let q >0 be any max-harmonic

function satisfying ,. q,. for each n > no, and suppose lim sup._.o p.q.+ 1. Then
the unique superharmonic function lying between q and q= is 6 itself. A similar
statement holds if q. 4,2. for each n < no and lim sup p.q.+ 1.

(9) In case (b) condition (C+) holds; in case (c) condition (C-) holds; and in
case (d) both conditions (C+) and (C-) hold.

(10) Conversely, if (C+) holds but (C-) does not, then case (b) must occur.
Similarly, if (C-) holds but not (C+), then case (c) must occur.

(11) Finally, if both (C+) and (C-) hold, then case (d) must occur. Q.E.D.

5. Verification of program termination. The results developed in the two preceding
sections provide us with methods for calculating the function for any concurrent
probabilistic program. However, in many applications the only question of interest
concerning is whether 1, i.e., whether the program terminates almost surely from
any initial state under any fair schedule. In this section we will present several
characterizations of program termination, the first two of which are straightforward
specializations of the general results of the preceding sections, while the third involves
a somewhat different approach, generalizing that used in [HSP] for finite state spaces.

PROPOSITION 5.1. q--= 1 if and only if no min-harmonic function smaller than 1 has
property (A).

Proof. See Corollary 4.3.
PROPOSITION 5.2. q9 1 ifand only ifthere exist an ordinal c and transfinite sequences

offunctions {6 k},<=c, k K, and {ta}<= having the following properties"
(1) 6o=6ko=xx, kK;
(2) k is subharmonic for each a<c and each k K"
(3) 6 <maxkr 6 k a<=c;
(4) k <pk, kK,a<c"a+l

(5) < SUpb , for limit ordinals a, and k K"a-’- <a

(6) inf, 6(i) > O.
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Proof If o-= 1 then the o-iterates can be taken as the 6’s. Conversely, if such
sequences of functions are given, then by transfinite induction 6a --< o for each ordinal
a. In particular 3c -< q, so that infi q(i)> 0, and by the zero-one law (Theorem 2.3)
we must have 0-= 1. Q.E.D.

Our next characterization of program termination generalizes one of the charac-
terizations given in [HSP] for finite-state programs. Intuitively speaking, if the program
does not always terminate, then there must exist some "ergodic structure" of nonter-
minating states, through which an "adversary" fair scheduler can iterate forever without
reaching X. Unlike the case of a finite state space, where such a structure was a single
"K-ergodic" set, ergodicity in general state spaces is a much more complex notion,
and is defined as follows.

DEFINITION. A K-ergodic chain is a nonincreasing sequence {E.}_ of nonempty
subsets of Xc=- I-X such that

lira sup (Qg;.)(i) O.
i E

In other words, let n >- 1, i E,, m > 1 and k K be given. Then there exists a
subschedule in T(i, k) which reaches E with probability tending to 1 uniformly as
n oo. That is, without losing too much probability, we can reach any of the sets E"
from any state in E after scheduling any required process.

THEOREM 5.3. p 1 if and only if I- X does not contain any K-ergodic chain.
Before proving this theorem, we need two lemmata.
LEMMA 5.4. Let 6>0, and define D={iI: (i)>-6}. Then >--QXD.
Proof. Let i I, k e K, and r ,F(i). For each n _-> define a stopping time N,

on H(i) so that N(-) is the nth time k has been scheduled along ; note that
(N,}>__ is an increasing sequence of/o-a.s, finite stopping times, whose limit is +oo.
For each n _>- 1 the subschedule - (o-, N,) T(i, k), so that

(QkXo)(i) <---- E.(XD) #{P(iN.)->-
Consider the sequence of functions {f,,},,__>o, defined by f,,(r)= q(i,,), m>=0, re
H*(i). By Theorem 2.3 {f,,} converges a.s. to a limit f, such that f(r) is 1 if X is
reached, and is otherwise 0. Therefore we also have o(iN.)-->fo a.s. as n--> oo, so that

/.{f->_ 8}->_ lim r{q(iN.) t} (QkxD)(i).

Since 6 > 0, we have f(r)_-> 6 if and only if f(r)= 1, or, alternatively, if and only
if X is reached along r. Thus

E(Xx) {f>= 3} >= Qkx) i),

from which our assertion follows. Q.E.D.
LEMMA 5.5. Let {G,},__> be a nondecreasing sequence of subsets of I, all of which

contain X, and let {e,},__>l be a sequence ofpositive numbers converging to O. Suppose that

Qx.(i) <= e,,

for each m, n >= 1 and each G. Then

q _-< sup Q’m.

Proof Put/3 -= sup,. Qxom. The above assumption concerning { G,} can be restated
as

Qxo.<- e, xo,+ 1 Xo. e,+(1-e,,)X.,
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for each m, n-> 1. This implies

<=e,,+(1-e,,)X., n>-l,

and thus

Qfl<=Q(e,,+(1-e,,)x.), n>-l.

However, it is easily checked that for any scalars a, b > 0 and any nonnegative function
a we have

Q(a + ba) a + bQa.

Hence,

Q/3 <_- en +(1 en)QX. <- en +(1 e,)fl,

for each n => 1. Letting n --> , we obtain Q/3 <-/3. But/3 is subharmonic (as a supremum
of subharmonic functions), thus /3 Q/3 (see Lemmata 3.1 and 3.2), implying q-<_/3
by Theorem 4.1. Q.E.D.

Proof of Theorem 5.3. The theorem is now an easy consequence of the last two
lemmata. For example, if q is not identically 1, then, by Lemma 5.4, the collection
{En}n_> is a K-ergodic chain, where

E,,={iI: q(/) <-ln}.
The converse statement follows similarly from Lemma 5.5 (for more details, see
[HS]). Q.E.D.

Example 5 revisited. Consider the three cases in the example of "the two combs"
in which q < 1. It is easily verified that in case (b) the chain E,+ {i: i-> n}, n-> 1, is
K-ergodic; similarly, in case (c) the chain E {i: <= n}, n >= 1, is K-ergodic; and
in case (d) both these chains are K-ergodic.

Remark. In the case of a finite state space, ergodicity is manifested in a single set
(see [HSP]). In an analogous manner, we could have considered here the set E
{ I" q(i) 0} as a natural candidate for being K-ergodic (that is, consider the constant
chain En E, n >-1). There are two problems, however, with this approach, which
make it infeasible for general state spaces. One problem is that E may be empty (as
is indeed the case in Example 5 just considered). Moreover, even if E is not empty,
it may happen that, starting from some i E, we never reach E again, but instead
reach states j at which q(j) is arbitrarily small, but positive. Thus, for general state
spaces ergodicity must be defined in terms of an infinite chain of sets rather than in
terms of a single set. (In the finite case, though, any K-ergodic chain must reduce to
a constant set from a certain index on.) Note that this phenomenon occurs in Markov
chains as well.

We conclude this section with a further property of q.
DPROPOSITION 5.6 There exists a nondecreasing sequence { n},=l of subsets of I

such that
(1) plDc=O, where D=t.J_ D,,
(2) q limn_, QXD..
Proof Put On {i" q(i) >- I/n}. Q.E.D.
Note that in the case p 1 we can take Dn I for all n. Moreover,
COROLLARY 5.7. If I is a finite set, then there exists D c I such that
(1) plD =--- O,
(2) Qxo.
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6. Comparison with the deterministic and the nondeterministic cases. In this section
we consider the special case in which each process is deterministic; programs with
nondeterministic processes are also included, since any such program can be simulated
by a deterministic one involving additional processes. (For example, suppose that one
of the processes kl makes a nondeterministic choice from some set A of alternatives;
the same behavior can be achieved by introducing a new shared variable r which kl
sets to some value in A prior to making the choice, and by introducing another process
k2 whose only action is to iterate over the set A. kl then makes its choice deterministi-
cally, depending on the current value of . Thus the nondeterminism is now transferred
to the schedulerthe final choice depends on how many times k2 has been scheduled
in between.) Thus, by specializing the various equivalent criteria for program termina-
tion developed so far in this paper to the deterministic case, we can obtain similar
criteria for the termination of deterministic (or nondeterministic) concurrent programs.
As it turns out, the criterion obtained in this way from the characterization of q as
the limit of the q-iterates (Theorem 3.8, Proposition 5.2) essentially coincides with the
known criterion of Lehmann, Pnueli and Stavi [LPS]. On the other hand, specialization
of Theorem 4.2 leads to a new characterization for deterministic and nondeterministic
termination. So as not to make this characterization appear too deep, we provide a
direct nonprobabilistic proof of its validity.

We begin by observing that in the deterministic case all transitions have probability
0 or 1, so that each of the operators Qk, k K, and Q, when applied to a function
which takes only the values 0, 1 (i.e., a characteristic function of some subset of I)
yields a similar function. Hence each of the q-iterates yk, k K, (resp. y) is a
characteristic function of the form Xa (resp. Xo). Note also that a characteristic
function XA is subharmonic if and only if for each k K and each A the (unique)
k-transition from is to a state in A, i.e., there are no transitions from states in A to
states outside A. Hence, spelling out the conditions in Proposition 5.2 in terms of
the subsets of I corresponding to the functions appearing there, we obtain the
following.

COROLLARY 6.1. A deterministic program terminates if and only if there exist
}a k K, and { Ga}a=>o of subsets of I havingtransfinite (increasing) sequences {G >-_o,

the following properties:
(1) Go=Gko=X, kK;
(2) there are no transitions from states in Gka to states outside G, for each ordinal

a and each k K;
(3) Ga [.J kK Gka, for each ordinal a;
(4) for each k K and each ordinal a, all k-transitions from states in Gk

a+l are to

states in Ga
(5) Gka---Jb<a G, for each limit ordinal and each k K;
(6) there exists an ordinal c such that G- I.
These conditions, however, are merely a rephrasing of the characterization for

termination of "just" programs given by Lehmann, Pnueli and Stavi in [LPS]. To see
this, define a function p from I to the ordinals by

p(i) min {a: i G,}, i I,

and a function h" I K which maps each i Gp(i) to some k K such that i Gk(i).
Then it is easily checked that these functions satisfy the conditions in [LPS] for just
termination, i.e." the "ranking" map p never increases during execution; activating
process h(i) at state always strictly decreases the value of p and h remains unchanged
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as long as p does not decrease. By the remark made in the beginning of this section,
it is easily seen that Corollary 6.1 also applies to nondeterministic (nonprobabilistic)
programs. Thus our Proposition 5.2 generalizes the results of [LPS] to the probabilistic
case.

Next we specialize Theorem 4.2 to the deterministic case. As noted above, we can
identify subharmonic functions with subsets A of I such that there are no transitions
from A to At. This notion is formalized in the following.

DEFiNITiON. (a) A cut (Io, I) is a partition of I into two disjoint subsets Io, I
with Io [A I I, such that X c I and such that there are no transitions from I to Io.

(b) For each cut (I0, 1) and each k K put

Io {i Io: the k-transition from is into Io}.

(Note that X is subharmonic and >=Xx, and that PXo Xo.) Using these notations,
Theorem 4.2 translates into the following theorem (which merely states that (A.3) does
not hold for any subharmonic function <1).

THEOREM 6.2. A deterministic program terminates ifand only iffor each nontrivial
cut (Io, 11) (i.e., Io f) there exists k K and another cut (Jo, J1) such that

Io Jo Io.

Proof. As this result (and its appropriate generalization to the nondeterministic
case) is new, and may be of interest in its own right, we provide here a direct proof
of this characterization, which does not use the probabilistic techniques developed in
this paper.

Assume first that the condition of the theorem does not hold, i.e., that there exists
a nontrivial cut (Io, 11) such that for each k K and each set Io

_
J S Io, the pair (J, J)

is not a cut, that is, there exist transitions from jc to J (these transitions can only be
from states in Io-J). Let Io, and let F(i) denote the set of all states in Io (including
i) reachable from by some finite sequence of process activations. We claim that for
each k K, F(i) intersects Iok. For otherwise, put J Io- F(i), so that Iok c J Io. By
our assumption there exist transitions from Io-J- F(i) into J, which contradicts the
definition of F(i). This implies that Io is ergodic, i.e., that there exists a fair schedule
r which can keep the program in Io forever. To prove this it suffices to show that for
each i Io and each k K there exists a finite scheduling sequence starting at and
ending by scheduling k and reaching a state in Io. Since F(i)f’l Iko , take a finite
sequence of process activations which takes the program from into some state in
F(i) f3 Iok, and then schedule k, thereby reaching a state in Io.

Next suppose that the condition of the theorem does hold. We will construct a
"ranking" function p from I to the ordinals and an "assistance" function h: I-> K
which will satisfy the conditions of [LPS] for program termination. These functions
will be constructed in the following transfinite inductive manner. Put initially P lx 0,
and define h lx in an arbitrary manner. Suppose inductively that p and h have aready
been defined on some subset M of I such that (L, M) is a cut (where L--Me). By
the above condition, there exists k K and another cut (J, JC) such that Lk J L.
Put H L-J , and define Pin 1 + sup pIM, and hln k. Note that since (J, J)
is a cut, there are no transitions from H into J, and since H is disjoint from Lk, each
k-transition from H is into M. Repeating this construction transfinitely, we obtain
everywhere-defined functions p and h whose properties imply by [LPS] that the program
terminates. Q.E.D.
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Remark. To obtain the nondeterministic version of Theorem 7.2, define the sets
Iok by

Iok {i Io" there exists a k-transition from into Io},

and leave all other definitions and assertions unchanged.
Example 1 revisited. Let us apply Theorem 6.2 to the deterministic program given

in Example 1, 3. As is easily checked, a cut (Io, I1) of I must be one of the following
three types:

(a) Io- [0, n] {2}, for some n N;
(b) Io l x{2};
(c) Io=(Nx{2})U([n, oo]x{1}) for some n-l.

In cases (a) and (b), I=, so that (I2o, (I)) (, I) is a cut satisfying the condition
of Theorem 6.2. In case (c), Ilo (N x {2}) U ([n + 1, oo] x {1}), so that (I, (I)) is the
required cut. Thus program termination is ensured by Theorem 6.2.

7. Programs with fiaite state space. In a preceding paper [HSP], the special case
of concurrent probabilistic programs with finite state spaces has been analyzed, and
a characterization of almost sure program termination in terms of the existence of a
certain decomposition of the state space has been obtained. In this section we show
how to obtain this characterization from the general theory developed so far in this
paper.

Let us now assume that I is finite, and that 1. We will obtain a decomposition
of I into (finitely many) disjoint sets {I,},,-o such that the following properties hold
(here we use the notation pki,E =- Y; P)"

(a) Io=X;
(b) for each m > 1 each i I,, and each k K, if pk k

i,J. 0 then Pi,. 1 (where

(c) for each m >= 1 there exists k k(m) K such that for each i6 I,,, P.j. >0.
(This is the decomposition obtained in [HSP].)

To obtain it, we proceed inductively. Initially put Io-X. Suppose Io,"" ", 1,,_1
have already been constructed. Let Jm x<m I and H, J. If Hm , the decompo-
sition is complete. Otherwise, h’J 1- #, thus we cannot have q <-XJ, therefore
QxJ,. : xJ (indeed, for any a >- Xx, if Qa <= a then q <_- Qa <- a ). Thus there exists
k K such that Qjk X- Define

c=max3(j) and I,,={iH,,:6(i)=c}.
.j Hm

Note that c > 0, for otherwise [.--0, so that 3 _-< X, which is impossible.
It can be now seen that conditions (b) and (c) hold for I,,.
Remarks. (1) The converse statement, namely that the existence of such a

decomposition implies that q-= 1, is also easy to establish, e.g., by proving that
minii (i)> 0, and using the zero-one law (cf. [HSP] for a detailed proof).

(2) Once the existence of such a decomposition has been established, it can also
be obtained in the following different manner (for details, see [HS]).

Define an equivalence relation on I so that i,j I are equivalent if and only if
a(i) a(j) for every subharmonic function a. The sets Ira, m >--O, are then simply the
equivalence classes of this relation. Furthermore, to assign indices to these sets, look
for a subharmonic function ct which assumes distinct values on each of these sets, and
order the equivalence classes in decreasing order of the values of a on them. Such a
separating subharmonic function always exists; moreover the decomposition will satisfy
condition (c) if and only if -= 1. (Thus, in the finite case there always exists a
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decomposition of I into an ordered sequence of sets I,,, m -> 0, which satisfy conditions
(a) and (b); each of these sets either satisfies conditions (c) or else is K-ergodic.)

An open problem is whether the existence of a similar decomposition is equivalent
to o 1 in the general (discrete) case as well.

8. Conclusions. In this paper we have analyzed termination of concurrent prob-
abilistic programs having discrete infinite state spaces. Our aim has been to calculate
the worst-case probability of such a program to reach a given set of terminating states
under an arbitrary but fair scheduling of its processes. We have obtained several
characterizations of the required probability function q, which yielded useful tech-
niques for the calculation of this function. Specializing to the case of deterministic (or
nondeterministic) programs, our techniques have been shown to generalize known
techniques for proving termination of such programs, and also to yield new such
techniques. From the point of view of the theory of probability, our results extend the
classical theory of optimal gambling strategies by Dubins and Savage [DS] to the case
where such strategies must be "fair."

The model that we have introduced in this paper and in the preceding one [HSP]
for the (fair) execution of concurrent probabilistic programs is very general, natural,
and easy to work with, and we believe that it should serve as a standard model for
execution of such programs. A more detailed discussion concerning this model can be
found in [HSP].

The techniques developed in the present paper can be immediately interpreted as
sound and complete proof methods for termination of concurrent probabilistic pro-
grams. It would be interesting to generalize these techniques to proof methods for
additional properties of such programs, or, alternatively, to develop temporal prob-
abilistic logics, based upon our techniques, for reasoning about such programs (see,
e.g., [HS2]). One such generalization can be achieved as follows: Let a be a subharmonic
function defined on L For each schedule cr define E,(a) as limn_.o E(,,)(a) (which
always exists, by the subharmonicity of a). Then we want to compute

0(i)= inf E(a),
aZF(i)

which generalizes the function p--9x, studied in this paper. Intuitively, p(i) is the
smallest "long-term" expected value of a under a fair schedule starting at i. Most of
the theory developed in 3 and 4 can be generalized to the case of a general
subharmonic a.

(An interesting choice for a is where al_x -= 0, alx >-_ 0; then p gives the smallest
expected value of a upon termination under fair execution. Thus, appropriate adapta-
tion of the techniques developed in this paper will enable us to derive lower bounds
for the expected value of such functions upon termination; compare with [SPH]).

A final corollary of the results developed in this paper concerns bounded waiting
time (cf. [Ral] for example). Let us define a round of execution as a portion of the
execution during which each process has been scheduled at least once. We then say
that the program has the (local) bounded waiting time property at some I if for each
e > 0 there exists an integer N N(i, e) such that the probability of reaching X from
after N rounds under any fair schedule is at least 1- e. The program has the global

bounded waiting time property if the above holds for all I and if N is independent
of i. A simple application of Theorem 3.8 implies the next corollary.

