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AN OPTIMAL SIMULATION OF
COUNTER MACHINES*

PAUL M. B. VITANYIt

Abstract. Each multicounter machine can be simulated by an oblivious one-head tape unit in real-time,
using logarithmic space. The solution uses redundant symmetric number representation and implicit recursion.
It represents a new positional representation for (vectors of) the integers.
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1. Introduction. The idea of counting, that is, adding or subtracting a unit from
any given number, to obtain another one, is the substrate of arithmetic if not of all of
mathematics. Thus, it is frequently necessary in computing to maintain many counts
simultaneously, while the only information we want to extract at any time is the set
of currently zero counts. The process of storing several integer counts, each count
independently being incremented or decremented by a unit in each step, governed by
the current input and the set of zero counts, is abstracted and formalized in the notion
of a multicounter machine. Such machines have numerous connections with both
theoretical issues and more or less practical applications. It is of considerable interest,
for many questions, to implement multicounter machines as efficiently as possible. We
shall show that counting is basically simple, in the computational complexity sense of
the word, by demonstrating that each multicounter machine can be simulated in
real-time by an oblivious one-head tape unit using minimal storage space. Since the
presented implementation is optimal in all commonly considered resources at once,
the two decade old quest for better simulations of multicounter machines by Turing
machines is finalized in one stroke.

Doing arithmetic presupposes number representations. Different representations
are better suited to different arithmetical operations. All of arithmetic can be performed
by multicounter machines. Because we shall simulate a multicounter machine by a
one-head tape unit, we need to straightforwardly represent a vector of integers as a
linear string. No known representation for single integers allows the counter steps to
be performed by an oblivious one-head tape unit without unbounded time loss in
between simulated steps. Neither does any known representation, for pairs of integers,
allow the counter steps to be performed by a one-head tape unit, oblivious or not,
without unbounded time loss in between simulated steps. To achieve our objective,
we in effect have to develop a new representation, with the required properties, for
vectors of integers.

Multicounter machines and Turing machines. For the present purpose, machines
are viewed as transducers, that is, as abstract storage devices connected to input and
output terminals. Thus we consider a machine as hidden in a black box with input and
output terminals. Consequently, the presented simulation results concern the input-
output behavior of black boxes and are independent of input—output conventions, or
whether we want to recognize or to compute. The abstract storage structure embodied
by a k-counter machine (k-CM) consists of a finite control connected to an input and
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an output terminal, and k counters each capable of containing any integer. The states
of the finite control are partitioned into polling and autonomous states. (Here we can
assume without loss of generality that all states are polling states.) At the start of a
computation the finite control of the k-CM is in a designated initial state and all
counters are set to zero. A step in a k-CM computation is uniquely determined by
the state of the finite control, by the symbol scanned at the input terminal if the state
is a polling state and the set of counters which contain zero. The action at that step
consists of independently altering the contents of each counter by —1, 0, or +1, changing
the state of the finite control and producing an, possibly empty, output string. Thus
the machine effects a transduction from input strings to output strings. If you will, the
input and output may be thought of as written on input and output tapes, on which
the resident access pointers (heads) are steered by the finite control. The steering
commands issued can be viewed as part of the output. Above we closely followed the
formulation in [2] where also a more precise definition can be found. For the more
stanidard concept of multitape Turing machines consult [2],[6]. Note that, for us, a
one-tape Turing machine consists of a finite control connected to an input and output
terminal, and a single head storage tape. A one-head tape unit is a one-tape Turing
machine.

Simulation. A machine A simulates a machine B in time T(n) if, for all n>0,
the input/output behavior of B during the first n steps, the atomic inputs and outputs
ordered according to their occurrences in time, is exactly mimicked by A within the
first T(n) steps. That is, if for every input sequence iy, iy, * -+ read from the input
terminal: (i) the output sequences written to the output terminals by A and B are the
same, and (i) if ty=t,=---=t, =t - - - are the steps at which B reads or writes a
symbol, then there are corresponding steps ti =t5=- - - =t} =t} - - - at which A reads
or writes the same symbols, and ¢} = T(¢;) for all i=1. For a linear time simulation it
is required that T(n)e O(n); for a simulation with constant delay that t,,.,—t,=
c(t,+1—t,) for some fixed constant ¢ and all n; for a real-time simulation that T(n) = n.
It is well known that a constant delay simulation can always be sped up to a real-time
one, but not a linear time simulation in general. We use simulation in the above strong
sense of on-line simulation [6] throughout.

Obliviousness. A Turing machine is oblivious if the movements of the storage tape
heads are fixed functions of time independent of the particular inputs to the machine.
Many problems seem inherently oblivious: the usual algorithms for computing the
four main arithmetic operations, a table look-up by sequential search, can easily be
programmed obliviously without sacrificing worst case time efficiency. Other tasks like
binary search or sorting are, it appears, nonoblivious in nature. For many purposes,
there are excellent reasons to restrict attention to oblivious computations [6], [7]. Here
we show yet another, more heuristic, motive for doing so. Viz., restriction of the
considered model of computation to its oblivious version may shift the emphasis in
the problem to be solved, from one difficulty to a completely different one, thus
directing us to a solution. Whereas the difficulty in real-time simulating k-counter
machines by k’-tape Turing machines, k' < k, stems from the fact that k' < k, the same
problem with the simulating machine restricted to its oblivious version knows as
difficulty but the obliviousness of the simulating device alone.

For suppose we can simulate some abstract storage device S in time T(n) by an
oblivious Turing machine M. Then we can also simulate a collection of k copies of S,
say S;, S,, -+ -, Sy, interacting through a common finite control, by dividing all storage
tapes of M into k tracks, each of which is a duplicate of the corresponding former
tape, and by an appropriate modification of M’s finite control. The same head move-
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ments of the resulting machine M’ can now do the same job, on each of the k collections
of tracks, as they formerly did on the collection of tapes of the original machine M.
So the resources used by M' are, apart from sizes of finite control and alphabets, the
same as those used by M. In particular this holds for time and storage complexity.
Therefore the following two statements are equivalent:
(i) We can simulate an abstract storage device S by an oblivious Turing machine
M in time T(n) and storage S(n).
(ii) For each k>0 we can simulate a collection of k copies of S, interacting
through a common finite control, by an oblivious Turing machine M’ in time
T(n) and storage S(n), where M’ has the same tape/head constellation as M.
We are in particular interested in the following specialization of the above maxim.

Define the quintessential counter S as a 1-CM with input commands “add 6,
8e{—1,0,1}. Ateachstep S reads an input command from the input terminal, modifies
the stored count in the obvious way, and outputs either ‘“‘count equal zero” or “‘count
unequal zero” in concordance with the current state of affairs.

ProrosiTiON 1. If we can real-time simulate the quintessential counter S by an
oblivious one-head tape unit then we can real-time simulate each multicounter machine
by an oblivious one-head tape unit (which for each multicounter machine makes the
same head movements as a function of time alone).

Background. Counter machines are relatively old devices in computer science.
Unrestricted 2-counter machines were shown to be as powerful as Turing machines
in [5]. Subsequently the efficiency of implementations on Turing machines was investi-
gated. On linear arrays, as formalized by Turing machines, the use of a tally representa-
tion for each count either requires a separate access pointer (storage tape head) per
count or unbounded update time in between simulated steps. Curiously, even with the
use of a separate pointer for each count, binary representations also require unbounded
update time, although minimal storage space. This sorry state of affairs was improved
in [1],[2] which both presented linear array simulations using minimal space, while
[1] eliminated the unbounded update time at the cost of retaining all access pointers
and [2] eliminated all access pointers but one at the cost of retaining unbounded update
time. Thus, [2] exhibited the classic linear time/logarithmic space simulation of multi-
counter machines by one-tape Turing machines. Efforts to reduce this simulation to
a real-time one using a fixed number of storage heads failed, but did produce some
weaker problems. For the Origin Crossing Problem, where the task is to recognize
the set of sequences of unit basis vectors in k-space, k= 1, which leave from and end
in the origin, an ingenious solution by a real-time one-tape Turing machine was
constructed in [1]. The result implies that each k-counter machine can be real-time
simulated by a k-tape Turing machine in logarithmic space, k= 1. Next in difficulty
comes the Axis Crossing Problem, where the task is to recognize the set of sequences
of unit basis vectors in k-space, which leave from the origin and end in one of the
(k—1)-dimensional hyperplanes with one zero coordinate, k> 1. For no k>1, a
real-time solution on but a (k—1)-tape Turing machine was found, for the k-
dimensional Axis Crossing Problem, after its proposal in [2].

In [8] we made the linear time/logarithmic space one-tape solution of [2] oblivious,
retaining the same resource bounds. This is a matter of some significance, since by its
nature an oblivious Turing machine is usually far slower than a nonoblivious one. For
example, each oblivious multitape Turing machine needs n log n steps to simulate n
steps of a single pushdown store, although an oblivious 2-tape Turing machine can
achieve this bound [6]. For oblivious one-tape Turing machines the lower bound on
this simulation time increases, perhaps, up to n’. Due to the compact way the counts
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can be stored, the situation for counter machines was somewhat better. In [7, Cor. 2]
it was shown how to simulate each multitape Turing machine, using at most S(n)
storage in n steps, by an oblivious 2-tape Turing machine in n log S(#n) steps and S(n)
storage. So the previously best simulation of multicounter machines, by combining [2]
and [7], yielded a n log log n time and log n storage simulation by an oblivious 2-tape
Turing machine. Since the thrust of [8] was to achieve fast low-cost combinational
logic networks implementing multicounter machines, as an expedient intermediate
next result a real-time simulation by, basically, a linear iterative array with a restricted
amount of oblivious local rewriting was proposed. Although not very elegant, this
intermediate model served its purpose in yielding an optimal implementation of
multicounter machines on combinational logic networks and, perhaps more important,
the ideas embodied in the method suggest the approach to the final simulator presented
here.

Outline of the paper. The objective is to construct an oblivious one-head tape unit
capable of simulating any multicounter machine in real-time. In § 2 a stylized version
of such a simulator is exhibited and shown to work. This version, one of many which
are possible on the basic underlying principles, is chosen because it is at once amenable
to short rigorous proofs of validity and achieves, it seems, the utmost frugality of
machinery. To a large extent this gain is obtained at a cost of loss of intuition as to
how and why it does what it is supposed to do. To counterbalance this expository
defect, we insert some informal comments. The reader may also follow the genesis of
the result by consulting [8] and the earlier version in the STOC Proceedings. In § 3
we enlarge on the optimality of the result, its connection with number representations,
and on additional fruit borne.

2. The simulation. After some vain attempts to real-time simulate multicounter
machines by Turing machines with a fixed number of tapes, one gets the feeling that,
anyway, a real-time simulation by an oblivious one-head tape unit is out of the question.
In the event, intuition is wrong; but let us informally consider the matter in some
more detail. It quickly becomes apparent that updating a count, in real-time on an
oblivious machine, requires a redundancy in notation which seems to make a simul-
taneous real-time check for zero impossible. To achieve the latter, we allow only
encodings of integers such that an integer is zero iff the scanned position of the encoding
(the “first” position, so to speak) shows this uniquely. Since the head motion is supposed
to be oblivious we must, roughly speaking, update each ““initial”’ ) (log i) length segment
(situated around the head) of the encoded integer within each interval of i steps, for
all iz 1. While moving the head to update longer segments of code in an oblivious
manner, we may have actually stored small counts which may reach zero during this
motion. So the machine has to simultaneously shift and update smaller segments of
code, while updating larger segments of code, and so on recursively down to the
smallest segments. Such considerations force compact encodings, and, apart from giving
us some feel for what behavior is necessarily involved in a simulation as desired, they
show that the integer representation used must be positional in nature.

Outline of the simulation. The simulation splits naturally into two parts. First we
introduce a redundant binary representation for the integers, and formulate certain
minimal requirements for real-time maintaining the representation of the stored integer
under the counter operations. These requirements consist in a fixed strategy, of
accessing constant length segments of this representation, for all input streams. Second,

we construct an oblivious one-head tape unit capable of implementing these require-
ments in real-time.
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The current count of the quintessential counter, as figuring in Proposition 1, is
stored on the single tape in a (garbled form of) redundant binary representation, with
marked most significant nonzero digit and leading distinguished blank symbols. As a
consequence of preserving some invariants, the stored count equals zero iff the “first”
position of the representation is a blank. Since this first position shall reside in the
finite control of the simulator, that situation is instantly recognized.

Hence the problem is solved, if we can real-time update the representation of the
current count while preserving the invariants. In the chosen representation it suffices
to update each segment of the 2ith through (2i+ 3)th position of the representation
at least once within each interval of 3' consecutive steps, for all i=0, while also
processing the current input commands, by an update of the first two positions, in
each step. Intuitively speaking, the timing allows us to propagate carries and borrows
(negative carries) fast enough. Although there is a considerable freedom about how
to implement the required datamovement on an oblivious one-head tape unit, we
choose for frugality in attendant machinery and minimal bit compression (that is, a
small storage tape alphabet). Therefore, we divide the representation into blocks of
two digits each, and store the first three blocks in the finite control. Each digit of the
representation residing on the tape is tagged with an opening or a closing bracket, viz.
the first digit of a block with an opening bracket and the second one with a closing
bracket. To access each segment of the 2ith through (2i + 3)th digits of the representa-
tion at least once in every interval of 3’ steps, we develop a method of recursively
transporting the digits of block j, from one side of the combination of the first i blocks
to the other side, back and forth, for all i, j, 1=i<j This transport, which entails
moving the total combination of the first i blocks, in its turn supplies the necessary
motion for the combination of the first i +1 blocks, while it also allows the single head
to access blocks i+2 and i+ 3 within the timing constraints. The single head, without
being able to determine the positional index of the scanned digits (since there will be
all in all but four tags, viz. two types of opening brackets and two types of closing
brackets), preserves a topology which allows it to single out and update due segments.
The net effect will be that, for all i simultaneously, the combination of the first i blocks
acts like a very fat head, moving slower the greater i is, but fast enough to do the
same job to blocks i+ j as the head itself does to blocks j, for all i, j=1.

On notation. To be able to express and prove the subsequent constructions, it is
convenient to introduce some notation first. The objects operated upon are linear
arrays or strings of symbols from a finite alphabet. Arrays can be finite or one-way
infinite. In a one-way infinite array A[0:0], A[0] is the first element and A[{] is the
(i+1)th element, i = 0. A[i:j] denotes the (j— i+ 1)-length subarray consisting of the
(i+1)th through (j+1)th elements, 0=i=j. The concatenation A[i:jlA[j+1:k]
equals A[i: k], 0si=j<k, and we identify A[i:i] with A[i], i=0. Finite arrays are
treated similarly. Arrays are operated upon by functions from arrays to arrays. Since
these functions shall be partial we introduce the undefined array <. By definition, for
any array A, JA = AQZ=J. The undefined array should be distinguished from the
empty array ¢ for which by definition, for any array A, eA = Ae = A. Mappings from
arrays to arrays are defined in terms of length preserving functions from finite arrays
to finite arrays. If a function P maps an array S to an array S’, with S, S’ finite and
of equal length, then we write P: S— S’. By definition P: & for all functions P.
Functions induce relations amongst one-way infinite arrays in essentially two ways. In

Q
the first type of relation = the argument of Q determines integers i, j, i = j, and for all
arrays A[0:00], A'[0:00] if P: A[i:j]— A'[i:j], for a function P associated with Q,
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Q

A'[0:i—1]=A[0:i—1] and A'[j+1:00]=A[j+1:00], then A= A’. In this case,

clearly = is a function from one-way infinite arrays to one-way infinite arrays. In the
P P

second type of relation =, P is a function, and A= A’ if A=S§,5S,, A'=§,5'S, and

P: S— S'. It will be shown that all such relations of the second type we consider are

also functtons when restricted to a set of well formed arrays. In both cases, 1f for

somel=>and some array A there is no A'# @ such that A|==>A’ then Al=>®
Considering the relatlonl:)amongst arrays as rewntmg, the rewrltmg shall thus be

proved to be always monogemc, that is, if Al=)A' and At:)A" then A"=A'. We
compose functions P,, P,, - - -, P, to a function P, or decompose or expand a function
P into a sequence of constituent functions Py, P,,- - -, P, as follows. If for some

P
PP, -P P, and all arrays A there exist arrays A}, A,,- -+, A, such that A= A,

and A l=) A, l:)Az |=)A then P=P;; P,;---; P, The function composition
operator ““;”’ denotes sequential rewriting from left to right. Whenever necessary, we
denote the value of an array A at time ¢, t=0, by A’ and A° is the initial array. We
dispense with the superscript if ¢ is understood or when we view A as a variable.

Main objective. We concentrate on real-time simulating the quintessential counter
of Proposition 1 by an oblivious one-head tape unit.

2.1. An integer representation. Consider a positional base 2 notation for rep-
resenting the integers, which may be called redundant symmetric binary, using the
digits —2, -1, 0, 1, 2. So the integer c represented by coci¢s - * * €y ¢ €{—2,~1,0,1, 2},
equals Y[" ¢;2. Such a representation is binary because of the weight of digits in
distinct positions, symmetric because of the used digits, and redundant since each
integer has infinitely many representations, even without leading nonsignificant zeros.
To represent the stored integer count on a, potentially infinite, linear tape we essentially
use a restricted version of this representation, with a marked most significant nonzero
digit and distinguished leading nonsignificant zeros. Let A={-2,-1,0,1,2} and A=
{-2,-1,0,1, 2}. The barred digits have the same value as their nonbarred counterparts,
A—{0} is reserved for the most significant nonzero digit, and “0”, called blank, is
reserved for the nonsignificant zeros. Let £ =AU A and let code: Z - 2*" be a function
of the integers into the power set of £, where = is the set of one-way infinite strings
over 2. The function code satisfies restrictions (A)-(D) below, for all coc; - - - ¢+ - - €
code (¢), ceZ.

Separation of a finite significant initial segment and nonsignificant zeros:

3i§0[c,=6] & Vi>0[(c,-=6=>(c,~_165& C,'+1=(_)))

(A) -
& (cieX—{0} = ci € D))

Correct representation:
o0
(B) Y a2'=c
=0

To identify representations of 0 by just a small initial segment:
© Viz0[(cs1>0=¢;20) & (€1 <0 = ¢;=0)].

Under (A)-(C), (—2)'010% represents the integer 2 for all i = 0. To prevent racing
of the most significant nonzero digit to the first position, in just a few steps of the
desired single head real-time simulator:

(D) Viz0[iisodd = || <2].
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Now if ¢o¢y * * * Cu_1Cm* * - €code (c), with c;e A for0=i=m—1, and ¢; €A for m=i,
then for m =0 we have 0 =|c| =2, for m =1 we have 2 =|c| =4 and in general for m = 2:

2" —r=|c|=2"""+r
with
m—2 m-—1 1

. m—z . . m— .
r=2 Y 2+ Y 20 =2 Y 21+ ¥y 2

i=0,ieven i=1,iodd i=0,ieven i=1,iodd

which yields
m—3<logy|c|<m+2.

Thus the length of the initial significant segment of the representation of ceZ
follows by and large the length of the usual binary representation of |c|. We are
particularly interested in representations for zero. Note that the following proposition
holds for code functions satisfying only (A)-(C).

PROPOSITION 2. Let CoCy * * * CruCma1 * * - €code (¢) withceZ. Then c=0 iff ;=0
for all i =0 iff co=0.

Proof. By (A) ¢,=0 iff c;=0 for all i= 0. So we only have to prove ¢ =0 iff ¢, =0.
Assume ¢; =0forall i =0. By (B) ¢ =0. Assume ¢; # 0 for some i = 0. Then by (A) there
exists a least m =i such that ¢;=0 for all j>m, and |c,,| #0. For m=0, |c|=1, and
for m =1 we have |c|=2. For m=2:

=] e (oy ()
m—1 .
=12"—-| ¥ c,-2’H (triangle inequality)
i=0
z2"-23y 2 (by(C)
i=0
=2. 0

2.2. Maintenance of the count. Let S be the simulated quintessential counter and
let 84, 8,,--+,8, +,8¢€{—1,0, 1}, be any fixed sequence of unit additions/subtrac-
tions. So at time =0, S contains the integer Z:=1 8, We maintain the count in an
array C[0: 0] such that the value of the array at time ¢t =0 is C'[0:0] € code (Z§=1 5),
for any such input stream. The initial array C°[0: o] at time ¢ = 0 is defined by C°[i]=0
for all i=0, and therefore C°[0:00]€ code (0). In the rth simulated step, t=1, the
current value C'"' of the array is mapped to the next value C' by a function
COUNT (¢, 8,). The mapping COUNT is defined in terms of a composition of mappings,
with the aid of an auxiliary function I:N- 2N, called the parameter selection function,
which has as values sets of bounded cardinality (cardinality four suffices).

DerINiTION. For t=1, let I(¢)={i, ij_1,* "+, i} with >0+ ->1i;, and let
5e{—1,0,1}. COUNT (¢, 6) is defined as a composition of mappings:

Hence

COUNT (1,8)

C', with C'# ),
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if there exist C,, C,_4, * - -, C; # & such that
UPDATE(i)) _ UPDATE(i,_,) _

—> (¢

UPDATE (i) INPUT(8)
G = — Lk —

’

COUNT(1,8)
In all other cases C

DerINITION. Let ieN and let C[0:0] be a one-way infinite array, C # .

UPDATE (i)
C[0: 00] —= C'[0: 0],

C'[0:0]# &, if UPDATE: C[2i:2i+3]~ C'[2i:2i+3]#& and C'[0:2i—1]=
C[0:2i—1] and C'[2i+4:00]=C[2i+4:], with the function UPDATE: 3*->3*
defined below. For convenience we first define UPDATE: A* - A* and then extend the
mapping to =*.

UPDATE: 20 x y» 01 xy for xye{00,01,0-1, 10,11, 20, 21}
2 0 x y—» 0-1x+1y forxye{-10,-20,—-1-1,-2-1}
21 x y—» 0 O0x+1y for xye{00,01,10,11}

21 0-1—-» 00 -10
212 y» O for ye{0, 1}
-2 0 x y» 0-1 xy forxye{00,0-1,01,-10,-1-1,-20,-2-1}
-2 0 x y—» 0 1x—1y forxye{10,20,11,21}
-2-1 x y—» 0 Ox—-1y forxye{00,0—1,-10,—-1-1}
-2-1 0 1-» 0 0 10
2-1-2 y» O for ye{0, -1}
v wx y—» vw xy forovg{-2,2}
vwx y—»>( for vwxy not in the above list.

Extension of UPDATE to mappings from 2* into 2*: if vwxy A* then
UPDATE: vwxy — v'w'x’y’

for all vwxy, v'w'x'y’ € A*(A—{0}){0}* U {0000} such that the unbarred version of the
mapping is in the previous list, and UPDATE: vwxy—J in all other cases. (Recall
that if V is a finite alphabet, then V* is the set of all finite strings over V including
the empty string ¢.)

DEerINITION. Let 8 € {—1,0, 1} and let C[0:c0] be a one-way infinite array, C # .

INPUT(8)
C[0: 0] F——= C'[0: ],

C'[0:00]# &, if INPUTs:C[0:1]—C'[0:1]# & and C’'[2:00]=C[2:00] with
INPUT;: 22 - 32 defined below. For convenience we first define INPUT,: A*> A% and
then extend the mapping to Z2.

INPUT_;: x y—»x—1y forxye{00,0-1,-10,-1-1,10,11}
0 11— 10
x y—» for xy € {—20, -2-1, 20, 21}

INPUT,: x y—» xy forxye{00,0-1,-10,-1-1,10,01,11}
x y—» @ forxye{-20,—2-1,20,21}

INPUT,: x y—»x+1y forxye{00,01,10,11,-10,—1-1}

0-1—» -10
x y—» @ forxye{-20,—-2-1,20,21}.

Extension of INPUT; to mappings from 2 into 2*: if xy ¢ A” then
INPUTS;: xy — x'y’

for all xy, x'y’ € A*(A—{0}){0}* U {00} such that the unbarred version of the mapping
is in the previous list and INPUT;: xy— & in all other cases.
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If for some array C[0:©] and P=UPDATE (i), i=0, we have
P
UPDATE: C[2i:2i+3]— then C=> J, by definition. If for some array E[O:oo]

and P=INPUT (8), 6§€{—1,0,1}, we have INPUT,: C[0:1]—~ & then C = J, by
definition. F(;r all Pe{INPUT (8), UPDATE (i)|6{-1,0,1}, i=0} we have by
definition &= &, and thus é) is a mapping from X*° U {&} into = U {&} and not just
a relation. Basically, INPUT (8) adds the current input to the currently represented
integer and UPDATE (i) propagates carries and borrows in a segment of the rep-
resentation, both preserving representations from the code function.
For each input sequence D =6,, 8,,* -+, 8, - -, with §,€ {1, 0, 1} for t=1, the
sequence of mappings
def

COUNT (I, D) = COUNT (1, 8,); COUNT (2, 8,); - - - ; COUNT (¢, 8,); - - -

defines a sequence of (a priori possibly undefined) arrays cocC,---,C, - such
that C? is the all-blank initial array C °[0:00]=0%, and for all t=1:

ct COUNT(1,8,) c
Decomposing COUNT (¢, §,) into its constituent functions for all t=1, with I(t) =
{igiceys deiy—15 "+ * 5 dea} @and iy gy > by yiy—1 > * + > i1, we obtain for each input sequence

D=6,,6,,--,8, - the sequence of basic mappings

INPUT (8,); UPDATE (iz(2)); " - * -
In this sequence, the subsequence of mappings
COUNT (¢, 8,) =UPDATE (i,;(s)); UPDATE (iy1()-1); - * -5 UPDATE (iy,);
INPUT (6,)

is said to constitute the rth step of the maintenance of array C. Starting from C'~" the
sequence of intermediate arrays defined by the fth step is

Cl—l( = Cz—n,o), Ct,l(t)7 Ct,l(t)—l’ Y Ct,17 Cz,o( = Ct)
defined by

UPDATE(, ;(,) INPUT(5,)

Ct-—l,O Ct,l(t) et

Note that in the decomposition of COUNT (I, D) in the basic mappings UPDATE ()
and INPUT (-) the parameter ¢ does not occur explicitly; the sequence of basic
mappings is defined totally by the sequence of successive values of I and the sequence
of inputs. This is important in the next sections. In this section we show in Lemma 1
that, for any input sequence D =6, 6,,* * -,

CO, Cl,l(l)a Y Cl,l € COde (0) U {@}

C,o=C"

and for all t=1
t—1
Cl—-l,O( = Ct_l)? Ct,l(!)7 T Ct,l € COde (;1 5!) U {@}.

In Proposition 3 it is demonstrated that for certain choices of the parameter selection
function I we have that C,;# for all t=1 and all j, I(f)=j=0, whence C'e
code (¥}, &) for all t=0.
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Lemma 1. Let array Cecode(c) for some integer c. If, for some i=0,
UPDATE (i)

Ce———=C',C'#J, then C'ecode(c). If, for some 8e{-1,0,1},
ALY C', C'#J, then C' € code (c+8).
. UPDATE (i)

Proof. Let C ecode (c) for some integer ¢ and C ——= C’, C' # J, for some
iz 0. If |C[2i]| # 2 then C’ = C and there is nothing to prove. So let |C[2i]|=2. Then,
for j<2i and j>2i+3, C'[j]=C[j]. Since also z;o C'Ri+jR*" =
2,10 C[2i+j12*", we have Y., C'[i]12' =Y -, C[i]2' = c. It is easy to check from the

UPDATE (i)

definition of UPDATE (i), that if (A), (C) and (D) hold for C, C =—=—= C' and
C'# J, then (A), (C) and (D) also hold for C’. Hence C’ €code (c). Let C € code (¢)

(8)
for some integer ¢ and C t—I—NLE%} C',C'# O, for some 6§ €{—1,0,1}. Since C' #

we have |C[0]|<2. For all j>1, C'[j]=C[j]. Because also C'[0]+2C’[1]=
C[0]+2C[1]+ & we have Y., C'[i]2' =c+8. It is easy to check from the definition

INPUT (3)

of INPUT (§) that if (A), (C) and (D) hold for C, C —= C’, and C' # J, then
(A), (C) and (D) also hold for C'. Hence C'ecode (c+6). O

PrOPOSITION 3. Let T:N-N be any function such that T(i)=3' for all i=0. Let
the parameter selection function I:N- 2", associated with the mapping COUNT, be
such that for all indices i =0 and steps t = 1 there existsat', t =t <t+ T(i) andie€ I(t').
Then for each input sequence 8,8, ,8,-+,8¢€{—1,0,1}, t=1, there exists a
sequence of one-way infinite arrays C°, C',- -+, C",- - -, with C° the all blank initial
array and C'™' is mapped to C' by COUNT (t,8,) for all t=1, such that C'e
code (¥;_, ;) for all t=0.

Proof. Roughly speaking the proposition states that if, starting from the all blank
initial array C°, UPDATE (i) is executed at least once in every interval of 3' steps,
for all i=0, and INPUT (8) is executed each step, with § € {—1,0, 1} the currently
polled input, then the array at time ¢ represents the stored integer at time ¢ according
to the code function. By Lemma 1 and the definition of COUNT this is the case if,
under the timing assumption on the parameter selection function I, each time
UPDATE (i) and INPUT (8) map an array satisfying (A), (C) and (D), the result is
not the undefined array &. The only way UPDATE (i) can map an array C[0: 0],
satisfying (A), (C) and (D) to & is for C[2i:2i+2]e{212,212,—2-1-2,-2—1-2}.
Similarly, the only way INPUT (&) can map an array C[0:00] satisfying (A), (C) and
(D) to @ is for C[0]e{2,2,—2,—2}. Hence we have to prove that, under the assump-
tions on I, and starting from the all blank initial array C°, these undesirable subarrays
do not occur at the crucial moments. Induction is on the number of steps ¢

Base case: the first step. Since C° is all-blank, for all i =0 we have C%[2i:2i+3]=
0000. Hence C°r——r2d o1 with C'[0]=5, and C'[i]=0 for all i=1. That is,
C'ecode (8,).

Induction: t=1. Assume, by way of contradiction, that for the input sequence
81,82,+,8,(8;€{—1,0,1}, 1=j=t) we have for all j, 1=j=1t:

_, COUNT(;)

C/ C’,C'# @ (induction assumption),

and
P COUNT(t+1,8) . .
C'E=————=( (contradictory assumption),
for some §€{—1,0,1}. For all j, 1=j=t, by Lemma 1, C’ e code (Zf=1 5;). Let I(t+
1)={i, i)y, -, i} and §>1i_,>--->i;. Decomposing COUNT (¢+1, §) into its
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constituent mappings we have

UPDATE (i)  UPDATE(,_,) UPDATE (i) INPUT(5)

C C[+1.— ﬁCl' ,Cl_l.... "Clﬁ QC() @

for some intermediate, possibly undefined, arrays C,, C,—y, - * - , Co. By the contradic-
tory assumption there must be a first undefined array in this sequence, say Ci1=
and C;# O for some j, 0<j=1[+1. Note that, by Lemma 1, C;e code (Ticy 8)-

Case 1. j>1. Setting i to i;_;, to avoid subscripts,

UPDATE (i)
]
Since C; € code (Z:=1 8;) and therefore satisfies (A), (C) and (D), this can happen only
if G[2i:2i+2]e{—2—-1-2,—-2-1-2,212,212}. Assume Cj[2i:2i+2]=212, the other
cases being symmetrical. Since the initial array C° contained only blanks, there must
be a t', 0<t' =t, with t—¢ minimal, such that
-t COUNT(?',5,) c’

C'[2i+2]=2and C""'[2i+2]#2. (A previous mapping UPDATE (k), with k> i, in
the (¢ + 1)th step could not have set C[2i + 2] to 2 from another value, so if Cj[2i +2]=2
then C[2i+2]=2 for all k,/+1=kz=j. Since C.;=C" indeed t'=t) From the
definitions it follows that C[2i+2] can be set to 2, from another value, only by the
mapping UPDATE (i). So i€ I(¢t'), and we denote by C’ the array mapped upon by
the occurrence of UPDATE (i) in COUNT (¢, §,) =UPDATE (i});
UPDATE (ij—q); " ; ; UPDATE (i{); INPUT (8,). By the definition of UPDATE (i)
we must have C'[2i: 21 +2]=002. Since during the mappings, following UPDATE (i)
in COUNT (¢, &, ) subarray C[2i+2: 00] is not accessed, and we have by Lemma 1
that C' € code (Z, 1 &) and C" ecode (Z, 1 8;), it therefore follows that

(1)
2i+1

Z C'[k]2* = Z C'[k]2*+6,= 21 C'[k]2*+68,=(4"""—=1)/3 (by (C) and (D)).

Any first occurrence of an UPDATE (i+1) in a COUNT (¢, 8,), t' <t"<t+1, so in
between the mappings by the two occurrences of UPDATE (i) in steps ¢ and t+1,
would have set C[2i +2] to 0, resulting in | C"[2i +2]| = 1, contradicting the minimality
of t—1t'. Therefore, for all ¢, ' <t"<t+1, i+1I(t"). By the assumption on I in the
proposition it follows that

) t—t' <3,

We are now ready to derive a contradiction. For the only mappings which can alter
something in C[2i+2:2i+3] are UPDATE (i) and UPDATE (i+1). However, in
between the mappings according to the occurrence of UPDATE (i) in step ¢’ and that
of UPDATE (i) in step t+ 1, no occurrence of UPDATE (i) has changed C[2i+2:2i+
3] (since this would contradict the minimality of t—¢'), and UPDATE (i+1) has not
occurred at all (since C;[2i+2]# 0 by assumption, i+1 is not in I(¢+1) too). So, by
the definitions of COUNT and UPDATE we obtain:

3) Y C'kR‘= T GlKR:

k=2i+2 k=2i+2
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Furthermore, by Lemma 1,

(4) Z C'lk]2"* = Z & = Z Cjlk12".
Thus:
2i+1
Z Clk12* = Z Cjlk12*~ Z Cilk12*
k=0 k=2i+2
=Y &— Y Clk]R* (by (4))
k=1 k=2i+2
t 00
=Y &~ Y C'k* (by (3))
k=1 k=2i+2
(5) ,
t t 2i+1 ,
=Y § Z + Y C'lk]2X (by Lemma 1)
k=1 k=0
st—t'+(4"1'-1)/3 (by (1))
<37*14+(471-1)/3. (by (2)).
But, by way of contradiction, it was assumed that C;[2i:2i+1]=21. Therefore,
2i+1 ) 2i—1 . ) .
(6) z ClkR*=4""+ Y Ck]2kz4""—(4'-4)/3-4'/2,
k=0

for i=2 (and =14 for i=1, =4 for i=0), by (C) and (D). Since for all i=0 the
contradictory assumption leads to the contradictory inequalities (5) and (6) we conclude
that j=1 and case 2 holds.

Case 2. j=1 and

INPUT (8)
1

However, under the assumptions in the Proposition, 0 € I(¢) forall t=1,s0 COUNT (¢ +
1,8)=---; UPDATE (0); INPUT(8). But if C,[0:00]# is the value of
UPDATE (0) then C,[0]€{—2, =2, 2, 2}. Therefore, the contradictory assumption also
fails in this case and

INPUT (8)

Cl'—-————_-:>C05£®.

Since the contradictory assumption has now been proven false, by Lemma 1
Ci+1,Cp -+, Ciecode (¥, &) and Cyecode (¥;_, 8+ 8). Setting C**'=C, com-
pletes the induction. 0O

Proposition 3 shows us a way of real-time simulating the quintessential counter
S figuring in Proposition 1. Let C° be the all-blank initial array, and let the parameter
selection function I meet the timing conditions in Proposition 3. If we map in the tth
step, for each 1= 1, the current array value to the next one by COUNT (¢, §), where
“add 6”, §€{~1,0, 1}, is the input command polled from the input terminal in the
tth step, then the array at each time ¢ =0 is a representation from code (stored integer
at time t). Since the mapping COUNT (¢, §) =- - - ; INPUT (8), and INPUT (&) maps
C[0:1] to a next value, we can simultaneously output “‘count equals zero” if the next
value of C[0]=0, or “count unequal zero” if the next value of C[0]# 0, according to
Proposition 2.
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Note that the requirement of an initial zero count is not essential. We can as well
prove Proposition 3 starting from C° equals a representation of an arbitrary integer
¢. For instance, a representation from code (c), containing only equal signed digits of
absolute value less than 2, for C°, lets Proposition 3 go through as well. Thus, the
arrangement can real-time simulate initially nonzero counters.

2.3. An oblivious one-head tape unit. Proposition 3 puts a heavy burden on a
one-head tape unit: C[0:3] must always be under scan, C[2: 5] within each third step,
and in general C[2i:2i+ 3] at least once within each interval of 3’ steps, for all i=0
simultaneously. This requires that, basically, at all times all C[i] must be on the move,
drifting inward or outward from the location occupied by the single head, so to speak.
This data motion must be due to the swapping of array elements amongst the momen-
tarily simultaneously scanned tape squares. To be able to scan C[2i:2i+3] within
certain time intervals, for all i =0, it is necessary that at certain times arbitrarily many
of such quadruples are split and the pieces geometrically far apart. The piece C[2i:2i+
1] must be joined to piece C[2i—2:2i—1] at certain times and to C[2i+2:2i+ 3] at
other times, for all i=1. Apart from performing the splitting, moving and glueing,
the head must also recognize quadruples C[2i:2i+ 3] to perform UPDATE, and also
know the relative order amongst pairs of such foursomes. Hence we need to maintain
some order and identification of the array elements. Yet we cannot identify the
individual elements of C with respect to their position, since such an identification tag
for C[i] needs log i space and log i time to evaluate. All this points in the direction
of a recursive process, but again we cannot maintain depth of recursion parameters.

The process exhibited below rests on the following intuition. The goal is roughly
to access quadruples of consecutive elements of C, of index @(i), at least once in each
interval of 2®” steps, for all i=0. We call the individual array elements cells and
consider them as packets of information to be swapped amongst simultaneously scanned
squares. Assume we are able to move a block of cells, called A,, by, according to
some regime, moving the head, centered on the cells constituting A;, from the left
end of A,, where it scans some squares left adjacent to A,, to the right end of A,,
where it scans some squares right adjacent to A,;, and back again to the left end of
A;. Let A, be contained in a block of cells called A,. Then A; moves by transporting
cells of A,— A, through A, to the other side of A, while simultaneously shifting the
cells of A,. Thus, we will shift the total block A, from the left end of A, to the right
end, and back again to the left end. During such a full sweep of A, over A,, we will
shift block A, within a larger block A, by a single square. So the relation between
A; and A; is analogous to that between A, and A,. See Fig. 1.

e— A5 <« A

Az

F1G. 1. The blocks are individually “moving” in the indicated directions.

In general, we envision an infinite series of nested blocks,
A, Ay, Ay Ay, 0 0, With A; properly embedded in Ay, i =1, such that a full
sweep of block A; over block A;., shifts block A;,, one square in the currently desired
direction. In the above arrangement, the head is always centered on block A,, and
therefore, since it is allowed to scan but a fixed number of squares, when it is centered
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at the end of block A, it scans but a fixed amount of squares outside. Since the ends
of the individual blocks govern the action the single head ought to take, and also cells
of A;+1—A; have to be transported through A; for arbitrary i, we cannot have the
physically present ends of all of blocks A,, A;,* -, A; in between the head centered
on A; and a cell, to be transported, in A;,;—A; So we want the blocks to move, in
a sense, completely out of each other. That is, an arrangement as below in Fig. 2,
where we denote the cells in A;,,—A; as By, for all iZ1, and A, by B;,. (xFy
denotes that y occurs after x.)

EOE
O ol FARSY P Fo o v

——
A
B o Lo (o ] - [ ][ 1o ]
FI1G. 2
—_—— . o
. IAi ||Bi,, I = . fAi ”Bin |
-—

—t—

= rAi [Bis JBm I

—~~
= - ﬁ51+1 Aj J Bisi I

—_
e o [ m ] ]
=
o [& 1

[y

—N—

t*:> @1 LAi Ibiml

e

FI1G. 3. The action of block A,,, = A;U B, with respect to blocks B, j> i+1 is not depicted.

*

b3

E 3

U*

Ux

In this manner we telescope the blocks, as it were, inwards and then outwards in
the other direction, subsequently reversing the process. To achieve this behavior, we
transport, for all i=1, elements of block B;.; through A;=U }=1 B; while simul-
taneously shifting the cells of A; to accommodate the transport. The motion of the
head through A; is governed by recursively moving B;.; through A, for all j, j=i.
Schematically, level i of the process is depicted in Fig. 3. When the head was at the
ends of block A;,; = A; U B;.4, it now could have picked up or deposited a cell outside,
that is, of a block B;, j> i+ 1. Assume that all blocks B;, i =1, have the same number
of cells, say x. By a full sweep of the head over block A; we shall mean the action the
head has to perform, starting from one end of A, to pick up a cell of B;, j> i, deposit
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it on the other side of A; and finish at the same end of A; from which it started. So
basically a full sweep of the head is a traversal of block A; from one end to the other
end and back again. Let a full sweep of the head over A; take at most S(i) steps, i=1.
Then to transport all of B;,; from one end of A; to the other end, and back again,
takes at most cxS(i) steps for some constant c¢. Since this constitutes a full sweep of
the head over block A;.;, we have S(i+1)=cxS(i), for all i=1, and obviously
S(1)=cx. So S(i)€2°Y,

In the formal construction below we set the block size to 2, and represent the
loosely described block B; by “[;];”, in the understanding that the two cells concerned
are tagged with “[”” and “‘]”. The subscripts on the tags are just there to aid the reader,
but do not occur in the actual simulation. An element of block B; in transport through
block A, j>i, is identified by a curly bracket of the appropriate type. Thus each
individual cell has permanently assigned to it a tag, consisting of either an opening or

closing bracket, which may at different times be square or curly. Fig. 4 sketches a
descriptive situation:

Al 1 J;

Fi1G. 4

After these preliminaries we formally define a one-head tape unit M. It is con-
venient to view the instantaneous descriptions (i.d.’s) (momentary snapshots of M’s
tape contents and the head position) as one-way infinite linear arrays 7T, with “<”’ or
“>” denoting the center of the head position. We tag the cells, containing elements
of the array C of the previous section, with “[”, <17, “{” or “}”. Below we display
only these tags, since for the moment we are not interested in the cell contents. The
identity of the underlying squares is not important, but the identity of the tagged cells
is fixed, wherever they end up. For convenience of the reader we index the tagged
cells (or rather the tags). The eventually defined machine; however, has no indexes
associated with the cells, only one out of the four mentioned tags. The initial i.d. is,
now focussing on the tags only,

T°=>LLLL: Ll dio -

We describe transformations of the array T in the form of six parametrized recursive
functions, and four nonparametrized functions, each of two types. Each such function
X will, for a unique subarray of T, rewrite this subarray by reordering its elements,
specified by X(*): a O B—a' O’ B’ with a,a’, B, B’ being strings of (for clarity
indexed) tags and <, ©'e{>,<}. A definite requirement for the process is that, at
some time, it has to scan ““[;4,)i+2[i+3)i+3” for the first time. So we define, for all i = 0:

A, D) >Lhike Ll = Laalililica iz - > disae

For symmetry we also define:
A< 0): L dim Glilica dic s Lhi< = L <bihila)2 - - G)idiee

To abbreviate notation we shall henceforth denote shortly, for all i=0,
def
Sl =Lk - L]

[1 ]1O <{_3_f [i]i Lici)icae - [11:©,
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with
Ce{<,>},and[;l;=¢€efori=0.
So for all i=0:
ACL D) >L i Ls i = Ll > Lisrs

A D) L Y ks <= L <l 1i Jisae

By execution of A(>, i) on the appropriate unique substring of T° we have therefore,
using the same rewriting denotation as in the previous section:

TO'___f_(:% T
with
T°=>[ ik Li)ilis1 ier L2 Lisa Liwadies - - ¢
and

T = [i+1 [i]i[i—l]i—l e [1]1 >]i+1[i+2]i+2[i+3]i+3 et

where ¢; is the number of steps it takes to execute the mapping A(>, i), to be specified
later, i=0.

With the head scanning at least five squares right of the center position, indicated
by “>"", the subarray “[;+2]i+2[i+3]i+3” is scanned at time ¢, for all i = 0, while at time
t =0 the subarray “[,]1;[>],” is scanned. »

DeriNITION. To achieve the required interchange of tagged cells, define the
functions below. Recall that “};”” denotes the same cell as “‘];”, only the attached tags
have changed. Similarly for “{;” and “[;”. For all i=0 and j>i+1:

A, i) > ax = Ll i>x (x#0)
A<, i) XL i< = x<[1 11 lina (x#1)
B(>,i): Lin 1 >1x = 1< 1 linax (x#=D)
B(<,i): x[;<l; )i L1 = xLisa 1 >4 (x#])

C>,i): limili i >1ile = Ll <b L Lina
C(<, i) L <L i Livr = L ki >} ds

D(>,i): >[i1x = L 1i>x (x#[)
D(<,i): xli i< = x<[i: s (x#1)
E(>,i): lis1li 1>l = Lisalisa i1 >x (x#0)
E(<,i): xliri <l i Jiva = <[ 1i L1 dia (x#1)

F(>,0): Lis1 111 >liva Livzx = L2l lina ki >x - (x#D
F(<,i): xliv2lis1 <ULt Lis1 = <UL dina Divz - (x#])
G(>): >{;lili+1 = >l d;

G(<): LimLiYi< = Lliali<

H(>): >} djdilier = >hiliaa b

H(<): linL}i{im< = Ll lia i<

J(>): >{in1lilivs = <lilis1lin

J(<): L Litim< = L i >
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K(>): =il lilivn = <liliv1 i1 livz
K(<): L1 Lilinliva< = L2l i >

The parametrized functions A through F set the basic pattern to transport tagged cells
from one side of [;]1; to the other side. (The index j is always greater than i+1.) The
nonparametrized functions G and H serve to move (linked pairs of) curly brackets
through “][” interfaces. If curly brackets are adjacent to a (linked) pair like “][”’ then
they have not yet reached their destination. If curly brackets are adjacent to a pair of
square brackets of equal type, then they have reached their destination, and are fitted
in place and changed back to square brackets, by the functions J and K. In the G and
H functions, the index j is again greater than i+ 1. However, to make the point once
more, the indexes are only put there to aid the reader. The intention of the described
rewritings is that the arrays concerned consist of nonsubscripted brackets, each bracket
viewed as tagging a particular cell. The rewriting reorders these tagged cells in the
array, and possibly changes brackets from square ones to curly ones of the same type,
or vice versa, as indicated in the indexed version above. Note that A(>,i): Y— Y’
and A(<,i): Z— Z' are related by the fact that Z is the mirror image of Y and Z’
is the mirror image of Y'. With mirror image we do not mean only the reverse, but
the reverse with every constituent symbol changed to its mirror image, so “>"" to
“<” 41710417, I to <17, to <} and <} to ““{”’. Similarly for the other functions.
LEMMA 2. For all i> 0, the functions are related as follows:

a) A(>,i)=A(>,i—1); F(>,i—1)
A(<,i)=A(<,i—-1); F(<,i—1)

b) B(>,i)=B(>,i—1); G(<); F(<,i—1)
B(<,i)=B(<,i—1); G(>); F(>,i—1)

c) C(>,i)=C(>,i—1); H(<); F(<,i—1)
C(<,i)=C(<,i—1); H>); F(>,i-1)

d) D(>,i)=A(>,i—1); E(>,i—1)
D(<,i)=A(<,i—-1); E(<,i~1)

e) E(>,i)=B(>,i—1);J(<); D(>,i—1); E(>,i—1)
E(<,i)=B(<,i=1);J(>); D(<,i—-1); E(<,i—1)

f) F(>,i)=C(>,i—1);K(<); D(>,i—1); E(>,i—1)
F(<,i)=C(<,i—-1); K(>); D(<,i—-1); E(<,i—1)

that is, six parametrized functions recursively calling each other. (Since D(>,0) and
D(<, () are “no operation’’s which do not change anything we leave them out, cf. below.)

Proof. For a) through f) we prove one equality each; the other one is symmetric.
For all i>0, with [;_,];-,=¢ for i=1 by definition:

a) For x#[:
>l lax=>0Lali L)iliax
A(>,i—1)
Lil-1)i-1> )i linax
F(>,i—-1)

Lol kil i x=La 1> x;
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b) For x#]:
<l Lo =x[i<boali- Gl

B(<,i~1)
xLil-1 =>4 )i i

G(>)
> x[i[i-11i-1> )i lis: {;

F(>,i—1)

X1 )i L= D=4

=xli1 L 1r>{;

c)

1j+1 [j<[k LLa=liai<bi-1li-iL)iLia

C(<,i—-1)

Ll ilia

H(>)
= Lil-1i-1> il b 4

F(>,i—1)

T ) Y Y g P
=L 1>} s
d) For x#[:

>h1x=>l-1)i-1 L)

A(>,i—1)
Ll-1li->1x
E(>,i—1)
Llli-1i-i>x
=L 1i>x;

e) For x#]:

xLie1<lr 11 disr = XL <lU—1li-1 L )i lin

B(<,i—1)
xLilr-1 == {1 Ji dina

J(>)
= x[i [1-1i-1<Di li+1)i+1

D(<,i—1)
xLi<li-1)i-1)iliv1Jin

E(<,i~1)
x<[r—1li-1 )i liva dima

=x<[; 1 i1 Lisrs
f) Forx#]:

XYiva L1 <l 1 Jiv1 = Xli2 i <li-1 i-1 L 1i b

C(<,i-1)
x[i -1 =1 o lis D dia



OPTIMAL SIMULATION OF COUNTER MACHINES 19

K(>)
= x[i -1 li-1<lili+1)iv1 Jivz
D(<,i~1)
i< lici )il liva )iz
E(<,i-1)

x<[-li-iliilis1diva din
=x<[; 11 li+11iv1 Livar 0

The mappings D(>,0): >x—>x(x#[) and D(<,0): x<—>x<(x#]) are “no
operation” or ‘“‘skip” instructions. Deleting them henceforth in the expansion rules of
Lemma 2e¢) and 2f), for i =1, those become:

ad Lemma 2a) E(>,1) =B(>,0); J(<); E(>,0)
E(<,1)=B(<,0); J(>); E(<,0)

ad Lemma 2f) F(>,1)=C(>,0); K(<); E(>,0)
F(<,1)=C(<,0); K(>); E(<,0).

A level i expansion of a function X (>, j) or X(<,j), j=i=0, results from expanding
that parametrized function with parameter j into a sequence of parameter i functions
and nonparametrized functions, according to Lemma 2 (with the “no operation’’s

expansion of X(-) then X(:)=Y; Y¥; ;Y with Y{Pe{A(>,i), A(<,i),
B(>,i), B(<,i), ,F(<,i),G(>),G(<), -, K(<)}—{D(>,0), D(<,0)},1=I=
n. We extend the concept in the obvious way to sequences of functions X;(<y, jy);
X2(<>27j2); Tt Xm(0m7jm)’ j17j2’ Tt ’jmgi and <>1y<>27 Tt 7<>m€{<a >} For
example, the level 0 expansion of A(>, 3) is found by way of the level 2 and level 1
expansions:

A(>,3)=A(>,2); F(>,2)
=A(>,1); F(>,1); C(>,1); K(<); D(>,1); E(>,1)
=A(>,0); F(>,0); C(>,0); K(<); E(>,0); C(>,0); H(<);
F(<,0); K(<); A(>,0); E(>,0); B(>,0); J(<); E(>,0).

The atomic mappings of the level 0 expansions of the parametrized functions are called
the local rewriting rules, and govern the switching of the tagged cells, in the squares
scanned, by the basic steps of the oblivious one-head tape unit M. Note that a fat head
covering four squares left and four squares right of the displayed center “>" or “<”
suffices to execute these atomic mappings. Below we use superscripts to distinguish
the identity of the various tagged cells before and after rewriting.

Local rewriting rules:
G(>): >{'Fr - >1rP{
G(<): 1 PP<~FPI'lP<
H): =Y PP - >PrY
H(<Q: 1'PP< =PI P<
J): >{'PP~ <PI'P
J(: ' PP<=TI'Pr>
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K(): >PLPT - <PEIT

K(<): [PP< - TP

A,0): >[~[>

A(<,0): 1<~ <]

B(>,0): I'>Px.— }’<]'x (x#])

B(<,0): x['<[® — x[>>{! (x#])

C(>,0): 1'>FP - ¥{<1

C(<,0: 1<l - P>

E(>,0): ['>1Px — ['1P>x (x#])

E(<,0): x['<P — x<[']? (x#])

FC,0:[">PP~-DLI >

F(<,0): I'I’<P ~ <I°’PT
The only use of the context symbols x in the definitions of A(>, i), A(<, i), F(>, i)
and F(<, i) was to force a unique expansion into functions with parameter j, j <i,
according to Lemma 2. Since A(<,0), A(>,0), F(<,0) and F(>,0) are atomic
indivisible actions, because the local rewriting rules shall not be decomposed any
further, we do not need these context symbols at the lowest level.

In the sequel it is useful to talk about well formed arrays, that is, the set of arrays

from which the consecutive i.d.’s of M are taken.