COROLLARY 8.1. The program has the local bounded waiting time property at I
if and only if %o(i)= 1. It has the global property if and only if 3/0, =-1 (i.e., if the
convergence ordinal of the program is <-_ to) and 3’ 1 uniformly on I as n to.
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SEARCHING UNINDEXED AND NONUNIFORMLY GENERATED
FILES IN log log N TIME*

DAN E. WILLARD"

Abstract. The first algorithm that searches unindexed and nonuniformly distributed ordered files in
log log N expected time is presented in this paper. Our analysis rests on a synthesis of concepts from the
literature on interpolation search and on the method of regula falsi in numerical analysis.

Key words, interpolation search, binary search, method of regula falsi, method of false position, secant
method, padded list, dense sequential file, fast trie, priority queue, stratified tree, Van Emde Boas tree

1. Goals and main results. Searching an ordered file is a very common operation
in data processing and so should be accomplished as rapidly as possible. Given N
records, stored (ideally) in successive memory-locations in the order of their numeric
keys Y1 < Y2 <" < YN, one often wishes to find a particular record whose key equals
y. Several recent papers [GRG-80], [PR-77], [PIA-78], [YY-76] have shown how an
algorithm called interpolation search and its close cousins perform this operation in
expected runtime log log N when the keys in the ordered file are generated by the
uniform probability distribution. In this paper, we study how retrieval can be
performed efficiently for nonuniform probability distributions.

Two new results are presented in this paper. The first is that the loglog N
asymptotic retrieval time of interpolation search does not remain in force for most
nonuniform probability distributions. Our second result is more surprising, and it is
that this log log N expected runtime can be re-established for nearly all nonuniform
probability distributions by using a modified version of interpolation search.

More specifically, let/z denote a probability density function over the real line.
We will say that an ordered file of cardinality N has been generated by lz iff this file
was constructed by taking N records whose keys are independently determined by/x
and storing them in ascending order. The probability density /x will be said to be
regular iff there exists some vector (bl, b2, b3, b4) such that/z and its first derivative
satisfy the following conditions:

(1.1) /z(y) -> b > 0 whenever b < y < b4,

I/z’(y)[ <- b2 whenever b < y < b4,

/x (y) 0 whenever y _<- b or y >= b4.
The symbol B will denote this vector, and we will say that/x is bounded by B when
the equations above hold. Their meaning is that /z is nonzero on only a bounded
interval and that it has a lower bound and bounded derivative on this interval. The
main algorithm of this paper will attain log log N expected runtime on any regular
probability density in the sense that there will exist one constant K (whose value is
independent of B) and a second constant KB (whose value depends on this bounding
vector) such that the equation below bounds the expected time to search a file whose

* Received by the editors June 3, 1981 and in revised form May 5, 1984. This work was partially
supported by National Science Foundation grant DCR-8412447.

f State University of New York, Albany, New York 12222 and Consultant, Bell Communications
Research.

Throughout this paper "log" designates base 2 logarithm.
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density is bounded by B:

(1.4) K log log N+
Equation (1.4) is the strongest type of asymptote one could hope for, since it states
that the bounding vector of Ix only contributes an additive constant to the total expected
time. The main unsolved open question is to make precise estimates for the values of
the constants K and Ks. The lower bound of Yao and Yao [YY-76] implies that no
search algorithm can have a constant K < 1.

Our main theorem should not be confused with remarks made in earlier papers
[GRG-80], [PIA-78] to the effect that results on uniform distributions extend readily
to nonuniform distributions ifthe distribution function D(y) [.[ Ix(x) dx is employed
to map an initial nonuniform distribution onto a uniform distribution. The disadvantage
of this method is that it relies on detailed information about Ix (or D) that is typically
unavailable or expensive. This paper considers the more difficult problem where such
information is inaccessible and answers an open question from [YY-76] by showing
that asymptotic time log log N is possible without it.

The discussion in this paper will be divided into four parts. Sections 2 and 3 will
define our new algorithm and review the previous literature. The main theorem proofs
appear in 4, and 5 discusses extensions and open questions.

Two earlier versions of our result appeared in the conference papers [Wi-81],
[Wi-83b], and these papers played a role in stimulating some subsequent interesting
research by Mehlhorn and Tsakalidis [MT-84].

2. Description of algorithms. Given an ordered file F of keys Y1 < Y2 <" "< YN,
the algorithms considered in this paper will be iterative procedures whose ith iteration
searches the segment Fi Y/, <" < YR,) by generating a cut index Ci and comparing
the cut value Yci with the search key y. If Yci Y then the search terminates successfully;
otherwise, the next iteration will examine either the subtile (YL,<... < Yc,) or

Yci <" < YR,) according to whether or not Yc, > Y.
The term iterative reduction will refer to such algorithms. The only difference

between the various algorithms within this class of procedures is their specific rule for
computing the cut index.

The simplest iterative reduction algorithm is binary search, whose cut index is the
middle position in the subtile Fi Yii <" < YR,). This index can therefore be defined
as;

(2.1) cIN [ L q- R) I
Under interpolation search [GRG-80], [PIA-78], [YY-76], the cut index approximates
the expected position of y when the R-L-1 untested interior keys of the subtile
Fi YI, <" < YR,) are generated by the uniform distribution. In order to define this
concept formally, let Ni, l, and c,i denote the following quantities:

(2.2) N, R, L,,

(2.3) l,= YR,- Y,,

(2.4) CINT, L, + y Y’ Ni.
li

(- INTIn this notation, the cut index of interpolation search is defined to be rounded
to the nearest integer.
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The new algorithm proposed in this section will be called RETRIEVE (a, 0, 4).
Throughout our discussion of this algorithm, the unsubscripted small letter y will
designate the target key that RETRIEVE is trying to find. RETRIEVE is defined as
follows" Let Ai, C-, and C- denote the following three quantities, where the parameters
a, 0, and b, satisfying 0< a <_-1 and 0, b > 0, are parameters used to fine-tune the
runtime coefficient:

(2.5) A, ON, ’ + cx/--(2.6) C- irvc, +
(2.7) C-= [cYT-- AJ
During its ith iteration, RETRIEVE will set the cut index C equal to:

I) the smaller of C- and R-1 when i= 1 (mod 3),
II) the larger of C-_ and L+ 1 when 2 (mod 3),
III) C/N when 3 (mod 3).

It will then use this cut index to reduce the search space in a manner similar to that
of all other iterative reduction algorithms.

A more formal algorithmic description of the procedure RETRIEVE can be found
in Appendix A. Our formalism can prove RETRIEVE has an expected time log log N
(in the sense of (1.4)) whenever 0 < a < 1, 0 > 0 and th --> 0, but it is preferable to focus
on the case where a=1/2 and 0=4=1 to simplify the presentation. The term
SIMPLE.RETRIEVE will refer to the variation of RETRIEVE that uses these three
values for a, 0 and b. The resulting values for Ai, C and C- in this algorithm are

(2.8) A, N/+x/,

(2.9)

The nice aspect of SIMPLE.RETRIEVE is that it has a short proof that its search
time is characterized by (1.4). However, the algorithm does not produce the optimal
constants K and KB in this equation, and the best algorithm for controlling the
coefficients remains an open question. This paper seeks simplicity rather than to attain
the best coefficients because simplicity seems more appropriate for an article introduc-
ing these results.

In 5, we will outline several techniques that can improve the coefficients but are
not discussed in detail because they complicate the presentation. For instance, the
subscript i-1 in cutting rule II will simplify our main proof, but it is less efficient
than a subscript of i.

3. Background literature and intuition. This section will begin by surveying the
literature on searching, and it will then explain the intuition behind our algorithm by
showing how it can be seen as a natural synthesis of the computer science literature
on interpolation search and the numerical literature on regula falsi. Searching an
ordered file is of course one of the oldest subjects in computer science. B-trees are a
very practical data structure in applications seeking to minimize disc accesses. They
provide a number of page accesses less than log2 N, but they are still asymptotically
logarithmic. Since the middle 1970’s, a growing number of mathematical computer
scientists have started to investigate whether better asymptotes were possible with more
refined techniques.
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The literature can be divided into two branches studying quite separate mathemati-
cal questions. [AFK-83], [FKS-82], [Jo-81], [TY-79], [Va-75], [Va-77], [VKZ-77], [Wi-
83a], [Wi-84a], [Ya-82] consider how to obtain better than logarithmic time when
searching a set of N positive integers bounded by M. These articles illustrate a diversity
of different upper and lower bounds on worst-case time depending on the amount of
memory space consumed, the specific types of queries allowed, the question of whether
N and M are allowed to obtain any possible configuration of values, and the question
of whether or not the data structure supports insertions and deletions. All the data
structures cited in this paragraph use indices, and they do not address the specific
mathematical question about the types of search times which would be possible if no
index were present and the keys were arbitrary real numbers, chosen from a universe
of infinite size, simply stored in sequential order.

The answer to the latter mathematical question appears in the literature about
interpolation search and its variants. [GRG-80], [PIA-78], [YY-76] show that interpola-
tion search has a log-logarithmic time when it searches the uniform distribution, and
[PR-77] describes a variant that has an especially short proof. The strongest version
of the interpolation result appears in Yao and Yao [YY-76]--where the interpolation
algorithm is shown to have a complexity log log N+ O(1)--which is proven to be
optimal up to an additive constant. [GRG-80] offers an alternate proof of the upper
bound. [PIA-78], [PR-77] establish short proofs of weaker results where the multiplica-
tive constant in front of the log log N is 1, whose advantage is that they are very
useful for classroqm presentation.

All the articles introducing interpolation search [GRG-80], [PIA-78], [PR-77],
[YY-76] have confined their discussion to a static environment, and we make a similar
simplifying assumption in this paper. However, both our results and those of[GRG-80],
[PIA-78], [PR-77], [YY-76] do generalize to a dynamic environment. The most recent
article on this subject is [MT-84]. It draws upon the earlier conference versions of
Willard’s papers on nonuniform densities [Wi-81], [Wi-83b] and generalizes these
results to a dynamic environment. Other articles on dynamic manipulations of sequen-
tial files include [Fr-79], [HKW-85], [IKR-80], [MG-80], [Wi-82]. These articles have
less robust models for expected time than [MT-84] and focus on quite different issues
related to numbers of page shift operations in mostly worst-case and amortized cost
models.

Two other articles that may interest the reader are [RW-84], [De-79]. Reif and
Willard [RW-84] examine parallel implementations of interpolation search and prove
surprisingly that p => 2 parallel processors have essentially no value except in the very
last iteration of this algorithm. Devroye [De-79] examines sorting problems on nonuni-
formly generated files. His work should interest:some readers because the sorting and
searching are so different in this context.

The thesis of our research project in this paper is that numerical analysis is very
relevant to interpolation search because it will enable the results of[GRG-80], [PIA-77],
[PR-77], [YY-76] to generalize to any nonuniform regular probability distribution. The
remainder of this section will prove that interpolation search must be inefficient on
nonuniform distributions and explain the intuition behind the added efficiency of our
new algorithm by citing the background literature from numerical analysis.

The analogue of interpolation search in numerical analysis is called the method
of regula falsi. Given a function g and a value y, this method consists of an iterative
procedure that conducts repeated interpolations to find an approximate solution for
g(x) y. The general procedure of this algorithm is illustrated in Fig. 1. It begins with
two points, Xo and xl, which bracket the solution point x, and applies the interpolation
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FIG. 1. The curve in the above graph represents the set ofpoints where g(x)= y. Note that the points
x and x3, converge upon the rootfrom the left. This type ofasymmetry always arises when the second derivative
is positive.

formula of (3.1) to derive the first approximation point, X2:

(3.1) x2=xo+(Xl-Xo)
y g(xo)

g(xl) g(xo)"

Next Xo and x2 are combined in like manner to produce the further improved estimate
of x3. Successive approximations follow until the desired level of accuracy is attained.
Further details about the method of regula falsi are offered in [RR-78]. The following
theorem and proof illustrate the relationship between this method and interpolation
search.

THEOREM 1. Let I-* denote a regular distribution and F an ordered file generated by
this density. Suppose that the derivative of tz is continuous and not equal to zero at the
point y. Then the expected time for interpolation search to find the record in file F whose
key value equals y is (log N) with a coefficient inside the l-notation that depends on la,.

The formal proof of Theorem 1 rests on applying concepts from probability theory
and numerical analysis in a very tedious but straightforward manner. Since the only
purpose of Theorem 1 is to explain our motivation for developing Theorems 2, 3 and
4, its formal proof is omitted, and we instead provide the following informal proof
sketch.

Intuitive justification of Theorem 1. Our intuitive proof will require establishing
three facts. The first fact is that each key Y in a/.,-generated file of cardinality N is
a random variable with standard deviation bounded by O(1/x/-). To understand this
point, let/’ denote a uniform density on an interval of length 1/bl, and YI be the ith
smallest order statistic of this distribution. Then Y’i will have standard deviation
O(1/(blx/-)), by the well-known properties of order statistics on uniform densities
[KS-77]. The central point is that if/ is a nonuniform density bounded by (b, b2, b3, b4)
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then Yi cannot have a greater standard deviation under Ix than it had under Ix’, since

Ix has nonzero values on an interval no longer than that for Ix’ and since Ix(y) is
bounded below by bl on this interval. Hence, each Y must have standard deviation
bounded by O(1/(blx/N)). We regard the latter quantity as asymptotically O(1/x/-),
since the notation of Theorem 1 allows the search time coefficient to depend on Ix.

Some notation is necessary to introduce the second fact that will be employed in
our proof of Theorem 1. Let f(x) denote the integral

(3.2) f(x) Ix(y) dy,
b3

g the inverse of the function f, and I(e) the number of iterations that the method of
regula falsi, starting with the initial bracketing points b3 and b4, needs to solve g(x) y
with an accuracy e.

[RR-78] notes that the method of regula falsi requires 12[log (l/e)] runtime to
make approximations with an accuracy of e, for any function whose second derivative
is positive (intuitively because of an asymmetry where regula falsi converges exclusively
from the left, as shown in Fig. 1, when the second derivative is positive). Since g has
a positive second derivative whenever Ix has a negative first derivative, I(e) must
clearly have a lower bound 12[log (l/e)] when Ix has a consistently negative derivative
between b and b4. By the same reasoning, this lower bound also holds when the
derivative of Ix is consistently positive.

[RR-78] also observes that I(e) is fl(log(1/e)) for nearly all other types of
executions of regula falsi (intuitively because its final iterations typically converge
upon an interval that has either locally positive or locally negative derivative for Ix).
Rather than use this fact to prove Theorem 1 in its full generality, our proof sketch
will make the simplifying assumption that Ix is a density with either uniformly positive
or uniformly negative derivative. In this case, the previous paragraph allows one to
automatically presume that I(e) is (log (l/e)).

Let Xl, x2, XI(N-1/4) denote the sequence of tested values for x that regula falsi
generates to solve the equation g(x)=y with an accuracy e N-1/4, and jl,j2,"
denote the set of tests that interpolation search makes to find the key Y whose stored
value is closest to the target y that the algorithm seeks. As the sequence xl, x2, was
shown to have length I(N-I/4)>=f(logN) by the last two paragraphs, we need
only prove that the j,j2, ,jr sequence has expected length at least
comparable to the length of the Xl, x2, , xiN-l/4) sequence to establish Theorem 1.

This last step of our intuitive justification of Theorem 1 will be especially informal.
(Theorem 1 is proven informally because the remaining details are tedious, and the
only purpose of the theorem is to explain our motivation for studying modifications
of interpolation search.)

Consider the standard deviation for the random variable Y.. Since all elements
in the sequence j, j2, ",j, other than jl are themselves nonconstant random variables,
we cannot apply the first paragraph of our proof-sketch to blithely assume that the Y
are random variables with a standard deviation O(1/x/-). However for any 1/4< a <1/2,
a formal proof can show that thej-values will drift away from their mean at a sufficiently
slow rate to assure that Y will have a standard deviation no greater than O(N-’)
and that the mean value of Y. will differ from g(xj.,) by an amount also bounded by
O(N-’). Since the Xl, X2,’" sequence requires l(log N) iterations to produce an
x-value satisfying Ig(x) -Yl < N-/4, the previous sentence implies that the Y,, Y2,"
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sequence must have expected length O(log N) to produce an indexj satisfying Y -Yl <
N-l

The main point is that the definition of regular distributions implies that the
expected difference between the target y sought by interpolation search and the closest
Y-value actually stored in the ordered file (Y1, Y2,’", YN) will be O(1/N) (with a
coefficient included in the O-notation that is proportional to 1/bl). This result implies
interpolation search requires time fl(log N) because the previous paragraph showed
this many iterations were on the average necessary for the sequencejl, j2, to produce
an index j satisfying even the weaker constraint IY-yl < N-/4! Q.E.D.

Since binary search is known to require logarithmic retrieval time and since
Theorem I shows the same is true for applications ofinterpolation search to nonuniform
densities, it is natural to conjecture that any straightforward hybrid of these procedures
would also have logarithmic search time on nonuniform densities. The latter statement
is surprisingly not true! [Wi-83b] shows that a procedure which simply alternates
between the methods of binary and interpolation search actually attains a retrieval
time O(x/log S).

An even more ideal hybrid is the procedure RETRIEVE defined in 2. Section
4 will show that RETRIEVE has a log log N search time on nonuniform densities.

Part of the intuition behind this time improvement is that since/z is continuous,
it is very similar to the uniform distribution on very short intervals (where it is essentially
constant). This implies that the efficiency of interpolation search increases as the
probability distribution becomes more nearly uniform. The algorithm RETRIEVE,
defined in 2, takes advantage of these properties by having the cuts produced by its
rules I and II resemble those of interpolation search increasingly as li gets smaller.
The principal theme of this paper is that such a method of gradual transformation
into interpolation search leads to the first algorithm with log log N search times on
unindexed and nonuniformly generated files.

Although it was not initially conceived in this manner, some partial analogues of
RETRIEVE can be found in the numerical literature on the "modified" method of
regula falsi [RR-78]. These algorithms are based on the observation that the unmodified
version of regula falsi produces a relatively inefficient calculation of the root of a
functionmwith an unfortunate bias toward searching mostly on one side of the desig-
nated root. Numerical analysts [RR-78] have found that altering their search points
so that there is a more symmetric two-sided convergence upon the root will dramatically
improve the efficiency of regula falsi. The positive and negative increments Ai of the
indices C- and C- of RETRIEVE lead to a related type of gain in efficiency. The
mathematical machinery of this paper can thus be viewed as the synthesis of the
probability techniques which have been applied to interpolation search with a relaxation
method whose partial analogue can be found in the literature on regula falsi.

4. Runtime analysis of SIMPLE.RETRIEVE. This section will prove that the time
complexity of SIMPLE.RETRIEVE satisfies (1.4). We begin by introducing some
notation.

For j 1, 2 or 3, a level-j number is an integer which equals j mod 3. The term
3-cycle will refer to a sequence of three consecutive iterations of RETRIEVE beginning
with some level-1 iteration. This terminology is convenient because RETRIEVE has
an inherently periodic nature, executing each of the cutting rules I through III once
during every 3-cycle.
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In our discussion, it will also be useful to speak of the ith 3-cycle. This term will
only be used when is a level-1 integer, and it refers to the 3-cycle that begins with
the iteration i.