(i) T°is a well formed array.
(ii) If T is a well formed array and X (.) is any local rewriting rule, with the dot

standing for any appropriate argument, such that Tlg) T', T'#J, then
T’ is a well formed array.
(iii) No array is well formed except by (i) and (ii).
Since no mapping either deletes or multiplies a headmarker, i.e., “<’’ or ‘>, all well
formed arrays contain a single headmarker. By the mutual exclusion of the subarrays
they rewrite, if a well formed array T is rewritten to T’ # J by a local rewriting rule,
then T is rewritten to & by all other local rewriting rules. We now show that a well
formed array T is always rewritten by some local rewriting rule to a another well
formed array, which rewriting rule and array are therefore unique.
Earlier, we observed that, for all i=0,

A(>,D)

T —= T"

Lemma 2, there exist well formed arrays T, T\, TS, -, T, T®=T° and
T = T*, such that

y©
T, 5 T
for all j, 1 = j = n. By the uniqueness of application of local rewriting rules it follows that

X
T B> O
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forallj,1=sj=n, X# Y}O) and X is a local rewriting rule. Hence each well formed
array in the sequence T®, T{”, - - -, T2, has exactly one local rewriting rule which
is applicable to it, and the applicatlon of this local rewriting rule yields exactly one
next well formed array.

By Lemma 2a) we have A(>, i) = A(>,i—1); F(>, i—1) for all i >0, which leads

to
A(>,i)=A(>,0); F(>,0); F(>,1);:--; s F(>,i—1)
with
TOEE=2 T
and
T4 S e
for all j, 0=j<i. Define A(>, ) by
A(>, 00)-—11mA(t) A(C>,0); F(>,0); F(>,1);- - -; s F(>,10);-

and the level 0 expansion of A(>,c0) as the infinite, or unbounded, sequence of local

rewriting rules resulting from the level 0 expansions of the constituent functions F (>, i),
i>0, above. So

A(> 00) — Y(O) Y(O) ,,,,, Y§0); .
=A(>,0); F(>,0); C(>,0); K(<); E(>,0); -

and there exists an infinite sequence of well formed arrays T,
TO, -, T, -+, T = T°, such that for all j=1

y(o)
T = T

and for no local rewriting rule X # Y{” and T# Q&

X
TO BT,

i.e., Y{? is the only local rewriting rule applicable to T{%;. Consequently, a machine
which wants to execute the sequence of local rewritings of the level 0 expansion of
A(>, ), starting with i.d. T°, needs only to select the single local rewrmng rule Y{?,
applicable to the current T }0)1, by considering the length 9 subarray of T(, with the
current headmarker in the center, to obtain the next T}O), j=1. From the expansmns
in Lemma 2 we see that a nonparametrized function of G, H, J, K is always followed
by a parametrized function from A, B, C, E, F in the level 0 expansion of A(>, ).
In a single step of M we shall first execute a local rewriting according to G, H, J, or
K, if possible, and then execute a local rewriting according to A, B, C, E or F, which
by the above is always possible, starting with initial i.d. T°. So the oblivious one-head
tape unit M at each step shall examine the squares around the headmarker, and
switches tagged cells and head position amongst the scanned squares according to the
only local rewriting rules applicable. Fig. 5 shows an initial segment of the sequence
of well formed arrays T3, T, -+, T”, - - - produced by the successive execution
of the local rewriting rules in the level 0 expansion of A(>,c0) using the simple
procedure SWITCH below.
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FIG. 5. The first 116 well formed arrays T\”, 0= j<116.

Step 1. Examine the length 9 subarray, centered on the headmarker, of the current

Procedure SWITCH:

i.d. and switch tagged cells and headmarker position according to the
single, if any, local rewriting rule from the G, H, J, K rules which is

applicable. The result is a well formed array T.
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Step 2. Examine the length 9 subarray, centered on the headmarker, of array T
from step 1, and switch tagged cells and headmarker position according
to the single local rewriting rule from the A, B, C, E, F rules which is
applicable. The resultant well formed array is the next i.d.

LEMMA 3. Starting from the initial i.d. T°, a one-head tape unit M, executing
SWITCH at each single step, executes exactly the local rewriting rule sequence of the
level 0 expansion of A(>, ). For each t> 0, in the first t steps M executes this sequence
up to and including the tth occurrence of a local rewriting rule of the A, B, C, E or F type.

The goal of introducing the present bracket manipulator was to scan the subarray
“[:1: [i+1)i+1” at least once in each interval of 2°) steps, i = 0. We can express precisely
what the rth i.d. T' is. T° is the initial array at time t=0, and T" results from an
execution of SWITCH on T, for all t>0. According to Lemma 3, ¢ equals the
number of occurrences of A, B, C, E, F-type local rewriting rules executed. We need
to recognize “[;1; [;+1]i+1” as being the correct sequence of cells, which, since the cells
are tagged with nonindexed brackets in the manipulator proper, cannot go by way of
identifying the individual cells. For this purpose, the next lemma establishes a topology
for the well formed arrays. Before proceeding, we review a few facts about well formed
arrays which are pertinent to the proof of that lemma. By definition, and the discussion
preceding Lemma 3, the set of well formed arrays equals the set {T{”|j= 0} defined
by the level 0 expansion of A(>, ).

and for all i=1
Y(io)
T == T with T = T°.

By the definition of the initial array T°, and those of the various procedures, each
well formed array contains exactly one symbol from {<, >} and, for each i = 1, exactly
one symbol from {[,, {;} and exactly one symbol from {], };}. Recall that the indices
are not really there but serve to identify the individual cells for the reader by
distinguishing between the individual attached tags.

If a well formed array T contains a pair of adjacent brackets “[;1.’’ then j=k;
if it contains “];[”” then k=j+1 in case the headmarker is to the left and j=k+1
in case the headmarker is to the right. More precisely:

LemMMA 4. Let T be a well formed array, and let O € {<, >} and o, B, v {[,1,{,}}*.
Then:

(i) T=aCBlilky=>k=j;
T=alklBOy=k=j;

(i) T=aCBlilkyy=k=j+1;
T=alk[[BOy=k=j+1.

Proof. We basically prove the lemma by induction on the sequence of well formed
arrays T'\”, as defined by the level 0 expansion of A(>, %), j= 0. To do so, we consider
the initial segments T}O)[O :2(i+1)], j=0 and i =0, in isolation and show by the claim
below that they internally satisfy the lemma. Viz., in executing the level 0 expansion
of A(>, i) to obtain T" from T° the elements of the sequence of subarrays T$ [0 :2(i +
D], TOM0: 2+ 1)1, - - -, TQ0[0:2(i+1)], with T = T° and T, = T*, will be shown
to internally satisfy the lemma. Since during the execution of A(>, i) the final segment
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T[2(i+1):00] is not changed at all, and T? satisfies the lemma, the elements of the
sequence of subarrays TG [2(i+1):00], T{"[2(i+1):00],- -, T[2(i+1):] do
internally satisfy the lemma. Because we have an overlap of one symbol between
T10:2(i+1)]and T [2(i+1): 0] for all j, 0= j= a(i) with T§” = T® and T, = T
we can conclude that each well formed array T(O) 0=j=a(i), satisfies the lemma.
Taking the limit for i— oo, that is, considering A(>,00), it follows that the lemma
holds for all well formed arrays.
CLAaM. Let, for all iZ0, Xe€{A,B,C,D,E, F}, Ce{<,>} and T, T’ be well

(.
formed arrays such that X (<, i): T[p:q)— T'[p:q], for somep, q=0 and T%) T,
and let Yﬁ??l, Y% ;3 YO be the level O expansion of X(O,i) with

T, llﬁ) T for all j, 1=j=x(i) with T =T and T(Yxsy=T'. Then, for all j,
I=j=1+x(i), T\"[ p:q] internally satisfies the lemma.

Proof of claim. Base case i =0. Since for i =0 the procedures are essentially but

the local rewriting rules, we only have to verify that in the definitions of the various

functions the subarrays left and right of the arrow internally satisfy the lemma. Note

that [; 1; = e for i=0.

Induction. Assume, by way of contradiction, that for some X (<, i), with X e
{A,B,C,D, E,F} and ¢€{<,>} and i>0, the claim does not hold. But in the
execution of the level i—1 expansions of six of these functions with parameter i in
the proof of Lemma 2, the other six cases being symmetrical, the displayed subarrays
all satisfy the claim. Hence it must follow that a nondepicted subarray arising in the
execution of the level 0 expansion of some X'(¢',i—1), X'e{A, B,C, D, E, F} and
O'e{<, >}, violates the claim. Regressing in this fashion all the way down to i =0,
we contradict the established base case, and the claim is proven. 0O

By the discussion preceding the claim we have established the lemma. 0O

LemMA 5. Let T be a well formed array and let O e {<,>} and o, B {[, 1,{,}}*.
Then

(T=aQ[[ kB or T=al, 1;0B)=>(k=j=1).

Proof. That k = j follows already from Lemma 4. Considering the level 1 expansion
of A(>, )

A(>,OO) Y(l) Y(l) ,,,,, Y(l)

and

T, :==> TSV with TSV = T°,

we observe that it follows from the definitions of the various procedures that, for all
well formed arrays T}l), j=0, the lemma holds. Expanding each A, B,C, D, E, F
function with parameter 1 to level 0, and examining the intermediate well formed
arrays T\ # TSV, j, j' =0, yields the lemma. 0O

Lemma 4 and Lemma 5 show that a certain topological connectedness between
the indexed brackets is preserved throughout the array at all times, and that, in
particular, in each well formed array a ¢ B[;1c[;1,y holds k=jand I=m=j+1. So
whenever there occurs a length four subarray “[][]” right of the headmarker the
tagged cells concerned are in the correct consecutive left to right order. Without further
proof we give a more exhaustive characterization of the topology. Let T be a well
formed array. Then, for each i=1, T satisfies precisely one of the following forms.
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For i=1:
a[; 1,08
aOL 1B
a[;C1B
ali>{;li[.)2- - [;-11i-118 (some j=2)
ali>}ia ik [-1]-118 (some j=2)
alil-1)-10-21—2 - - - LLLL<hiB (some j=2)
aljlj-1)i-1-21i—2 - - LLL}i{j+«1<liB  (somej=2),

with the obvious modification for j=2.
For each i>1:

al; 1i[i-:BCy
aOBli-aLiliy
aliBOy}ili-i il L Lz djsz -+ * [i=2)i-21i-18 (some j<i—1)
aOB{i]i le1die1 ez djez s o Lo dica Doy (somej=i—1)
aligli2)i-2lislizs - * 1 ljsa [}iea {iBO Y10 (some j<i—1)
alili-1licili-2)iz "+ - [ D [ }iBOY (some j=i-1),

with the obvious modification for i—3=j=i—1. Here < can be either “<” or “>"
and a, B, v, 8 €{[,1,{,}}*. Considering the fact that

T°=>LLLGL L)Ll
and that, by definition, for i=Z0 and t=1¢,

T'= al"Bliviliva)izz - - [i+j]i+j [i+j+1]i+j+1 Y

j= 3, the formats express, but for the choice of ¢ as “<” or “>"’, the format each
well formed array T' can have, by applying in sequence the requirements for i+
1,i,---,1. According to Lemma 4, whenever we scan a subarray “[] [1” right of the
headmarker, we know for sure that this is the subarray “[;]; [;+1)i+1”’ for some i=1.
In the next lemma we give an upper bound on the number of steps, that is, executions
of SWITCH, in between scanning “‘[;1; [;+1]i+1” right of the headmarker, for all i = 1.
To express the timing we consider expansions of A(>, ) of level i, i=1:

and define for all j=1
Y
T, = T with T = T°.

The level 0 expansion of Y}i) =X (<, i), with Xe{A,B,C,D,E,F} and C¢
{<, >}, is fixed and, but for the headmarker arguments, is the same whether & =<
or &=>. Thus, by Lemma 3, the number of steps of M to execute X (<, i) equals the
number of occurrences of A, B, C, E, F local rewriting rules in its level 0 expansion,
and does not depend on the orientation of the headmarker <, or the position j in the
level i expansion of A(>, %) where Y}i) occurs. We denote the number of steps, used
by M, to execute X (<, i), by Tx(i).
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LEMMA 6. There exists a function S: N->N such that for each t =0 thereisat' >t

such that for some a, o', B, B’,e {ILLLB* and ©,0'e{<,>}
G T'=a1,B=>T =a”<>'[1]1B’ and t' —t=5S(1).
(i) T'=aCL LB = T =a'O'[11iL1:B8" and t' —t=S(2).
(iii) For all i>2 and xe{e,{,}{} there is a x'e{e,{,}{} such that: T'=
aOx)i2lic1lici 1B = T =a'O'x']i a1 Lici 118" and ¢ —t=S(i).

Moreover, S(i) =2T,(i)+ Tg(i), for all i= 1, is such a function.

Proof. Consider the level i expansion of A(>,0), i=1,

and

. Yy ) .
TP = T with T = T°.

Then T is of the form & ©[;1,8 or a[; 1,08, for all j=0. All such T{”’s, with Y|
not G, H,J or K local rewriting rules, are i.d.’s of M. We restrict attention to the
particular subsequence T, TSP, -, T\, - - for which T is of the form a<[, 1,8
for all k>0 and T{’=T° For each k=0 there exists a sequence Y ;;
Y55 Y2 such that

Jk+1

b et Y Y
(1) Tt > TS .

By the use of the recursive expressions in Lemma 2 we can determine all such sequences.
Subsequently, we have to determine which such sequences take the most steps to
execute. So we first determine Tx (i) for all X €{A, B, C, D, E, F}. It follows from
Lemma 3 that Tx (i) equals the number of occurrences of A, B, C, E, F procedures in
its level 0 expansion. We see from Lemma 2 that:

Ta(i)=Ta(i=1)+Te(i-1),
Tp(i)=Tg(i—1)+Tr(i—1),
Tc(i)=Tc(i-1)+Te(i-1),
Tp(i)=Ta(i-1)+Te(i-1),
Te(i)=Tg(i—1)+Tp(i—1)+Te(i—1),
Te(i)=Tec(i—-1D)+Tp(i—1)+Tg(i—1),

and T,(0) = Tg(0) = Tc(0) = T (0) = Tp(0) =1 and Tp(0)=0. For this system of
recurrence equations with initial values we find T,(i) = Tg(i) = Tc(i), for all i=0,
and consequently Tg(i) = Tr(i), for all i=0, which in its turn yields Tp(i) = Ta(i),
for all i=1. Hence for all i=1:

(2) Te (i) = Tp(i) = Ta(i) = T(i) = Tc(i) = Tp(i).

Now let Y15 Y05+ 5 Y be a sequence of functions as in (1). Erasing the
G, H,J and K procedures (because they do not contribute to the number of steps it
takes to execute this sequence, by Lemma 3) and replacing all E’s by F’s and all B’s,
C’sand D’s by A’s (because they take the same number of steps for i = 1) the resulting
sequences are F(<, i), A(<,i); A(>, i) and A(<,i); F(>,i); A(<,i).Sofori=1,2,
S(i) =2T4(i)+ Tx(i) satisfies the lemma. For i>?2 we note that, for all k=0 (with
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the obvious modification for k =0),

T;,i) =a<[r-3li-sli-2)i2[i-1 1i-1 [ 1B

é’ &' [i-2l1-3)1-3>x)i2[i-1)i-1 [: 1B
with Z; and x one of the following:
Z;e{J(<); A>,i—3),K(<); A(>,i—3)} and x=g¢;
Z,=B(<,i—3) and x={;
Z,e{C(<,i-3), G(<); C(<,i—3), H(<); C(<,i—3)} and x=}{.

In all cases, the execution time of Z; is T4 (i — 3), which shows that S(i) =2 T4 (i) + T (i)
satisfies the lemma for all i>2 too. 0O
CoROLLARY. Let S:N-N be defined by S(i) =2T (i) + Tx(i), foralli=1. Then:
(i) Foreacht=0 thereexistsat' ,t<t'=t+S(1), such that the t'th i.d. of M has
the form T' = a<[,1,B for some a, B {[,1,{,}}*.
(i) For each t=0 there existsat',t<t'=t+S(2), such that the t'th i.d. of M has
the form T" = a <[, 1,[,1.B for some a, B e{[,1.{,}}*.
(iii) For eachi>?2 and t=0 there existsat',t<t'=t+S(i), such that the t'th i.d.
of M has the form T' = a>x)i_,li—11i-11;1iB for some a, B {[,1{,}}* and
xef{s,{,H{}

It remains to determine S analytically.

Lemma 7. S(i) = (1+v2)" " +(1-v2)""".

Proof. From the system of recurrence equations, and the values for i =0, in the
proof of Lemma 6, follows:

Ta(i)=2Ts(i—1)+ Ts(i—2) fori>2.

The solution for this homogeneous equation is of the form T, (i) = ax!+ bx}, where
X1, are the roots of x*>—~2x—1=0 and a and b follow from T4(1) =2 and T,(2) =4.
So x;,=1++2 and

a(1+v2)+b(1-v2)=2,  a(1+v2)*+b(1-v2)*=4
yielding a = 1/«/5 and b=—-1/~/§. Hence
1
2

From the system of recurrence equations, and the identities amongst the functions, it
appears that Tg(i) = T4(i) + T4(i —1) whence the expression for S(i) follows. O
CoROLLARY. S(i)<3™*! for all iz1. Viz.,, S(1)=6 and lim;,. S(i+1)/S(i) =
1+2.
Of course we can obtain that S(i)<3'*! by a cruder argument. The present
analysis, however, is quite straightforward and precise. Running the bracket manipu-

lator on a computer, by way of empirical verification, confirmed the first nine values
of S.

TA(i)=%(l+x/§)‘— 1-v2), iz1.

2.4. The real-time simulator. Having set the stage in the preceding sections, we
now tie everything together to obtain the desired real-time simulator.

Let M be a one-head tape unit with a one-way infinite tape divided into two
tracks: the tag track and the count track. The finite control of M has a special register
containing the initial segment C[0:5] of the array C[0:0] representing the current
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count as in §§ 2.1-2.2. The single head of M covers 14 squares and its position is the
intersquare boundary in the center. Initially, the head covers the leftmost squares, all
squares on the tape contain special blank symbols and the finite control is in a
distinguished initial state, in particular C[0: 5] contains 0’s only. Since M can always
initialize previously unscanned squares, still containing blanks, by keeping a parity bit
in the finite control, we assume that the tape is initially divided in the two tracks as
follows. Number the tape squares from left to right by =7, —6,---,0,1,2, - - - . Square
i,i= 0, contains initially on the count track C°[i+6]=0 and on the tag track a tag
“I, if i is even, and a tag ““]”, if i is odd. So the initial situation can be visualized as
in Fig. 6, with the initial headmarker ‘“>"’ kept in the finite control. At each step the
head rewrites the contents in the squares under scan, and shifts left, right or not at
all. Since the head shifts will be governed by the local rewriting rules of the last section,
the marker “>"" or ““<”’, positioned on the center intersquare border of the scanned
squares, can shift at most two squares left or right in a single step. Whether this marker
is “>"" or ““<” can be maintained in the finite control; the initial marker is ‘“>".

FINITE CONTROL

INPUT joureur

C®o:s] >

STORAGE HEAD

\ _ -
s i L] ) [mes ¥
c°Le] | Cor7) Con2) C°[2i] | C°[2iv] count 7\'\8
Fi1G. 6

Each step of M consists of essentially two parts: first execute COUNT on the
representation of the currently stored integer, check whether this integer is zero, and
secondly execute SWITCH to switch cells containing digits of the integer representation.
The information in the two tracks of a square may be thought of as a cell containing
the current digit C[i], which is tagged by the tag on the tag track.

To execute COUNT, M inspects the scanned cells right of the headmarker, so as
to determine I(#) in the tth step, and also identify the squares containing C[2i],
C[2i+1], C[2i+2] and C[2i+3] for all i€ I(¢). To this purpose first procedure
COLLECT is executed. Let P be the current local tape contents, i.e.

_ T Ty T3 T4 Ts Teg T7
Y172 Y3 Y4 Vs Ve V7
is the tape contents on the seven squares right of the headmarker.

Procedure COLLECT (P):
Let the seven squares right of the headmarker contain the string 7,7, -+ 77 on
the tag track and the string y,7y, - - - y; on the count track. Then we distinguish

P
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essentially four cases, implicitly specified by ¢:
(@) mim=[1 & 137 #[1=> 1(1)={0,1,2} & C[6:7]= 1725
(b) mimamsra=[111= 1(1)={0,1,2,3} & C[6:9]=y1¥2¥3V4}
() mimmmars=1[1[1= I(1)={0,1, i}, i>3, & C[2i:2i+3]= v,737a7s;
T3 TsTe = { 1[1[1 = I(¢) ={0, 1, i}, i>3, & C[2i:2i+3]
= Y3Y4Y5%e>
7113 T4TsTem = {111 = I(1) ={0,1, i}, i>3, & C[2i:2i+3]

= Y4Ys5Y6VY75
(d) none of (a)-(c)=I(t)={0,1}.

Modulo the correctness of the implications in the definition of COLLECT, which
remain to be proven, the execution of COLLECT (P) in the tth step of M both
determines I(t) ={i, ij_4," -, i1}, §>§_1>" > i, and identifies the locations where
C[2j;], C[2i;+1], C[2i;+2] and C[2i;+ 3] currently reside, 1= j= L Since these loca-
tions are either under scan on the tape, or in the finite control, viz. C[0: 5], the machine

UPDATE (i;); INPUT (8) by executing the consecutive mappings in the decomposition
on the relevant subarrays of C[0:00], without explicitly knowing the value of t. Thus,
in each single step, starting from the all-blank tape with the initial headmarker “>"
positioned at the left end, the one-head tape unit M will do all of the following.

Procedure STEP:

Step 1. Initialize both tracks of right adjacent previously unscanned squares, still
containing primeval blanks, by writing the correct square bracket on the
tag track (check and update parity count in the finite control) and a blank
“0” in the count track of such a square.

Step 2. Execute COLLECT (P).

Step 3. Let the current value of I determined by step 2 be {ij, i, - -, i1} with
i, >1i_,>--->1i;. READ the current value of 8§ from the input terminal
and execute COUNT (current step, 8), that is,

Step 4. WRITE ‘“‘count equal zero” or “count unequal zero” to the output
terminal, depending on whether or not C[0]=0, for the C[0] resulting
from step 3.

Step 5. Execute SWITCH. That is, switch the contents of the scanned squares,
considering the combined contents of the tag track and the count track
on a square as a single package. Interchange these packages amongst
squares, shift the head position and change the brackets and headmarker,
governed by the current headmarker, head position on the scanned
squares, and the scanned brackets alone.

ProposITION 4. The constructed one-head tape unit M is oblivious and real-time
simulates the quintessential counter.

Proof. The one-head tape unit M is oblivious since the head movement is governed
by the tag track and the headmarker, independent of the input. Attaching imaginary
indexes i=3,4,- - - to the initial tag track contents, a shift of 2 from the ones in the
initial i.d. in the previous section, the executions of SWITCH preserve that pairing of
C[2i] with opening bracket indexed i and of C[2i+ 1] with closing bracket indexed
i, i=3. Since C[0:5] resides immobile in the finite control, Lemmas 2-5 ensure that
the identification of array elements by COLLECT (P) in each step remains correct
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under the interchange of the mobile array elements of C on the count track by
SWITCH. In the tth step, for all t=1, COLLECT (P) determines the value I(¢) of
the parameter selection function I, as well as the high to low order of elements in I(¢).
By Lemma 6 and Corollary, for each =0 and each index i =2, there exists a step ¢,
t<t'=t+S(i—1), such that i € I(¢'). By the definition of COLLECT (P), {0, 1} < I(¢)
for all t= 1. Since it follows from Lemma 7 that S(i—1) < 3 for all i = 2, the oblivious
one-head tape unit M real-time simulates the quintessential counter by Propositions 2
and 3. O

Let C be any k-counter machine, k = 1. Clearly, C can be thought of as a finite
control connected with k quintessential counters S;, S,, - - -, Si. At each step the finite
control of C reads an input command from the input terminal if it is in a polling state,
checks each S;, 1=i=k, for zero contents, and governed by this information issues
input commands “add §,”, §,€{—1,0, 1}, to each S;, 1=i=k, and writes an output
string to the output terminal. In the spirit of Proposition 1, we can real-time simulate
C by an oblivious one-head tape unit M, which is just like M, but with k count tracks
(one for each quintessential counter) and one tag track. Storing the first six digits of
the representation of each count in the finite control, which is connected to the input
and output terminals through C’s original finite control, we finally obtain.

THEOREM. Each multicounter machine can be real-time simulated by an oblivious
one-head tape unit using logarithmic space.

Proof. By Propositions 1 and 4. That the space used is logarithmic in the simulated
number of steps follows since the head is centered immediately left of the square
containing tag “];.,” for the first time after executing A (>, i), which takes T, (i) steps.
To clean up some final details: we can get rid of the fat head, covering 14 squares and
sometimes shifting its center two squares in a single step, by cutting out a piece of
tape of 14 squares and buffering it in the finite control. The remains of the tape are
glued together and the contents of the buffered piece are swapped from the buffer to
the scanned tape square and vice versa, according to the desired head motion, cf. the
speed-up technique in {3]. O

On the required bits. Although the preceding simulation and its proof may not
seem easy, the algorithm which does the work is pretty simple. As it happens, we are
also frugal in the number of bits. On information-theoretical grounds we require about
k log, 2n bits to represent any k-tuple of integers of absolute values up to n. In the
exhibited simulation, we can use four bits for each digit of a count, need not more
than log, n digits for each count, and since there are but four tags, each tag can be
encoded in two bits. Therefore, we use at most about (4k +2) log, n bits to represent
k counts of absolute values at most n. By restricting the most significant nonzero digit
to absolute value 1, and appropriately modifying the mappings UPDATE and INPUT,
everything goes through as before but code (¢) < {-2,-1,0,1,2,—1,0, 1}*, ce Z. Thus
we only have to use (3k+2)log, n bits to represent k counts of absolute values at
most n. Using only digits from {-2,—1,0,1,2,0} also suffices, but complicates the
proof. How good a real-time algorithm is can be measured in the size of the storage
alphabet used. Realizing that actual machines use a constant size storage alphabet, we
observe that a large, although finite, storage alphabet in an algorithm implies a greater
constant delay. That is, the reverse of a speed-up by decreasing the alphabet size. At
the cost of a deterioration of the constant delay, implicit in the real-time solution
presented, we can do better than using (3k +2) log, n bits. Using in §8 2.1 and 2.2 an
analogous redundant symmetric r-ary representation, based on the digits —r,—r+
1---,-1,0,1,2,--+,r=1,r, we can get the bit count down to about (1+
4/log, r) k log, n bits for maintaining k counts of absolute value at most n. The implicit
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constant delay, however, rises proportional to log r. In the limit, for - 00, we achieve
about the information-theoretical minimum in bits, but the constant delay goes to
infinity, that is, it takes infinite time to execute a single step.

Note, however, that for no fixed finite storage alphabet a real-time simulation of
but a single counter on an oblivious multitape Turing machine can reach the informa-
tion-theoretical bit minimum. Such a simulation must use Q(log n) size representations
for counts of size n, and we can argue that for each n there must be at least log n
representations. Hence we use at least log, 2n +log, log n bits per count.