We will often characterize the subtile Fi (YL, <’’" < YR,) that is searched by
the ith iteration of SIMPLE.RETRIEVE with the vector (Li, R, YL,, YR,). S will denote
this vector, and it will be called the state of the ith iteration. Intuitively, S encompasses
all the information known about F, at the beginning of the ith iteration. Each of the
quantities of l,, N,, A,, CTM, cINT., C and C- are functions of S, (since they are
computable from the four quantities of L,, R,, Y,, and YR,). Other functions of S, that
we will soon need are"

li(4.1) 3, x/-
(l’)3/2’

(4.2) )7, Y, + li Ci Li

37, intuitively represents the expected value of the key Yc, when the records belonging
to the subtile F, Y, <. < YR,) are generated by the uniform probability distribu-
tion. We will also use the quantity )7* defined in (4.3); it differs from )7, by representing
the expected value of Yc, when the keys belonging to the file F,_I Y,_, <" < YR,_,)
are generated by the uniform distribution.

l,_l( C, L,_,)
(4.3) 37*= YL,_, A

Ni-1

If is a level-1 iteration, we will say its cut value Yc, is good iff it is sufficiently
close to the expected value 37, to satisfy:

(4.4) Yc,- fi, < a,.
Similarly/fj is level-2, we will say it is good if Ycj satisfies:

(4.5) Ycj -fil < j-,.

The intuitive reason that slightly different rules are used for defining level-1 and level-2
goodness is that 2 assigned a subscript i- 1 to cutting rule II but not I. (This subtle
distinction will simplify our proof because if is level-1 then j i+ 1 is level-2 and
the right sides of (4.4) and (4.5) both equal 3,.) A 3-cycle will be said to produce a
good divide if both its level-1 and level-2 iterations are good.

The probability of a 3-cycle producing a good divide depends of course on the
value of l, at the beginning of the 3-cycle and on the particular density/x being searched.
Appendix B proves /z:l T, > 0 such that if li < T, then the ith 3-cycle will have a
probability greater than 1/2 of producing a good divide. This fact is significant because
the next five lemmas will establish the existence of a constant K such that SIMPLE.
RETRIEVE can produce no more than K log log N good divides while l, < T,.
The combination of these two facts will provide the main machinery for proving
the log-logarithmic expected time of SIMPLE.RETRIEVE.

LEMMA 1. Each iteration ofa reduction algorithm searchingfor the key y will satisfy:

(4.6)
(C,- cNT)I,= , -Y,N,

/INT’
’-i-l! =)7,_y"(4.7)

(C, 1,_
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Proof. Since (4.6) and (4.7) differ only in their subscripts, both have similar proofs,
and we will prove only the former.

Equation (4.2) clearly implies

(4.8) Ci Li +
li

The right side of (4.6) then follows by substituting (2.4) and (4.8) into the left side of
this equation and simplifying the result. Q.E.D.

Throughout the rest of this paper, we use the special notation convention that if
the ith iteration either finds the key y or reduces the search space to the empty set
(indicating y is not stored in the file F) then Ni/a li/l 0. The iteration i+ 1 will be
called terminating when these conditions hold.

LEMMA 2. Suppose is a level-1 iteration. Then
A) Equation (4.9) will hold if the ith iteration produces a good cut but not a

terminating condition.
B) Both (4.9) and (4.10) will hold if the ith 3-cycle produces a good divide but not

a terminating condition.

(4.9) Y < Yc, < Y + 36,

(4.10) Y > Yc,+, > Y 36.

Proofofassertion A. The proof is divided into two parts, confirming, respectively,
Yc, < Y + 36 and Yc, > Y.

Proof that good level-1 iterations satisfy Yc,< y+36. Recall that SIMPLE.
RETRIEVE ditters from RETRIEVE by having A, C and C- defined by (2.8)-
(2.10) rather than by (2.5)-(2.7). From the combination of (2.8) and (4.1), we may
infer that

liA(4.11) 6,-
N,

Section 2 defined the cut indices of level- 1 iterations to be C MIN (C, R 1).
From (2.8) and (2.9), and the fact2 A >_ 1, it is easy to see then that

INT < 2A(4.12) C,- ., i.

Multiplying the left and right sides of (4.12) by l/Ni and using (4.6) and (4.11) to
simplify the result we obtain

(4.13) -y<=26.

Substituting this inequality into (4.4), we conclude that a good level-1 cut must satisfy
Yc, < Y + 3 6i. Q.E.D.

Proof that good nonterminating level-1 iterations satisfy Yc,> y. The proof is
divided into the two cases where C R- 1 and C C. The proof for the first case
is trivial since if Yc, <-- y then there can be no space for the key y between the addresses
Ri- 1 and R, implying a terminating condition in contradiction to the hypothesis of

A, is always -> in (2.8) because Ni is ->2 for nonterminating iterations.
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Lemma 1. The proof for the case Ci C- uses the fact that (2.9) implies

(4.14) Ci- CNT> Ai.

Multiplying both sides by li/N and again using Lemma 1 and (4.11) to simplify the
result, we obtain 35-y > 6. Inserting this inequality into (4.4), we conclude that good
level-1 cuts must satisfy Yc, > Y. Q.E.D.

Proof of assertion B of Lemma 2. We have already verified (4.9) and therefore
only (4.10) needs examination. The inequality Yc, > Y (from (4.9)) implies that L+I Li.
Substituting this equality into cutting rule II, we obtain that Ci+l equals the larger of
L + 1 and CNT-i A. As this cutting formula is the precise mirror image of cutting rule
I, a proof analogous to the proof of (4.9) will verify (4.10). That is, the proof is the
same as the confirmation of (4.9) except that all references to (2.9), (4.4), (4.6) and
cutting rule I should be replaced by corresponding citations to (2.10), (4.5), (4.7) and
cutting rule II. Q.E.D.

LEMMA 3. Let again denote a level-1 iteration of SIMPLE.RETRIEVE. If the ith
3-cycle produces a good divide then the state S+3 will satisfy

(4.15) li+ < 66i,

(4.16) N+3 < 4A

Proof If SIMPLE.RETRIEVE terminates during the ith 3-cycle then the equations
above will hold because li+3 Ni+3 --0. On the other hand, if the 3-cycle is nonterminat-
ing then Lemma 2 indicates y 36 < Yc,+, < Y < Yc, < Y + 36. This chain of inequalities
immediately verifies (4.15), since it implies li+3 <- Yc,-Yc,+l<6ti It also implies
Ni+ C Ci+ (since the chain Yc,+I < Y < Yc, forces Ci+ Li+ Ri+ Ci)o By the
definition of cutting rules I and II, Ci-Ci/l <- C-C-. The right side of the latter
inequality is less than 4Ai, by the combination of (2.9), (2.10) and the fact that A > 1
under SIMPLE.RETRIEVE. Equation (4.16) follows by combining the inequalities
from the last three sentences. Q.E.D.

We need one more definition before we can introduce our main theorems and
lemmas. Define the 3-cycle that begins with the iteration to be:

1) Type 1 if[ the state Si/3 at the end of this cycle satisfies N/3 < 8x/;
2) Type 2 if[ this cycle satisfies simultaneously:

13/2(4.17) li+3< 12,i

(4.18) Ii<1/72,

(4.19) l, > 1/N.

The remainder of our analysis of SIMPLE.RETRIEVE will have three parts. Lemma
4 will show that the condition of a good divide combined with li <z implies the
presence of either a Type-1 or Type-2 event. Lemma 5 will state that no more than
O(log log N) such events may occur before the search terminates. The last part of our
discussion will show that these events occur with sufficient probability to imply the
log log N runtime of SIMPLE.RETRIEVE.

LEMMA 4. Let again denote a level-1 iteration of SIMPLE.RETRIEVE. If l < 7
and if the ith cycle produces a good divide then this 3-cycle will also produce either a
Type-1 or Type-2 cycle.

Proof It is useful to divide our proof into two cases where we separately consider
the possibilities that l-< 1/N and l > 1/Ni.
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Proof that good divides satisfy Type-1 when li <- 1/Ni. Substituting this inequality
into (2.8), we obtain Ai __< 2v/. In this context, Lemma 3 implies a good divide satisfies
Ni+3 < 8x/-, i.e. it is a Type-1 event. Q.E.D.

Proof that Type-2 events occur when li > 1/N and the hypothesis of Lemma 4 is

satisfied. The assumptions in this case already imply that l satisfies (4.18) and (4.19),
and therefore all that remains to prove is (4.17). The proof of this inequality is also

13/2straightforward since (4.1) and the inequality l> 1/N imply 15 <2. and we can
then apply the first equation from Lemma 3 to conclude that good divides satisfy
(4.17). Q.E.D.

LEMMA 5. There exist constants K1 and K2 such that no more than K1 log log N1
Type-1 and K2 log log N Type-2 cycles can occur in the course of the search of a file
whose initial cardinality is N1.

We have divided the proof of Lemma 5 into two parts.
Prooffor Type-1 events. The definition of an iterative reduction algorithm implies

its iterations will satisfy Ni+l =< N- 1. This inequality, combined with the definition
of Type-1 events, implies that the number of Type-1 events needed to cause the N-value
of the state S to decrease to less than or equal to 1 is O(log log N). Since all iterative
algorithms terminate by the time Ni= 1, this observation implies no more than
K log log N1 events can occur, for some constant K. Q.E.D.

Prooffor Type-2 events. From the definition of Type-2 events, it is easy to see that
each such occurrence will cause log log (1/l) to increase by at least f(1) between the
times of states S and S+3. Since l < at the time of the first Type-2 event, and since

l always decreases as increases, it follows that a sequence of I(log log N) Type-2
events will cause l < 1/N1, making l too small for any subsequent iteration to satisfy
the definition of Type-2. Therefore, we have verified the existence of some constant

K2 such that no more than K2 log log N1 Type-2 events can occur. Q.E.D.
Appendix B uses well-known methods from numerical analysis and statistics to

prove the following result"
THEOREM 2. /B ::iT> 0 such that if tx is a regular density bounded by B and if

li < T at the beginning ofthe ith 3-cycle, then this 3-cycle will have a probability exceeding
1/2 ofproducing either a good divide or a termination.

We will now use Theorem 2 to prove our main two theorems.
THEOREM 3. ::IK /B :l Tn > 0 such that ifseveral iterations of SIMPLE.RETRIEVE

have already searched a probability density tx bounded by B and produced a state
where l < Tn then the expected number of additional 3-cycles to complete the search is
_-<K log log N. In particular, if K and K_ are the constants satisfying Lemma 5, then
one constant satisfying Theorem 3 is K 2(K + K2).

Proof. Let T denote the constant defined by Theorem 2 and Tn MIN (T, 2),
and I(S) denote the expected number of 3-cycles for SIMPLE.RETRIEVE to complete
its search once it has reached a state S satisfying l < Tn. Also, let I*(Si) denote the
expected numbers of events of Types 1 and 2 during this search. Lemma 5 implies
I*(S) <= (K + K2) log log Ni, and the combination of Lemma 4 and Theorem 2 imply
I*(Si) >- I(S)/2. Combined these inequalities imply I(S) =<2(K + K2) log log N.

Q.E.D.
We now state the main result of this paper where SIMPLE.RETRIEVE is shown

to have an expected time K log log N+ Kn with only the second coefficient depending
on the bounding vector B of

THEOREM 4. ::IK /B ::I Kn ttx tN" If tx is a probability density bounded by B and
F is a file ofN records generated by Ix, then K log log N+ Kn upper bounds the expected
number of 3-cycles needed by SIMPLE.RETRIEVE to search F.
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Proof. Since the level-3 iterations of SIMPLE.RETRIEVE are defined to be binary
cuts and since (1.1)-(1.3) imply that the probability density of/x is bounded below
by bl and above by bl + b2(b4-b3), it is easy to prove that VB =1A < 1: the expected
value of/i+3 is <A/i whenever SIMPLE.RETRIEVE begins in a state S and is searching
a density bounded by B. Let TB denote the constant defined by the =1’=1 statement of
Theorem 3. Since /+3 is always <l, the first sentence implies IB ::iKB llz fN:Kn
bounds the expected number of 3-cycles for SIMPLE.RETRIEVE to reach a state
where < Tn (when it is searching N records generated by a density/z bounded by B).

Theorem 3 indicates that the additional search time after reaching such a state
is _-<K log log N. The total cost is therefore _<-K log log N+ Kn. Q.E.D.

5. Extensions and open questions. The main open question raised by this paper is
how to minimize the constants K and Kn. Our intuition is that these constants can be
given practical values in many computer applications, but this paper has favored brevity
of proof over a more detailed analysis.

One technique used to abbreviate the proof was to endow RETRIEVE with several
features which unnecessarily increase the coefficient but simplify the presentation. For
example, the subscript i-1 in the cutting rule II in 2 is clearly less efficient than a
subscript i, but it simplifies the proof because the consecutive level-1 and level-2
iterations then use the same values for A and CINT in their definitions of C+ and C-.
Another example is that Theorem 4 generalizes for any 0 < a < 1, 0 > 0 and b >= 0, but
we have focussed on the particular case a 1/2 and 0 b 1 for simplicity. Our results
do not generalize when 0 =0, but the proof methods from [Wi-83b] imply a time
O(x/log N) is possible in this case. If a were set equal to one then Theorems 3 and 4
would not hold, but a modified result would be valid which would state /B =10 =lb =lK
insuring RETRIEVE (1, 0, b) has an expected time K log log N on N element files
whose generating density is bounded by B. This degenerate version could have practical
implications since the coefficient should improve when one does not have to raise to
a fractional power. Also, note that Theorem 4 generalizes when b 0. We assigned th
a nonzero value in this paper to simplify the proof.

There are several more elaborate refinements of RETRIEVE which complicate
the proof but lead to better coefficients. One rule with a better coefficient would set

Ci equal to:
cINT when A < N/2,i) the median value of the three indices Li + A, and R A

ii) CPTM when A,_-> Nil2.
Another example would set C equal to the median value of the indices CPTM, C,
and C-. A third alternative consists of setting C equal to:

a) the median value of CPTM, C, and R- 1 when is an even number,
b) the median value of C/BIN, C-, and Li + 1 when is odd.
All the procedures above would become even more efficient if (2.5) was replaced

by

(5.1) A,= OINi+ x/(R,-C)(L,-C,)/N3.
Numerous other algorithms can also be developed for attaining log log N runtime

on nonuniform regular probability densities, as can be surmized by surveying the large
number of papers that numerical analysts have written about the method of regula
falsi and its modifications (see [RR-78] for some references). Many of these numerical
procedures can be modified to attain a log log N asymptote in the context of the special

This upper bound is tight for some but not other vectors B.
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searching problems in this article. One striking fact is that none of the commonly used
versions of the method of regula falsi is directly analogous to RETRIEVE. It would
be useful to determine which of the many possible alternatives has the best coefficient
in typical applications.

The log log N result of this paper can also extend beyond the set of regular
probability densities to nondifferentiable functions. Specifically, log log N time will
remain valid for certain values of a, 0 and b when (1.2) is replaced by the weaker
requirement that there exist constants b21 and b22> 0 such that all Yl and y2 satisfy

[u(yl)- u(yz)l <- b2ly2-yl.
Also, if one makes the further assumption that the probability density u plays the
double role of generating both the construction of file F and the requests for retrieving
records from it, then the log log N expected runtime of this paper can extend to
densities that do not satisfy (1.1) (i.e. with zeros).

Readers who found this paper interesting may also wish to examine [Wi-84b],
[Wi-84c], where we discuss two other applications of randomized search algorithms,
and [MT-84]. The latter paper was stimulated by [Wi-81], [Wi-83b], and it generalizes
our result by making the procedure slightly more robust than in the previous paragraph
’and dynamic. An important distinction between our work and [MT-84] is that we use
precisely N units of space to represent N records, and [MT-84] obtains further
improvements by increasing the memory space by a constant factor.

Appendix A. This appendix gives the formal algorithmic definitions for iterative
reduction and for the algorithm RETRIEVE. In order to make our discussion precise,
Yo and YN+I designate lower and upper bounds on the permissible range of keys.
Also assume the file examined by the first iteration of the algorithm A has been padded
with these pseudo-records, and it is thus equivalent to F (Yo <’’" < Yv/). (This
assumption has appeared in the previous literature’, it is necessary to make CINTi
consistently well defined, and it is equivalent to the statements Yo- b3 and Yv+ b4
in the context of the definition of regularity (i.e. (1.1)-(1.3))).

Each iterative reduction algorithm A will possess an associated subroutine, a,
whose function is to generate a cut index Ci when given arguments consisting of a
subtile F, the record y sought by A, and an integer indicating the number of the
present iteration. The formal description of an iterative reduction procedure is given
below. The specific algorithm RETRIEVE (a, 0, b) is the specialized version of this
procedure that results from the cuts generated by rules I-III of 2.

PROCEDURE A[(YL<... < YR) Y; i]
IF R- L+ 1 THEN RETURN ("Can’t Find Key");
ELSE DO:
SET C an address between L and R determined

by the subroutine a.
IF Yc =Y THEN RETURN ("Found Key");
IF Yc <Y THEN CALL A[Yc <’’ .< YR); Y; i+1];
IF Yc>y THEN CALL A[(YL<...< Yc);y;i+l];
END;

END;

Appendix B. Consider a random process that uses the uniform probability distribu-
tion to draw M independent keys between zero and one and then sets X equal to
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the ith smallest of these keys. Our proof of Theorem 2 will rest on three preliminary
lemmas.

LEMMA 6. Prob ([X-i/(M/ 1)1< i/x/M/ 1>=.
Proof. Let P(x) denote the probability density indicating the likelihood that

X -x. It is well known [KS-77] that P(x) equals the beta function below"

(B.1) P(x) M|M- \
,-1 -,x (1 -x)

\ /i-1

This function is known [KS-77] to have mean=i/(M/l) and variance=
i(M + 1 i)/((M + 1)2(M + 2)). Therefore Chebyshev’s inequality implies

(B.2) Prob ( M+I
i(M+l-i) ) 3

<2

The inequalities M + 1 < M + 2 and i(M + 1 i)/(M + 1)2 __< 41_ certainly imply

4 i(M+l-i) 4(B.3) 2
(M + 1)2(M + 2)

< ’M+I
Lemma 6 follows by substituting the right side of (B.3) into (B.2). Q.E.D.

We will now introduce the main notation employed to prove Theorem 2. For any
al < a2 let I,a,,,2(y) denote the probability that a record randomly generated by/x is
<y when it is known that this record lies between al and a2. I,,,,,,2(y) intuitively
represents the cumulative distribution function for the restriction of/z to the interval
(al, a2); it is formally defined by (B.4).

dx
(B.4) I.,,,,(y) i Ix(x) dx"

Also let Iambs(y) denote the cumulative distribution function for the uniform distribution
over the interval (al, a2), i.e.

(y- al)(B.5) I,2(y)=(a2_al).
-1 andThe symbols I,,a I1: will denote the inverses of the functions defined in (B.4)

and (B.5). Thus (B.5) implies

(B.6) I + x(,2(x) al

We need two more preliminary lemmas to help prove Theorem 2.
LMMn 7. VB :IT> 0 Vtz Vx: Ifl is bounded by B and if 0< (a2-- al) < T then

(B.7) I1-1 ,(x)- -1
tza Ia,az(X)l<(a2--al)3/2.

Proof The definition of regular probability densities (i.e. (1.1)-(1.3)) implies
/B :IC such that all/z bounded by B and all ala2 and y satisfy

(B.8) [I,,,,(y)- I,,,(y)[ < C(a- a).