On the size of the fat head. In the simulation a head covering 10 squares suffices,
which can be shown by a slight complication of the proof. Also, the head shift in a
single step of M need not exceed one square.

On the initially zero counts. As argued subsequent to the proof of Proposition 3,
the assumption of initially zero counts is not essential. The theorem holds also for
multicounter machines with each count initialized to an arbitrary integer.

3. Conclusion. For various theoretical and practical reasons, multitape Turing
machines, restricted in one or more resources, serve as a standard against which to
calibrate the power of other devices, or to compare the power among themselves under
different resource restrictions. The commonly considered resources are time, space,
number of tapes/storage heads and oblivious versus nonoblivious. The present simula-
tion is, perhaps, the first one which is optimal in all of these resources at once: the
use of no resource can be improved by relaxing the other resource restrictions. Apart
from the fact that the simulating device is real-time, oblivious and uses but a single
storage head, it is worthwhile to recall that there do not exist on-line Turing machines
using S(n) € o(log n) space, S(n) unbounded [4]. Thus, the simulation is performed
by the simplest (with respect to the considered resources) Turing machine which is
not an outright finite automaton. Another resource, which is sometimes considered,
is the number of head reversals. Again, it is easy to see that each multitape Turing
machine needs, in the worst case, a linear number of head reversals to on-line simulate
a counter machine, as does the presented simulation. (Although a multihead Turing
machine can simulate a multicounter machine without head reversals [8], the simulation
of such a device by a multitape Turing machine needs a linear number of head reversals.)

Some immediate applications. In a computation using k stacks we may want to
keep track of which pairs out of the k stacks are of equal height at any time. Without
slowing down the computation, we formerly needed k—1 stacks for doing so. Using
the present method we need but one extra oblivious one-head tape unit, or two extra
oblivious pushdown stores. A single pushdown store does not suffice. Similarly, we
can keep track of the headpositions in multihead Turing machine computations.

Number representations. The reader may appreciate the following comment of
John Locke on the intimate relation between counting and number representation.

For he that will count 20, or have any idea of that number, must know that 19 went before, with
the distinct name or sign of every one of them, as they stand marked in their order; for wherever
this fails, a gap is made, the chain breaks, and the progress in numbering can go no further. So
that to reckon right, it is required: (1) that the mind distinguish carefully two ideas, which are
different one from another only by the addition or subtraction of one unit; (2) that it retain in
memory [a systematic method for deriving] the names or marks of the several combinations, from
a unit to that number, and that not confusedly and at random, but in that exact order that the
numbers follow one another; in either of which, if it trips, the whole business of numbering will
be disturbed, and there will remain only the confused idea of multitude, but the ideas necessary
to distinct numeration will not be attained to.
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The one and only basic reason to denote numbers at all is for the purpose of
comparing them, of whether the one is greater than the other, for without this capability
no arithmetic is possible and with it all arithmetic is possible. Thus we must be able
to distinctly represent all numbers, and if we have representations for all numbers up
to a given one, then we must be able to derive the next one, or previous one, from
the given one, while having a designated point of reference or benchmark number.
This is the task expressed in the notion of a counter machine, and multicounter machines
enable us to do arithmetic. The exhibited optimal implementation embodies a new
representation for multituples of integers suitable for exercising that basic activity
using minimal resources. Thus, for each n=(ny, ny, - -, n)eZ", k=1, each such
representation for n consists of a linear string of symbols, and is about as compact as
possible. Such a representation has a distinguished access position p, and by considering
only the three symbols centered on the access position we can

(i) add any vector 8 =(8;,8,," - -, 8)€{—1,0,1}* to n to obtain such a rep-
resentation for n+§6;
(ii) for all i, 1 =i=k, determine whether n;+§;=0;
(iii) determine the new access position p' € {p—1, p, p+ 1}, which is also indepen-
dent of n and &. In m successive additions the distance between the leftmost
and rightmost intermediate access pointer positions is O(log m), for all m > 1.

Note that Gray codes, as representations of integers, have vaguely similar proper-
ties for the case k = 1. There, the representation of n+1, n€ Z, can be obtained from
the representation of n by changing a single symbol. However, the symbol in the
representation which must be changed to obtain n + 1 from #» can lie arbitrary far from
the symbol which must be changed to obtain n—1 from n. Moreover, these positions
depend on n and whether we add or subtract, and do not allow us to test n for 0. The
representation derivable from the simulation in [1] is closer to the one above, for the
case k =1, but the new access position p’ in (iii) depends on n and 8. None of these
representations have any of the properties (i)—(iii) in case k> 1.

Augmented counter machines. Apart from the basic one-step multicounter
operations, several other one-step operations can be synthesized using concealed
auxiliary counters, such as tests for equality amongst counters (by maintaining all
differences on auxiliary counters). It is known [2] that the operations ‘“‘set counter i
to zero” or “‘set counter i to the value of counter j” (i # j) cannot be synthesized as
one-step operations on a multicounter machine. At the end of § 2.2 we noted that the
requirement of initially zero counters was not essential for the present simulation. It
can be proved [9] (this issue, pp. 34-40) that with a suitable embellishment the
present simulation can also support the one-step operation ‘“‘set counter i to the value
of counter j” (i # j). Define an augmented counter machine (ACM) just like a multi-
counter machine but with the one-step input operations ‘“‘set counter i to the value of
counter j”’ (for any pair of counters i, j) added and any initial counter contents in Z
allowed. Such a machine can execute quite powerful instructions in one step. For
example:

L:if(x<y& y=c) then (x < z; z< d) else (x < y; goto L') fi
with x, y, z integer variables, c, d integers and L, L' labels, is a one-step instruction

for an ACM.

THEOREM. Each augmented counter machine can be real-time simulated by an
oblivious one-head tape unit in logarithmic space.

Uniform space complexity. Viewed in space-time, the bracket manipulator head
describes an interesting curve. This is perhaps best expressed by stating that the
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two-dimensional space-time trajectory described by the center of the greatest tape
segment, delimited by brackets with indices j, j'=1, is the same as that described by
the center of the greatest tape segment, delimited by brackets with indices j, j'=i—1,
i>1, subsequent to multiplying the time scale of the latter by S(i)/S(i—1) and the
space scale of the latter by i/(i—1). This shows that the number of distinct squares
visited in each time interval of n steps, for all n=1, is @(log n). Generalizing this
observation, we say that a multitape Turing machine M uses uniform logarithmic space
if, for any unbounded input sequence, the total number of distinct squares, visited on
M’s storage tapes, for each interval of n steps, for all n=1, is O(log n). It can be
shown [10] that each multitape Turing machine using uniform logarithmic space can
be real-time simulated by an oblivious one-head tape unit using uniform logarithmic
space.

Oblivious simulations. It seems to us that also the converse of the maxim leading
to Proposition 1 holds generally. Viz., if we can simulate arbitrarily many storage
devices by a fixed number of, possibly different, devices then we can do so obliviously
retaining the same resource bounds. The point here is that if the multitude of head
movements of an arbitrary number of heads can be accommodated by the motion of
a fixed number of heads, then there is no reason to suppose that any trajectory of the
latter can make significant use of particular input streams.
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AN OPTIMAL SIMULATION OF COUNTER MACHINES:
THE ACM CASE*
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Abstract. An Augmented Counter Machine (ACM) is a multicounter machine, with initially nonzero
counters allowed, and the additional one-step instruction ‘“‘set counter i to the value of counter j”, for any
pair of counters i and j. Each ACM can be real-time simulated by an oblivious one-head tape unit using
the information-theoretical storage optimum.

Key words. counter machine, multicounter machine, augmented counter machine, real-time simulation
by oblivious one-tape Turing machine, number representation, counting, coding

1. Introduction. In the companion paper [3] (this issue, pp. 1-33), a real-time
implementation of multicounter machines on oblivious one-head tape units of optimal
storage efficiency was exhibited. An augmented counter machine (ACM) is a multi-
counter machine, with each of its counters initialized to any integer, and with the
additional one-step operation “‘set counter i to the value of counter j”, for any pair of
counters i and j. Several one-step operations, other than the basic ones, can be
synthesized on a multicounter machine by the use of concealed auxiliary counters (such
as ““test equality of a pair of counters”, for any such pair, by maintaining the differences
on auxiliary counters). It is known that the above assignment among counters cannot
be so synthesized. A witness for this fact is the language L*, with L ={0"1"|p=m > 0}.
Thus, in real-time, ACM’s are more powerful than multicounter machines [1]. The
particular technique used in [3], to obtain an optimal simulation of counter machines,
is well suited to extend that result to the more powerful ACM’s. Consequently, we
shall demonstrate the next theorem.

THEOREM. Each augmented counter machine can be real-time simulated by an
oblivious one-head tape unit using the information-theoretical minimum in storage space.
(Viz., for each t=0 and n=1, during the processing of the (t+1)th through (t+ n)th
input command, of the simulated ACM, the storage head of the simulating oblivious
one-head tape unit accesses but O(log n) distinct tape squares.)

In [3] the analogue of the theorem was derived for the weaker multicounter
machines. The next section, containing the demonstration of the above theorem,
continues and presupposes that paper.

Outline of the simulation. The simulation consists of the oblivious one-head tape
unit constructed in [3], equipped with some additional features. The (k+1)-track
one-head tape unit M of [3], capable of real-time simulation of a k-counter machine,
has one tag track, which does not concern us here, and k count tracks containing the
momentary representations of the k stored integers, one per track. M would trivially
be capable of real-time simulating an ACM, if it could replace the contents of any
count track by that of any other in each single step. This is clearly impossible for a
one-head tape unit, since the significant count track contents may be arbitrarily large.
Yet we were able to update the individual tracks, with respect to unit addition/subtrac-
tion, by amortizing the propagation of the carries and borrows. The idea below is to
do the same with respect to the replacement of one count track contents by that of

* Received by the editors March 15, 1983. This work is registered at the Mathematical Centre as IW
225/83.

t Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
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another. Thus, if at some step ¢ the counter i is set to the value of counter j, we start
to transfer the contents of count track j to count track i, from the low order digits to
the high order digits, a few digits each step ¢', t' = . We do so by introducing a switch
which, in each position it passes, overwrites the digit on count track i by the correspond-
ing digit on count track j- Each such switch is introduced in the Oth position of the
representation, and is shifted through simultaneously scanned adjacent positions to
higher ones, preliminary to the propagation of carries and borrows, in each step. The
effect is that the carry or borrow, resulting from an input at a later time than the input
which was to replace the contents of counter i by that of counter j, will always be
preceded by the replacing of the individual digits constituting the contents of count
track i by their counterparts on count track j. Since in each interval of n steps, for all
n=1, the head visits but O (log n) distinct tape squares, each switch eventually
overtakes all earlier created switches, but never passes them. We are thus confronted
with arbitrarily long queues of switches clogging at some positions on the tape. It will
be shown, however, that whenever one switch overtakes another one, we can replace
the combination by a single switch. It thus suffices to equip the multicounter simulator
of [3] with an extra track on its tape, and modify the algorithm it executes in each
step, to derive the desired ACM implementation.

2. An optimal simulation of ACM’s. Recall that, in the proof of the optimal
simulation of multicounter machines in [3], the usual assumption of initially zero
counters was not essential. The simulation presented there also works with each counter
initially set to any integer. To turn such a machine into an ACM, we therefore only
have to add operations which can instantly replace the contents of any counter by that
of any other counter. This amounts to an operation which is more general than a
permutation of the momentary contents amongst the various counters.

Define a semipermutation o, among k objects 0y, 05, -, 0, for o=ijiy - i
(5e{1,2,---,k}for 1=sj=k) by

0(019 03, ", ok) = (Oila oiza Y Oik)'

A semipermutation is also called a permutation with repetitions. The semigroup (not
group), of which the elements are semipermutations of k objects, the product of two
semipermutations being the semipermutation resulting from applying each in suc-
cession, and the identity £ being the semipermutation which does not change anything,
has k* elements and is denoted by R,.

Define an augmented counter machine (ACM) A as a k-counter machine with
each counter i, 1 =i =k, initialized to a value in the set of integers. Input commands
to A are of the format (0,8) with o€ R, and 8e{—1,0,1}*. At any time, if
(¢4, €25+ +, ¢i) is the integer valued k-vector contained in A’s k counters and (o, 8)
is the currently polled input command then in one step A does all of the following:

(i) (cr, ¢, a)<a(cr, c0 005 €5
(11) (Ch (% T Ck)“(cla Co "y ck)+8;

(iii) OUTPUT, for all i, 1=i=k, “counter i=0" or “counter i # 0" according

to the new state of affairs.

Let M be the k-counter machine simulator as constructed in [3]. The ith count
track contains the array C[i, 6:00], and the ith register in the finite control contains
C[i,0:5]. The array C[i, 0:o0] represents the integer c; that is, the value of the ith
counter, 1 = i = k, just as the array C[0: co] represented the value ¢ of the quintessential
counter in [3]. The initial arrays C°[i,0:0], 1=i=k, are representations of the
prescribed initial integers, each representation containing no digits of opposite sign,
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cf. the conclusion of § 2.2 in [3]. The following adaptation, of procedure STEP in
[3, § 2.4], trivially turns M into an ACM simulator. Replace step 3 of procedure STEP
by step 3; below, turning it into a new procedure STEP,. The resulting machine is
M,, and the contents of the k count tracks are contained in a k X oo matrix Cy[1:k,
0: 0], such that C,[i, 0: o] denotes the contents of the ith register in M,’s finite control,
followed by the ith count track on M,’s tape, in the obvious way, 1=i=k.

Step 3;: Let the current value of I, determined by step 2, be {i;, i;_y,* * -, i1} with
ii>i_;>+-->Ii;. READ the current command (o, 8) from the input
terminal. Let 8 =(8,, 8,, * - *, 8x). Execute:

for j=0 step 1 until co
do
Ci[1:k,jle oCy[1:k,]]
od;
for j=1 step—1 until 1
do for i=1 step 1 until k
do
Ci[i, 2i;:2i;+ 3]« UPDATE (C\[i, 2i;: 2i;+ 3])
od
od;
for i=1 step 1 until k
do
Ci[i,0:1]« INPUTS,, (Cy[i,0:1])
od

Step 3,, however, contains an infinite for statement. (That statement is the only
addition to the original step 3.) Since the cardinality of I(#) happens to be at most 4,
for all ¢, cf. [3], only a few positions of the arrays, representing the counters, can be
updated by the actual machine in each step. Consequently, M; does not constitute a
real machine, since it executes the procedure STEP,, containing an infinite for state-
ment, that accesses all of the infinite tape (c.q., Ci[1:k, 0:c]), each single step. We
shall amortize the execution of the infinite for statements, implementing the semipermu-
tations, by executing them in each position only when they are due.

We observe the notational conventions from [3], concerning superscripts on arrays.
Thus, an array B, connected with a machine M;, i =1, 2, can be viewed as a variable
or as an actual value. In the first case we do not use a superscript. In the latter case
a superscript ¢ is used to indicate the value of B, subsequent to the execution by M,
of the tth step (i.e., procedure STEP;), for a given input command sequence (o', 8"),
(6%,8%),-++,(0",8"), - -. That is, B’s value just before M; processes the (¢+1)th
input command (o'*?, 8'*).

We associate, with each position j=0, a queue Q[j] of semipermutations. If
Q[j]= 00— * * + oy then the constituent semipermutations oy, o5, - * * , 7,,, have been
executed, in that order, on all positions j;, 0 = j, = j, but none of them has as yet been
executed on any position j,, j,> j. Queues of semipermutations can be concatenated
to a single queue. That is, if Q[j;]=0,0,-1 -0y and Q[j,]=v,v,—, - - - v, then by
definition:

Q[jl]o[j2]=0'p0'p_1 O Vglqor V.

For each j=0, the initial contents of Q[j] is e, that is, the empty queue. For each
particular input command sequence, for each time =0, we denote, for all j= 0, the
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queue in position j at time ¢t by Q'[j]. Thus, Q°[j]=¢ for all j=0. For any input
sequence (a',8"), (0%,8%), -+, (d",8"), -, with 0’ € R and 8'e{—1,0, 1}*, for all
t=1, we preserve the following invariant:

(E) Y AQUQN] - QUQL+1]- =a'a"" -+ o' & ¥ i{O[2i]=¢]L

(Recall that, in [3], invariants (A)—-(D) pertain to the representation C[i, 0:00] of the
contents of the ith simulated counter, for each i, 1=i=k.)

If Oljl=0,0,-1 -0, then by application of Q[j] to a k-vector v=
(vi, v2,° * , ¥¢), denoted as

(Vl, Va, ** 0 Vk)(_ Q[j](vla Vo, =ty Vk)’
we mean the assignment embodied in the execution of:

for j=1 step 1 until m
do
(v, vp, - -, Vk)“o'j(Vu Vo, t o, Vi)

od

Now replace the third step of procedure STEP by step 3,, so as to obtain a new
procedure STEP,. The corresponding machine is M, and, for any input sequence
(c',8Y), (6%8%), - -,(c",8"), -+, with o'e R, and 8'e{—1,0,1}, the matrix
C,[1: k, 0: 0] contains the contents of the k count tracks and k count registers of M,
in the obvious way.

Step 3,: Let the current value of I, determined in step 2, be {iy, i, - * -+, i1} with
;>1i_;>+-->I;. READ the current command (o, 8) from the input
terminal. Let 8 =(8,, 85, - -, 8x). Execute:

for j=1 step—1 until 1
do
Coll:k, 2i;+2:2i;+3]« Q[2i;+1]Cy[1: k, 2i;+2:2i;+ 3];
Q[2i;+3]« Q[2i;+1]0O[2i;+3];
Q2i;+1]<«¢;
for i=1 step 1 until k
do
C,li,2i;:2i;+ 3]« UPDATE (C,[i, 2i;: 2i;+ 3])
od
od;
GCy[1:k,0:1]«0Cy[1:k,0:1];
Q[1]« oQ[1];
for i=1 step 1 until k
do
C,[i,0:1]«< INPUTS,, (C,[i, 0:1])
od

Obviously, (E) is preserved by step 3, for each input sequence.
LeMMA 1. For each input sequence it holds that for all t=0 and all i, 1=i=k,

we have: _ _
Ci[i,0]1=0 iff Ci[i, 0]=0.
Proof. Define a third k X 0o matrix Cs, which normalizes C,, at any instant of time

t, by executing the backlog of semipermutations which by that time have accumulated
(in the queues for) the consecutive positions j, with respect to the k-vectors C3[1: k, j].
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By definition then, for all t=0 and all j=O0:
Ci[1:k,j1=(Q'[0]Q1] - - - Q'[j—1DCAl1:k, j].

The following claim expresses the essence of the amortization-of-execution-of-semi-
permutations argument. Viz., for each input sequence, for every ¢ and i, C3[i,0:0]
and C{[i, 0: 0] represent the same integer.

CLaM. For any particular input sequence (o,8"), (¢%,8%), -+, (d",8"), - -:

Vit V i3 c[Cyi0:o]ecode(c) iff Ci[i,0:0]ecode(c)],
t=0 1=i=sk ceZ
where Z is the set of integers.

Proof of claim. By induction on the number of steps ¢, for any particular input
sequence (o', 8"), (6%,8%, -+, (d",8"), .

Base case. t=0. Since Q°[j]=¢, for all positions j=0, and C{ and C$ both
represent the same k-vector of prescribed integers according to the code function, cf.
[3], the claim holds initially.

Induction. t = 0. Assume the claim holds forall s=¢. Let I(¢t+1)={i, ij_," -, i},
with §;>i_;>--->i;. Recall from [3] that, for each t=0, the least element i; in
I(t+1) equals 0. This will be needed later in the proof. By the inductive assumption,
for each i, 1 =i=k, and for all s, 0= s =¢, there is an integer c; such that C3[i, 0: 0],
Cili, 0:00]ecode (cj), since M; obviously simulates an ACM A just as M in [3]
simulates multicounter machines. During step ¢+ 1, the running variable j assumes the
successive values [, [—1,---,1 in step 3, of procedure STEP,. For each such j, the

piece of code

Cy[1:k,2i;+2:2i;+ 3]« Q[25;+1]Cy[1: k, 2i;+2:2i;+3];
(1) Q[2i;+3]« Q[2i;+1]0Q[2i;+3];

Q2i;+1]«¢

in step 3, does not change the normalized matrix C;[1:k, 0:00] at all. The execution

of (1) also preserves (E), viz., in particular Q[i]= ¢, for all even i. Now consider the
next piece of step 3,:

for i=1 step 1 until k
@) do

Culi, 2i;: 2i;+ 3]« UPDATE (Cili, 2i;: 2i;+3])
od

Just before the execution of this for statement, the matrix C;[1:k, 0:0] consisted of

three submatrices:
C3[1 . k, 0: 2i,_ 1],

C3[1 : k, 2ij B 2i’+ 3],
Cil1: k, 2i+4: 0],

Since Q[2i;]= Q[2i;+2]=¢g, by invariant (E), and Q[2i;+1] has just been set to & by
the preceding subprogram (1), it follows from the definition of C; that, just before
execution of (2), it holds that:

(3) Cy[1: k, 2i;:2i;+3]=(Q[0]Q[1] - - - Q[2i;—11)C,[1: k, 2i;: 2i;+3].

Only G, [1: k, 2i;: 2i;+ 3] is accessed and changed (row-by-row) according to UPDATE
in (2). Therefore, by equality (3), the effect on the normalized matrix C;[1:k, 0: 0],
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of executing the subprogram (2) on C,[1: k, 0: ], is the same as the effect of executing:

for i=1 step 1 until k
do
Cili, 2i;: 2i;+ 3]« UPDATE (Cy[j, 2i;: 2i;+3])
od

By [3, Propositions 1-4], therefore, if Cs[i, 0: 0] € code (¢;), for some integer c;, before
the execution of (2), then Cs[i, 0: 0] € code (¢;) after the execution of (2) too, for each
i, 1=i=k. As noted above, for all t=0, the least element of I(¢t+1) is i; =0, by [3].
So subsequent to the last execution of the subprogram (1); (2) in the (¢+1)th step,
that is, the execution with j = 1 and therefore i; = i; = 0, we have Q[1] = ¢ while Q[0]=¢
by (E). Hence, by definition, Cs[1:k,0:1] now equals C,[1:k,0:1], while, by the
inductive assumption and the above reasoning, still Cs[i, 0:00]€ code (c;), for all i,
1=i=k. In this situation

(4) GCy[1:k,0:1]« 0C,[1:k,0:1];
Q[1]« o0Q[1]

is executed. Thus, the array C;[1:k,0:00], derivable from the new values of
Cy[1:k,0:0] and Q[0:00], yields, for o =jij> - - * ji, that C;[i, 0:00]e code (c}), for
1=i=k, while Q[0]=e. Consequently, under the inductive assumption, after the
execution of (4) in the (¢ +1)th step, we have Cs[i, 0:00] € code (c},), just as we trivially
have C,[i,0:0]€ code (c}), subsequent to the execution of

for j=0 step 1 until c©
do
Ci[1:k,jle oCi[1:k, f]
od

(5)

in the (¢+1)th step of M, (using STEP, containing step 3,). Meanwhile, we still have
Ci[1:k,0:1]= C,[1:k,0:1], since Q[0]= &. Therefore, subsequent to the final piece

for i=1 step 1 until k
do
C,[i,0:1]« INPUT;, (C,[i,0:1])
od

(6)

of step 3,, yielding the new values of C, and Cj, viz., C5™' and C5"', we still have
C5'i,0:1]1=C5'[i,0:1], for all i, 1 =i= k. Moreover, by the properties of INPUT
in [3] we also have C5''[i, 0:0]e code (¢} +§;), for all i, 1 =i= k. Trivially, in view
of [3], for all i (1=i=k), it holds that C}"'[i,0:0]€ code (c},+ ;). This concludes
the induction and the proof of the claim. 0O

Since invariant (E) is preserved by step 3,, and therefore Q[0]= ¢, we have by
definition that Cs[1:k, 0:1]=C;[1:k,0:1]. In [3, Proposition 2] it was shown that
the lowest order digit of a representation in code (c) equals 0 iff ¢ equals 0. Together
with the Claim, these two observations imply the Lemma. 0O

Since it is trivial that M, real-time simulates the required ACM, by Lemma 1 it
follows from [3] that, if the machine M, can be realized, the Theorem holds.

LEMMA 2. M, can be constructed as a machine satisfying the specifications in the
Theorem.

Proof. The only difficulty with M, concerns the storage, execution, transport and
concatenation of arbitrary large queues of semipermutations. Since the semipermuta-
tions form the semigroup R, under concatenation, no queue Q[j],j=0, ever needs
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to contain more than a single element from R;. Since every Q[ ], j = 0, initially contains
the unity element €, each subsequent execution of step 3, can compute the single
semipermutation which represents the current contents of Q[j] in R,, for any such
Q[ j] involved. Storing Q[j] in the cell containing C[1:k, j], for all j=0, so in the
finite control of M, for 0=j=5 and on its tape for j = 6, shows that M, has the same
specifications as the multicounter simulator M in [3]. Hence the lemma. O

The Theorem follows from [3, Propositions 1-4] and Lemmas 1 and 2 above,
combined with the observation that M, trivially real-time simulates any ACM.

3. Final remarks.

Optimality. Since the ACM implementation, constructed above, has the same
complexity, with respect to the measures concerned, as does the multicounter machine
implementation in [3], it is a fortiori also optimal in all commonly considered complexity
measures at once.

On the required number of bits. There are k* semipermutations in R,. To denote
each of them, it suffices to use k log, k bits. Similar to [3],we note that, under the
scheme outlined in § 2, it suffices to use (4k + k log, k+2) log, n bits to represent k
counts, of absolute value not greater than #n, in the ACM simulator. Using a redundant
symmetric r-ary representation [3], based on the digits —r, —r+1,---,0,1,- -+, r—1,
r, we can bring the bit count down to below (1+(4+1log, k)/log, r)k log, n bits, and
therefore arbitrary close to the information-theoretical minimum, to the detriment of
the implicit constant delay, as in [3].

Simulations of ACM’s on other devices. In [2] we gave optimal simulations of
multicounter machines on RAM’s, combinational logic networks, cyclic logic networks
and VLSI. The method used above, of amortizing execution of semipermutations to
extend the simulation of multicounter machines by tape units to a simulation of ACM’s
by the same, can also be used to extend the optimal simulations of multicounter
machines, by the above devices as in [2], to optimal simulations of ACM’s by these
devices. As here, the complexity of the simulations of the ACM’s, by these devices,

is none other than the complexity of the corresponding simulations of multicounter
machines.
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ON CIRCUIT-SIZE COMPLEXITY AND THE LOW
HIERARCHY IN NP*

KER-I KOt AND UWE SCHONING#

Abstract. Let A be a set having polynomial size circuits. If A is also known to be in NP, then we may
conclude that the graph of the polynomial size circuits for A is actually in I15. Using this observation, we
show that sets in NP which have polynomial size ciruits are in L5, the third level of the low hierarchy in
NP. By a similar technique, we are able to show that some other intuitively low sets in NP are in L%, and
even in a certain refinement of L. As a consequence, sparse sets are not strong nondeterministic polynomial
time Turing complete in NP unless the polynomial time hierarchy collapses to A%.