Equations (B.6) and (B.8) imply that the inverse of I,, will satisfy a similar condition,
i.e. they imply VB ::lk such that all/z bounded by B and all ala2 and x satisfy

(B.9) --1I,a,(x) I,(x)J<k(a2-al)
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Define T to equal 1/k2. Then it is apparent that]Itala2(x)-I iala2(X)l<(a2_al)3/-12

whenever (a2-al)< T. Our construction has thus shown that the value of T depends
only on the vector B, as claimed by Lemma 7. Q.E.D.

LEMMA 8. ’qB =1T > 0 such that if 0 < a2 a < T, if tz is bounded by B, and ifM
records are randomly generated by the restriction of tx onto the interval (al, a2) then the
jth smallest of these records, denoted Y, will satisfy

Iaa2 <+(a2- al)3/2 >-
M+ M+I 4

Proof The random variable Iaa2(Y) must have the exact same probability
distribution as X, sinceX and Y differ only by the change of coordinates defined
by I,. Lemma 6 therefore implies

{ 1}3(B.11) Prob I..(Y) J < >

An immediate consequence of (B.11) is:

Prob {I- [max (0; j
a,a2 M+ 1

(B.12)

1

<1-1 min 1; J + >-"’"2 M+ 1 /M+I 4

The assertion of Lemma 8 now follows by substituting Lemma 7 and (B.6) into the
first two inequalities in the statement (B.12). Q.E.D.

We are now ready to prove Theorem 2. The proposition claims" VB :1 T> 0 such
that if SIMPLE.RETRIEVE is searching a density bounded by B and if li < T at the
beginning of its ith 3-cycle then there will be a probability exceeding 1/2 that either this
cycle produces a good divide or that it produces a termination.

ProofofTheorem 2. Let B denote/x’s bounding vector and T the constant satisfying
Lemma 8. Assume the ith 3-cycle begins in a state Si where i < T, and let J/ and J_

denote the two quantities defined below.

(B.13) J+=min (Ri-1; [cNT+ A, ]),

(B.14) J_ =max (Li+ 1; [cIiNT--AiJ).
Then after an easy translation of notation, Lemma 8 implies that there is a probability
greater than 1/2 that (B.15) and (B.16) simultaneously hold:

(B.15) J+ Li li

(B.16)
(J_-Li)li

Since is a level-1 iteration, it is apparent that C J/. Substituting this equality
and (4.2) into (B.15), we obtain that the iteration will satisfy (4.4) whenever it satisfies
(B.15). This fact is significant because (4.4) is the first of the two conditions necessary
to establish the occurrence of a good divide.

We claim that either a termination or a good divide must occur whenever (B.15)
and (B.16) both hold. If a termination does not occur then the previous paragraph
combined with Lemma 2A implies Yc,>y, which in turn implies that Ci+l J_.
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Substituting this equality and (4.3) into (B.16), we obtain (4.5), by the same reasoning
that was used to verify (4.4) in the last paragraph. The claim of the current paragraph
follows now from the fact that (B.15), (B.16) and the absence of a termination imply
the satisfaction of (4.4) and (4.5).

Since the first paragraph of this proof showed that (B.15) and (B.16) held with a
joint probability greater than 1/2, this probability must also characterize the likelihood
that either a good divide or termination occurs. Q.E.D.
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NON-EXCLUSIVE LOCKS*
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Abstract. We give a probabilistic model for conflicts among transactions in a database. We extend
recent work (Mitra and Weinberger, J. Assoc. Comput. Mach., 31 (1984), pp. 855-878) by allowing two

kinds of locks for concurrency control, exclusive and non-exclusive. Thus read locks allow shared access
and are therefore non-exclusive, while write locks are exclusive. An arriving transaction is blocked if it

conflicts with any of the transactions already undergoing processing; otherwise, it is accepted for concurrent

processing. Our treatment, which has probabilistic, combinatorial and analytic components, yields exact

formulas for performance measures, such as mean concurrency and throughput. For large databases special
formulas are derived and proven to be asymptotically exact. These formulas are simple and also fit well to

the exact formulas. What are non-exclusive locks worth? A succinct answer is given for this important design
question.

Key words, parallel processing, shared data, databases, concurrency control, asymptotics, stochastic
networks.

1. Introduction. In this paper we probabilistically model the effect of conflicts
among transactions in a database and obtain exact formulas for equilibrium perform-
ance measures. We extend the work reported in [1] by allowing the transactions to
require two kinds of locks, exclusive and non-exclusive. Thus read locks allow shared
access and are therefore non-exclusive, while write locks are exclusive. Formulas for
large databases are derived and proven to be asymptotically exact; these formulas are
simple, amenable to heuristic interpretations and found to fit well to the solutions
obtained by the exact formulas.

What are non-exclusive locks worth? We obtain here a succinct answer to the
above question. Obviously non-exclusive locking increases the level of concurrency in
transaction processing, but it is important to know the extent of the improvement as
it has to be weighed against the additional cost of administering such a facility.

There are many different concurrency control methods in databases, but all share
the characteristic that when there is a conflict over the use of a resource, either a
transaction is delayed, or a transaction may have to have its work undone later.
Generally the conflict is over some item in the database, and without some concurrency
control the database may end up in an inconsistent state. We give quantitative measures
of the effects of conflicts for the model to be described below.

We use the language of databases in this paper, but the problem of quantifying
the effects of conflicts is inherent to parallel processing with shared memory. Processes
requiring common variables in memory interfere with each other and when this occurs
concurrency control algorithms with locking as an important component are required
to resolve conflicts. The results obtained here are of interest in this general context.

We model concurrency control by assuming that each transaction obtains all its
locks before it begins processing. The central focus of this investigation is specifically
the interference phenomenon among transactions, the cause of conflicts. In our model
each transaction is specified by a list of nonrepeated items in which each item requires
either an exclusive lock or a non-exclusive lock. Any two transactions interfere with
each other if and only if, either an item is required to be exclusively locked by both

* Received by the editors December 15, 1983, and in revised form August 25, 1984.

" AT & T Bell Laboratories, Murray Hill, New Jersey 07974.
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transactions or an item is required to be both exclusively locked and non-exclusively
locked by the transactions. An arriving transaction is blocked if it interferes with any
of the transactions already undergoing processing. If an arriving transaction is not
blocked, then it is accepted for processing. Processing of all transactions is done
concurrently. Note that at any time all transactions undergoing processing are mutually
non-interfering.

We exactly analyze the above model. Our treatment has probabilistic, com-
binatorial and analytic components. The mathematical model is probabilistic with an
underlying Markov process, in which the states are in a one-to-one correspondence
with combinations of mutually non-interfering transactions. The equilibrium Markov
process is tractable on account of it being time-reversible. This tractability reduces the
problem to one of evaluating the equilibrium distribution’s partition function. The tie
with combinatorics arises thus: the partition function, while originating in the equili-
brium distribution ofthe Markov process, is also the generating function ofthe sequence
which enumerates the number of states having an identical number of constituent
transactions. The third and final part of the paper is on the asymptotic analysis of the
formulas obtained in the earlier parts of the paper. Formulas are derived which are
asymptotically exact for large databases.

Recently several papers [2]-[7] have appeared which model the behavior of
databases. However, we know of no previous paper which reports on performance
results from exact probabilistic models of the interference phenomenon in the presence
of non-exclusive locking. On the other hand, we have made several simplifying assump-
tions on aspects of real systems. The most important of these is the assumption that
the locks on all the items involved in a transaction which is accepted for processing
are granted in one atomic operation. Usually [8] locks are obtained during the course
of a transaction, and released when the transaction commits or aborts. If the part of
the transaction during which locks are being obtained is short, then our model is a
good approximation. Alternatively, blocking in our model corresponds to rejecting a
transaction using optimistic concurrency control [8]. The concurrency control modelled
here shares with optimistic concurrency control the following features" conflict detec-
tion is done only at one time, and the conflicting transactions are aborted so that no
waiting or deadlock is involved. However, the two differ in that in the latter case the
transaction commits or aborts at the conclusion of processing, while in the model
treated here this is done at the beginning.

Another important simplifying feature of our model is that it is a blocking system.
That is, blocked transactions are lost. In reality blocked transitions are resubmitted
for processing. However, blocking systems provide fundamental insights even into
lossless systems. In [1] a method has been given for using the results for the blocking
system to approximate a system in which blocked transactions wait for a random
period before retrying for the necessary locks. This method applies as well in the
present context, i.e. in the presence of non-exclusive locking.

There are certain noteworthy and fundamental differences from the analysis in
[1] beside the obvious additional complexity due to the presence of non-exclusive
locks. First, in [1] it was possible to obtain a Markov process which was an aggregate
of the basic, primitive Markov process which models the interactions between the
transactions. The aggregated process was convenient since it was relatively simpler
and also because the system performance measures could be obtained from it. Here,

Note added in proof A recent exception is by S. S. Lavenberg, A simple analysis ofexclusive and shared
lock contention in a database system, Proc. 1984 Sigmetrics Conference, Cambridge, MA, pp. 143-148.
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no such relatively simple aggregated Markov process exists. The system performance
measures need to be computed here from the solution of the basic Markov process.
Second, a recursive formula for the partition function was derived in [1] and this too
we were unable to extend. However, the important asymptotic formulas in [1] are
completely subsumed by the results reported here.

We draw attention to some drawbacks of the model considered here and the
potential of overcoming them in future work. First, we note that the present model
does not admit skewness of the usage profile of individual items; i.e., all items are
equally likely to be constituents of transactions. We have investigated a generalization
of the present model in which the database is divided into subsystems, or sub-databases,
and items in any subsystem are homogeneous in being equally likely to be constituents
of transactions, but the transactions may have preferences concerning the subsystem
from which it may pick items for their composition. As an example, the following
extreme case is allowed in the generalized model: all transaction lists include a particular
item; to handle this case, a subsystem is defined with the particular item as its sole
member. Such a generalized model has features of a stochastic network, and we have
been able to extend most of the analytical techniques developed here to the more
general model. However, further work needs to be done.

The performance of realistic databases are constrained by other factors besides
locking and these have been ignored in the present analysis. These include, in addition
to the aforementioned skewness in usage profiles of items, available processing power
and data transfer capacity for transaction processing. We should point out that in [1]
we have considered this. In [1, 6] we have given the solution for a system in which,
in addition to locking, the details of transaction processing are modelled by a queueing
network. The reader may verify that this result in conjunction with the results given
in this paper naturally extends to yield a solution for a generalized model which
includes the constraints oftransaction processing, as well as exclusive and non-exclusive
locking. However, efficient algorithms for the computation of the solution are not
available at present.

1.1. Physical model. We let the database be composed of N items where an item
is the smallest entity in the database which may be locked. Transactions are associated
with lists of database items which are to be processed. The lists are partitioned into
two parts, with the items in the leading part requiring exclusive locks and items in the
trailing part requiring only non-exclusive locks. Thus T= (I;I., I3) signifies that
transaction T calls for the processing of items I, I2, 13 in the database and, furthermore,
item I requires an exclusive lock, while items I and 13 require only non-exclusive
locks. The items in a transaction list are not repeated. We assume that all transactions
exclusively lock at least one item.

Requests for transaction processing arrive exogenously to the database. On arrival

of such a request the database lock manager decides to either grant or refuse the locks
required on the following basis. Let Wa and Ra be the lists of exclusively locked and
non-exclusively locked items respectively, in the database at the time of arrival. Also
let Wa and R be the lists of items required to be exclusively locked and non-exclusively
locked, respectively, by the arriving transaction. The locks are granted if

(1) (W n (Ra U W) =)n (Ro n w ),

and denied otherwise. If the locks are denied then the request for processing the
transaction is blocked and cleared, i.e. discarded. Otherwise, the transaction is accepted
for processing and the lock manager places the appropriate locks on all the items in
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the accepted transaction’s list in one atomic operation. The locks are not released until
the entire processing of the transaction is complete, at which point all the locks involved
with the transaction are simultaneously released.

All transactions that are accepted for processing are processed concurrently, i.e.
in parallel.

There are p classes of transactions. The transactions in a class have the same
number of items requiring exclusive locks and non-exclusive locks. For example, these
numbers may be 1 and 2, respectively, in which case all transactions in this class have
3 items to process, 1 item requiring an exclusive lock and 2 additional items requiring
non-exclusive locks. In general we letj and k denote the numbers of items requiring
exclusive locks and non-exclusive locks, respectively, in each transaction of class
1 _-< tr_-< p. Hence there are

j

transactions in class tr. A typical transaction in class tr, T), is associated with a
partitioned string of items thus

(2) T’)= (Ii(1), Ii(j); Ii(jr+l)," I,(j+k)), 1 i
j+k j

Transaction classes may be distinguished in other respects, such as arrival rates and
processing times.

We resee the symbols and c to index the classes and it is understood even
where it is not explicitly stated that 1 p and 1 c p.

The stream of processing requests for a paicular transaction of class is assumed
to be Poisson with rate parameter A. That is, on average every 1/A sec a fresh request
arrives for the processing of each transaction T) in class . Hence on average a total
of

(3)
J+ J

requests of class arrive per sec. We call (r, ,. , r) the total offered trac.
The processing time for a transaction is assumed to be an independent random

variable with an arbitra but common distribution for all transactions in a class. The
mean processing time for an individual transaction of class is 1/ sec. Finally, we
let

(4) 0/, lNNp

and refer to it as the class loading. We call (O1, 0,""", 0) the loading.
Our objective is to calculate, for the system in statistical equilibrium, the mean

concurrency, the blocking probabilities and throughputs of the various classes of
transactions.

(i) In 2.1 we define the states and transition rates of the Markov process which
exactly reflect the physical model. The state at a paicular instant of time is represented
as a list of transactions undergoing processing at that time. The concurrency of the
state, a p-tuple, is extracted from the state representation and it is an enumeration, by
class, of the transactions undergoing concurrent processing.
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(ii) In Proposition 1, 2.1 the equilibrium distribution of the states is obtained.
The product form of the equilibrium distribution is a consequence of the time-
reversibility of the equilibrium Markov process.

(iii) The system concurrency is the same as the concurrency of the state of the
system. Many states have concurrency equal to a particular value of the system
concurrency. Proposition 2, 2.2 enumerates the number of such states.

(iv) The equilibrium distribution of system concurrency is obtained by combining
Propositions 1 and 2 and is given in Proposition 3, 2.3. The only component of the
distribution requiring substantial computation is the normalization constant, also
known as the partition function.

(v) The mean concurrency, throughput and blocking probabilities for each class
are performance measures of the system and these are shown to be obtained from the
partition function in Proposition 4, 2.4.

(vi) Prior to Proposition 5, 2.5, the performance measures have been calculated
for given arrival rates of individual transactions. In Proposition 5 these measures are
derived for given total offered traffic, "r.

(vii) Section 3 derives the asymptotics of the performance measures for N
p O(1), 1 =< or__< p. The following intuitively appealing result is obtained:

Blocking prob. of { Number of items processed by } Weighted fracti6n of database }class cr transactionsJ individual class r transactions [touched by individual transactions

[Number of items non-exclusively [Weighted fraction of database- locked by individual class touched by non-exclusively I[ r transactions J [ locked items

(viii) Section 4 answers the question: what are non-exclusive locks worth? For
systems with only 1 transaction class, it is shown that the fractional improvement in
blocking probability due to non-exclusive locking is asymptotically equal to the square
of the fraction of total locks that is non-exclusive. A related statement holds for
multiple-class systems.

(ix) Numerical results derived from the exact formulas and the asymptotic for-
mulas are obtained and compared in 5.

For the convenience of the reader, we have listed in Appendix 1 the important
variables defined in the text.

1.3. A simple example. The following example is given to illuminate the model
described in 1.1. The database contains four items, i.e. N 4, and the items are
indexed 1-4. There are two classes of transactions, i.e. p 2: transactions in class 1
consist of two items to process with one item requiring an exclusive lock and the
remaining item requiring a non-exclusive lock; transactions in class 2 consist of four
items to process with 1 item requiring an exclusive lock and the remaining 3 items
requiring non-exclusive locks. That is,

(j, k)= {(1, 1), 1,
(1, 3), r=2.

There are consequently 12 transactions in class 1 and 4 transactions in class 2. The
transactions are indexed as follows"

Transaction index:
Items in transaction:

Transaction index:
Items in transaction:

2 3 4 5 6 7 8 9 10 11 12
(1;2) (2;1) (1;3)(3;1) (1;4) (4;1) (2;3) (3;2) (2;4) (4;2) (3;4) (4;3)

class transactions
13 14 15 16

(1;2,3,4) (2;1,3,4) (3;1,2,4) (4;1,2,3)
class 2 transactions



PROBABILISTIC MODELS AND ASYMPTOTIC RESULTS 1035

The phenomenon of interference between transactions is exemplified by the fact
that transaction 13 interferes with all other transactions, and transaction 1 interferes
with all transactions except transactions 8, 10, 11 and 12. The detailed nature of
interactions stemming from this phenomenon is shown in the state transition diagram
in Fig. 1, where, for reasons of simplicity, we have assumed that the processing times
are exponentially distributed.

{8} {9} {,0}

FIG. 1. State transitions in simple example of 1.3.

In Fig. 1 we let the states of the system be specified by lists in braces of transactions
under concurrent processing in the database. Thus the state {1, 10} denotes that
transactions 1 and 10 are undergoing concurrent processing. As this implies that items
1 and 4 are exclusively locked and that item 2 is non-exclusively locked, the only way
in which an additional transaction may be accepted for processing is for a request for
processing of transaction 8 to arrive, in which case a transition occurs, in agreement
with the figure, to state {1, 8, 10}. The remaining possible transitions from state {1, 10}
are to states {1} and {10} which occur on completion of processing of one or the other
of the pair of active transactions.

2. Equilibrium distributions, mean concurrency and other performance measures.
2.1. States, concurrency of state. In general the states are specified by lists of

(nonrepeated) transactions. Thus if s is a state then it has a specification as follows:

s={ ’’(’) (’
-s(]), ", Ts()(s)), Is(l)," Ts(c2(s)), s(1), S(Cp(

The state s is admissible if and only if the exclusively locked items in the constituent
transactions are mutually disjoint and the union of all exclusively locked items is disjoint
from the union of all non-exclusively locked items. We let S denote the collection of
admissible states. Thus, the constituent transactions of an admissible state are non-
interfering, and by the statement that the system is in state s, s S, we mean that the
transactions in the specification of s have locks and are undergoing concurrent process-
ing. Non-admissible states do not satisfy the above condition of non-interference among
constituent transactions.

The state s in (5) corresponds to c(s), c2(s),’’ ", Cp(S) distinct transactions of
classes 1, 2,..., p, respectively, being concurrently processed. It is therefore natural



1036 DEBASIS MITRA

to refer to

(6) c(s) _a__ (Cl(S), ca(s),’’’, cp(s))

as the concurrency of state s.
Let P(s) denote the equilibrium probability of state s. We claim
PROPOSITION 1.

P

(7i) P(s)
4,(s) II (1)I o------1

where G is a constant and

10 ifsS,
(7ii) b(s)

ifs_S.

Proof The proof is based on the concept oftime-reversibility in stochastic networks
[9], [10]. Let s and s’ be any two states with transactions lists which differ only in that
the specification list of one of the states, say s’, contains an additional transaction,
say of class tr. Also let q(s, s’) denote the transition rate from state s to state s’. Clearly,

ifsSands’S,
(8) q(s, s’)=

0 otherwise.

Importantly, there are no transitions from inadmissible states to admissible states and,
hence, the function defined in (7ii) is the solution of the equation

(9) A
(s’)

’).
tp(s)

q(s, s

The above demonstration of the existence of the function O allows us to invoke a
theorem of Kelly’s theorem [9, Thin. 3.14] to establish at once not only the product
form in the equilibrium state distribution for the state dependent arrival process, but
also the "insensitivity" which makes the solution valid for arbitrary distributions of
the processing times. [3

While Kelly’s theorem is a powerful and convenient tool for proving the result
for arbitrarily distributed processing times, the reader is invited to directly verify the
result for the simpler case of exponentially distributed processing times. In this case,
the transition rate from state s’ to state s, s e S and s’e S,

q(s’, S)= tx,

and it is straightforward to verify detailed balance [9],

P(s)q(s, s’)= P(s’)q(s’, s).

2.2. Concurrency in the system. We are interested here in the system concurrency,
which is the same as the concurrency of the state of the system. However, many states
will have the same concurrency. Hence we define

(10) 7r(i)--a Prob [concurrency=i] P(s).
s:c(s)=i

That is, r(i) is the equilibrium probability that i transactions of class 1, i: transactions
of class 2,..., i, transactions of class p have locks and are undergoing concurrent
processing.

Let 5 denote the domain of the concurrency value in (10). Clearly, if the
concurrency is then i’j iljl + ij+... + i,j, items must be exclusively locked and
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the minimum number of non-exclusively locked items is k(i)= max,.i.>o k,. Hence,

(11) 5e a__ {ilia p-tuple of nonnegative integers and 0 _-< i’j _<- N -/(i)}.
Combining (10) with Proposition 1 we obtain

(12) r(i)
C(i) P

G I-I (A,//x,)’, i 6e
--=1

where

(13)
C(i) A cardinality of the set {s Sic(s) i}, i.e., the

number of admissible states with concurrency i.

We now claim
PROPOSITION 2.

(14) C(i)=(N i’j); (I-IP=l i.;) {I-IP= --:1 k

Proof. The strings will be generated and counted in two steps" in Step 1 we will
count the ways in which we can generate the exclusively locked items in the constituent
transactions so that they are mutually disjoint. In Step 2 we will count the ways in
which we can generate the non-exclusively locked items in the transactions from the
items which are unlocked after Step 1 is complete.

Step 1. The counting is done recursively. Let

M(I) A number of partitions out of N items into (11 + 12 +" + lp) distinct, disjoint sets
of distinct items in which each of 11 sets contain jl items, each of 12 sets contain
j2 items,..., each of lp sets contain jp items.

We claim that

(15) M(l+e,)= l____(N-l’j)M(I) (/,+ 1) j,

where/+e,=(/1,’",/,+l,"’,lp).
To see this consider the number of ways in which we can generate partitions with

an additional set containing j, items. There are (N-/’j) items not used in any partition
counted in M(l). Hence there are

( j,N-l’j)
ways in which the items in the incremental set may be selected. Finally, the factor
1/(/,+ 1) in (15) is required since the count does not take into account ordering.

The recursive relation in (15) can be solved to yield

(16) M(i)
N!

(N -i’j)!(H. i, [) {l--I. (j, !)’}"

Step 2. After a partitioning performed as described in Step 1 there are (N-i’j)
items which are unlocked. The non-exclusive locks for the transactions will have to
be picked from this set of unlocked items and, of course, these locks may be shared.
The only other restriction is that the items to be locked by each of the transactions be
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distinct. Thus to each partition in Step 1 we concatenate

(17) H
or=| ko-

partitioned lists of non-exclusive locks. This concludes Step 2.
Finally, combining the results from Steps 1 and 2 we obtain

(18) C(i)=M(i) (I (N-i’
as claimed in Proposition 2.

The reader may note that in the simple example of 1.3 (see Fig. 1)

= (, o,
4, =(o, ,

(19) C(i)
24, i= (2, 0),
k 4, i= (3, 0),

which is in agreement with Proposition 2.

Equilibrium probability of system concurrency, partition function. Here we
combine the expressions for rr(i) and C(i) in (12) and (14) respectively and obtain
forms which are convenient for further analysis.

Let us define

(20) x,
j,!k,!’

1 <tr<p

and

(N- i’j)’, tr=l (N- i’j k)’.
i.

From (12) and (14) it follows that

1 P x
(22) r(i)

The constant G plays the role of a normalizing constant and henceforth we denote it

by G(N, x) and refer to it as the partition function. Hence
p x

(23) G(N, x) E
i = i!"

Now observe that whenever there exists a class index tr such that i>0 and
N i’j- k < 0, then @(N, i) 0. That is, for any p-tuple of nonnegative integers,

(24) @(N, i)=0 if

Therefore, we may rewrite (23) thus

(25) G(N, x)

which form we may abbreviate to

(26)
iez =1
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In summary we have
PROPOSITION 3. The equ,!ibrium probabilities of system concurrency are

p x1
(S,i) I-[(27) 7r(i)

G(N, x) =1 i!’
where x, 1 <= tr <= p, (N, i) and G(N, x) are as given in (20), (21) and (26) respectively.

2.4. Mean concurrency, throughput, blocking probabilities. Define for 1-< tr <= p,
mean concurrency of class tr =a mean number of transactions of class tr

(28) concurrently undergoing processing,

E iTr(i).

From (27) it is easy to see that,

(29) mean concurrency of class tr G(N, x).
G(N, x) x

For computational purposes it may also be noted that

(30)

where,

mean concurrency of class tr
G,,(N, x)
G(N, x)

x(31) GI,(N, x)= (N, i)i y
iZ ic !"

Other important system performance measures follow directly as the following
proposition notes.

PROPOSITION 4. For 1 <= tr <-- p,

x(32) mean concurrency of class tr G( N, x),
(N, x) x

(33) throughput of class tr transactions (trans./sec.)
tx (mean concurrency of class tr),

(34) probability of nonblocking of class tr transactions
1/p, (mean concurrency of class tr).

Equation (33) follows from (32) and an application of Little’s law. Equation (34)
follows from (33) and the fact that pC z//z, where z (see (3)) is the total offered
traffic of class

2.5. Mean concurrency for given total offered traffic. Comparative performance
studies frequently require isolating the effects of N, the number of items in the database.
For increasing N the number of possible transactions grows as a power of N, and as
{A} refer to the arrival rates of requests for processing individual transactions, for
fixed {,} the rate of total requests for transaction processing grows similarly. It is
therefore of greater interest to evaluate performance for varying N with the total
offered traffic at ’1, r2, , ’p for classes 1, 2, , p respectively. Recall from (3) that
for 1p,

(35) r, total offered trac of class (trans./sec.)= A
j+k x j /"
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Specifications of "r is, of course, equivalent to specification of loadings pl, P2," Pp
since

(36) p-- 1 =<r=<p.

The following explicit statement is offered on account of the dependence on N
of both ,r and the performance measures in Proposition 4.

PROPOSITION 5. Given total offered traffic "t (rl, z2," ", rp) or, equivalently, the
loading p (Pl, p2, ",Pp),

P OH
(N, o), 1 <r<p,(37) mean concurrency of classtr=

H(N,p) Op

where

(38)

and

(39)

Also,

H(N,p) a=G(N,x)

p,=xN!/(N-j-k,)!,

throughput of class tr transactions (trans. sec.)
t (mean concurrency of class

probability of nonblocking of class tr transactions
1/p (mean concurrency of class

The explicit expressions for H(N, p) and OH(N, p)/Op, are therefore

(40i)

and, for 1 =< tr =< p,

(40ii) p (N, p) 2 (N, i) i,
ie,9 c=l N!. c=l ic

where (N, i) is as given in (21). These expressions are important since Proposition
5 has established that all the basic performance measures of the system may be derived
from it. The computational complexity for large databases, i.e. large N, is obviously
formidable which provides the motivation for the asymptotic analysis in the next section.

3. Asymptotics. In this section we develop simple formulas for the mean concur-
rency, and thus for the other performance measures, which are asymptotically exact
as N-,, where N is the number of items in the database. The reasons are twofold.
First, the asymptotic formulas yield fundamental insights into the effects of the interfer-
ence phenomenon. These insights are not available from the formulas for performance
measures in Propositions 4 and 5. Secondly, as we shall see in the following section,
the agreement is quite good between the performance measures computed exactly and
the asymptotic formulas which require very little computations.

Throughout this section we will take the point of view stated in 2.5, i.e. the total
offered traffic, or equivalently the loading, is given. Notice from (35) that the total
offered traffic of class r, -, grows like Nj+k with increasing N. This observation
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provides the motivation for defining

(41) y A xN.+k, 1 <_- tr<_-p.

We begin by developing asymptotic expansions for the partition function for the case

(42) T=O(1), 1-<_o-<p as Now.

Further motivation for this particular normalization comes from observing the follow-
ing: the class o- loading, p---y as N . That is, p and are of the same order
of magnitude as y. (Later, in 3.2 we will make the connection more precise.) Also,
as may be intuitively expected and as is confirmed in the numerical results in 5, it
is only when (42) is true that we obtain values for the blocking probabilities that are
small enough to be of practical interest.

(43)

Explicitly,

(44)

3.1. Asymptotic formula for the partition function. Define

G(N, ) a__ G(N, X)l,y=NJ,r+k,xl<_tr<_p.

O(
X 1-I

izz Ni’(j+k)
o-=l io-!"

PROPOSITION 6. As N ,
(45) G(N, /)=ex [ 1 -{/’(j+k)}2- (/’k)2+2N%(j’+k)(j+k-l)l +o(1/N).

In the case of exclusive locking only, k 0 and the above proposition reduces to

[1, Prop. 7].
The proof of Proposition 6 is in Appendix 2. It will suffice here to outline the

main idea behind the estimate in (45). Let

(46) (i, 1/ N) _a q)(N, i)
Ni’(j+k)

From (46) and the definition for (N, i) in (21) it can be shown that

p

(47) (i, l/N)= a(i’j, l/N) 1-I {fl(i’j, l/N)} i
o’=1

where a(l, 1/N) and fl(l, 1/N), l _-< (r <_- p, are functions defined for nonnegative
integers and given thus

1- ill= 1,2,
m=O

and

(49)

(50)

To recapitulate

fl(l, l/N)= !+_--
ifl=0,

ifl= 1,2,

G(N,/)= E +(i, 1/N)
ieZ cr=l i,!
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where (., is constituted from the more elementary functions a(.,. and fl(.,. ),
1 _-< tr_<-p. The reason for making this transformation is that a(.,. and fl(.,. ), and
therefore ( .,. ), are in forms convenient for expansions in powers of 1/N.

The leading two terms in such an expansion of (.,.) have been obtained and
these are as follows:

(51) (i, l/N)= 1 -{i’(j+k)}2- (i’k)2+ i(k-j-k)
+ r(i, 1/S).

2N

An estimate of the remainder term r(i, 1/N) is, of course, crucial and this is derived
in Appendix 2. Here it will suffice to state that the idea behind the result in Proposition
6 is the replacement of (.,.) in (50) by its estimate given by the leading two terms
on the right-hand side of (51). On summing in (50) with respect to i, the estimate of
the partition function in (45) is obtained. To see this observe that

{i(j + k)}- (i’k)2+Y i(ka-j, k)

(52) =Y ((j,,+k)2-k2}i,,(i,,-1)+ Y.
1 2

+2 i(j + k)(j + k- 1).

The reader may verify that on using (52),

{(jo’l + ko-1)(Jo- + ko.2)- ko.lko.2}io.lio.2

[ 1-{i’(j+k)}2-(i’k)E+i(k2-j’-k)] I /
izp 2N

(53)
ey, [1 {’(J+k)}--(’k)+YY(J+k)(J,+k,,-1)]2N

the estimate in Proposition 6.

3.2. Asymptotic formulas for mean concurrency and other performance
measures. Here we combine the two results derived above, namely, Propositions 5 and
6, to obtain an asymptotically exact formula as N-c for the mean concurrency given
the total offered traffic or, equivalently, the loading. The main step involved in the
derivation of the new result is the replacement of the parameters {,} in Proposition
6 by estimates in terms of the given loading parameters {p} which are correct up to
the appropriate order of magnitude.

Observe from (39) and (41) that

N!
(54) ,),

(N_j_ k,)! Sj,,+k,

(55) / [I 1- 1_-< tr<_-p.
/=1

In particular, therefore, as N

and,

(57)

1 crp,

exp(/)=exp(P)[1+1--2N2O(j+k,,)(j,+k,-1) +O(1/N2).
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Also recall from (38), (39) and (43) that

I-I(N, ) G(N, t)

where p and / are related as given in (54). Hence, we may use the expressions (56)
and (57) in the asymptotic formula for G(N, 1) derived in Proposition 6 to obtain

(58) H(N,p)=exp(,p,,) [1 {P’(J + k)}-(P’k)2] +o (--)2N

as N.
It can similarly be shown that

(59)
Op,

(N, p)=exp (E P) 1-{P’(J+k)}2N (P’k)

Combining (58) and (59) gives

1 ]-- {p’(j + k)(j + k,,) (p’k)ko.}

1 a
H(N, p)= 1 +o (-)(60)

H(N, p) Op, N

as No.
We are now in a position to appeal to Proposition 5 to obtain the asymptotic

formulas for the performance measures and the result is summarized below.
PROPOSITION 7. Given total offered traffic "r (rl, ’2," ", rp) or, equivalently, the

loading p (pl, p2, pp), as N o,

mean concurrency of class tr

=o 1-- (j+k)20(L+k)-kYOk +o 1-_< tr-<p,
(61)

throughput of class tr transactions

=7-, 1---- (j,+k)Epc(jc+kc)-k pckc +o 1-< tr-<p,
(62)

probability of nonblocking of class o- transactions

}=1-- (j(+k()2pc(jc+k)-k( pck +o 1 <_- tr_-<p.
(63)

3.3. Discussion. The formulas in Proposition 7 are amenable to interpretations
which are intuitively appealing. The formula in (63) states that for large databases
with relatively low blocking,

{ blocking prob. of { number of items locked by } weighted fraction of database
class tr transactionsJ individual class tr transactions [toucled by individual transactionsJ

(64)

{ number of items non-exclusively] fweighted fraction of database }locked by individual class touched by non-exclusively
r transactions J [ locked items

In the above interpretation the "weights" are the loading parameters {pc}. Thus,
(j + k)/N and kc/N are the fractions of the database touched respectively by locks
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of both kinds and by the non-exclusive locks only in each class c transaction. Hence,

weighted fraction of database touched by individual transactions- pc(jc / kc)/N,

weighted fraction of database touched by non-exclusively locked items- pck/N.

Numerical studies indicate that the above formula is a good approximation for
blocking probability up to 0.2.

When k =0, 1-< c_-< p, i’n the formulas given in Proposition 7, all transactions
require only exclusive locks and [1, Prop. 8] is recovered.

4. What are non-exclusive locks worth? The performance of the system is now
compared with that of a system in which all locks are exclusive. In the latter system
each transaction of class cr processes (j + k) items, all of which are exclusively locked.
The asymptotic performance for the system with exclusive locks only is obtained
directly from Proposition 7. Specifically, we let the parameters of the system be

(65) j’=(j,+k,), k’ 0, 1_-< o’_-<p.

There are

transactions in class o- in the system with non-exclusive locks, while there are only

N

transactions in class o" in the system with only exclusive locks. (This is as it should be
since each (j + k)-exclusively locked items in the latter system has

partitions into j exclusively locked items and k non-exclusively locked items in the
former system.) The machinery for taking the above fact into account obviously exists,
i.e. by having equal total offered traffic in the two systems.

To summarize,
Performance measures of a comparable system with only exclusive locks:

(66) mean concurrency of class o-= p, 1--- (j, + k) p(j + kc) + o

(67) throughput of class g transactions

=r 1- (j+k)2o(j+k) +o

(68) probability of nonblocking of class tr transactions

=1- (j + k) 2 0(j + k) +o

Comparison of the performance estimates in Proposition 7 with the above gives
the estimated worth of non-exclusive locking. A succinct statement derived from such
a comparison is
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PROPOSITION 8.

(69) B, Br,NE k , pk
1 <= o- <= p,

B,E j+kp(j+k)’

where B,E and B,,N are the blocking probabilitiesfor class o" transactions in, respectively,
the system with only exclusive locks and the system with non-exclusive locks.

When there is only one class of transactions the following is true: the fractional
improvement in blocking probability due to non-exclusive locks is asymptotically equal
to the square of the fraction of total locks that is non-exclusive.

5. Numerical results. Numerical results are presented in Figs. 2-5. All results are
for the case of a single transaction class. The performance measure shown in all the
figures is the probability of nonblocking, from which other performance measures may
be readily computed as Proposition 5 in 2.5 states. Also, in all cases the measure of
offered traffic is the "total offered traffic," r. As we have stated before, meaningful
performance comparisons of databases of different sizes and of different transaction
compositions is possible by this mechanism. For instance, in the case of different
database sizes, the alternative of comparing performance for the same arrival rate of
individual transactions is not meaningful since larger databases have more constituent
transactions.

Figures 2-4 give exact results which have been computed by using the formula
in Proposition 5. These results, therefore, have been obtained by calculating the
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expressions in (40). Figure 5 contrasts results obtained from the exact formula with
corresponding results obtained from the asymptotic formula in Proposition 7 in 3.2.

Figure 2 shows, for a fixed database size, the effect on performance of increasing
the number of non-exclusively locked items. Figure 3 shows, for the same fixed database
size, the effect on performance of ditterent proportions of exclusively locked and
non-exclusively locked items in transactions, with the total number of locked transac-
tions in each transaction held fixed. Figure 4 shows the effect on performance of
database size for two fixed transaction specifications.

In Fig. 5 observe that the agreement between exact and asymptotic results is better
for larger databases and for smaller values of the total offered traffic, which is as
expected.
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FIG. 5. Comparison of exact and asymptotic formulas.

Appendix 1. Glossary.

N number of items in database
p number of classes of transactions
tr, c indices of classes of transactions
j number of exclusively locked items in each transaction of class tr

k,, number of non-exclusively locked items in each transaction of class tr

A= arrival rate (1/secs) of requests for processing of each transaction of class
1//x =mean processing time (secs) for each transaction in class tr

Xo. (A,,./ l,,)/ (jo.!ko.t)

T)=atransactioninclasscr;l=<i_<_ ( N )(j,,+k,,j,,+ko. \ jo- /
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s, state ()Ts(l), l<o’=p, l<--l<=s(c(s))}
S collection of admissible states
c(s) (cl(s), c2(s), Cp(S)), concurrency of state s

P(s) equilibrium probability of state s

r(i) prob.[concurrency i]= Zs:c(s)= P(s)
C(i) cardinality of {sic(s)= i} =number of states with concurrency

{il0 _<- i’j <= N ko, for all o- such that i > 0}
G(N, x) partition function
(N, i)= constituent in partition function
Zp set of p-tuples of non-negative integers

’ total offered traffic of class tr

p loading of class r

G( N, /) G( N, x)
H(N,o)=G(N,x)
J maxj
/ max k
w=l/N

Appendix 2. Proof of Proposition 6. The following two lemmas will prove quite
useful in estimating error terms in the asymptotic formula.