Key words. NP, low hierarchy, polynomial size circuits, sparseness

1. Introduction. Recent studies on the structure of intractable sets revealed the
incompatibility between NP-completeness and some structural properties such as
sparseness. Berman [5] showed that tally sets cannot be polynomial time many-one
complete (abbr. =% -complete) for NP unless P = NP. Fortune [ 7] showed that co-sparse
sets cannot be =% -complete for NP unless P =NP. Mahaney [14] solved the original
Hartmanis-Berman conjecture [4]: sparse sets cannot be =%, -complete in NP unless
P=NP. Karp, Lipton and Sipser [9] showed that sets having polynomial size circuits
cannot be polynomial time Turing complete (abbr. =%-complete) in NP unless the
polynomial time hierarchy collapses to 5. Note that by a result of Meyer (stated in
[4]) NP has polynomial size circuits if and only if there is a sparse =%-hard set for
NP. Similar results can be found in [10], [15], [18].

In recursion theory, certain properties which are incompatible with completeness
have been classified as ‘“‘lowness” properties. More precisely, let A be a recursively
enumerable (abbr. r.e.) set and A™ its nth jump. Then A is a high, set if A™ is
Turing equivalent to @™, and A is a low, set if A™ is Turing equivalent to &
[19]. Intuitively, the highness or lowness of an r.e. set indicates the relative information
content of the set. An interesting application of this information content classification
of r.e. sets is the characterizations of many complexity-theoretic and structural proper-
ties found by Bennison [2], [3] and Soare [19]. For instance, subcreativity and effective
speedability are shown to be “weak high” properties, and nonspeedability a “weak
low”” property. (Weak highness and weak lowness are defined to be similar to highness
and lowness except that a “weak jump” is used. For the exact definitions, see [19].)
Since complete sets are known to be high, (and weak highy), it is an immediate
consequence that nonspeedable sets cannot be complete.

It seems natural then, based on the results of Mahaney and Karp, Lipton and
Sipser, to draw the analogy in the NP theory, and ask whether there is a natural
definition of highness and lowness of sets in NP and whether sparseness is indeed a
lowness property. An affirmative answer to the first question has been given by Schoning
[16]. He defined a high and a low hierarchy in NP, based on a K-operator which is
an analogue of the jump operator in recursion theory. The naturalness of these
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hierarchies can be seen from the simple characterizations of some classes of high and
low sets. Let LfcLf< - - < LH and Hfc H{ < - - - =< HH be the low and high hierar-
chies in NP, respectively. (See the next section and [16] for the definitions.) Schoning
showed that L§=P, L{=NPNco-NP, HE={=%-complete sets in NP}, Hi=
{=T?-complete sets in NP}, where =77 represents the strong nondeterministic poly-
nomial time Turing reducibility [13].

One of the open questions about these hierarchies is that they are not known to
be proper hierarchies. That is, we do not know that H; # Hf,, or L # L%, ,—even
under the strong assumption that X% # 35, ,. All we know is that HY "L, =< if and
only if 2 #XF,,. Still it appears to be an interesting classification of sets in NP. In
this paper we use Schoning’s low hierarchy to attack the question of whether sparseness
is a lowness property. We provide an information content classification of some intuitive
lowness properties and derive, from this classification, results similar to those of Karp,
Lipton and Sipser.

To be more precise, we prove that sets in NP having polynomial size circuits are
in L4. Since NP-complete sets with respect to many natural reducibilities appear to
be in the high hierarchy (cf. [16]), the above result not only separates sets having
polynomial size circuits from =4-complete sets in NP (under the assumption that
35#3%), but also separates them from NP-complete sets of weaker types, e.g.,
=T?-complete sets in NP. In addition to the above result, we also show the lowness
of some other sets including (i) sparse sets in NP, (ii) sets in APTNNP (APT4s the
class of sets having deterministic algorithms which run in polynomial time for all inputs
except those in a sparse set [15]), (iii) sets in R (the class of sets having polynomial
time probabilistic algorithms with small one-sided errors [1]), and (iv) weakly p-
selective sets in NP that include both p-selective sets [18] and left cuts of NP real
numbers as subclasses [10]. Figure 1 shows the inclusion structure of low sets in NP.

In summary, the contribution of this paper is to give a unified method of proving
incompatibility results. The main application of this method is to obtain results of the
form ““if a complete set for NP has property , then the polynomial time hierarchy
collapses to 25, (or A%(,))” (cf. [5], [7], [9], [10], [12], [14], [18]). In the next section
we review the high and low hierarchies defined by Schoning, and give the necessary
notation. Then we show our main results in the following sections.

2. Notation. All our sets are subsets of {0, 1}*. Let s be a string in {0, 1}*. Then
|s| denotes the length of s. We use (-, ) to denote a pairing function and generalize
it to encode a finite number of strings. If s={s;,- -, s;), then we define set (s)=
{s1,**, s} and say the string s encodes the set {sy, - - -, s, }. We assume that for two
given strings s and ¢, the predicate ¢ € set (§) is polynomial time computable. For a set
A, let |A| denote its cardinality.

Let A be a set and C a class of sets. We let P (A) and NP (A) denote the
classes of sets accepted by polynomial time deterministic and nondeterministic oracle
machines with oracle A, respectively. Let P(C)=U{P(A)|Ae C} and NP (C)=

U {NP (A)|A € C}. The relativized polynomial time hierarchy may be defined as follows
[20]:

pA =154 = ABA =P (A),
and for n=1,
zﬁ,A = NP (Eﬁ’fl),
154 = co-NP (282)) = co-Z84,

Aﬁ’A =P (Zﬁ’fl .
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F1G. 1. Inclusion structure of low sets in NP.

When A =, we write
3P TI? and A” for £2%,11%% and A%?,
respectively. Furthermore, define
PH=U {2%|n=0}.

It is not known whether the polynomial hierarchy is a proper infinite hierarchy or
whether it “collapses.” It is known that for n=1, the hierarchy collapses to X%
(PH=2X7%) if and only if =% =1II%, if and only if £f, =37, if and only if II=1I%,,,
and PH=A? if and only if =% =A% if and only if II} = AP if and only if AL =A%,,.

Schoning used the K-operator to define the high and low hierarchies [16]. Here
the following characterization is more useful.

DerFINITION 1. For n=0, let H,={AeNP|Z2,, <374}, and let L%=
{AeNP|ZPAc 3P},
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Observe that this characterization has been shown to be equivalent to that given
in [16] with the exception of the trivial cases A = and A ={0, 1}*, and the case of
n=0 for H%. In [16], HJ is the class of =% -complete sets in NP.

The relationship between these hierarchies is as follows:

LeEMMA 1 [16]. For all n=0:

(a) HicHY,,, LhcLhs,.

(b) If PH#ZXY then LENHE =,

(c) If PH=ZXF then L’ =H! =NP.

The classes L, LY and Hf, Hf have natural characterizations.

LEMmMmA 2 [16].

(a) LE=P, and LY =NPco-NP.

(b) HE={=%-complete sets in NP}, and Hf = {=T*"-complete sets in NP}.

A set A is said to have polynomial size circuits if there exists a function h: N -
{0, 1}* and a set B € P such that:

(a) for all se{0, 1}*, s€ A if and only if (h(|s|), s)€ B; and

(b) for some polynomial function p and all n =0, |h(n)| = p(n).

Let A, ={se Al||s|=n}. A set A is sparse if there exists a polynomial function q such
that |A,|= q(n) for all n=0. By a result of Meyer in [4], a set A has polynomial size
circuits if and only if A € P (S) for some sparse set S. A machine M is said to be almost
polynomial time if there are a polynomial p and a sparse set B such that for all s¢ B,
M(s) runs in p(|s|) steps. The class APT is the class of sets which are accepted by
almost polynomial time machines. The class R is the class of sets A satisfying the
following conditions: there exist a polynomial function p and a polynomial time
computable predicate Q such that, for each n, if |s|=n then:

(a) if s€ A then |{t||t|=p(n) and O(s, )} =1 [{t]lt|=p(n)};

(b) if s¢ A then (V¢t,|t| = p(n)) [not Q(s, 1)].

DEFINITION 2. A set A is weakly p-selective [10] if there is a function f of two
arguments that can be computed in polynomial time, such that, for every n=0, the
set {x €{0, 1}*||x|=n} can be decomposed into at most p(n) many pairwise disjoint
subsets By, -+, B, m = p(n), for some polynomial p and

(a) if x and y are in two different sets, x € B; and y € B, with 1 =i <j=m, then
f(x, y)=f(y, x)= # where # is a new symbol;

(b) if x and y are in the same B, 1=i=m, then f(x, y)=f(y, x) €{x, y}, and
furthermore, if x€ A or ye€ A, then f(x, y) = f(y, x) € A.

Ko shows in [10] that weakly p-selective sets include both p-selective sets and
left cuts of real numbers.

It has been shown that sparse sets, sets in APT, sets in R, and weakly p-selective
sets all have polynomial size circuits [4], [15], [1], [10].

Polynomial time many-one (<%,) and polynomial time Turing (<%) reducibilities
are defined in [11]. Strong nondeterministic polynomial time Turing reducibility (= 7T")
is defined in [13] and can be characterized as follows: A=7*B if and only if Ae
NP (B) Nco-NP (B).

We say that a predicate T(x) has a =% -form (or, I1%-form) if it is of the form

(lel)(o2x2) T (O,,x,,)S(x, X1, X, " 0 0 xn)’

where S is polynomial time computable, Q;, Q,, - - -, Q, are alternating quantifiers
starting with Q, =3 (or, Q; =V, respectively) and the variables x; range over strings
of lengths bounded by a polynomial in |x|. It is known [20] that a set S is in Z5(I1%)
if and only if the predicate expressing “x € S has 25-form (II;-form).



CIRCUIT-SIZE AND LOW HIERARCHY 45

3. Polynomial size circuits and the low hierarchy. First we give some more
notation. For any set B and any string w, let B(w) denote the set {s € {0, 1}*|(w, s) € B}.
That is, B(w) is the set of strings which can be recognized with “circuits” w and
“circuit interpreter” B. For any multi-valued function h: N - {0, 1}*, we let graph (h)
be the set {{0", w)| w is a value of h(n)}. We say h is total if for each n=0, there is
a w such that (0", w)e graph (h), and h is polynomial length-bounded if there is a
polynomial p such that for each n=0, |w|=p(n) for all values w of h(n). For set
A c{0, 1}*, we define the class of sets

CIR (A) ={graph (h)|h is total and polynomial length-bounded, and
there is a set B €P such that for each n=0, A, =B(w),,
for all values w of h(n)}.

In other words, CIR (A) is the collection of all ‘“‘polynomial size circuits” with which
the membership questions of A can be answered in polynomial time. Note that A has
polynomial size circuits if and only if CIR (A) # . Furthermore, if A has polynomial
size circuits, then it has circuits of complexity II7 relative to A.

PROPOSITION 1. For each set A having polynomial size circuits, CIR (A) NTI5* #
&.

Proof. Let D=graph(h) be in CIR (A) via some BeP. Define a set C as
C={0", w)||w|=p(n) and A, = B(w),}. Observe that D< C and C € CIR (A). Fur-
ther, by the definition of C,

0", wyeC iff (Vx,|x|=n)xe Ae(x, w)e B],

hence Cell?2. O

Conversely the complexity of sets in CIR (A) determines that of sets in the
polynomial time hierarchy relative to A.

THEOREM 1. Let A have polynomial size circuits. Assume that CIR (A)NZL#
for some k= 1. Then, 7" < 3%.

Proof. Let D eX}*. Then there exist a polynomial function a and a predicate S
in P(A) such that for each x in {0, 1}*,

xeD iff Ay, |yl=a(x)) - (Quw Iyl =alx)Sx yi, -+, yi)s

where Q, =3 if k is odd and Q, =V if k is even. Since S € P(A), there exists an oracle
machine Mg such that, for inputs (x, y;, - - *, yx) of sizes |x| =nand|y|, -, || = a(n)
and with oracle A, Mg accepts (x, yi,- -+, yi) in B(n) steps for some polynomial
function B if and only if S(x, y, -, Y&)-

Let CeCIR (A)NZX%. Assume that C =graph (h) € CIR (A) via some set Be P
and some polynomial bound y. Define a polynomial time computable predicate T as

follows. T(x,y1, **,yw)=1 if and only if the oracle machine Ms accepts
(%, y1,* -+, y) with the oracle B(w). Note that if (0°™, w)e C then Agimy=B(W)gn)
and hence for all x,y,"::,» with |x|=n and |y, -,|yl=ea(n),
T(X, y1,** *» Yoo W)= S(X, y1,* * *, ¥i) because the machine Mg on (x, y;,* -+, yx) can

query strings of lengths at most B(n).
Now we can reduce the predicate “xe D’ as follows. Let |x| = n.

xeD

lﬁ (3)’1, |y1|§a(n)) v (Qkyk’ |yk|§a(n))s(x’ )’1, ttt, yk)
iff (3w, |w|=y(B(n)))[(0*™, w)e C and
Ay Iyl =a(n) - (O 1yl = a(n))S(x, y1, - -+, i) -
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This is valid because A has polynomial size circuits and A is total. From our
discussion above about the relationship between the predicates S and T, we can further
reduce the predicate “x e D” to the following:

(3w, |w|= y(B(n)))[0?"™, wye C and

3y, yil=a(n)) - - (Quye Iyl =a(n) T(x, yi, -+, Yoo W]

It is clear now from the above reduced predicate that C € % implies D € 3%, and
the proof is completed. 0

We now study the complexity of CIR (A) for several subclasses of sets with
polynomial size circuits.

LemMA 3. Let A have polynomial size circuits and let k= 1.

(a) If AeXf then CIR (A)NIIL,, #D.

(b) If A€R then CIR (A) NI} # 2.

(c) If Ae X} and A is weakly p-selective then CIR (A) N AR # .

Proof. (a) Immediate from Proposition 1.

(b) Let AeR. Then there are a polynomial function 8 and a polynomial time
computable predicate T such that (Vn)(Vs,|s|=n) [[s€ A implies |{t||¢{|=B(n) and
T(s, )} =3-|{t]|}=B(n)}|]] and [s ¢ A implies (V¢, |¢|= B(n)) not T(s, t)]]. Moreover,
Adleman [1] observed that for each n, we can find a set W, c{¢||t|=B(n) and
(3s,|s|=n)T(s, 1)} of size =n such that (Vs, [s|=n) [se A iff (3te W,)T(s,t)].

Define B={(w, s)|{(3teset (w))T(s, t)} and h a multi-valued function having
graph (h) ={(0", w)||w|=n-B(n) and A, = B(w),}. Then he CIR (A) because Be P
and for each n the string x, which encodes the set W, satisfies (0", x,,) € graph (h).
We claim that graph (h) e I15.

We reduce the predicate A, = B(w),, as follows.

A,=B(w),
iff (Vs,|s|=n)[se Ae(w,s)e B]
iff (Vs,|s|=n)[(3,|t|=B(n))T(s, t) e (Juecset (w))T(s, u)]
iff (Vs,|s|=n)[(3,|t|=B(n))T(s, t)> (Queset (w))T(s, u)]
iff (Vs,|s|=n(Ve,|t|=B(n))[T(s, t)>{w, s)e B].

It is thus a IT{-form predicate, and hence graph (h) € I1§.

(c) Let A be weakly p-selective. Then there is a function f of two arguments that
can be computed in polynomial time and satisfies the conditions in the definition of
weak p-selectivity. Following [10, Thm. 3], for some polynomials 8 and y and for
each n, there exists a set W, € Ag(,, of cardinality at most y(n), such that (Vs, |s| = n)
[se A iff Qye W,)f(y,s)=s].

Let B={(u, s)|(3teset (u))f(t, s) = s} and p(n) = B(n)- y(n). Then B € P. Define
C ={(0", w)||w|=p(n), set (w)< A and A, = B(w),}. Then the function h such that
graph (h) = C is total because for each n, the string x, which encodes the set W,
satisfies A, = B(x,,),. That is, C € CIR (A). We claim that Ce A%, if AeX%.

First observe that set (w)< A implies (Vs)[(w, s)e B> s€ A] because, by the
definition of weak p-selectivity, [u€ A and f(u, s) = s] implies s A.

Now we reduce the predicate (0", w)e C as follows.

0", wye C
iff set (w)< A and (Vs,|s|=n)[sec Ae(w, s)e B]
iff set (w)< A and (Vs, |s|=n){w, s)e B>sec A]
and (Vs,|s|=n)[se€ A>(w, s)e B]
if set (w)< A and (Vs, |s|=n)[se€ A->(w, s)e B].
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Since A€ X}, set (w)< A is a 3h-predicate, and (Vs, |s|=n)[se A>(w, s)e B] is
a IT{-predicate. Hence C is the intersection of a set in 2§ and a set in IT%. It follows
that Ce A} k+1- 0

Combining Theorem 1, Lemma 3 and the observation that for each k =0, I1} and
A%, are included in 2%, we have the following:

THEOREM 2. (a) {A eNP|A has polynomial size circuits} < L5.

(b) RcLi.

(¢) {AeNP|A is weakly p-selective} = L.

CoroLLARY 1. (a) {AeNP|A is p-selective} = L5.

(b) {AeNP|A is a left cut of a real number} = L5.

Proof. Corollary 1 follows immediately from Theorem 2(c) and the results in [10]
that p-selective sets and left cuts are weakly p-selective. 0O

Observe that, by the same proof methods, it is possible to obtain results analogous
to Theorems 2(b) and 2(c) for the classes {A€NP|A is sparse} and APTNNP.
However, for these classes we are able to obtain even stronger results in the next section.

COROLLARY 2. (a) A set having polynomial size ciruits cannot be =7T*-complete
in NP unless PH=2X%.

(b) A set which is in R (or weakly p-selective) cannot be =T”-complete in NP
unless PH=2X5.

Proof. Follows immediately from Lemma 2 and Theorem 2. O

Comparing Corollary 2 with Karp, Lipton and Sipser’s [9] result that if A has
polynomial size circuits and A is =%-complete in NP then PH=23%, our result has a
weaker conclusion as well as a weaker hypothesis. The reason we cannot show, in
Corollary 2(a), that PH=ZX4 is that a =7”-complete set in NP does not necessarily
have the self-reducible property [15] which is a critical condition in the proof of Karp,
Lipton and Sipser’s result. In fact, with the help of self-reducibility, we can derive the
stronger conclusion that PH=35. We call a set A self-reducible if there is an oracle
machine M such that it, with the oracle A, accepts A in polynomial time, and on input
x, M queries its oracle only about the strings of lengths less than |x|. This simple
definition of self-reducibility captures the essential idea of the seemingly more general
one given in [10], [15].

COROLLARY 3. Assume A € NP has polynomial size circuits and is self-reducible.
Then AcLb. As a consequence, A cannot be =77 -complete for NP unless PH=25.

Proof. Let M be the polynomial time oracle machine that witnesses A’s self-
reducibility. It suffices to follow the proof of Lemma 3(a) and show that the predicate
A, = B(w), is equivalent to a I[I¥-form predicate. Indeed we claim that

A,=B(w),
iff (Vs,|s|=n)[se Ae(w, s)e B]
iff (Vs, |s|=n)[M accepts s with oracle B(w)<>(w, s)e B].

First we observe that
(*) [Ax=B(w),and |s|=k+1]implies [s € A« M accepts s with oracle B(w)],

because M on s queries only strings of length =k.

The forward direction of the claim then follows from the observation immediately.
Conversely, the backward direction can be proved by induction. That is, assume that
(Vs,|s|=n) [M accepts s with oracle B(w) «>(w, s)€ B], then we show that A, = B(w)
for k=0,1,- - -, n. The basic step follows from the fact that M on s, |s| =0, does not
query any string. The inductive step follows directly from the above observation (*).



48 KER-1 KO AND UWE SCHONING

Thus A, = B(w), is equivalent to a I1? -form predicate and it follows from Theorem
1that AeLf O

Observe that Karp, Lipton and Sipser’s result follows immediately from Corollary
3. Whether or not the hypothesis that A is self-reducible can be dropped is an interesting
open question.

4. Refinement of the high and low hierarchies. The material in this section is
essentially from an earlier paper [17]. First, we give a definition of a new kind of low
and high hierarchy within NP.

DeriNITION 3. For each n=1,

[2={AeNP|ABAc AP}, HL={AeNP|AL, cAP?}.

Note that L2 =LZ=P and H?=HE={= F-complete sets in NP}. The analogue of
this definition in recursive function theory coincides exactly with the analogue of
Definition 1. Again, in the context of NP complexity and the polynomial time hierarchy,
it is not clear whether these hierarchies coincide; that is, whether Definitions 1 and 3
are equivalent. The relationship between these hierarchies is as follows:

LEMMA 4. Foralln=1:

(a) Lh,cllcLr.

(b) H,_, AL HA.

(c) if PH#A?, then L"ﬂH” =.

(d) if PH=AF then [?=H?=NP.

Proof. (a) and (b) follow immediately from the definition.

Suppose A€ ien H" Then it follows that AP, , < AP* < A®, and hence PH=A%.
This proves (c).

Now suppose PH=A?%, hence AP =A%, .. Let A be an arbitrary set in NP Then
APA < AP, = AP and hence A e[2. Further, A”,,=A?< AP* and hence Ae H%. This
proves (d). O

Recall that A has polynomial size circuits if and only if CIR (A)# &, where
CIR (A) is a collection of graphs of multi-valued functions. In Theorem 1, we showed
that if the graph of a multi-valued function is in CIR (A) and can be checked in time
3%, and A is in NP, then A is in L}. In the next theorem, we show a similar result
that if there is a single-valued function h such that graph (k)€ CIR (A) and h is in
A% ., (i.e., h can be evaluated (cf. [21]) in polynomial time relative to an oracle in 2§
with the inputs in unary notatlon) then A2? < A%.,. Thus, if we assume that A € NP
then it follows that A e Lk+1

THEOREM 3. Let A have polynomial size circuits. Assume that there is a (single-
valued) function h such that graph (h) € CIR (A) and he A%, for some k= 1. Then,
AR = AR

Proof. 1t suffices to show that 2P < A%, |, since P(AR, ) =A%,;.

Let D e =, Then proceed as in the proof of Theorem 1, and obtain a polynomial
time computable predicate T. Then the set

E ={<W, x>|(3y17 Iyll = a(lxl)) tee (Qkyb kal = Cl(|X|))T(x, )’1, U Y W)]}
is in X,
Note that D = {x|(h(0?"*"), x)e E}. Therefore D is in A}.,, because E € 2% and
heAby. O

For several classes of sets related to the notion of sparseness, we can show the
existence of functions which satisfy the conditions in Theorem 3. First we establish a
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lemma on the complexity of circuits of sparse sets. The proof technique is similar to
that in [12] and [14].

LeEMMA 5. Let D be a sparse set in 3% for some k=1. Then there is a function
h:{0}Y*>{0, 1}* in AL, such that (¥n) [set (h(0"))=D,].

Proof. First, for a given set D define PREFIX (D) ={(x,0")|(3y, |y|=n) [ye D
and x is a prefix of y)}. Observe that if D € 2§ for some k=1, then PREFIX (D) € X¥.

The following deterministic oracle machine computes a function #: {0}* - {0, 1}*,
using as oracle PREFIX (D), such that for each n, set (¢(0"))={xe D||x|=n}.

On input 0":
begin
put the empty string into an initially empty list;
T:=;
while list not empty do
begin
z:=first word on the list;
cancel z from the list;
if |z|=n and (z,0") e PREFIX (D) then T:=TU/{z};
if (z0,0") e PREFIX (D) then put zO0 into the list;
if (z1,0") e PREFIX (D) then put z1 into the list;
end {while};
output the encoding of T
end.

Observe that the machine runs in polynomial time relative to PREFIX (D) if D
is sparse. By applying the above machine on inputs 0, 0%, - - -, 0", we get a function h
with set (h(0"))=D,,and heAf,;. O

LEMMA 6. Let A have polynomial size circuits and A € 2%, k = 1. Then, there exists
a function h such that graph (h) e CIR (A) and

(a) heAf., if A is sparse;

(b) heAl,, if Ac APT;

(c) hedAX., if A is co-sparse.

Proof. (a) Let h be a function such that set(h(0"))=A,, and B=
{(w, s)|s e set (w)}. Then B e P, and for some polynomial p, |h(0")| = p(n). Therefore,
graph (h) e CIR (A). Since A is sparse and A€ X%, it follows from Lemma 5 that
heAR,,.

(b) Since A e APT, there exists a deterministic Turing machine M that accepts
A, and a polynomial p such that the set D ={s|M(s) does not halt in p(|s|) moves}
is sparse. Note that D € P. Define B ={(w, s)|s € set (w) or M accepts s in p(|s|) moves},
and h:{0}*- {0, 1}* such that set (h(0"))=(AN D), for all n. Then BeP and, for
each n, |h(0")|=q(n) for some polynomial q. Therefore, graph (h) e CIR (A). Since
AeXf and DeP, we have AN DeXf and hence, by Lemma 5, he Af,;.

(c) Similar to (a) except that we use h to encode A instead of A. Since AcIlfc
ki1, we have helAb,,. 0O

Theorem 3 and Lemma 6 yield the following:

THEOREM 4. (a) {AcNP|A is sparse} < 1.3.

(b) APTNNPc 1.

(c) {AeNP|A is co-sparse} < [.5.

COROLLARY 4. (a) A =7TP-complete set in NP cannot be sparse (or in APT),
unless PH = A5.

(b) A =TP-complete set in NP cannot be co-sparse unless PH = Aj.
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Corollary 4(a) is stronger than Mahaney’s result in [14] that a =%-complete set
in NP cannot be sparse unless PH = A%,

As for the case of co-sparse sets, we do not know whether co-sparse sets in NP
are in L5 (or at least in L5). Long [12] has proved that a =%-complete set cannot be
co-sparse unless PH=A%. However, Long’s proof used, again, the self-reducibility
structure which is apparently not available here. It has recently been noticed that there
is an oracle set A such that there are co-sparse sets in NP”* —P* but there are no
sparse sets in NP* —P“ [8]. This result suggests that sparse sets and co-sparse sets in
NP are not symmetric, and it gives a partial explanation of our inability to show that
co-sparse sets in NP are in L2,

Theorem 4(a) can be used to yield some separation results for the low hierarchy.
Let EXPTIME (NEXPTIME) be the class of sets that can be accepted in time 2,
c¢=0, by a deterministic (nondeterministic) Turing machine. By an easy padding
argument (see [6]), it can be seen that if EXPTIME # NEXPTIME, then there exist
tally (hence sparse) sets NP—P, and similarly, if NEXPTIME # co-NEXPTIME, then
there exist tally sets in NP —co-NP.

CoroLLARY 5. (a) If EXPTIME # NEXPTIME, then P=L§= I:’l’ # 1:'2’.

(b) If NEXPTIME # co-NEXPTIME, then NPNco-NP=L%# L5,

Hartmanis, Sewelson and Immerman [8] have recently shown that there exist
sparse sets in NP — P if and only if EXPTIME # NEXPTIME. This suggests the following
open question: Does the converse of Corollary 5 hold?
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THE COMPLEXITY OF DISTRIBUTED CONCURRENCY CONTROL*

PARIS C. KANELLAKISt aND CHRISTOS H. PAPADIMITRIOU#

Abstract. We present a formal framework for distributed databases, and we study the complexity of
the concurrency control problem in this framework. Our transactions are partially ordered sets of actions,
as opposed to the straight-line programs of the centralized case. The concurrency control algorithm, or
scheduler, is itself a distributed program. Three notions of performance of the scheduler are studied and
interrelated: (1) its parallelism, (2) the computational complexity of the problems it needs to solve and (3)
the cost of communication between the various parts of the scheduler. We show that the number of messages
necessary and sufficient to support a given level of parallelism is equal to the minimax value of a combinatorial
game. We show that this game is PSPACE-complete. It follows that, unless NP =PSPACE, a scheduler
cannot simultaneously minimize communication and be computationally efficient. This result, we argue,

captures the quantum jump in complexity of the transition from centralized to distributed concurrency
control problems.

Key words. distributed database, concurrency control, games, complexity, PSPACE-complete

1. Introduction. There is now considerable literature, both theoretical and
applied, concerning the database concurrency control problem—that is, maintaining the
integrity of a database in the face of concurrent updates. Most of the theoretical work
so far has been concerned with the centralized problem, in which the database resides
at one site, and the update requests are submitted to a single process, called the
scheduler, which implements the concurrency control policy of the database [4], [8],
[11], [15], [17], [18]. There is also some interesting applied work on distributed
databases [1], [2], [13], [16]. It is often said that the concurrency control problem is
much trickier and harder in the distributed case than in the centralized case. This is

evidenced by the existing solutions, which are extremely complex and sometimes
incorrect.

In this paper we present a model of distributed databases, which captures the
intricacies of distributed computation that are most pertinent to the database domain.
Some novelties of our model are:

(a) Transactions are partial orders of atomic steps, thus generalizing the straight-
line programs of the centralized case [8]. The partial order corresponds to both
time-precedence and information flow, and it captures the notion of distributed time
[10].

(b) The scheduler, the concurrency control agent of the system, is itself a distributed
program, consisting of communicating sequential processes [6], one for each site.

(c) Redundancy (the requirement that two entities stored at different sites be
copies of the same ““virtual entity”) is not treated at the syntactic level, but is considered
as part of the integrity constraints of the database. Redundancy was at the root of the
complexities of most previous attempts to formalize distributed databases.
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As a consequence, there are three measures of performance in a distributed database
(centralized theory deals with the first two):

(1) parallelism, measured by the set of allowable interleavings of atomic steps,

(2) complexity of the computational problems that the scheduler must solve,

(3) communication, measured as number of messages exchanged by scheduler
processes.

There are some interesting tradeoffs here. For example, let us fix (1) (think of it
as the parallelism specifications of the system). By expending many messages, we can
reduce the problem of distributed concurrency control to the centralized one (by
broadcasting each request) and thus solve it in polynomial time for most reasonable
parallelism specifications [11]. It turns out that, based on a priori information about
transactions, we can minimize the number of messages sent in exponential time (and
polynomial space; this is the upper bound of our main result). Finally we cannot have
a scheduler simultaneously using the minimum number of messages and running in
polynomial time at each site, unless NP = PSPACE (this follows from the lower bound).

Specifically our main result states that: for a certain parallelism specification, which
in fact can be fixed to be the popular serializability principle, minimizing communication
costs is a computational problem complete for PSPACE [3], [5], [14]. Thus, our result
appears to be concrete mathematical evidence suggesting that distributed concurrency
control is indeed an inherently more complex problem than centralized concurrency
control (under quite general conditions, centralized schedulers can be implemented in
polynomial time and always in nondeterministic polynomial time [11], [15], [17], [18]).

Our result also adds to the literature on distributed computation, independently
of its database context. It states, loosely speaking, that one cannot tell efficiently
whether distributed processes can cooperate successfully for performing an (otherwise
easy) on-line computational task, at fixed communication cost. It can therefore be
considered as complementing the result of Ladner for lockout properties of ‘‘antagonis-
tic” processes [9]. On the other hand, A. Yao has asked [19] whether minimizing
communication costs for some distributed combinatorial computation is computa-
tionally intractable; NP-complete for the off-line problem. We answer this question
for on-line computation. Yao’s original conjecture was recently answered in the
affirmative [12].

We provide both upper and lower bounds. For the upper bound, we need a
characterization (Theorem 3) of the incomplete executions of transactions that can be
completed within a fixed number of messages. This upper bound holds for most
parallelism specifications that can be achieved efliciently in a centralized manner. For
the lower bound we relate distributed scheduling to a game played on graphs (the
conflict graph of the transactions). Intuitively one player (Player I) is an adversary
who submits update requests so as to force the scheduler to use as many messages as
possible, whereas the other player (Player II) is the distributed scheduler. Player I
wants to prolong the game as much as possible, whereas Player 1I tries to bring it to
an end as soon as possible; other than that there is no winner or loser. The rules are
related in a simple way to the cycles of the graph. The minimax length of the game
corresponds to the optimal communication cost. We prove that this game is complete
for PSPACE, and then show that our constructs can faithfully reflect a special kind
of distributed concurrency control situation. This new kind of game may be of indepen-
dent interest.

Section 2 describes the model used, § 3 the upper bound and the game on graphs,
and finally § 4 has the PSPACE-completeness reduction (Theorem 4) and its
implications.
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2. A model of distributed database concurrency control.

2.1. Distributed database. A distributed database is a collection of sites. Each
site has its own processor and data. The sites are interconnected by a network and
are controlled by a distributed database management system (DDBMS). In Fig. 1 we
show the architecture of a two-site system; distributed programs on this system consist
of communicating sequential processes [6], one for each site, (horizontal arrows join
parts of the same distributed program). Formally, a distributed database is defined as
follows:

DEFINITION 1. A distributed database (DD) is a triple (G, D, stored-at) where:

(a) G=(U, L) is an undirected graph, where every node corresponds to a site
and every link to a two-way communication link between sites.

(b) D is a set of entities, denoted {x, y, z,* - *}.

(¢c) stored-at: D U is a function determining the site, where each entity is stored.

The entities are the physical data items. Multiple copies of the same logical data
item are considered as different physical data items stored at different sites. The fact
that they are copies and must remain identical for reasons of consistency is part of the

integrity constraints [1], and is not treated separately. We assume that the DD is fixed
and given.

o8 o8
site-1 site-2
DDBMS DOBMS

< >
Q- Q-

F1G. 1. Architecture of a two-site system.

— N
/TN \’M

2.2. Transactions and schedules. The users interact with the database using trans-
actions. In our model a transaction is a distributed program, not identified with a
particular site.

DEFINITION 2. A transaction T, in a DD, is a directed acyclic graph (dag) T =
(N, A) such that:

(a) Every node p is associated with one of the sites of the system, site(p)e U
and with an entity x, for which stored-at(x,) = site( p).

(b) Nodes associated with the same site are totally ordered in A, (we denote the

partial order imposed by T on its nodes as =). A transaction system T is a set of
transactions {7}, 1 =i=m}.
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An example is shown in Fig. 2. Nodes are also called actions, since they are
intended to represent update actions on the corresponding entity. An action p rep-
resents an indivisible read and write operation on x, [8] (we do not distinguish between
read and write operations as in [11]). Action p, as in [8], depends only on actions
preceding it in its transaction. Each transaction T represents a distributed program,
consisting of communicating sequential processes [6], one per site. Let the #’s be
variables local to this program, and the f;’s be uninterpreted function symbols, then
the semantics of action p of transaction T is the indivisible execution of the two
instructions: t,:= X, ; X, = fo(tp tps Iy * * * » by, ), Where py, pa, * - +, py are all the actions
preceding p in = 7.

at site 1 at site 2
N A4
1(x) begin begin
at site 1 at site 2
Y —Y
T t1 .= x 1 t3:=2z
2(y 3(z) x 1= 11(t1) z 0= 13(13,t1)
| E———
5(z) — Y
t4 := x t6:=z
xi=raceaps) | 1 z 1= #5(t5)
T2 T
% o —F
o) Y > '
1 t2:=y t6:=w
y 1= 12(12,t1) w 1= 16(t6,15)
. Y Y
end end
6 at site 1 at site 2
(v) (c)

FI1G. 2. (a) Transaction system T ={T,, T,} (e.g., action 1 updates x). (b) Schedule s =(T, ). (c) The
semantics of the actions in schedule s.

Precedence between actions in a transaction T denotes both temporal precedence
and a transfer of information (i.e., in Fig. 2a action 3 needs data from action 1 and is
executed after action 1). Arcs in a transaction T between actions at different sites are
called cross-arcs defined in T. A cross-arc defined in T indicates information transfer
between processes of T at different sites.

A schedule is a description of a set of transactions and the process of their execution
on the system. In a distributed system it is in general impossible to tell which one of
two events occurred first (because communication is not always instantaneous). Because
of this uncertainty, we describe the execution order of the actions by a partial order.
If two events are incomparable in this partial order, any one could have preceded the
other. There are two restrictions on the partial orders. First, what happens at every
site is totally ordered; this is consistent with the centralized problem and guarantees
that the result of the execution is uniquely determined, as in the case of individual
transactions. Second, precedences specified by the transactions are always respected.
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Formally:

DEFINITION 3. A schedule is a pair (T, ), where T ={T; 1 =i = m}isatransaction
system and = is a directed acyclic graph (dag) on the nodes of the transactions T; such
that:

(a) Nodes p with the same site(p) are totally ordered.

(b) For any transaction T; and actions p, g € T; with p=r,q we have that p =, q
(where =, denotes the partial order of ).

A prefix of a schedule s=(T, w) is a pair (T, @), where «a is the subgraph of =
induced by a subset of its nodes and such that if action g€ « all p =, q belong to a.

Let S denote the set of all schedules. Recall that a partial order can be considered
as a set of total orders (those compatible with it). Let S denote the set of all schedules
(T, ), where = is a total order. Therefore a schedule s represents a particular subset
of this basic set S*. Arcs in a schedule, between actions at different sites are called
cross-arcs. The schedules with only transaction defined cross-arcs are maximal when
considered as sets of total orders. Yet schedules can have other cross-arcs also (e.g.,
arc (4, 6) in Fig. 2b), whose presence restricts the represented total orders of actions.
The goal of concurrency control is to recognize on-line large sets of correct total orders.

As in the centralized case, synchronization is necessary only between actions of
a transaction system, which operate on the same entities (i.e., conflict). These conflicts
are represented by the conflict graph G(T). We denote undirected edges by ij and
arcs by (if).

DEFINITION 4. For the transaction system T ={T;, 1=i=m}, the conflict graph
G(T) is an undirected multigraph (V, E), with a partial order =; on the edges incident
upon each node i, such that:

(a) V ={i|l =i=m}, where node i corresponds to transaction 7.

(b) E is a multiset of edges.

E ={copies of edge ij|for every copy of ij there is a
distinct pair of actions p, q with pe T;,qe T, i #j and x, = x,}.

(c) For two edges incident at node i we have ij Z; ik iff the action in T; correspond-
ing to ij precedes the action in T; corresponding to ik.

Note that an edge in E denotes a conflict between two transactions. Every edge
ij in E corresponds to a pair of actions { p, g} which update the same entity. Based on
where this entity is stored we can partition E into as many multisets as there are sites:
red and green edges for two sites. An example is presented in Figs. 3a and 3b.

An ordered mixed multigraph G =(V, E, A,{=;}) is a mixed multigraph, with E
a multiset of edges, A a multiset of arcs and {=;} partial orders at each node i of the
edges and arcs incident at the node. An ordered undirected multigraph has A = (e.g.,
conflict graphs are such combinatorial objects). An ordered directed multigraph has
E=@.

Since a conflict (an edge in G(T)) corresponds to two actions at the same site
and a schedule s=(T, w) has a total order of the actions at each site, we say that a
schedule resolves all conflicts. That is, if edge ij corresponds to the pair of actions
{p.q},pe T, qe T, i#j we direct ij as (ij) iff p =, g. Thus the schedule s determines
a unique ordered directed multigraph G™(T).

DEFINITION 5. A prefix (T, o) assigns a direction (ij) to an edge ij of the conflict
graph G(T) ift all schedules, which have (T, «) as prefix, assign ij the direction (ij).
Therefore a prefix (T, @) determines an assignment of directions to some edges of
G(T). Conversely an assignment of directions to edges of the conflict graph is realizable
by a prefix, if there is a prefix of a schedule assigning these directions and no others.
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Thus a prefix (T, a) determines a unique ordered mixed multigraph G*(T'), which
is G(T) with some of its edges directed. In Fig. 3¢ we have a nonrealizable assignment
of directions. Moreover we have the following complete characterization of realizable
assignments of directions, which are, after all, the assignments of interest.

at site 1 at site 2
294 LV
2
1
(x) o) -
T ‘<A ™ (2)
~a <
2(y) OF <<
3 3
% ()
72
)
5(w) _ 2
pon -7
3 <A\
-~ ~o \\(
ks 73 y
8(z) (c)
(a)

F1G. 3. (a) Transactions. (b) Conflict graph. (c) A nonrealizable assignment; red ®-——-@ = conflicts at
site 1, green @~w@ = conflicts at site 2.

LemMA 1. Given a conflict graph G(T) = (V, E, &, {=,}), an assignment of direc-
tions to a multiset X of its edges, producing the ordered mixed multigraph
(V, E\X, A,{=;}) is realizable iff:

(a) jje X, is directed as (if) € A, and ik =;ij=>ike X.

(b) A has no directed cycles (iyi,is- - - i,i,) such that

iy Zj bhls, b3 2y izls, 00, iy 2y b

Proof. “‘only if”. Given a prefix (T, ) of a schedule let us first assign the direction
(ij) to any edge ij in G(T), corresponding to a pair of conflicting actions {p, g}, with
pe T, q € T, under the following conditions:

pea and ifgeathenp=.q.

It is easily seen that both conditions (a) and (b) hold for the directions constructed
above. Obviously all schedules, which have (T, a) as prefix, resolve these conflicts in
the same way. Moreover if an edge has not been given a direction then both its actions
p*, q* are not in a. We can complete (T, «) using two different schedules, one having
p* before q* and the other g* before p*. One schedule results from completely
executing the transaction of p* first and the other is symmetric. This proves that the
directions we have constructed are exactly those assigned by (T, a).
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Sufficiency. Given an assignment A we construct the following digraph (V*, A*)
from A and T

V*={p|3(ij) € A, where the conflicting action of
ij in T; is p or one of p’s predecessors in T;},

A*={(pq)|if (pq) is part of some =1, or if (pg) corresponds to an (ij) € A}.

Since (b) is true (V*, A*) is acyclic, and since (a) is true transaction precedences

are respected. Thus (V*, A*) has the same nodes as some prefix and respects all its
conflict resolving orderings. [J

2.3. Serializability. Only a subset of the possible schedules are considered correct
for the operation of the database. The object of concurrency control is to develop
algorithms, which monitor the execution of transactions, and disallow incorrect
schedules. Actually, our results can be stated in a manner independent of the notion
of correctness used in the system. We can show, however, that our negative results
hold even when this correctness criterion is a practically important one, that of
serializability, which we introduce next.

Serializability can be defined semantically [8], [11]. Since we are interested in
simplifying our model, in order to bring out the complications inherent to distributed
databases, we shall adopt instead a simple syntactic definition of serializability. This
definition will not require our formally dealing with the semantics of actions and was,
interestingly, the first to be proposed [4]. It turns out to be equivalent to the semantic
one, if we think of the nodes of the transactions as indivisible read and write operations
(see [8]), as opposed to operations that entail either reading or writing an entity [11].
The example of Fig. 2c illustrates the semantics of updates, in terms of program
schemes [8], [11]. In fact, the following syntactic definitions suffice for the results
presented in this paper.

DEerINITION 6. Two schedules (T, 7), (T, p) are equivalent if they determine the
same ordered directed multigraph, (i.e., G™(T) = G°(T)).

DEeFINITION 7. A schedule (T, m) is serial iff

(a) The execution of actions at every site introduces a total order of transactions
at that site (i.e., there are no T, T}, i # j with actions p, g€ T;, r€ T; at the same site
with p=,_.rand r=,q).

(b) If T; precedes T; at one site it does so at all sites, where both transactions
have actions.

A schedule is serializable iff it is equivalent to a serial schedule.

We denote the set of serializable schedules by SR (SR < S). What is remarkable,
is that deciding whether a schedule is serializable in a centralized or distributed model
are practically identical tasks [11]. We state this as follows:

THEOREM 1. A schedule (T, ) is serializable iff it resolves conflicts without creating
directed cycles in G(T) (i.e., G™(T) is acyclic). Similarly, a prefix (T, a) has a
serializable completion iff the already resolved conflicts do not create a directed cycle in
G(T) (i.e.,, G*(T) has no directed cycles).

Proof. Easily follows from the analysis of [11]. 0O

2.4. Schedulers. Up until now the distributed problem appears to be a straight-
forward generalization of the centralized case. What is considerably more complex in
the distributed case is the subject of schedulers and their design to meet performance

specifications. For an exposition of the relatively simple theory for the centralized case
see [11].
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Our schedulers will be distributed programs characterized by the parallelism they
provide and by their efficiency. We will measure parallelism using the subset C of
schedules, which the scheduler allows to be executed as requested. The efficiency of
the scheduler will be measured by the worst-case number of steps it executes and the
worst-case number of messages it sends. We will be interested in the following kinds
of C’s:

DEerINITION 8. Consider a set of schedules C < S, such that for each s€ C the
only cross-arcs are defined by the transactions. Such a C we shall call a concurrency
control principle.

Each schedule s corresponds to a set of total orders {o| o is a total order compatible
with s}. This set is also denoted by s. If C is a set of schedules, we let C* = U, s.
Recall that S is the set of all schedules and S* the set of all total orders. For a particular
transaction system T, with n actions, o€ S™ is a string of length n over N, where N
is the set of T’s actions. The jth symbol of o is denoted o;.

The cardinality of C* < S* will be the measure of parallelism. The larger C™ is,
the higher the level of parallelism supported by this concurrency control principle.
For example, if SR are the serializable schedules then SR™ = U,.sg 5. Note that, SR™
is also the set of total orders of a concurrency control principle, the serializable
schedules with only transaction defined cross-arcs; this easily follows from Theorem
1 and Lemma 1. We will hence use the notation SR for this concurrency control
principle, without any loss of generality. Similarly serial execution provides another
example of a concurrency control principle, which obviously supports less parallelism.
Thus concurrency control principles are very natural classes of schedules measuring
parallelism, although not all subsets of S can be expressed as such.

A scheduler A is a distributed program. We do not explicitly specify the model of
computation; we use a model equivalent to [6], although we employ a simple concurrent
language notation as needed (e.g., a send-message instruction). Our distributed pro-
grams consist of a set of communicating sequential processes [6], one for each site.
Their instructions may denote:

(a) local computation;

(b) receiving an execution request for an action q;

(c) granting an execution request of an action g;

(d) sending a message to another site;

(e) receiving a message from another site.

We shall now formalize the input-output behavior of the scheduler. Intuitively,
a scheduler receives a schedule as its input and outputs another schedule. There is a
difficulty though in defining this mapping precisely, because it is essentially a nondeter-
ministic mapping. Although the scheduler has perfectly deterministic algorithms as its
processes, the interaction of these algorithms is conducted via messages, whose delivery
time is unpredictable. M. Fischer uses the term indeterminism [20] for this kind of
unpredictable behavior (nondeterminism would not be an appropriate term, since we
wish to produce correct computations in all cases). To model indeterminism of a
scheduler, we must somehow introduce some notion of time.

(1) The input of a scheduler is a string in S*. Thus we assume that the arrivals of
the requests for executions of the nodes of the schedule-input are totally ordered in
time. This is only a simplifying tool (a formalism of the familiar notion of a timestamp
[10]), and is not used by the scheduler, whose processes still perceive the world in
terms of partial orders. We therefore have introduced a global clock, whose ticks are
the arrivals of the action requests.

(2) What is the output of a scheduler? It is a schedule, of course. However, it
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must also add some more information. Namely, it must tell us whether an action was
granted before or after the arrival of another request. The output of the scheduler is
an n-tuple of strings (1, 75, - -, 7,) € (N*)". Here 7; denotes the sequence of granted
requests between the jth and (j+1)st (after the jth if j= n) arrivals of requests. N*
is the set of all strings constructed from the set of actions N and includes the empty
string. The concatenation of the n strings, conc (74, 75, * *, 7,), should be in S™*.

(3) We shall now formalize the indeterministic part of the scheduler, namely the
communication delays. A delay vector d is a sequence of nonnegative real numbers.
Intuitively, the jth component is the delay of the jth message sent by the scheduler.
With a given delay vector the operation of a scheduler A on some input o is completely
specified (exactly as the operation of a nondeterministic algorithm becomes specified
if we supply a sequence of choices for the nondeterministic steps). To find the resulting
output, we do the following. For each site, we keep a calendar of events (i.e., arrivals
of actions or messages, operations of the scheduler), with the precise times at which
they occur. An event may trigger a finite sequence of operations of the scheduler,
which we execute. If an operation involves sending a message to another site, we add
the next component of d to the time of the present event and we insert the arrival of
this message in the calendar of the other site at the time of the sum. We thus assume
that, all local operations of the scheduler take O time. We break ties on the times of
events in a systematic fashion (e.g., arrivals of actions first, then messages from site
1, etc). We can now produce the output of the scheduler for this input o and this
delay vector d in the obvious way from the calendars of events. This output
(71, 72, +, 7,), we denote by A4(o). Not all delay vectors can lead to meaningful
executions, however. What can go wrong is that a long delay can postpone the granting
of an action p until after the successor g of p in its transaction has been received.
Delay vectors for which no such anomaly occurs for an input o are called feasible for
0. The zero sequence d =0 is always feasible.

Therefore the operation of a scheduler is formulated by the function A4:S* -~
(N*)"™,

Consider a concurrency control principle C. We say that scheduler A implements
C if, intuitively, all outputs of A are in C and, furthermore, if A is fed with a schedule
in C and all delays are 0, then A grants all requests immediately upon receipt. It is
argued in [11] that these are traits, in the centralized case, of all schedulers that are
on-line and optimistic (i.e., the scheduler does not intervene to unnecessarily delay an
action if the input schedule is so far correct). The same arguments are applicable to
justify Definition 9.

DEFINITION 9. We say that A is an implementation of concurrency control principle
C iff

(a) conc(A4(0))e C™ for all o€ S and feasible delay vectors d, and

(b) Ag(o)=(0y,-+,0,) forall ce C*.

There is a fundamental asymmetry in Definition 9. If the input is in C*, then
condition (b) is in effect, and the scheduler must leave it intact, unless forced to do
otherwise because of the delays. If, however, the input is not in C*, then the output
can be any schedule in C™. In practice, we would expect of a scheduler to change a
schedule not in C* as little as possible in order to transform it into one in C™.
Unfortunately, there does not seem to be a clean way to express this mathematically
in the distributed or centralized case. We have adopted the above convention in the
interest of keeping our model and subsequent proofs as simple as possible.

DEeriNITION 10. The computational complexity of A is the sum of the step-counts
of all local computations by A over all processes of A, maximized over all o and
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feasible d. The communication complexity of A is the number of all send-message
instructions executed by all processes of A, maximized over all o and feasible d.

Note that apart from the messages generated by the scheduler processes of the
system, there is also user defined communication, implied by transaction defined
cross-arcs (e.g., some action at site 2 needs data from site 1). This communication is
assumed free, since it is unavoidable. Such messages, between the processes of a
transaction, can be used to pass information between scheduler processes at no cost.

A scheduler A is polynomial-time bounded (or computationally efficient) if its
computational complexity is bounded by a polynomial in # (where n=|N| and N is
the set of actions of T'). Similarly, with [11] we can prove:

THEOREM 2. C has a computationally efficient implementation iff the set of prefixes
of Cis in P.

Proof. By broadcasting each arrival of a request we can reduce the distributed to
the centralized problem, and use [11, Thm. 10]. Note that this solution is wasteful in
terms of messages. [

Finally in order to characterize communication complexity we define the following
classes of prefixes M (b):

DEeriNITION 11. For concurrency control principle C, its set of prefixes PR(C)
and integer b=0,

M_(b) ={prefixes not in PR(C)}

U{(T, @)|(T, @)e PR(C) and there is an implementation A of C,
which, given that (T, a) has been granted,
proceeds using at most b send-message’s}.

Let b*(T) be the least b for which (T, &)e M_.(b). A scheduler which achieves
b*(T), for every T, is called communication-optimal with respect to C.

Note that for b <0 we can define M.(b) = and then for all b we have M,(b) <
M (b+1). If (T, a) is a prefix of (T, B) and (T, a)€ M.(b), then also (T, B)e M.(b).
By our convention if (T, @) is not a prefix of a schedule in C then (T, a)e M.(0).
Intuitively, if all sites know of an incorrect input they can output a predetermined
correct completion without communication.

In essence, what Definition 11 says is that: the scheduler might use a priori
information, available to all scheduler processes, in order to enhance the communication
performance (worst-case, number of messages used at run time) of the concurrency
control mechanism. For example, a scheduler that implements serializability (for all
transaction systems T'), might also examine the available syntax of transaction system
T, in order to develop a more economical communication strategy between its processes.
This is analogous to the conflict graph analysis used to improve parallelism in SDD-1
[1], [2]. A communication-optimal scheduler is the limit in message performance
attainable, subject to a parallelism requirement C. In the following section we will
show, in a constructive fashion, that such schedulers exist for concurrency control
principles.

3. Communication-optimal schedulers and games. The performance measure of
a concurrency control algorithm is a set of schedules C. We require C to be a
concurrency control principle (see Definition 8). Let PR(C) be the set of prefixes of
schedules in C. We assume that we have an efficient (polynomial time in n) test of
membership of a prefix in PR(C). For example, if C=SR Theorem 1 provides us
with such a test. If no such test is possible, concurrency control is quite hopeless, even
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in the centralized case [11]. We also assume that we have a two-site system. This is
no loss for the negative results of the next section. As for the positive results, they
can be restated without much difficulty, although less succinctly, for the general case.