LEMMA 1. For any I >-- 1,

(A2.1) I-I y-
exp (Y, y)

i,1__>i i!- (I-1)!
e wI-l.dw

(A2.2) _<exp ( y)
(, y)i.

As Lemma 1 has been proven in [1], we omit the proof. Observe that the integral
in (A2.1) is the incomplete gamma function [11].

LEMMA 2. For any I >--3,

(A2.3) {i’(j+k)}2-(i’k)2+ i(k2-j-k) I]
i’l_-->I

=exp ( y) [[{,’(j+k)}2- (/’k)2]
e-W wi-3 dw
(I-3)!

(A2.4)
+2 Y(J + k)(j + k 1)’IE e-W wi-2 dwj

q

(I-2)!

-<exp (2 Y,,) [[{’(J+k)}Z-("k)2] (1’,) I-2

(I-2)!
(A2.5)

(I- 1)!

Proof Let the quantity in (A2.3) to be estimated be given by S and also let

(A2.6) l a-j+k, l <-tr<=p.

On using (52) we have

S--, (l-k) [ i(i-l) Yl/ (l,l=-k,k) [ i,i Yl
(A2.7) + 1,(1-1)[i,l__>l i 7’  li !j
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={ (12- k2)’y2o- +

+ 1(I- 1)y, Z )’--
i’1=>I--1 ic!

On now using Lemma 1, the statement made in (A2.4) follows. The statement in (A2.5)
is a simple corollary obtained by observing e-w<- 1 for all w_-> 0. This concludes the
proof of Lemma 2. [3

We are now ready to provide the proof of Proposition 6. We shall make the
important selection

(A2.8) I 1Oge N

and split the form for G(N, l) in (50) thus

(A2.9) G(N, .,/) Y
i’lI-1

(i, 1/N) I]
yo + y (i, 1/N) H Y---.
i! i,l_>i i!

On using the expression for (i, 1/N) in (51) we obtain

(A2.10)

where

G(N, ’),) z,, [ 1-{i’(j+ k)}2-(i’k)2 + i’(k2-j- k’) ,=(I "Y’i,!
el(N)+ e(N)+ e3(N),

(A2.11) el(N) r,iE [1
(A2.12) 62(N)

i’ i!’

{i’(j+k)}2 (i’k)2+E i,,(k-j-k) ra
2N i!

(A2.13) ea(N) - E r(i, 1/N) H
rl-<i-1 i !"

Now, the leading term in the right-hand side of (A2.10) has already been calculated
and it has been given in (53). The proof of Proposition 6 will therefore consist of
showing that el(N) o(1/N) as N c for 1, 2, 3.

For l= 1, 2 the proof follows easily from Lemmas 1 and 2 and the fact that
(i, 1/N)-< 1, Zp. For instance, using Lemma 1 it follows that

(A2.14) N E )’o_< e[: ->0
i’l-->I tr=l i[ I!

as N (and therefore I) --> . Hence e2(N) 0(1/N).
It remains to show that e3(N)= o(1/N). To do this we first need to estimate

r(i, 1/N). Let us write

1(A2.15) w
N’
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so that

W
2 (92

(A2.16) r(i, w)-
20w2 (i, w) for some a e [0, w].

Now it can be shown that

1 02(i, w)
(i, w) Ow2

(A2.17)
( /=0 1 lw - i,, -- lw/=i’j 1

,:o (1 /w)2+E i ,
--lwl= i’j 1

We shall assume that N is large enough that

1
(A2.18) w<^

j(i’l) +/

where, j maxj and/ max k, and thus avoid the singularities of the right-hand
side of (A2.17). Noting that q(i, w)< 1 it follows that

02 {i’ll i’j+k,r- I}2

0<--W(i, w) < - i a[O, w]
0w2 l--ol-lw l=i,j 1-1w

1
<

4{ 1 (i’l +/) w}2 [(i’J)2 + 2(i’j) (i’k) + k(i’k)]2.

Hence,

(A2.19) O < r(i, w) <
W

2

8{ 1 -(i’l +/)w}2 [0])2 + 2(i’j) (i’k) +/(i’k)]2.

We are now in a position to bound e3(N in (A2.13).

1
(A2.20) e3(N)<=8N{ 1 (.i+fc)/N}2 E

i’ll-1
{(i’j) 2 + 2(i’j) (i’k) +/(i’k)}2 l-I

The assumption in (A2.18) is implied by

(A2.21) : log N+/< N
which may be assumed without loss of generality. Taking note of the selection I
1Oge N, it follows straightforwardly that

(A2.22) Ne3(N)O as N (and therefore I)-.

This concludes the proof.
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THE KNUTH-BENDIX COMPLETION PROCEDURE
AND THUE SYSTEMS*

DEEPAK KAPURf ,rD PALIATH NARENDRAN"
Abstract. The Knuth-Bendix completion procedure for term rewriting systems in many cases

provides a decision procedure for equational theories and has been found to have many applications
in various areas. We discuss the application of the Knuth-Bendix procedure to Thue systems. We use
the notion of a reduced Thue system and show that for every Church-Rosser Thue system, there is a
unique reduced Church-Rosser Thue system equivalent to it. Furthermore, the Knuth-Bendix com-
pletion procedure, when applied to a Thue system T, always produces the finite reduced Church-
Rosser Thue system equivalent to T whenever such a system exists. Similar results can also be
proved for almost-confluent Thue systems. Using properties of reduced Church-Rosser systems, we
develop conditions under which a class of special Thue systems have equivalent finite Church-Rosser
systems. In addition, we show that the completion procedure always terminates on finite
parenthesized Thue systems, from which the termination of the completion procedure over ground-
term-rewriting systems can be shown immediately. From the results discussed in this paper, we also
obtain the termination of the Knuth-Bendix completion procedure for commutative Thue systems
(commutative monoids) as a simple corollary.

Key Words. Thue systems, Knuth-Bendix completion procedure, Church-Rosser systems, rewrit-
ing systems, almost-confluent systems, ground terms, commutative monoids

1. Introduction. There has been considerable interest recently in rewriting
or transformation systems because of their applications to theorem proving, rea-
soning about specifications and programs, abstract data types, program transfor-
mation and synthesis, algebraic simplification, etc. [5],[7],[16],[17],[22],[24]. The
main reason for this interest is the usefulness of the Church-Rosser property,
which, in general, can be interpreted as implying that the order of applications of
transformations makes no difference. Along with the uniform termination property,
which ensures that every sequence of transformations eventually reaches a result
that cannot be further transformed (called a "normal form"), we get a decision
procedure for the equational theory induced by the transformations. Note that
now any sequence of transformations on an object that produces a normal form
will do; the Church-Rosser property ensures that all possible sequences of
transformations on the object would produce the same normal form. Transforma-
tion systems that have both uniform termination and Church-Rosser properties
are called canonical systems.

In most cases, however, the systems of transformations or rules that arise may
not be canonical. This is where the notion of a completion procedure comes into
play; we can attempt to get a canonical set of rules by adding and/or deleting
existing rules without altering the underlying theory. Knuth and Bendix [17]
introduced a completion procedure for term-rewriting systems in which objects
under consideration are (first-order) terms or expressions and transformations are

*Received by the editors October 24, 1983, and in revised form October 1, 1984. A preliminary
version of this paper appeared in the Third Conference on Foundations of Software Technology and
Theoretical Computer Science, held in Bangalore, India, in December, 1983. This paper was typeset at
General Electric Corporate Research and Development using Troffsoftware developed for the Unix
operating system.

tComputer Science Branch, General Electric Corporate Research and Development, Schenectady,
New York 12345.
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simply rewriting of terms using the rules corresponding to axioms of an algebraic
system. Their completion procedure looks for representative terms that have two
normal forms and then tries to "patch up" by adding a new rule involving the
two normal forms. This method has been quite successful in many practical
cases: free groups, commutative semigroups, and polynomial ideals are but a few
of them. The Knuth-Bendix completion procedure has some other applications as
well, such as establishing consistency of equational theories and proving inductive
properties using what has become known in the literature as the inductionless
induction method [23], [24].

In this paper, we discuss the application of the Knuth-Bendix completion pro-
cedure on Thue systems. Thue systems are rewriting systems specified using
equations over strings (thus there are no variables, but concatenation satisfies the
associativity property). It is our belief that understanding the behavior of the
Knuth-Bendix completion procedure on Thue systems will also provide some
insight into its behavior on term-rewriting systems. Further, Thue systems have
recently been studied in their own right by Book and others in the context of for-
mal language theory, monoid presentation, and word problems for finitely
presented monoids. The application of the Knuth-Bendix completion procedure
for suc.h systems has not been studied so far.

We give a set of transformations that when applied on a Church-Rosser Thue
system yields an equivalent reduced (or minimal) Church-Rosser system. We
show that these transformations on Church-Rosser Thue systems themselves
have the Church-Rosser property, and thus, for every Thue system that has a
finite equivalent Church-Rosser Thue system, there is a unique finite reduced
Church-Rosser Thue system equivalent to it. Using properties of reduced
Church-Rosser systems, we also develop conditions under which a class of special
Thue systems have equivalent finite Church-Rosser systems. We also show that a
version of the Knuth-Bendix completion procedure, when applied to such a Thue
system, always terminates and results in the finite reduced Church-Rosser Thue
system equivalent to the original system. We discuss how the completion pro-
cedure can be modified to generate almost-confluent Thue systems.

Using concepts and results of the paper, we are also able to prove, in a
straightforward manner, that the procedure always halts when applied to commu-
tative Thue systems (i.e., presentations of commutative monoids) [18],[20]. We
further exhibit a sufficient condition for the input Thue systems that, when
satisfied, guarantees that the procedure will ’eventually terminate. More
specifically, it is shown that if the left-hand sides of rules satisfy a certain condi-
tion regarding overlaps, then the Knuth-Bendix completion procedure terminates.
Ground-term-rewriting systems can be translated to Thue systems that satisfy this
condition, so the result applies to ground-term-rewriting systems, thus giving
another proof of termination of the Knuth-Bendix procedure for ground-term-
rewriting systems (see also [7]). We are thus also able to give a uniform treat-
ment of some the known results in rewrite rule theory.

The paper is organized as follows" The next section gives definitions and prop-
erties of Thue systems. We introduce a new property of Thue systems, called

1We have recently learned that Nivat and Benois [26] were the first to make this observation. A
similar result was also obtained by Lankford and Ballantyne for term-rewriting systems, as reported
in [18].
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lexicographic confluence, which subsumes the Church-Rosser property. The lexi-
cographic confluence property is used in later sections to study the Knuth-Bendix
completion procedure. We prove some properties of the set of irreducible strings
of a Thue system. In 3, we introduce the notion of a reduced Thue system.
We prove that if a Thue system T has an equivalent Church-Rosser system, then
there exists a unique reduced Church-Rosser system equivalent to it. We also
show that for a special Thue system that can be homomorphically mapped into a
reduced Church-Rosser system, an equivalent Church-Rosser system exists if and
only if the original system itself is Church-Rosser. In , 4, we discuss the applica-
tion of the Knuth-Bendix completion procedure to Thue systems. First we prove
that if there exists a Church-Rosser system equivalent to a Thue system T, then
the Knuth-Bendix completion procedure, when applied on T, terminates with a
reduced lexicographic confluent, and hence Church-Rosser, system equivalent to
T. We also prove the termination of the completion procedure on commutative
Thue systems (commutative monoids) as a corollary. Later, we modify the com-
pletion procedure to generate reduced almost-confluent systems. Section :5
discusses conditions under which the completion procedure terminates; this is
used to show the termination of the completion procedure on parenthesized Thue
systems and hence ground-term-rewriting systems.

2. Definitions. Let Z be a finite alphabet. E* is the monoid freely gen-
erated by E, or, in other words, the set of all finite strings over E. The empty
string, which is the identity in the monoid, is denoted by h, where h is a symbol
not in E. The length function on strings, denoted by lul, can be defined as
usual: hi=0, ua u I+ 1, where a is in Y.

A Thue system T is a binary relation on E *. The Thue congruence generated by
T is the reflexive transitive closure --" of the relation --* r, which is defined as
follows: for any u and v in E* such that < u, v> is in T or < v, u> is in T, and
any x,y in E*, xuy--*rxvy. Two strings, w and z, are congruentmod T if
w ,---, z. Two Thue systems T1 and T2 are equivalent if and only if they generate
the same congruence relation. A Thue system T is commutative if and only if for
each < xy, z > in ,---, It, < yx, z > is also in *---, ]. A Thue system T is called spe-
cial if and only if for every < u, v> in T, either u or v is h. Henceforth, we shall
omit the subscript T whenever it is understood from the context.

Every element of a Thue system T is called an equation of T. Some equations
of T can be oriented into rules depending upon the length of the sides of each
equation. An equation u-- v is oriented into a rule u---, v if lul > v I, or v u
when v l>lu I; such a rule is called length-reducing or simply a reduction.

An equation u= v in which u and v are of the same length cannot be
oriented based on the length of u and v; it is written as u I-I v. Such an equation
is called a length-preserving rule. Later, we will discuss another way of orienting
rules for the case when a total ordering is introduced on E*. In that case, it
would also be possible to uniquely orient equations whose two sides have strings
of the same length.

Based on the above classification of the rules, a Thue system T can be parti-
tioned into two components: 1. a subset of length-preserving rules, which will be
called LP, and 2. the remaining subset of reductions, which will be called R.
Only the rules in the R subset of T will be used for reducing (rewriting) strings
unless stated otherwise.
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For any x, if there are u and v, as well as a rule r in R of T such that
x-u v, then x---* u r v, read as x reduces to u r v using the rule l--’ r of R.
The reflexive transitive closure of this relation is the reduction relation generated
by R of T (also called the reduction relation generated by T) on *; this is
denoted by * whereas --’+ stands for the transitive closure of ---’.

Two strings x and y are called joinable (under --’) if and only if there exists a
z such that x * z and y * z. Strings x and y are almost-joinable if and only
if there exist u and v such that x--** u, y---’ * v, and u ]-I * v.

A Thue system T is called Church-Rosser if for each u, v, such that
u,---* v, u, and v are joinable. A Thue system T is called confluent if for each
u, v, w, such that u * v, u--" * w, v, and w are joinable.

Note that the Church-Rosser property and the confluence property, though
closely related, are not the same in case of Thue systems because Thue
congruence ,-’* and the reflexive, symmetric, and transitive closure of the reduc-
tion relation ---*, in general, do not coincide, as the latter does not take into
account length-preserving rules. A Church-Rosser system is confluent but the
converse does not hold, as shown by the simple example {< ab, cd>, < ab, a >,
< cd, c > }, which is confluent but not Church-Rosser.

A Thue system T is called almost confluent if for each u, v such that
u * v, u and v are almost joinable.

For a commutative Thue system, a string x can be expressed as a k-tuple
< xl, xk> (sometimes called a Parikh vector), where ; {a l, ak} and x; is
the number of times the letter at appears in x. A rule of a commutative Thue
system can be expressed as a rule relating two such k-tuples.

2.1. Total ordering on strings and lexicographic confluence. We will intro-
duce another property called "lexicographical confluence" that is not in the litera-
ture but, we think, is useful from theoretical as well as practical points of view.

Let < be a total ordering on strings in Z; * such that the following two proper-
ties hold:

1. Ixl<lyl=x< y, and
2. x<y forany u,v, uxv<uyv.

The above properties are closely related to the properties of simplification order-
ings introduced by Dershowitz [6].

A family of total orderings satisfying the above two properties is the size and
lexicographic ordering on strings induced by a total ordering on E defined as fol-
lows:

x < y if and only if either
1. Ixl<lyl or
2. Ixl=iyl, x=ax’,y=by’,a, bEE, and

either a< b or a=b and x’<y’.

Such a total ordering < on E* can be used to orient equations whose two

sides are of the same length. So, given a Thue system T, equations in the
length-preserving component can also be oriented using <. Every rule in T is
thus used for reduction. The symbol will be used to denote this reduction
relation also, as long as it is evident from the context that the whole T is being
used for reduction. We shall use ---*’ to specify the reduction relation induced by
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T to distinguish it from the reduction relation induced by R. However, in 5
we shall drop the prime. The reflexive, symmetric, and transitive closure of the
relation ---’ and the Thue congruence --" * are the same.

A Thue system T is called lexicographi3ally confluent (with respect to < if and
only if for every u, v, and w such that u---,’*v and u---*’* w, there is a z such
that v---’* z and w--,’* z. We abbreviate a "lexicographically confluent system"
to a "lex-confluent system."

THEOREM 2.1. If T is Church-Rosser then T is lex-confluent.
Proof For every length-preserving rule u I-I v in a Church-Rosser system T,

there is a z such that u--’*z and v--** z. So, irrespective of the way the length-
preserving rules are oriented for ---*’, T is lex-confluent.

Note that if T is lex-confluent, its R component (the set of length-reducing
rules) need not be confluent, as the following example illustrates:

T={ab---’c, ab--’d, cl-ld}

T is also not Church-Rosser, as c and d do not reduce to the same string.
For any Thue system T, there need not exist an equivalent finite or infinite

Church-Rosser system, but there is always an equivalent infinite lex-confluent
system which can be obtained trivially from the congruence relation generated
by T.

Once an ordering on strings is defined, it can be extended to rules in a natural
way as follows:

/1-- rl < 12-" r2 if and only if 11 < 12 or 11 12 and r

This ordering on rules is used later in some proofs.

2.2. Irreducible sets for Thue systems. For a Thue system T, x is irreduci-
ble (rood T) if and only if x cannot be reduced further using the R component
of T; x is minimal if and only if x is one of the smallest strings in its congruence
class induced by T. Clearly, every minimal string is irreducible; but an irreducible
string need not be minimal.

Let y be an irreducible string obtained by reducing x using rules of R; y is
also called a normal form of x. Let stand for a normal form of x under R. If a
string x has a unique normal form under R, the normal form of x is also called
its canonical form. It can be shown that every string has a unique normal form in
a Church-Rosser system and thus a string is irreducible if and only if it is
minimal.

Let IRR (T) be the set of irreducible strings of T. Equivalent Thue systems
can have different IRR sets; for example, T1 {abc ---ab,abc---* c} and
T:= {abc---’c, ab---,c} are equivalent, but ab is in IRR (T1) but not in
IRR (T2).

THEOREM 2.2. If T1 C_ T2 and for every rule l---r in T2- T1, is reducible in
T1, then IRR (T1) IRR (T).

Proof That IRR (T) c_ IRR (T1) is obvious. Since every string reducible
modulo T2 is reducible modulo TI, IRR (T1) c_ IRR (T2). 2

It can be easily seen that equivalent Church-Rosser (lex-confluent, almost-
confluent) systems have the same IRR set. The following also holds.

THEOREM 2.3. Let T and T’ be two equivalent Thue systems. If T is Church-
Rosser (lex-confluent) and IRR (T) IRR (T’), then T’ is also Church-Rosser (lex-
confluent).
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Proof By contradiction. Assume T’ is not Church-Rosser (lex-confluent),
then there exists an x such that it has two distinct irreducible forms, say Wl and
w2, in IRR (T’). Since w1-- w2 and T is Church-Rosser, they have a common
descendant, implying that at least one of Wl and w2 is reducible in T; so,
IRR T ; IRR T’), which is a contradiction. []

A similar theorem about almost-confluent Thue systems is proved in [14].
For a Church-Rosser system, all irreducible elements are minimal and

minimal elements are unique in their equivalence classes. These two properties
can serve as an alternative characterization of Church-Rosser systems. For an
almost-confluent system, only the first property holds.