Let us briefly review the notation used. A prefix is denoted as a pair (T, a), or
simply a when there is no ambiguity. In order to make our notation simple we will
omit T, the obvious transaction system, whenever possible. We use M_(b), for the set
of all prefixes (T, a) of C such that there is an implementation of C, which, when
started with (T, ), sends b or fewer messages. Now let o be a prefix of B, then (B/);
denotes the prefix of B, that contains @ and all actions of B at site i. We call this the
projection of B at site i given « (see Fig. 4 for an example of this important notion).

at site 1 at site 2
A Vg Vg
1(x)
zma(z )
) )
K T2 )
8(y)
7(w) I3 (b)
9(x)
(a)
at site 1 at site2
v Y
4 %
® i~ A
4
s <
(8/c¢ ) iN 4
4
® 2
6
(8/¢)2 ! D N
4
8 <
5£——(——;6 ,(
1 N M
8

(e)

F1G. 4. (a) Transactions (u, v, w at site 1, x, y, z at site 2). (b) Conflict graph (red ®--—-@ = conflicts
at site 1, green @@= conflicts at site 2). (c) Illustrating a bad B. Left: prefixes. Right: assignments of
directions.
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DerFINITION 12. Let (T, a)e PR(C), and let « be a prefix of 8. We call B bad, with
respect to a, if

(a) (B/a)y,(B/a),€ PR(C); and

(b) B£PR(C).

It is only bad prefixes that force the scheduler to communicate, in rounds of two
messages. This, as well as a description of the possible strategies for guarding against
bad prefixes, is captured by the following theorem.

THEOREM 3. Let C be a concurrency control principle, (T, a)e PR(C) and b=0.
Let i denote the site number, i € {1, 2}. Then statements (1) and (II) are equivalent:

(I aeM.(b).

(II) For all bad B, with respect to, a: (1) (8/a);€ M.(b) for i=1,2 and (2) at
least one of the (B/a);€ M .(b—2).

The intuitive interpretation of the theorem is the following: Suppose that there
is a possible scenario (see Fig. 4 for an example) in which both sites see projections
(B/ a);, that are perfectly legal locally (i.e., both are in PR(C)) and still, they are not
legal when put together (i.e., 8 is not in PR(C)). This clearly calls for communication.
The theorem says that, in the worst case, two messages are both necessary and sufficient
to overcome this problem.

Proof. “‘only if”. To show that (I) implies (II), suppose that a scheduler A can
start from « and implement C with only b messages. Let B8 be bad with respect to a.
It is easy to see that (IL.1) is satisfied. We must now show that (I1.2) is also true.

What should site i do if it is presented with requests for the actions in (8/a);?
Clearly, it should have a way of granting them, perhaps after certain communication,
since A is supposed to implement C (i.e., see Definition 9 for the on-line property).
If site i grants the requests without waiting for any messages, then site j=3—i must
guard against this eventuality, when presented with (B8/a); by asking site i’s state.
This takes two messages, which synchronize the two processes, and thus A must
implement C starting from (B/a); within b—2 messages; thus property (II.2) holds.
This leaves us with the case in which site i waits for a-message before granting (8/a);.
It cannot wait for a message triggered by any event at site j other than an arrival of
a message from i; this follows from the fact that A must implement C. We are therefore
reduced to the previously examined case.

“if”. To show that condition (II) is sufficient, we shall construct an explicit
algorithm that implements C, starting from « and using no more than b messages,
assuming (II) holds. The algorithm is recursive, and is shown in Fig. 5.

The algorithm, localscheduler, is the process run by each site. Its arguments are
the prefix (T, a) of granted actions at the instant it takes over and the number b of
messages that it can use. For example if no actions have been granted, both sites start
by running localscheduler((T, &), b).

The variable localstate represents the actions that the site knows are granted
(through its own granting actions and other messages), whereas commonstate is the
information this site knows the other site already has. The values of these variables
are prefixes in PR(C). They are both initialized to (T, a) and updated appropriately
whenever:

(a) An action is granted at this site, through the function grant( p).

(b) A message is exchanged by scheduler processes, through the functions askstate
and reportstate.

(c) A message is exchanged by transaction processes, because of a transaction
defined cross-arc.

In the last case the localstate at one site, may be passed to the other at no communication
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cost. The detailed code for performing these updates or the functions grant, askstate
and reportstate is straightforward and is not shown in Fig. 5. The low level details of
all these functions can be found in [7].

When a request p arrives, the scheduler first decides whether it is necessary to
communicate. This is the first test in Fig. 5. Communication is forced just in the case
that a prefix B exists, such that:

(a) it violates the concurrency control principle C (i.e., 8 € PR(C));

(b) its projection at the other site given commonstate is in PR(C);

(c) its local projection is localstate[p (where | denotes concatenation), and
moreover it is amenable to scheduling with b—2 messages. In other words, condition
(I1.2) of the theorem is satisfied with i equal to the present site.

procedure localscheduler({T, o), b)
localstate = commonstate =(T, a);
on request-arrival p do
if there is a prefix B8 2’ PR(C), whose projection at the other site
given commonstate is in PR(C), and whose local projection is
localstate|lp e M.(b—2)
then begin
localstate .= askstate( );
if localstate|lp e PR(C)
then grant( p); localscheduler(localstate,b—?2)
else tablelookup( )
end
else if localstate|lp e PR(C)
then grant(p)
else tablelookup( )
end localscheduler

F1G. 5. The process localscheduler.

By convention, any prefix not in PR(C) needs 0 messages and therefore the prefix
localstate|lp 2 PR(C) would pass the test only if b> 0. Except for this case a 8, such
that the above conditions are true, is one satisfying (II) of the theorem.

If the above conditions are met, the scheduler decides to communicate. The
function askstate learns the state of the other site at the cost of two messages.
Presumably the return message is sent by a function reportstate at the other site, which
also does the appropriate updating. If p is found to be safe, it is granted, and
localscheduler is called recursively with the new arguments (note that localstate would
be appropriately updated by grant). Since the test succeeded, we know that it can
carry out its task within b—2 messages. If now localstate|p 2 PR(C), then the arriving
stream of requests is not in C, and therefore we have no contract to fill (recall the
paragraph right after Definition 9); both sites continue scheduling by some tablelookup,
agreed upon in advance between the sites.

If the first test fails, then we must proceed with locally available information. If
p looks safe, we grant it. We know we are not risking anything since, by (II), the other
site will pass the test, and will communicate before it grants its part of any bad B. If
p is not safe, we again resort to tablelookup, but now since b =0 and (II) is true both
sites can proceed independently with no risk.
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The formal proof that the algorithm, as specified above, correctly schedules a
given prefix within the given number of messages is now straightforward, by induction
on the number of actions in any suffix of (T, a). It should also be noted that we use
the fact that C is a concurrency control principle when we test if a localstate[lp is in
PR(C). Since schedules in C have only transaction defined cross-arcs this test can be
done locally. O

CoroLLARY 3.1. If C, a concurrency control principle, has a computationally
efficient implementation, then it has a communication-optimal implementation, which
uses space polynomial in n (n = number of actions of T).

Proof. The hardest computation performed by localscheduler in the proof of
Theorem 3 is testing whether a prefix is in M.(b). This, however, can be expressed as
a predicate with polynomial matrix and b alternations of quantifiers. It is therefore in
PSPACE [3]. O

Distributed scheduling is related to a game on prefixes called PREFIX. The rules
of this game are displayed in Fig. 6. In this game Player I corresponds to a malicious
adversary who wishes to force communication. His move is a continuation 8 of the
current position a, which satisfies the conditions of Theorem 3. Player II corresponds
to the two cooperating scheduler processes. Each one of his choices i* indicates, which
of the two processes has the responsibility of guarding against the continuation 8 (by
questioning the other process before proceeding). Player I wants to prolong the game
as much as possible, whereas Player II tries to bring it to an end as soon as possible
(other than that there is no winner or loser). Players I and II take turns moving.

COROLLARY 3.2. The minimum number of messages used by a communication-
optimal implementation of C equals the length of PREFIX((T, &)) if both players play
optimally, (we call this the minimax length).

Proof. 1t follows from Theorem 3 and the theory of alternation [3]. Note that
although in general we define PREFIX from an arbitrary initial position (T, &), we
are in fact interested in a =, (T represents the static a priori information on
transactions, that is used to optimize communication). As a result the question:

‘T, a)@M_(b)?” is equivalent to “can Player I make PREFIX((T, a)) last more than
b moves?”’ O

PREFIX((T, a))

Position before player I’s move: A prefix (T, a)

Player I: Select a prefix 8, which has a as a prefix such that:
1) (B/a)1, (B/a)2€ PR(C)
(2) BZPR(C)

Player II: Select i*<c{1,2} and set a = (B/a):

Fi1G. 6. The game PREFIX.

4. The complexity of PREFIX. In this section we prove the following theorem:

THEOREM 4. Let C =SR. Given T and b=0, determining whether the minimax
length of the game PREFIX((T, &)) equals b is PSPACE-complete.

This theorem, as is pointed out explicitly in a series of corollaries, is a fundamental
negative complexity result for distributed concurrency control.

It turns out that PREFIX, with C = SR, is closely related to a game played on
the conflict graph of T. Recall that the conflict graph is an ordered undirected multigraph
with edges colored red or green. The game, called CONFLICT, is displayed in Fig. 7.
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CONFLICT(G)

Position before player I's move: An ordered mixed multigraph G=
(V, E, A,{=,}), with E partitioned into red and green, and A closed.

Player I: Select a set X of edges and assign directions to them. Let X,(X,) be a
subset of X containing all its red (green) edges and let A,(A,) be the corre-
sponding arcs. The sets A,, A, must be such that:

(1) AUA,, AU A, are acyclic and closed;
(2) AUA,U A, has a cycle and is closed;
Player II: Select cc{r, g} and set E:= E\X_; A=AUA..

F1G. 7. The game CONFLICT.

A round (i.e., of moves by the two players) starts with a position, which is an
ordered mixed multigraph G =(V, E, A, {=,}). Player I gives directions to certain
undirected edges X, with subsets X,, X,, such that already existing arcs (i.e., A) and
each new directed subset A, or A, do not create a cycle, whereas all arcs together
do. Player II picks a color (i.e., red or green) and fixes the directions proposed by I
(i.e., creates a new A). In the absence of the partial orders Z;, the moves of Player I
are very simple: He picks a two-color cycle that contains some red edges (X,), some
green edges (X,) and possibly some arcs, and the arcs are all directed with the same
sense around the cycle. These rules are complicated a little by the existence of the
partial orders on edges and arcs. Again Player I chooses a set of undirected edges X
and assigns directions to them, but now the sets of arcs AUA,, AUA,and AUA,U A,
must be closed (e.g., each one of X,, X, contains all edges of one color in X and might
contain some edges of the other color) where formally:

“arc (if) is in a closed set of arcs and ik =; (if) = ik is in this set as arc (ik) or (ki)”

Again, as in PREFIX, Player I’s goal is to prolong and Player II's is to shorten
the game. The intuition behind CONFLICT and its relation to concurrency control is
the following:

Concurrency control means to direct somehow all edges of the conflict graph,
without forming directed cycles. (The color, red or green, of an edge is the site that
is responsible for directing it.) To carry out this task in a distributed fashion, we may
have to communicate, in order to prevent two-color cycles. Single-color cycles are
benign, since they can be detected locally and prevented without communication.
Player I’s move is an orchestrated stream of requests for conflict resolutions, that
forces such a communication. Player II, the distributed scheduler, chooses the site
(color) that will send a message, trying to block long sequences of legal moves for I
(i.e., trying to save messages). The connection between the concurrency control problem
and PREFIX was established in Corollary 3.2. The connection between PREFIX and
CONFLICT discussed above, can be formalized in the following, straightforward
lemma:

LEMMA 2. The minimax length of the game PREFIX((T, &)), with C = SR, equals
the minimax length of the game CONFLICT(G(T)), (i.e., G(T) is the conflict graph
of T).

Proof. The correspondence between PREFIX((T, a)), and CONFLICT(G“(T))
is easily seen to be as follows:

a corresponds to A (i.e., the conflicts of G(T) resolved by a);

B corresponds to AU A, U A, (i.e., a nonserializable input);

(B/a), corresponds to AU A, (i.e., a serializable projection at site 1 given a);

(B/a), corresponds to AU A, (i.e., a serializable projection at site 2 given a).
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A,AUAUA, AUA, AU A, have to be closed, because the moves in CONFLICT
must be realizable by prefixes (see Lemma 1, § 2.2). O

It is easy to see that CONFLICT is in PSPACE (that is, computing the minimax
length is in PSPACE). To show Theorem 4, we shall first prove that CONFLICT is
PSPACE-complete. We start by proving a weaker result, whose proof is indicative of
the method used [3], [5], [14].

LeMmMA 3. Computing the minimax length of CONFLICT is I15-hard, (even when
the initial mixed graph has no orders on the edges).

Proof. Let F be an AE-quantified Boolean formula

F=Vx,¥Yx, - Vx,3x,3x5- - Ix, F¥(x1, -+, X,),

where F* is a 3CNF formula with n variables (n is even) and m clauses. We shall
construct a mixed graph G such that the minimax number of rounds of CONFLICT
(rounds of moves by the two players), started on G, is equal to (n/2)+1 iff F is true.
G is constructed as follows:

For each existentially quantified variable x;,i=1,3,---,n—1, we add to G a
copy of the 3-graph shown in Fig. 8c. For each universally quantified variable x;, i =
2,4,---,n,we add to G a copy of the V-graph in Fig. 8a. Finally, for each clause C,
we add to G the C-graph in Fig. 9. All these subgraphs are connected as indicated
from vertex names (i.e., “in tandem”), with 3-graphs alternating with V-graphs,
followed by the C-graphs (that is, S,.; = C;). The “cycle” is closed by a green edge
S1C,.+1 (see Fig. 10 for an example).

directed oe—3)—a
red >~ - T D

green aN~NNe - - =

! SI¢1

(¢) Ix,

FIG. 8

So far we have only taken into account the numbers n and m. To encode the
structure of F* into G, we must look at the C-graphs of Fig. 9 in some detail. The
C-graph consists of 7 paths, numbered from 001 to 111. These are the 7 truth
assignments to the literals u, v, w of the clause, that satisfy the clause. Thus each of
the 21 red edges of a C-graph, say e, is associated with a literal /(e) and a truth value
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FOR

F1G. 9

t(e). We now connect e’s right endpoint with appropriate 3- and V-graphs. We draw
an arc from the right endpoint of the edge e

to F; if (I(e)=x; and t(e)=1), or (I(e)="1x; and t(e) =0); and

to T; if (I(e) =x; and t(e) =0), or (I(e) ="x; and t(e) =1).
These arcs are called backarcs.

This completes the construction of G (i.e., all orders =; are empty). In Fig. 10
we have an example of the construction if we ignore the nodes A;, B, M, N; i=1,3
and A13, A12, A34.

We now claim that, from the mixed graph G the minimax number of rounds
(rounds of two moves each) is (n/2)+1 iff F is true. Clearly, since there are (n/2)+1
green edges, this number is at most (n/2)+1. We shall show that Player I can force
(n/2)+1 rounds iff F is true.

Since the orders are empty, Player I’s moves consist of choosing two-color directed
cycles. These contain just one green edge (if I is to play n/2+1 times), and, if we
disregard this green edge, there is no directed cycle in the graph with the proposed
directions of red edges. It is easy to see that each green edge can be used only in one
move, even if Player II does not explicitly direct it after this move (i.e., if his choice
is red, in the new A, he has created a directed path between the endpoints of the
green edge, and thus implicitly fixed its direction). Without loss of generality, the first
n/2 moves will involve the green edges F.E; of the V-graphs. The two-color cycle
(F.E:T.D/F,) is such a possibility. The choices of Player II can be thought of as fixing
the direction of F.E; to: (F.E;)—(x;=0) or (E;F;)—(x;=1).

The claim is that Player I has an [n/2 +1]st move, no matter what Player II plays,
iff Fis true. Player I has a [n/2+1]st move iff at the end there is a two-color cycle,
which contains the only green edge left, (C,.,S;), some red edges, some directed
edges and no directed cycle without the green edge. Picking red edges is no problem—
one has to do this to “pass through” the C-graphs and the 3-graphs. In the V-graphs,
the path must follow either (S;T;D;S;.;) or (S;F;E;S;+,). It follows the latter iff (F,E;)
was picked by Player II in the corresponding move—otherwise a cycle (F:E;T;D;F;)
would be created. In the 3-graphs, this choice can be thought of as an assignment of
the truth value to x; by Player I (i.e., 1 if (S;T;D;S;.,) was picked, 0 if (S;F;E;S;.;) was



THE COMPLEXITY OF DISTRIBUTED CONCURRENCY CONTROL 69

to F1

fo F2

to F3

to F2

to F4

to 13

F1G. 10. 3x,Vx,3x3Vx, (x; VX, Vxs) A (x, VX, VE,).

picked). Finally, in each of the C-graphs, Player I must pick one of the 7 paths, which
would not create cycles because of the backarcs. Therefore this path corresponds to
a truth assignment, which agrees with the one chosen at the V- and 3-graphs. It follows
that such a path (indeed, such an [n/2 + 1]st move by Player 1) exists iff F* is satisfiable
no matter what the values of x,, x4, - -+, x,, are, or, equivalently iff F is true. [
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LEMMA 4. Computing the minimax length of CONFLICT is PSPACE-complete,
(even when the initial ordered graph is undirected).

Proof. There are two directions in which we must extend the previous proof. First,
we must encode in G the n alternations of quantifiers. We do this by designing a more
elaborate 3-graph (containing a green edge too) and using the partial orders {=;}.
Second, we must get rid of the directed arcs of G. We do this last, by replacing each
directed arc by a triangle, and using the partial orders.

Starting from the OBF instance F=3x,Vx,3x;5 -« - 3x, VX, F*(xy, -, X,,) we
construct an ordered mixed graph G by putting together the 3-graphs of Fig. 8b (not
8c), the V-graphs of Fig. 8a and the C-graphs of Fig. 9, as in Lemma 3. We also have
the following edges connecting neighboring V- and 3-graphs:

arcs (AiAii+2), (AiiaBiva), 1=1,3,-++,n=3,
(AiAiir1), (AiiniFiy), i=1,3,--+,n-1,
red edges A;B;,,, i=1,3,--+,n-3,
AiFiiq, i=1,3,---,n—1.

(These connections will guarantee that the order of moves by Player I will respect the
order of quantification.) A full example is shown in Fig. 10.

Notice that, so far, we have not specified the orders {=;}. The orders for the arcs
can be empty and for the undirected edges arbitrary total orders exist at all nodes
except for the A;, B;, F; nodes. There they are designed in such a way that Player I

must play the green edges in their quantificational order (if the closure properties are
to hold):

at A,‘, A,‘B,‘gA,'F‘H_leiBH.z, i= 1, 3, ey, n—1 (the last for i # n_l),
at Fi+19 E+1Ai§Fi+1Ei+19i=17 3,"‘,"“‘1,
at Bi+29 Bi+2Ai = Bi+2Ai+2? i= 1, 39 Y n—3.

We can indicate these total orders by assigning the integers 1,2, 3 to the undirected
edges at each node and using the ordering of these numbers (see Fig. 11a).

We claim that the minimax number of rounds equals n+1 (again, the number of
green edges in G) iff F is true. This would prove the lemma, modulo the presence of
directed edges. The proof parallels that of Lemma 3, but is slightly harder.

It is easy to see that if Player I wishes to play n+ 1 rounds each one of his moves
has to contain exactly one green edge, whose direction has not been fixed by previous
moves. Therefore, as in Lemma 3, a game in which Player I can force n+1 rounds is
essentially a permutation of the n+1 green edges. We will thus name his moves after
their green edge. We will demonstrate that A;B;-moves i=1,3, -, n—1 will corre-
spond to Player I assigning values for the 3-variables of F and F;E;-moves i=2,4,-- -, n
to Player II assigning values to the V-variables of F. Moreover in a game where both
players play optimally these choices alternate. The matter will consequently be reduced
to the existence of an [n+1]st round, which will be equivalent to the validity of F.

Necessity. Assume the QBF instance F is false. We will describe a strategy for
Player II, that will make the [n#+1]st round impossible.

If Player I wishes to play n+1 rounds his game will be constrained in a variety of ways:

(a) Every A; ,B; ,-move must precede the A;B;- and F,_,E;_,-moves i=
3,5, -+, n+1. Since the arcs of G have to be respected, we can only have (B;A;) € A,
and (F;_,E;_,) € A, for legal assignments in these moves. This is because A,UA, U A
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(b)

F1G. 11. (a) Forcing alternation. (b) Forcing directions: red ®——-@®; green @@, directed ®—>—®.

must contain a cycle whose orientation is determined by the existing arcs. Now we
can justify the construction in Fig. 11a. If (B;A;) € A, from the =g, order and the
closure property of moves we have that (A;_,B;) € A, U A (e.g., the direction of A;_,B;
is fixed because of the existing directed path (A;_,A;,;B;) in G). From the =4, _,
order we have now that A, ,B; , must already be assigned a direction. Thus the
A;_»B;_,-move must have already taken place. A similar argument holds for F;_, E;_;.
It is easy to see also that the C,,.,S;-move has to follow the F,E,-move.

(b) The F,E;-move corresponds to Player II assigning a value to x,, i =2, 4, - -, n;
as in Lemma 3.

(c) The A;Bi-move corresponds to Player I assigning a value to x,i=
1,3, -+, n—1. The only possible choices of cycles are (B;A;T.D:M;B;) corresponding
to x;=1 and (B;A;F;E;N;B;) corresponding to x; =0. For x;=1 (x; =0 is symmetric)
the choice is forced by the existing arcs and because:

(B;AiB;12A; 4>+ *) would use up Bi1,A 4,
(B;A;T.D,F.E;- - -) would introduce a cycle in A,U A;
(B:A,T.D;S,,, - - +) would fix the direction of F;,{E;,,.

The strategy of Player II in response to these moves will be always to play red, fixing
the directions of T;D;, and F;E; and making vertex A; inaccessible from S,

Obviously the best Player I can do is assign a value to x; (by the A;B;-move),
force Player II to show his hand by assigning a value to x, (by the F,E,-move), assign
a value to x; etc. As a result the choices for the C,,,1S;-move are constrained as in
Lemma 3. Consequently the existence of a legal [n+1]st round depends on whether
the assignment of values to the x;’s has made F*(x,,-- -, x,) true. Since the QBF
instance F is not valid Player II can always pick values for x;, i =2, 4, - - -, n that make
F*(xy,-+, x,) false and the [n+1]st round impossible.



72 PARIS C. KANELLAKIS AND CHRISTOS H. PAPADIMITRIOU

Sufficiency. Assume Fis true. Player I’s game follows the same structure as above.
Only now, because of the validity of F, he can choose an assignment for x;,i=
1,3, -, n—1 which will make F*(x,," - -, x,,) true and the [n+ 1]st round possible.

Finally, we must eliminate the arcs of the graph in the construction above. We
accomplish this by replacing each arc (RQ) by an undirected triangle RQP, where P
is a new node, PQ is green and RQ and RP are red (Fig. 11b). At the nodes R, P, Q
the three edges are ordered as indicated in Fig. 11b. The triangles themselves (K, ,
in number) can be ordered. We can add kK, to the numbers 1, 2 at the edges of the
kth rectangle, that indicate the orderings. Thus all {=;} become total orders. We have
therefore constructed an ordered undirected graph G* from an arbitrary QBF instance
F. We claim that the minimax number of rounds equals the number of green edges in
G* iff F is true.

Let us look at legal PQ-moves, that is moves whose green unfixed edge belongs
to a triangle. If this move (A, U A, U A) produces a cycle (RQPR), we can infer the
following: The arc (RQ) must belong to A,U A and A, U A. This is because A,U A
must contain a directed path (P--- Q) and OR =, OP. (Recall that QP is the only
green edge without a previously fixed direction.) Thus no matter what the response
of Player II is to such a PQ-move the arc (RQ) becomes part of A. On the other hand
a PQ-move producing a cycle (QRPQ) is never legal. This is because A, U A must
contain {(PQ), (QR), (RP)} a cycle. The existence of a path (Q--- P) in A,U A and
the fact that RQ = PR =p QP force this situation. Thus PQ-moves fix the direction
of QR to (RQ). Finally if Player I were ever to use a OR in the direction (OR), in
some other e-move (e a green unfixed edge), then a response of red by Player II would
consume two green edges (i.e., ¢ and PQ).

Now in order for Player I to play as many times as there are green edges in G*,
he must move using the green edges in the triangles and forcing the desired directions.
This completes the proof of Lemma 4. [

Proof of Theorem 4. The theorem now follows by observing that the ordered
graph G=(V, E,J,{=,}) in Lemma 4 is indeed the conflict graph of a transaction
system T. For each vertex i in V there is a transaction T; in T. For each edge e =ij
in E, there is an entity x, updated by both T; and T;. If e is red, x, is stored at site 1,
if green at site 2. For the (total) orders =,, we simply order the actions of transaction
T; accordingly. [

As more-or-less immediate consequences of Theorem 4 and its proof we can
obtain complexity characterizations for several special cases. Let us slightly abuse our
notation, and use PREFIX((T, a), b) to denote the decision problem:

Is the minimax length of game PREFIX((T, «)) larger than b?

We have the following cases depending on the structure of (T, @) and b.

CorROLLARY 4.1. (a) PREFIX((T, &), b) is PSPACE-complete.

(b) PREFIX((T, a), b) is PSPACE-complete and PREFIX(T, a),0) is NP-
complete, even if T contains no cross-arcs.

(c) PREFIX((T, &),0), if T contains no cross-arcs, is in P.

Furthermore, (a) and (b) hold even when there are no more than six actions per
transaction.

Proof. Note that (a) follows directly from Theorem 4 and (b) can be easily shown
by extending the proofs of Lemmas 3 and 4. By minor modifications [7] to the subgraphs
of Figs. 8 and 9 we can make the nodes (after substituting triangles for directed edges)
have at most degree 6. For case (c) all we have to test for is if G(T) contains a
two-color cycle. [
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We finally obtain the following result on the complexity of distributed concurrency
control.

CoRrROLLARY 4.2. Unless NP =PSPACE, there is no scheduler for SR, which is
both computationally efficient and communication-optimal; even if we restrict T to sets
of transactions which are total orders and have six actions each.

Proof. If such a general scheduler existed, we would have a nondeterministic
polynomial-time algorithm for solving the PSPACE-complete problem PREFIX
(T, &), b), as follows:

On input (T, &), b:

1. Guess a schedule in SR, check it in polynomial time.

2. Simulate (in a centralized manner) the operation of the scheduler on this
schedule. Whenever a send-message instruction occurs, guess a delay d, and increase
a message count. (The delay d can be chosen to be a number bounded by a polynomial
in size of the input).