3. Testing for the Church-Rosser property and critical pairs. Nivat and
Benois [26] were the first to give a test for the Church-Rosser property and
confluence of finite Thue systems. Book and O’Dunlaing [4] showed that this
problem is tractable and gave a polynomial time algorithm. Kapur, Krish-
namoorthy, McNaughton, and Narendran [13] improve on Book and
O’Dunlaing’s upper bound and give an O(I TI 3) algorithm for this problem.

The conditions that a Thue system T must satisfy to be Church-Rosser can be
stated as follows: We define critical pairs from rules; for T to be Church-Rosser,
the two strings in each critical pair must be joinable.

1. For a length-preserving rule I-I r in T, the critical pair is < I, r> and r
must be joinable.

2. Substring case" For rules 11--* rl, 12-- r2 in R, if 12 is a substring of l, then
for every u and v such that 1 u 12 v, both p u r2 v and q r, which form a
critical pair < p, q >, must be joinable.

3. Overlap case" For rules 1--* rl, 12--* r2, if 11 u x, 12 x v, then for every
such u,v, and x, both p= riv and q= ur2, which also form a critical pair
<p, q>, must be joinable. The rules 1 r and 12--" r2 are called overlapping
rules.

A critical pair < p, q > is called nontrivial if and only if ; , where p, q are,
respectively, normal forms of p and q; otherwise, the critical pair <p, q> is
called trivial. We assume the existence of an algorithm for computing a normal
form of a string, which we will denote by normal_form (x, R). A Thue system is
Church-Rosser if and only if all its critical pairs are trivial. A pair <p, q> is in
reduced form with respect to R if p and q cannot be reduced further by R.
Henceforth, whenever we refer to a nontrivial critical pair <p, q>, we assume
that p and q are irreducible.

The test for lex-confluence is similar to that of the Church-Rosser property;
we do not have case 1 because length-preserving rules are also oriented.

From the above definition of critical pairs, we have
LEMMA 3.1. For any critical pair < p, q> of a Thue system T, T is equivalent to

TU {<P,q>}.

4. Reduced Thue systems. A Thue system T is called reduced if for every
rule in R and LP, neither its left-hand side (lhs) nor its right-hand side (rhs) can
be rewritten using the remaining set of rules in R. Thus for every rule l r in a
reduced Thue system T, r is irreducible in T and is irreducible in T-{1 r}.
In addition, we have

PROPOSITION 4.1. For each rule l---* r in a reduced Thue system T, every proper
substring of is irreducible in T.
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4.1. Church-Rosser Thue systems remain Church-Rosser under reduc-
tion. The definition implies that a reduced Church-Rosser system T cannot
have an LP component. The following theorem states that Church-Rosser sys-
tems have an interesting property, namely that the transformation of stepwise
reduction of Church-Rosser Thue systems itself has the Church-Rosser property.

THEOREM 4.2. Given a Church-Rosser Thue system T, there is a unique reduced
Church-Rosser system equivalent to T, effectively obtainable from T.
We first prove that there is a finite reduced Church-Rosser Thue system

equivalent to any finite Church-Rosser system T’ and that this reduced system
can be effectively obtained from T’. This proof is based on the following two lem-
mas, which state that the reduction of the lhs and rhs of rules in a Church-Rosser
system does not affect the Church-Rosser property of the system. Later, we show
the uniqueness of a finite reduced Church-Rosser Thue system.

LEMMA 4.3" For a Church-Rosser Thue system T, if it has a rule w-- w whose
lhs can be reduced using the remaining set of rules in T, then the system T’= T-
{Wl w} is equivalent to T and is also Church-Rosser.

Proof Since w can be reduced, there is a rule uyvy in T’ such that w--
11 uj. rl, and Wl---* 1 vy rl. Since T is Church-Rosser, there is some irreducible z
such that w *z as well as 11 vyr z. Since I/1 vyrll< Wl, the rule Wl w
of T is not applied in the reduction of either w or l vy r in T, thus implying
that they reduce to z in T’ also. Thus, w and w are congruent mod T’, which
means that T and T’ are equivalent. The fact that T’ is Church-Rosser follows
from Theorems 2.2 and 2.3. 1

LEMMA 4.4: If there is a rule Wl---’ w in a Church-Rosser system T, such that
w can be reduced using other rules, then T’= T- w w}
{Wl normal-form (w, T- {w w}) is equivalent to T and is Church-Rosser.

Proof For any reduction sequence w--,+ z in T, since the rule w---* w can-
not be applied, w--*+z in T’ also, which establishes the equivalence of T and T’. It
follows easily from Theorem 2.3 that T’ is Church-Rosser.

Proof of Theorem 4.2. Our algorithm consists of applying the two lemmas as
often as possible. Clearly this procedure terminates in a reduced equivalent
Church-Rosser system.

But we must also prove that two equivalent reduced Church-Rosser systems
T and T are the same. To this end, let w1---’ w be a rule in T which is not in
T (this must be possible, otherwise we are done). Since T is Church-Rosser,

_...+
Wl w in T because w is an irreducible string of Tx and also T2 (IRR (T)
IRR (T) by Theorem 2.2). So, there is a rule in T that applies to w. Every
proper substring of w is irreducible (L,emma 4.1); the rule must be w w’,
where w’ is also irreducible. We have w and w being equivalent in T, which is
impossible because both are irreducible.

The above proof easily extends to lexicographically confluent systems; instead
of using the ordering on strings induced by their length in the proof of
Lemma 4.3, a total ordering < on strings as defined in 2.2 is used.

THEOREM 4.5. If there is a Church-Rosser Thue system equivalent to a reduced
lex-confluent system T, then T itself is Church-Rosser.

Proof Since T is reduced, for every rule l---*r in T, r is irreducible. In par-
ticular, if T has a rule 1’---, r’, such that I/’1 r’l, then r’ is irreducible. But if
there is a Church-Rosser system equivalent to T, then neither l’ nor r’ can be
irreducible, implying that T cannot have rules whose two sides are the same
length. Thus T is Church-Rosser.
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Thus an algorithm for reducing a Church-Rosser (or lex-confluent) system T
is 1. repeatedly throw away a rule in T whose Ihs is reducible by the remaining
rules, and 2. for every rule in T whose rhs can be reduced using the remaining
rules, replace the rhs by its normal form. Later we discuss an extension of this
algorithm for almost-confluent Thue systems.

4.2. Special Church-Rosser systems. We discuss below conditions charac-
terizing special Church-Rosser systems that extend some of the results reported
in [2],[3]. These conditions are based on homomorphically mapping a special
Thue system into a special reduced Church-Rosser Thue system.

Let A be a set of generators possibly different from . Let b be a homomor-
phism from Z:* to A*; so, b(h) h’, where h’ is the identity of the monoid A*,
and b(uv) d (u) dp (v). Furthermore, we require that the length function on
A*, also denoted as II, satisfy the following property: lul>lvl if and only if
b (u) > b (v) I. The version of T under b, denoted by T, is defined as

T (4(u),4(v) )1 (u,v) T}.

Again, note that x*-’-’*y mod T implies (x).--** oh(Y) mod 76. A homomor-
phism h is said to be length-preserving if l (a)l= for all a 7_,.

THEOREM 4.6. Let T be a special Thue system and 4J be a length-preserving
homomorphism such that 7-6 is a reduced Ctmrch-Rosser system. Then T has an
equivalent Church-Rosser system (f and only if T itself is Church-Rosser.

Proof The "if" part is trivial. We prove the "only if" part by contradiction.
Assume T is not Church-Rosser. Then there must be rules x

such that one of their critical pairs is nontrivial. There are two possibilities:
1. x uv and y vw for some u, v, w h and the critical pair is < u, w>.

Clearly u w. Note that 4(u),--’*4(w)modT. And, (u) must be equal to
h(w), since 7‘6 is a reduced Church-Rosser system and hence both b(u) and
g,(w) must be irreducible mod T. Also, ul=lwl. Now if T has an equivalent
Church-Rosser system, then there must be a z shorter than both u and w such
that u * z,--- * w. This is obviously impossible since both (u) and (v) are
irreducible mod T.

2. x uyv for some u, v such that uv and the critical pair is < uv, >.
This. case is evidently an impossibility, since (x) must be irreducible mod
/- (,/,(x), x).

From the above theorem, we immediately get the following results, already
reported in [3], [4].

A Thue system T is called homogeneous if and only if for every < u, v>,
<x,y> in T, eitherlul Ixl and lvl lyl, orlul-- lyl and vl Ixl.

COROLLARY 4.7. Let T be a homogeneous special Thue system. Then T has an
equivalent Church-Rosser system ifand only f T itself is Church-Rosser.

Proof DefineA {t} andb(a) for all a in the alphabet of T. A single-
rule special Thue system with a rule t"---" h is reduced Church-Rosser.

COROLLARY 4.8. If T is a special Thue system that has only a single rule, tten T
has an equivalent Church-Rosser system if and only if T is itself Church-Rosser.

From the above theorem, we also get a generalization of Corollary 4.8 that
suggests how to test whether a class of special Thue systems has equivalent
Church-Rosser systems by mapping them to their commutative versions.

The commutative version of a Thue system T, denoted by Tc, is T with the
commutative law built into it. As mentioned earlier, this can be represented as a
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set of relations between k-tuples of integers (often referred to in the literature as
Parikh-vectors) where k is the cardinality of Y-,. For string w, let stand for its
Parikh-vector. Thus,

Tc (h, -) (u, v) T}

Examples. Let E a, b}.
1. T= {(aba, bb)}. Tc= {((2,1), (0,2))}.
2. T= {(aba,h), (baa,h)}. Tc= {((2,1), (0,0))}.

Clearly, for all x, y, x --" * y mod T implies y mod Tc.
We can define a homomorphism b from T to its commutative version Tc as

follows: A in this case is the set of k basis vectors, where a basis vector is a k-
tuple in which exactly one component is nonzero and is 1. The concatenation
operation on A* is the vector addition; the identity is the zero vector, and the
length of a vector is the sum of all components in the vector. It can be easily
verified that b is indeed a homomorphism that maps strings to vectors; further-
more, is length-preserving. Using Theorem 4.6 above, we have the following:

THEOREM 4.9. Let T be a special Thue system such that TC is a reduced
Church-Rosser system. Then T has an equivalent Church-Rosser system (l’and only i.f
T itself is Church-Rosser.

5. The Knuth-Bendix completion procedure.
5.1. How to obtain a reduced Church-Rosser Thue system.
5.1.1. Completing a Thue system to get an equivalent lex-confluent

system. For a finite Thue system T that is not lex-confluent, it is possible to
generate an equivalent lex-confluent system by adapting the Knuth-Bendix com-
pletion procedure for term-rewriting systems to Thue systems. (Note that
because we will discuss mostly lex-confluence in this section, represents the
reduction relation generated by all the rules, including the rules whose sides are
of the same length.) If the test for lex-confluence fails, all nontrivial critical pairs
generated during the lex-confluence test are added to T and the test for lex-
confluence on the modified T is repeated. This transformation is performed until
the resulting system is lex-confluent.

An inefficient version of the Knuth-Bendix completion procedure for Thue
systems is given below in which redundant rules in T are not deleted. Later, a
more efficient version will be presented in which redundant rules in T are
deleted. The function CP(T) generates all nontrivial critical pairs of T in normal
form; if CP(T) is empty, then T is lex-confluent. We do not need to generate
critical pairs of rules in T;+ that were also in T.

Knuth-Bendix Procedure (T):
i:=0;
To := Normalize(T);
CE CP(To);
while CE ; null do

Ti+ := Normalize(Ti I,.J CE);
:-- i/ 1;

CE :-- CP(Ti)
endwhile
output(T);
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Normalize (T)"
unmark all rules in T.
while T has an unmarked rule r do
T"= T-{ l--r};
< l’, r’> < normal_form(l, T’), normal_form(r, T’) >
/f<l,r> # <l’,r’> and l’# r’
then

T’= T LI /’-" r’ };
mark l’ r’

endif,,
mark r

endwhile
return T;

Note that the procedure Normalize does not delete any rules. It merely adds
rules that are obtained from further reducing the two sides of rules already in T
without removing the original rule. The procedure Normalize is nondeterministic
if strategies for 1. picking an unmarked rule and 2. computing a normal form of a
string are not specified.

There is a possibility of the Knuth-Bendix completion procedure going on for-
ever. We discuss below the conditions under which the Knuth-Bendix procedure
is guaranteed to terminate.

Let Too be Tk if the above procedure terminates after k iterations; otherwise,
the union of T for all i.

LEMMA 5.2. T and Normalize(T) are equivalent.

Proof Since T is a subset of Normalize(T), it needs to be shown that the
extra rules in Normalize(T) do not introduce any extra congruence classes. Each
rule l-- r in Normalize(T) which is not in T is obtained by reducing some rule
1’-’-" r’ in T. Since normal-form (1’, T- 1’---. r’}) and
r normal-form(r’, T-{1’---’ r’}), and l’ and r’ are congruent in T, and r are
also congruent in T.

From Lemmas 3.1 and 5.2, T is equivalent to T for each i. And also, Too is
equivalent to T.

LEMMA 5.3. For any i, iflRR (Ti+ 1) IRR (Ti), then Ti is lex-confluent.
Proof By contradiction. If T,. is not lex-confluent, then there is a nontrivial

critical pair <p,q> where pq and p and q are in IRR(T). Since the rule
p---.q or q---’p is included in T,.+I, we get IRR (Ti) ; IRR (T/+I), which is a
contradiction.

It is obvious from the above lemma that the IRR set keeps decreasing in
every iteration of the Knuth-Bendix procedure (since T C T/+I,
IRR(T+) C_ IRR(Ti)). The procedure thus terminates when the IRR set
becomes stable; i.e., for some i, IRR (T)= IRR (T+I). It can be noted that the
set of reducible strings of a Thue system T form an ideal in the free semigroup
,X*. For commutative semigroups, the irreducible set of strings always becomes
stable because of the finite ascending chain (also called the Noetherian) condition
for its ideals [9]. So, we get the result that for commutative Thue systems, the
Knuth-Bendix procedure will always terminate as a corollary of the above lemma.
A similar argument is used to show the termination of Buchberger’s algorithm for
finding a Grobner basis for polynomial ideals over a field [5], as well as polyno-
mial ideals over a Euclidean ring [12] (also see references in Mayr and
Meyer [20] as well as [11] for similar observations).
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The correctness of the Knuth-Bendix completion procedure follows from the
following theorem.

THEOREM 5.4. Too is lex-confluent.
Proof By contradiction. If Too is not lex-confluent, it could fail because of

any of the above two tests for lex-confluence. This is impossible because if any of
the tests fails in an iteration i, then the corresponding nontrivial critical pairs are
added in the i+l th iteration.

For every finite Thue system T, the Knuth-Bendix procedure thus gives an
equivalent lex-confluent system Too. If the Knuth-Bendix procedure terminates,
then Too is finite; otherwise, as we shall see, Too is infinite.

5.1.2. The eomlfletion lrocedure without deletion of redundant rules.
THEOREM 5.5. Given a finite Thue system T, if there exists a finite lex-confluent

Thue system equivalent to T, then the Knuth-Bendix procedure terminates with a finite
(not necessarily reduced) lex-confluent Thue system T", which is equivalent to T.

Proof. Assume that there exists a finite lex-confluent Thue system equivalent
to T. Then using the results of 3, there is a reduced finite lexoconfluent system
T’ equivalent to T. Furthermore, Too is equivalent to T’ and both are lex-
confluent, so the set of irreducible strings IRR (Too) and IRR (T’) are the same.
It needs to be shown that Too Tk for some k.

LEMMA 5.6. For every rule 1---* r of T’, there is some Ti having 1---* r.

Proof By contradiction. Assume that the statement is not true. Pick the
smallest rule l---’ r in T’ that does not appear in any T,.; so, l---*r is also not in
Too. Let j be the maximum over the iteration numbers in which the rules in T’
less than r get added; i.e., T has all rules of T’ less than 1--, r.

Since T’ and Too are equivalent as well as lex-confluent, and r are congruent
in Too, implying that and r must reduce to the same string in Too. Since r is in
IRR (T’)-- IRR (Too), must reduce to r in Too, implying that T, has a rule
l’---’ r’ that reduces I. By Proposition 4.1, no proper substring of is reducible,
implying that Too must have a rule l---’ r’, and both in Too and T’, r’---* * r. Let j’
be the iteration number when l---* r’ gets added. In T’, r’---’ * r using rules smaller
than the rule l---’r as r’< l, which are in Too. So, either in the ith iteration,
where i-- max(j,j’), or the i+1 th, r’ would be reduced to r and the rule r
would be added, leading to a contradiction.

We now complete the proof of Theorem 5.5. Since a rule once added never
gets deleted, Lemma 5.6 implies that Too contains T’. But T’ is finite, so after
finitely many iterations of the loop in the procedure, all rules of T’ get added into
Too. But T’ is lex-confluent, so after the iteration, say kth, in which the last rule
of T’ is added to Too, the test for lex-confluence would succeed, implying that the
procedure would terminate before the loop is executed the (k+l) st time.

5.1.3. The comlletion lrocedure with deletion of redundant rules. The
above version of the Knuth-Bendix procedure is clearly inefficient, because the
original rules from which the simplified rules are obtained in the normalization
process are not discarded. However, its proof of termination is easier. An optim-
ized version of the Normalize procedure follows in which redundant rules are dis-
carded.

Normalize’ (T):
unmark all rules in T.
while T has an unmarked rule 1---’ r do
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T"= T-{ /-" r };
</’, r’ > < normal_form(l, T’), normal_form(r, T’) >;
/f 1’ r’
then T: T’
else

T’= T’ 10 /’--" r’ };
mark 1’-- r’

endif
endwhile
return T;

We first illustrate the completion procedure on a simple example:

T bb---* a, bab a, baa aab },

where a < b.
First iteration: ba ab and aab--* ab are added; bab aab is deleted and

bab---’ a is replaced by aa---* a, which results in the deletion of aab ab.

T bb a, aa a, ba ab }.
After this, the system T is lex-confluent.
Using the above procedure, a stronger version of Theorem 5.5 can be proved.

The termination proof requires an additional step, which is to show that once
desired rules get added, they are never deleted. We first show that
Normalize’(T) is equivalent to T and later that the IRR set of the system

obtained using Normalize’ is the same as the IRR set of the system obtained

using Normalize.
LEMMA 5.7. Normalize’(T) is equivalent to T.
Proof It is sufficient to show that in Normalize’, the deletion of a rule does

not affect the Thue system. There are two situations in which a rule gets deleted:
(a) For a rule !---’ r in T, and r reduce to the same string in T-{ !---r }. In
this case, congruence relations generated by T and T-{l r} is the same.
(b) For a rule 1---’ r in T, if ’--- r’;l---* r, where l’=
normal form(l, T- l---" r}) and r’ normal_form(r, T- r}), then r is

replaced by l’---’ r’. In T-{l---* r}, l’ is congruent to and r’ is congruent to r,
so T-{l---* r} {l’ r’} is equivalent to T.

Note that T in the optimized version of the Knuth-Bendix procedure is

always a subset of T of the unoptimized version. Furthermore, since
Normalize’(T) c_ Normalize(T), IRR (Normalize’(T))

_
IRR (Normalize(T)).

LEMMA 5.8. IRR (Normalize(T)) IRR (Normalize’(T)).
Proof If a rule !-’-* r is deleted in Normalize’, it means that is reducible by

some other rule ’--- r’. Thus, if a string is reducible by l---* r, then it is also redu-
cible by l’----’ r’.

From Lemmas 3.1 and 5.7, we get that T is equivalent to T. So, Too is
equivalent to T. Further, we have

LEMMA 5.9. Too is lex-confluent.
Proof We need to show that for any string x, u, v,x---’oo u in m steps,

m >/0, and x---’oo v in n steps, n>/0, there is w such that u---’-oo w and

v--.o w. Since Too is Noetherian, the proof has the structure of the proof of

Lemma 2.4 in [10], which states that a Noetherian relation is confluent if and
only if it is locally confluent.



1064 DEEPAK KAPUR AND PALIATH NARENDRAN

For m 0 or n 0, the above trivially holds. So, we assume that both m and
n > 0. Let X--’To U by a rule li ri and x--Too v by a rule lj--’rj such that

Ul-’oo u and Vl Too v. Let T% and Tkj be the Thue systems generated in the

Knuth-Bendix procedure having li---* ri and Ij--r, respectively, such that ki-k)l
is minimum.

Let x be the smallest string under the ordering < being used for lex-
confluence such that there is no w with u---" *Too w and v oo w and derive a con-

tradiction by induction on ki-k I.
Basis: ki-k.il 0, in the iteration after max(k;,kj), all nontrivial critical pairs

of li---’ ri and lj rj are generated, giving us the following diagram. But then both

ul < x and Vl < x, which is a contradiction.

Inductive step: Assume for all k <lki-k I, to show for ki-k I"
Without any loss of generality, assume that k > ki. The rule li ri disappears

in some iteration i’, such that ki < i’< k. So, there is z such that in Ti,, li, and r;
reduce to z; this implies that x and ul reduce to some z’ in ---’Too, since

kj-i’l <lkj-ki I, by the inductive hypothesis, there is a z" such that z’---’ oo z"
and v---,oo z". Since /21 < X, there is a w such that u -*Too w and z"---’ *too w,
which is a contradiction.

W
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A similar result about the application of the Knuth-Bendix completion pro-
cedure on term-rewriting systems is proved in [11]. The above proof is simpler
because we are considering Thue systems and also, the version of our completion
procedure is not as efficient as in [11]. Using Lemma 5.9, we can prove a stronger
version of Theorem 5.5.

THEOREM 5.10. Given a finite Thue system T, if there exists a finite reduced lex-
confluent Thue system T’ equivalent to T, then the Knuth-Bendix procedure using the
optimized Normalize procedure terminates with T’.

One way to prove the above theorem is to show a stronger version of
Lemma 5.6, that every rule of T’ gets added in some iteration of the Knuth-
Bendix procedure and never gets deleted afterward (Lemma 5.6 only states that
every rule of T’ gets added to some T in the ith iteration). Theorem 5.10 then
follows, because in the iteration k in which the last rule of T’ is added, Tk would
include T’ and every rule other than those in T’ would be deleted by the optim-
ized Normalize procedure.

LEMMA 5.11. Every rule in T’ gets added in some iteration and never gets
deleted afterward.

Proof By contradiction. Similar to the proof of Lemma 5.6, let lj-- rj be the
smallest rule of T’ with respect to the ordering < that either

(a) never gets added in any iteration (so it is not in Too), or
(b) gets added in iteration but later is deleted in iteration i’> L
That is, all rules less than lj---rj in T’ get added by some iteration rn and

never get deleted.
Case (a). The proof of this part is the same as the proof of Lemma 5.6, so it

is omitted.
Case (b). Once the rule lj--’rj is added into T, the only way it can get

deleted in i,th iteration, i’> i, is when Normalize’ reduces lj (because rj is irredu-
cible). And, the only way lj can be reduced is if there is a rule lj--* rj in T/,.
Furthermore, this rule is still unmarked; otherwise, its lhs would have been
reduced using the rule Ij---, rj. There are two subcases: 1. lj reduces to rj, imply-
ing rj rj in T,.,: Normalize’ would then replace the rule lj rj later by lj---, rj,
meaning that l---’rj does not get deleted in i’, which is a contradiction. 2. lj
reduces to 1, implying that r lj in T,.,: In this case also, Normalize would
first replace l---* r by l) r. Later, Normalize’ would also replace the rule /j---’ r
by l;---’ rj, again meaning that the rule under consideration does not get deleted in
i’, which is a contradiction.

Using Theorem 4.5, which relates reduced finite lex-confluent systems and
reduced finite Church-Rosser systems, and Theorem 5.10, we have:

THEOREM 5.12. Given a finite Thue system T, if there exists a finite reduced
Church-Rosser system T’ equivalent to T, then the optimized Knuth-Bendix procedure
terminates with T’.

Huet in [11] discussed a version of the Knuth-Bendix completion procedure
that is more efficient than the optimized version given above. Kapur and
Sivakumar [16] have given an improvement over Huet’s version. The proof dis-
cussed above extends to these versions of the Knuth-Bendix procedure, giving us
a result similar to Theorem 5.12.

5.2 Reduced almost-eontluent Thue systems. Nivat and Benois [26] also
gave conditions under which a Thue system is almost-confluent. For length-
reducing rules, the conditions are similar to the conditions for the Church-Rosser
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property, except that for every critical pair <p,q>, p and q must be almost-
joinable, and not necessarily joinable. In addition, interaction between length-
reducing rules and length-preserving rules are also considered.

For every rule, we define critical strings whose interaction must be considered
to check for the almost-confluence property: For a length-reducing rule l r, the
critical string is l; for a length-preserving rule b I-I s, both b and s are critical
strings. For every pair of rules such that at least one rule is length-reducing, the
following two conditions must be met: Let (1, r) and (Ij, rj.) be such a pair of
rules. Then if l and lj are critical strings, then

(a) If 1 uv, 1 vw for some u, v, w where lu I, vl, wl> 0 (i.e., the two
rules properly overlap), then for every such u, v, and w, the critical pair
(u rj, ri w) must be almost-joinable.

(b) If l-- u/ w for some u, w then for every such u, w, the critical pair
(r,., u r w) must be almost-joinable.

Thus, one has to consider all possible overlaps between
(1) left-hand sides of length-reducing rules, and
(2) left-hand side of a length-reducing rule and both sides of a length-pre-

serving rule.
It is shown in [14] that the test for the almost-confluence property is

PSPACE-complete.
Just as in the case of Church-Rosser systems, given an almost-confluent Thue

system, we can obtain a reduced almost-confluent Thue system from it by getting
rid of redundancies.

1. For every length-reducing rule I---* r in R, if r is reducible by other rules
in R, then replace the rule by l---" r’, where r’ is a normal form of r under R.

2. (a) For every length-reducing rule l---, r in R, if is reducible by other
rules in R, then delete the rule from R. (b) For every length-preserving rule
b I-I s, if either b or s is reducible by a rule in R, then delete the rule from T.

As stated in 3, the above algorithm is a slight extension of the algorithm for
obtaining a reduced Church-Rosser system; for a proof of correctness of the algo-
rithm, see [14].

5.2.1. A normal form for almost-confluent systems. Using the above
transformations, we can obtain an equivalent reduced almost-confluent system
from every almost-confluent system. Note that unlike in the case of reduced
Church-Rosser Thue systems, we do not have a unique reduced almost-confluent
Thue system because of the length-preserving component. The following theorem
tells us this property of reduced almost-confluent systems.

THEOREM 5.13. Let T1 and T be two equivalent reduced almost-confluent sys-
tems.

(a) LP( T1) and LP( T2) are equivalent; i.e., the congruence relations generated
by the length-preserving components of T1 and T2 are the same.

(b) For every rule r in R (T1), there exists a rule r’ in R (T2) such that
r I-I * r’ and vice versa.

Proof (a) Assume there exists a rule (x I-ly) in T1 such that not x I-I*y
in T.. Because T is almost-confluent, this implies that x and y are not irreduci-
ble and hence not minimal in T. Thus x and y are reducible in T also, which
contradicts the fact that T1 is reduced. This implies that LP(T1) LP(T) are
equivalent.
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(b) b and s are almost-joinable in T2. Because all right-hand sides in a
reduced system are irreducible, s is irreducible both in T and T2. Since no
proper substring of b can be reducible, there must be a rule (b-- t), irreduci-
ble. Therefore s and are equivalent and irreducible, and this implies s I-I * (by
Lemma 2.2). t5

It is possible to get rid of more redundancies in the LP component of a
reduced almost-confluent Thue system to obtain an LP component that is
minimal in the following sense: For any length-preserving rule b I-I s, b and s
are not related by other length-preserving rules in LP. Thus, for any length-
preserving rule b I-I s in a reduced almost-confluent system T, if b and s are
equivalent using the remaining length-preserving rules in LP(T), then we can
delete b I-I s from LP(T).

In addition, if we assume a total ordering on strings that is an extension of the
ordering induced by the length of strings (the size and lexicographic ordering
discussed in 2 is an example of such an ordering), we can orient the length-
preserving rules also and use them as reductions for generating normal forms of
reduced almost-confluent systems. In that case, the right-hand side of every rule
in R can also be normalized with respect to the length-preserving rules. Despite
these transformations, it is still not always possible to obtain a unique reduced
almost-confluent system equivalent to a given almost-confluent system. For
example, consider the following equivalent almost-confluent systems:

T1 cbc I-I bba, cd I-I ab, db I-I bc },

T: abb I-I bba, cd I-I ab, db I-I bc }.

Both T1 and T are reduced. Even if the length-preserving rules are oriented
using the length and lexicographic ordering induced by the ordering
a < b< c < d on the alphabet, T and T remain reduced.

As shown in , 4, for Church-Rosser systems, the transformations for obtain-
ing a reduced Church-Rosser system have the Church-Rosser property; however,
for almost-confluent systems, the transformations for obtaining a reduced almost-
confluent system only have the almost-confluence property in the following sense:
Given two equivalent almost-confluent systems, the above transformations for
obtaining an equivalent reduced almost-confluent system may result in two dis-
tinct equivalent reduced almost-confluent systems. The following example illus-
trates this:

T3 cde---, ab, cde ba, ab I-I ba }.

The system T is almost-confluent but is not reduced. Two different reduced
almost-confluent systems can be obtained from T3 by applying the above transfor-
mations depending upon which of two rules, cde---’ ab or cde---’ ba, is considered
first.

5.2.2. A completion lrocedure for almost-confluence. Given a Thue system
T which is not almost-confluent, it is possible to generate from T a reduced
almost-confluent system equivalent to T, if such a system exists, by a completion
procedure which is in the spirit of the Knuth-Bendix completion procedure dis-
cussed earlier. In the test for almost-confluence, if for any pair of rules the con-
ditions are not met, i.e., the normal forms of two strings generated from the
superposition are not equivalent by the length-preserving rules, then we modify
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the system by adding a rule that ensures that the critical pair under consideration
is almost-joinable; in this way, we keep adding new rules to both R and LP com-
ponents of T whenever the need arises until the almost-confluence test is met.

Knuth-Bendix Procedure (T)"
i’= 0;
To Normalize(T);
CE CP(T0);
while CE null do
Ti+ Normalize(Ti CE);
i:= i+ 1;
CE CP(Ti)

endwhile
output(T);

Normalize(T)"
unmark all rules in T.
while T has an unmarked a rule l--,r do
T"= T- <l,r> };
< 1’, r’ > < normal_form(l, T’), normal_form(r, T’) >;
/falmost_joinable (l’, r’, T’)
then T T’
else

T’=T’U {<l’,r’> };
mark < l’, r’>

endif
endwhile
return T;

In the above procedures, the procedure CP generates all nontrivial critical
pairs (which do not reduce to normal forms equivalent by LP(T)). The pro-
cedure normal_form generates a normal form of x using the length-reducing
rules in T, whereas almost_joinable checks whether two strings are equivalent
using the length-preserving and length-reducing rules of T. If strings in a non-
trivial critical pair after normalization are of the same length, then the
corresponding rule is added to the length-preserving component of T and is sub-
sequently used to check for the almost-joinability condition. This completion
procedure to generate almost-confluent systems is thus different from other uses
of the Knuth-Bendix completion procedure discussed in the literature, because in
this case the simplification theory generated by the length-preserving rules is also
being extended; some of the new rules being generated are used as reduction
while others are used as simplifications.

The procedure discussed above is not necessarily efficient, because critical
pairs among various rules are being checked for again and again; an efficient
implementation can be designed based on a version of the procedure given in
[111,[161.

The results discussed in 5.1 can be extended to almost-confluent Thue sys-
tems. Using the techniques and proofs developed there, we can show that for a
given Thue system T, if" there exists a finite almost-confluent Thue system T’,
then the Knuth-Bendix completion procedure terminates with a reduced almost-
confluent Thue system T" equivalent to T.
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Examples.

1. T {a I-I b, bab---" b}.

After the first iteration of the completion procedure, three rules are added:
baa b, aab b, and bbb--’ b. In the next iteration, three rules are added:
aaa----’ b, bba b, abb b. Subsequently, the rule aba---’ b is added, which
makes the final system almost-confluent. The result is

{a I-I b, aaa b, aab b, aba b, baa---’ b,
abb---* b, bab b, bba---" b, bbb---" b}.

2. T baa I-I aab, bab--’ a, bb---* a}

First iteration: aa a, ab I-I ba added and baa I-I aab deleted.
Second iteration: aba ab added.
After this, the system

aa a, bb--, a, bab---" a, aba ab, ab I-I ba

is almost-confluent.

6. Termination of the Knuth-Bendix procedure on parenthesized Thue
systems. Unfortunately it is undecidable whether there exists a finite Church-
Rosser Thue system equivalent to a finite Thue system T [27]. Although the
results in the previous section ensure that for Thue systems for which this ques-
tion is decided in the affirmative, the Knuth-Bendix procedure is guaranteed to
terminate, there is no way to say a priori by examining a given Thue system,
whether the Knuth-Bendix procedure will terminate. Below, we discuss a pro-
perty of Thue systems that can be checked and for which the Knuth-Bendix pro-
cedure terminates.

We define

DS (T) x i--’ * x for some li---’ ri in T}.
(The letters DS represent "derived strings.")

Two not necessarily distinct strings x and y are called nonoverlapping if and
only if there do not exist nonempty strings u, v, and w such that x u v and
y v w. This definition can be extended to a set of strings by requiring that
every pair of identical.and nonidentical strings from the set are nonoverlapping.

THEOREM. 6.1. For a Thue system T, if DS(T) is nonoverlapping, then the
Knuth-Bendix procedure will terminate, generating a reduced lex-confluent system T’
equivalent to T.

Proof Because of nonoverlapping of the left-hand sides of rules in T, all
critical pairs generated in the first iteration must be due to the lhs of some rule
being a substring of the lhs of another. These are less than the largest lhs of rules
in T in the total ordering < on strings being used. Furthermore, all critical pairs
generated can be obtained by reducing lhs’s of rules. The condition that all strings
in DS(T) are nonoverlapping implies strings in all critical pairs generated in any
iteration are < the greatest lhs in rules in T, which are finitely many. So, the
extra rules that can be generated by the Knuth-Bendix completion procedure are
only finitely many, implying that the Knuth-Bendix procedure will necessarily ter-
minate.
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A Thue system T is called parenthesized if and only if every string in 7" is
properly parenthesized with respect to "(" and ")." Some examples of
parenthesized strings are (a), (a b (c b) (b c)c), etc. This definition can be
generalized so that two arbitrary strings can be used instead of "(" and ")."

For a parenthesized Thue system T, it is obvious that DS(7") is nonoverlap-
ping, so we have

COROLLARY 6.2. For a parenthesized Thue system, tlte Knuth-Bendix completion
procedure always terminates.

Note that a term-rewriting system in which rules involve only ground terms is
parenthesized, so it has the property that all its lhs’s are nonoverlapping. So for
ground-term-rewriting systems, the Knuth-Bendix procedure always terminates
once we have an ordering on ground terms that satisfies the replacement and sub-
term properties (the analog for ground terms of the two properties of an ordering
on strings discussed in 2.1). As in parenthesized systems, critical pairs gen-
erated in the completion procedure are never going to be greater in size than the
largest (with respect to the ordering on ground terms) lhs in a ground-term-
rewriting system, and there are only finitely many such terms since the ordering
is well founded. According to Dershowitz [7], Lankford was the first to observe
that the completion procedure always terminates on ground-term-rewriting sys-
tems.

The condition stated above is a particular case of the following general condi-
tion: If the set of terms that can possibly serve as superpositions for generating
critical pairs is finite, then the Knuth-Bendix completion procedure will always
terminate, assuming that it does not abort because the two terms in a nontrivial
critical pair cannot be made into a rule.

7. Conclusions. We have introduced the notion of a reduced Thue system.
For reduced Thue systems, we have shown a number of properties. It was
proved that if there exists a Church-Rosser system equivalent to a Thue system,
then there is a unique reduced Church-Rosser Thue system equivalent to it.
Using properties of reduced Church-Rosser systems, we have developed condi-
tions under which a class of special Thue systems have equivalent finite Church-
Rosser systems.

By using the fact that finite Church-Rosser (lex-confluent) Thue systems
themselves have a canonical form, we have shown that if there exists a finite
Church-Rosser (lex-confluent) system equivalent to a finite Thue system, then
the Knuth-Bendix procedure is guaranteed to terminate with a reduced Church-
Rosser (lex-confluent) system equivalent to the original system. The proof
depends upon another crucial property, which is that all nontrivial critical pairs
generated by the Knuth-Bendix completion procedure can be oriented to give
rules; this property is easy to ensure for strings. We have also extended the com-
pletion procedure to generate reduced almost-confluent systems. This completion
procedure is different from the completion procedures discussed in the literature,
as in this case new rules are being added into the set of length-reducing rules, as
well as into the set of length-preserving rules.

In addition, we have discussed two methods for showing the termination of
the completion procedure. The first method uses the structure of the set of nor-
mal forms of a reduction system. For a class of reduction systems for which
there cannot exist an infinite ascending chain of sets of reducible strings (by an
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ascending chain, we mean that for every i, S; properly contains Si+), the com-
pletion procedure would terminate because the sets of normal forms keep
decreasing in every iteration of the completion procedure. The termination of
the completion procedure on commutative Thue systems is shown using this
method.

The second method is based on the property that can be informally stated as
follows: For systems for which strings appearing in the critical pairs that can be
generated by the Knuth-Bendix completion procedure constitute a finite set, the
Knuth-Bendix procedure is guaranteed to terminate. The termination of the
Knuth-Bendix procedure for ground rewriting systems turns out to be a corollary
of this result.

To extend these results to term-rewriting systems, 1. a suitable canonical form
for term-rewriting systems needs to be developed (the results in [21] are an
attempt in that direction) and 2. orderings on terms have to be devised such that
nontrivial critical pairs generated during the Knuth-Bendix completion procedure
can always be oriented so that the Knuth-Bendix procedure does not have to be
aborted because a critical pair cannot be converted to a rule. It will also be useful
to extend the methods discussed above for showing termination of the comple-
tion procedure on term-rewriting systems. This would result in a nice characteri-
zation of a class of decidable theories.
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