3. In the end, if more than b messages were used, then report “‘yes”, else report
“no”. 0O

5. Conclusions. Our main result shows that concurrency control, an on-line
problem clearly in NP (P for serializability) in the centralized case, is PSPACE-complete
in the distributed case. This result is quite strong, in that it holds for transaction systems
of rather ordinary appearance (e.g., transactions which are total orders with at most
six actions each). Also, the negative implications of our result (Corollary 4.2) are quite
robust. For example, even if the scheduler is equipped with a powerful oracle belonging
anywhere in the polynomial hierarchy, it still cannot minimize communication
efficiently, unless the polynomial hierarchy collapses.

In the process of proving this negative result, we have related distributed concur-
rency control to certain combinatorial games played on graphs. It could be that this
connection is of some practical value. There is a more-or-less immediate heuristic for
approximating an optimal strategy in the game CONFLICT. This heuristic is based
on the following purely combinatorial problem:

Given an undirected graph with its edges colored red and green, find a “small”

set of edges that have to be deleted in order for the resulting graph to have no two-color
cycle.
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UNBOUNDED SPEED VARIABILITY IN DISTRIBUTED
COMMUNICATIONS SYSTEMS*

JOHN H. REIFt ANnD PAUL G. SPIRAKIS}

Abstract. This paper concerns the fundamental problem of synchronizing communication between
distributed processes whose speeds (steps per time unit) vary dynamically. Communication must be estab-
lished in matching pairs, which are mutually willing to communicate. We show how to implement a distributed
local scheduler to find these pairs. The only means of synchronization are boolean ““flag” variables, each
of which can be written by only one process and read by at most one other process.

No global bounds in the speeds of processes are assumed. Processes with speed zero are considered
dead. However, when their speed is nonzero then they execute their programs correctly. Dead processes do
not harm our algorithms’ performance with respect to pairs of other running processes. When the rate of
change of the ratio of speeds of neighbour processes (i.e., relative acceleration) is bounded, then any two
of these processes will establish communication within a constant number of steps of the slowest process
with high likelihood. So, our implementation has the property of achieving relative real time response. We
can use our techniques to solve other problems such as resource allocation and implementation of parallel
languages such as CSP and Ada. Note that we do not have any probability assumptions about the system
behaviour, although our algorithms use the technique of probabilistic choice.

Key words. distributed networks, communicating sequential processes, handshake communication,
synchronization, real-time response, probabilistic choice, randomized algorithms

1. Introduction. Recently, Reif and Spirakis [1984] showed how to achieve inter-
process communication with real time response using probabilistic synchronization
techniques, assuming that the speeds of all processes were bounded between fixed
nonzero bounds. This leads to real time resource allocation algorithms and real time
implementation of message passing in CSP (see Reif and Spirakis [1984, Appendix I,
II] and also Reif and Spirakis [1982a], [1984a]).

In this paper (a preliminary version of the paper appeared in Reif and Spirakis
[1982]) we assume no global bounds on the processors’ speeds. Their speeds can vary
dynamically from zero to an upper bound which may be different for each processor,
and not known by the other processors. We allow a possibly infinite number of
processes, so that there may not be a global upper bound on the speeds. Processes
may die (have zero speed) but when they have nonzero speed then we assume they
execute their programs correctly. We are interested in direct interprocess communica-
tion (rather than packet switching) which is of the form of handshake (rather than
buffered), as in Hoare’s CSP (Hoare [1978]). The essential technique that we utilize
is that of probabilistic choice. This technique, introduced to synchronization problems
by Rabin [1980], Lehman and Rabin [1981] and Francez and Rodeh [1980], was also
utilized in our previous work.

The use of probabilistic choice in the algorithms leads to considerable improve-
ments in the space and time efficiency (Rabin [1980], Reif and Spirakis [1984]); we
feel that this may be because of the locality of the decisions and because complex
sequences of the processes’ steps prohibiting communication have very low probability
of occurrence. We assume that each process makes probabilistic choices independent

* Received by the editors May 3, 1983, and in final revised form March 12, 1984. This paper appeared
in the Ninth ACM Symposium on Principles of Programming Languages, January 25-27, 1982, Albuquerque,
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00269 and NSF-MCS83-00630, and by the Office of Naval Research under contract N00014-80-C-0647.

+ Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.

1 Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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of other processes. We also introduce new adaptive techniques, where the processes
estimate the speeds of neighbour processes and select processes to communicate with
probabilities depending on the speeds, penalizing the slowest processes. These adaptive
techniques do not seem to have ever been utilized in the previous synchronization
literature.

This paper proposes a new high level synchronization construct associated with
interprocess communication. The construct is implemented very efficiently by the use
of boolean flag variables, each of which can be written by only one process and read
by at most one other process. (We do not use any standard high level synchronization
construct such as shared variables with a mutual exclusion mechanism since these
have no known efficient implementation. There is not even any known bounded time
implementation of a mutual exclusion mechanism when processes run on different
processors.)

If processes are bounded in speed then it is natural to define real time response
to be a response to a communication request that uses no more than constant number
of units of real time. This measure is inapplicable in our case in which there is no
global upper bound and no nonzero lower bound on speeds. Thus we introduce the
notion of relative real time response which is establishment of communication between
any pair of neighbouring processes within constant number of local rounds. (A local
round of neighbour processes, i, j is the minimum time interval which contains at least
one step of each process and exactly one step of at least one of i, j.) Local rounds are
calculated relative to given time intervals. Let ¢, =0 be a particular time instant. The
local round of processes i, j beginning at t, (and ending at t, = t,), is the smallest time
interval [f,, t.) such that

(1) [¢,,t.) contains at least one (full) step of both i, j.

(2) [t,, t.) contains exactly one full step of at least one of i, j.

(Note: The next local round with respect to a time interval A, starting at ¢, is the local
round of i, j beginning at t,.)

We achieve communication between any pair of neighbouring processes within
constant number of local rounds by our probabilistic algorithms with some probability
of error which can be made arbitrarily low. The best deterministic symmetry algorithms
which attempt to form matchings in distributed systems have a relative response
depending linearly on the network’s diameter.'

The paper is organized as follows: In the next section we define our model for
communication. In § 3 we discuss applications of this model. In § 4 we give a relative
real time implementation of communication in this model. In § 5 we give correctness
properties of our proposed implementation and time analysis.

2. The model VS-DCS (Variable Speed Distributed Communication System).

2.1. The model. We develop here a theoretical model related to, but more general
than, the Distributed Communication System (DCS) of Reif and Spirakis [1984]. A
detailed description of the fundamental issues can be found in Reif and Spirakis [1984],
[1984a].

We assume a possibly infinite collection of processes 7 ={1,2,---}. Events of
the system are totally ordered on the real-time line [0, 00). The processes of = are

' Also Arjomandi, Fischer and Lynch [1981] have shown that some synchronization problems which
are global (in contrast to our problem) cannot be done in real time and require time proportional to the
logarithm of the total number of processors in the network. A typical situation where this could occur is
the problem of detecting connected components of processes whose speeds are within given positive bounds.
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asynchronous ; their speeds may dynamically vary arbitrarily over time and may even
be 0. The processes have no access to any global clock giving the time.

We assume that the effect of a read or write is instantaneous and that these events
occur at distinct time instants, so there are never any read/write conflicts. In general,
a step of a process is a finite time interval A in which a single instruction is instan-
taneously executed at the last moment of A. A process i is the slowest of two processes
i,j during a step s =[¢,, t,] of i, if at least one step of j is a proper subset of s. We
can extend this notion to bigger time intervals, by counting steps of i and j contained
in those time intervals. Each process consists of a fixed set of synchronous parallel
subprocesses. (The subprocesses of any given process have the same speeds.) The
asynchronous processes wish at various times to communicate with other processes
but have no means of communication except via the communication system. This is
implemented by many poller subprocesses (seven for each target process) which are
synchronous with themselves. We assume a fixed connections graph H which is
undirected and has the set 7 as its vertex set. An edge {i, j} indicates that process i is
physically able to communicate with process j (but not necessarily willing to). H is
assumed to have finite valence. We also assume for each time ¢ the willingness digraph
G, which indicates the willingness of a given process i at a given time . (We indicate
this by the edge i —,j and say i is a willing neighbour of j.) Note that i —,j only if
{i,j}e H. Let i«,j if i—,j and j—, i The edges of the graph G, are stored dis-
tributedly so that the edges departing from a given process are only known to that
process. We assume that the out-degree of each vertex of G, is upper bounded by a
fixed constant v.

For each time interval A on [0,00) let i —,j if i—,j for all te A and let i <, j
if bothi—,jand j—, i

For each t=0 the (possibly infinite) digraph M, with vertex set 7 and directed
edges i ~, j denotes which processes open communication to which other processes at
time ¢t We denote i«~,j if both i~>,j and j>,i. Thus i«~,j denotes i, j achieve
mutual communication at time t. M, is the digraph that implementations of distributed
synchronization achieve. Also, we extend the notation to intervals A on (0, ) as for
G,. We assume that

(A1) Two way communication between any two processes i, j € 7 requires only
one step of i and j. (Thus, processes communicate in short “bursts”.)

(A2) If i—, j and not i —,j, 1,>t,, then i«w, j for some A€[t,, t,], where A
contains at least one step of each i and j (i.e. processes can withdraw willingness to
communicate only after communication between i and j has been established and
completed).

In practice, assumption A2 can be easily circumvented. Suppose a process i is
initially willing to communicate with process j, but later decides that it is no longer
interested in communicating with j, before mutual communication has been achieved.
By assumption A2, process i must not withdraw willingness to communicate until the
implementation has achieved mutual communication between i and j. However, at this
time a null value can simply be sent.

We wish implementations to be proper in the sense that

(a) i~>,jonlyif i <,j (neighbours try to speak only if they are mutually willing
to).

(b) <~ , must be a partial matching: If i«», j then not j'«», i for any j’ in m-{;}.
(No process is allowed to achieve communication with more than one neighbour at
the same time.)
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A process with speed 0 is dead, and otherwise is awake. We assume that processes
can suddenly die but when they are awake they execute their programs correctly. We
furthermore assume that each process has a fixed upper bound on its speed which
may be different from the other processes and not known to them.

For any two processes i,j take two consecutive steps of i, on time intervals A,
and A,. Let S, and S, be the number of steps of j overlapping with A,, A, respectively.
Then, the relative acceleration of j with respect to i is (|S,— S,|)/2. Let us denote it by
a;. Let a, the relative acceleration bound for processes i and j, be the worst case value
of the maximum of ay, a; over all times. The correctness of our synchronization
algorithms does not depend on whether processes are acceleration bounded; however,
we assume fixed acceleration bound « in our time complexity analysis. Thus the relative
acceleration of one neighbour with respect to another is bounded by a constant « or
can be —oo if the process dies.

We assume an ““adverse” oracle & which at time 0 chooses the speeds of all the
processes for all times. & is also able to dynamically change the willingness relation
—, (subject to assumption A2) so as to achieve the worst case performance of the
implementation of VS-DCS. Note that, in practice, we can assume each process has
a director subprocess which dynamically changes the willingness relation —, and at
time 0 determines the speed of that process for all times. Thus, in this case, the oracle
A is defined distributedly by the director subprocesses. It should be noted that the
oracle & is useful to us because it may be explicitly used to define the worst case
performance of the system, when communication requests happen at times most difficult
for our implementation and speeds vary in the most difficult way. Thus, if we prove
that the system has a certain performance for a worst case oracle, then we have upper
bounds on the performance of any set of director subprocesses. More general adverse
oracles (which may alter later speeds of processes according to past success or failure
of communication) are defined in Hart, Sharir and Pnueli [1982]. Our implementations
may fail to meet some of their requirements if these more general oracles are allowed.
We feel, however, that our notion of adversary is adequate for practical applications.

The following communication primitives can be implemented by the poller subsys-
tem of each process: (In practice, the director may not get an immediate answer but
may proceed to some other instruction and later a time slot for communication will
be arranged by the poller subsystem. Of course, if successful two-way communication
is achieved, we assume both processes are aware of the success of communication.)

ATTEMPT-COM,; (j): indicates that the director of i wishes to communicate with
the director of process j.

CANCEL-COM,; (j): indicates that the director of i wishes no longer to communi-
cate with j.

The precise semantics of ATTEMPT-COM and CANCEL-COM are given by the
willingness relation —, < 7 X 7.

Note that assumption A2 implies that the oracle &/ can withdraw willingness to
communicate only after communication has been established. Thus, if ATTEMPT-
COM,; (j) is called at time ¢, and CANCEL-COM,; () is called at time ¢, (¢,> t,) then
communication was established for some ¢ on [¢,, t,). (In fact, our implementations
do not really require this assumption but only require that the willingness to communi-
cate will not be cancelled before some constant number of steps. However, the
assumption A2 given here, considerably simplifies our analysis.)

2.2. Complexity of VS-DCS. We assume here a global constant a. We say A is
tame for i, j on time interval A if the pairs {(i, j)} U {(i, k)| k is a neighbour of i} U {(j, k)|k
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is a neighbour of j} are each relative acceleration bounded by « on the time interval
A.

For every € on (0, 1) let the e-response S(&) be the minimum integer >0 such that
for every pair of neighbours i, j and each time interval A and for every oracle & which
is tame for i,j on A, if i <>, j and the number of steps of the slowest of i, j within A
is ZS(e) then there exists a subinterval A'c A containing at least one step of the
slowest of i, j such that

i=v,. j with probability =1 —e.

Intuitively 1 — ¢ gives a lower bound on the probability of establishing communication
in the case process i issues an ATTEMPT-COM (j) at the beginning of A, and after
S(e) steps it calls CANCEL-COM (j). (Note that we presume here that i and j and
their neighbours have relative acceleration bound «, only during the interval A; at
other times this acceleration bound may be violated, and furthermore the acceleration
bound « need not hold for other processes even during the interval A.)

We consider an implementation to be relative real time if for all constants € on
(0, 1), the relative e-response S(&) is upper bounded by a constant, independent of
any global measure of the willingness digraph G, (such as |7| or any function of it)
and dependent only on the constant maximum valence v of the vertices of G,, and on
the bound « on the relative acceleration. Note that relative real time response does
not imply that communication is guaranteed within any time interval but instead it is
guaranteed within a bounded number of steps of the processes with high likelihood
(this is because processes can slow down arbitrarily). In § 4 we show how to implement
the VS-DCS so that relative real time response is achieved.

3. Applications. The primitives ATTEMPT-COM, CANCEL-COM are powerful
enough to supply real time implementations of synchronization constructs of high level
parallel languages such as CSP and ADA.

The following proposition will be useful in the applications.

ProprosITION 3.1. If the oracle o is tame for processes i, j on an interval A which
includes at least 8,X + aX?/2 steps of either i or j, (where 8, is the speed ratio of processes
i,j in the beginning of A), then A includes at least X local rounds.

Proof. Consider the number of local rounds to be the “time” during which a
fictitious moving object with initial speed 8, and acceleration a moves a distance equal
to the maximum number of steps done by either i or j or A, O

3.1. Real time resource granting systems with process failure. Previously, in Reif
and Spirakis [1982a], [1984], [1984a] we utilized the more restricted DCS system which
does not allow process failures to implement a real time resource granting system. In
this paper, we can cope with sudden process failures (zero speeds). In this case, the
process governing a resource will first get an estimate §, on the speed of a process
granted the resource and then it will attempt to communicate for 8,S(e)+ aS*(e)/2
of its steps with the process granted the resource. (Note that §, will be 1 if the process
governing the resource is the fastest.) By Proposition 3.1 the above interval should be
enough for the process which has been granted the resource to respond. If that process
does not respond, the resource governing process may reclaim the resource. If a resource
allocator dies, then other processes can play its role.

3.2. Relative real time implementation of CSP and ADA’s synchronization con-
structs. In a typical stage during execution, the processes comprising a CSP program
may be divided into two classes: those busy with local computations and those waiting
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for a partner to communicate with. A distributed guard scheduler can be implemented
by using the poller subprocesses of the relative real time VS-DCS system.

The Communicating Sequential Processés (CSP) language was defined by Hoare
[1978] for concurrent programming. The language has elegant synchronization con-
structs:

(1) An output command of the form i!u where i is a process and u is a value
which i receives.

(2) An input command of the form i ?x where i is a process which sends a value
which is assigned to variable x.

CSP also allows alternative statements which consist of a sequence of guarded
commands of the form G - C where the guard G is a list of booleans followed by at
most one input command and C is a command list. We assume here the extension of
CSP given in Bernstein [1981], which allows G to be a list of booleans followed by at
most one input or output command. An alternative statement is executed by indetermin-
ately choosing a guard which is satisfied (by executing its elements from left to right)
and then executing the corresponding command list. If no guard is satisfied, the
alternative statement fails. CSP also allows a repetitive statement allowing repeated
execution of an alternative statement until it fails.

Thus, the essential problem in implementing CSP is to synchronize execution of
input and output commands. Let v be the maximum number of guards appearing in
any alternative or repetitive statement; we assume that v is constant relative to the
total number n of processes. Let J be the event: For a given alternative statement, the
execution either determines a satisfied guard and executes the corresponding command
list, or determines that no guard is satisfied and makes a failure exit from the statement.
A CSP implementation is relative real time if there exists a positive integer I (which
is independent of the number of processes n) such that J takes at most I steps of all
processes associated with the guards of the alternative statement.

For a process i to execute an output command j!u, process i must execute the
communication command ATTEMPT-COM,; (j). Also, to execute an input command
i 7x, process j must execute the communication command ATTEMPT-COM,; (i). If
successful communication is established between i and j, then during that time process
J transmits value u to variable x in process i. Processes i, j then execute CANCEL-
COM,; (j) and CANCEL-COM; (i), respectively. (Note that if processes i or j happen
to die at this point, before cancelling communication, then successful communication
cannot be made with them during the time speed is 0, so it is not essential for the
communication request i <> j to be cancelled.) We assume here an underlying relative
real time VS-DCS implementation, with relative e-response S(&), where ¢ is a system-
wide constant which may be fixed to any arbitrarily small constant on the interval
0, 1).

Let S be an alternative statement with guarded input and output commands, say
Gy, -, G, with s = v. To execute the statement S, process i first executes the booleans
appearing in each guard. If no guard is satisfied, process i must then exit the statement
S with failure. Otherwise, let R be the set of processes appearing in those guards of
S all of whose booleans evaluate to true. Process i must then execute ATTEMPT-
COM,; (j) for each process je R. At the first time a communication is established
between i and some willing process j€ R, process i must immediately execute
CANCEL-COM,; (j') for each j'e R and then execute the command list associated
with the now satisfied guard in the statement S. Note that the above will take at most
I=aS*(e)/2 steps of i, with probability at least 1—¢, by Proposition 3.1 and the
definition of S(g).
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Also, in ADA, two-way communication between pairs of tasks is allowed to
synchronized time instances called rendezvous. An accept statement of the form accept
f(—) appearing in task T, indicates that T, is willing to rendezvous at f with any task
of similar argument type. The task T, may execute a call statement of the form f(—)
indicating that T, is willing to rendezvous with T, at the accept statement containing
f- ADA also allows for selective accept statements containing multiple accept statements,
one of which must be nondeterministically chosen to execute. (This is similar to the
select statement of CSP.)

ADA’s tasks may be implemented by processes whose speeds vary dynamically.
(Processes may even fail for various time intervals.) The key implementation problem
is to synchronize task rendezvous within relative real time, in spite of the dynamic
speed variations. These processes may be connected within a distributed network whose
transmission channels may also have variable speeds or fail. Unreliable transmission
channels can be viewed as processes which are connected with the processes of the
network via reliable communication channels.

We assume that it is possible to analyze (perhaps by data flow analysis) an ADA
program to determine an undirected (possibly infinite) connections graph whose nodes
are all the tasks possibly created by the ADA program and edges are the possible task
communication pairs. Since an actual implementation will have in its hands at any
time only a finite set of processes we assume that only the currently active tasks have
an associated implementing process and a scheduler devotes a currently free process
to a given newly created task. A garbage collector removes the implementing process
from the deleted task and places it back to the free list of processes. These implementa-
tion techniques were developed by Dennis and Misunas [1974] for real time implementa-
tion of data flow machines. They correspond to the initiate and abort statements, which
appeared in old ADA versions.

The synchronization facilities of our VS-DCS system provide (by the use of the
ATTEMPT-COM and CANCEL-COM primitives) a real time implementation of the
accept and call statements. A version of the active statement can be implemented so
that deleted tasks and tasks implemented by nontame processes can be detected by
their neighbours in real time with some (arbitrarily small) error probability. This can
be done in our VS-DCS system by repeatedly attempting communication with neigh-
bouring processes. Finally, the symmetry and locality of the VS-DCS implementation
(due to its probabilistic nature) may help in eliminating the tradeoff between generality
of expression and ease of implementation in ADA.

The probabilistic fairness guaranteed by the algorithms of the pollers eliminates
the danger of bottlenecks which could be created if conventional techniques were used
(a new task which centralizes requests and keeps track of busy server tasks is one of
the conventional proposed solutions). Most of the problems which VS-DCS could cure
are discussed in Mahjoub [1981], and Francez and Rodeh [1980]. A probabilistic
solution to some of the discussed problems was given also in Francez and Rodeh
[1980], but no discussion about real-time properties was done and neither the problem
of speed variations nor that of dying processes was addressed.

4. Relative real time implementation of VS-DCS.

4.1. Intuitive description of the algorithm. We utilize 7v+ 1 synchronized parallel
processes to 1mplement the poller subprocess of each process i. These are the com-
municators cp. , cpz, -+« cphy, the speed estimators ep}, - - -, ep,, and the ]udge subpro-
cesses jpo, jpi, -, ]p;l, of process i. Each pair of the communicators cp}., cpi- where
k'mod v=k" mod v=k, is devoted to communication with the kth neighbour. Each
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estimator is used to continuously update an estimation of the speed of a particular
neighbour process. The collection of judges has the task to select under certain
conditions one communicator and to give to him the right to open the communication
channel of process i to its corresponding neighbour.

We frequently use the technique of handshake by which we mean that each
subprocess modifies a flag variable observed by the corresponding neighbour subpro-
cess. Process contention between synchronized subprocesses is easy to implement (we
can allow each to take a separate step in a small round).

Our algorithm for the kth communicator subprocess cpj (1 =k =2v) of the poller
of process i proceeds as follows:

Let k'=k mod v. At every time t=0, E'(1),- - -, E'(D') is the list of targets of
edges of G, departing from i€ 7, and D' = v is the current number of targets. Those
variables are dynamically set by the oracle & and they are the neighbours to which
process i is willing to open communication at time 7. Note that, by our assumption
A2, oracle & can remove an element from the list of targets (of edges of G, departing
from i), only immediately after communication with this target has been established.
We furthermore assume that &/ modifies the list of targets (and D;) instantaneously.
As a consequence, our algorithms are not confused by dynamic removal of edges of
G,, (in particular, improper communication can never happen). The subprocess cpji
deals with the E'(k’) neighbour. If k = v, then cpj is an asker subprocess, else it is a
responder process. cpj must first handshake with the corresponding subprocess of
process E'(k') to which node i wishes to communicate. We need two handshake
subprocesses (ask, respond respectively) per neighbour because of a certain asymmetry
in the handshake (some subprocess has to be the first to modify a flag). In particular
the asker procedure initiates the handshake and the responder answers to it.

Next, we wish to find a time slot in which the two neighbours may communicate.
Because there may be contention among other processes j which also wish to communi-
cate with i (and consequently, other askers or responders of node i also will handshake)
we must resolve the contention by a fair judge. To do this, we add the process cpj to
a queue and the collection of judge synchronous subprocesses of poller i takes a
random process from this queue and allocates time slots for communication attempts.
To ensure that slower neighbours do not utilize any more total time on the average
than faster neighbours during communication attempts, we weight the probabilities of
subprocesses to be chosen from the queue by the factor

1
A w(A;) ’

where A is the current estimation of the steps of process i per step of process k,
supplied by the estimator epj, and w(A;) =Y, (1/Ay).

The judge subprocesses are organized in a balanced binary tree of height log (2v) +
1. Any time a random process is to be selected from the queue, the supreme judge
subprocess jp; enables the tree of the rest of the judges to conduct a tournament between
the waiting processes in the queue and to select a winner with the above stated
probability. In that way, the total number of steps needed for a winner to be selected
is O(log (2v)). (Note that less efficient ways of using a random number generator to
choose one waiting process from the queue could take O(v) steps of process i, because
of the form of the weight factor in the probabilities.)

Our technique of weighing the probability that subprocesses are chosen from the
queue, has the effect that each subprocess in the queue attempts to communicate on
the average 1/(2v+ v*/a) of the total time. (This is proved in our analysis following
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the formal description of the algorithms.) If a process is chosen by the judges but the
communication is not established, the algorithm requires that subprocess to initiate
another handshake with its partner (to check if they are still mutually willing to
communicate and to synchronize steps). Then, it is again added to the queue to be
given another chance to establish communication. This process proceeds until either
the director of i withdraws its willingness to communicate with E‘(k’) or until it
establishes communication.

Note that the time slots for communication attempts, allocated by the supreme
judge jpé to each selected communicator, take into account the current speed ratio of
the process i and its neighbour corresponding to that communicator, adjusted by a
factor related to the worst-case acceleration and the log, 2v delay in the process of
choosing a winner, to give the opportunity of at least one step overlap in time of
process i and its neighbour, if their corresponding channels are both open.

We introduce random waits which help subprocess cpj to eliminate the possibility
of schedules set-up by the adverse oracle & to have always a particular subprocess
arrive first in the queue and win the contest. This possibility is eliminated since we
have assumed that the oracle sets the speeds at time 0 and cannot affect the independent
random choices done by the processes. Also, we assume that the random number
generator RANDOM (0, 1) of each subprocess yields truly random real numbers,
uniform on the interval [0, 1], and independent of the random numbers generated by
any other subprocess.

Note that we trade computation effort (parallelism) in a node to achieve reliable
communication. This parallelism is limited because of the bounded valence v of the
graph G,. We can always simulate these synchronous techniques. This will reduce the
effective speed of each subprocess by only a factor of 7v+1.

4.2. The algorithms of the poller subprocesses. In each process i€ 7, we assume
synchronous subprocesses

askers: cp!, cps, -, cph,
responders: cphii, CPorzs " "5 CPous
estimators: epi,- - -, ep,,
judges: jpo, jp1, " * * 5 jPao-

The askers and the responders are the communicators.

In the following algorithm, executed by each of the communicator subprocesses
cpl, 1=k=2v, we implement the queue of process i by an array Q'(k), 1=k=20.
Q'(k)=1 holds just if cpj waits in the queue. Another array of binary values, mar-
riage'(k), 1 =k=2v, is used to indicate which communicator subprocess currently
holds process’s i channel and attempts communication. When the predicate
marriage’(k) = 1 is true, then cp}, attempts communication at that time. The algorithms
have designed so that at most one of the marriage'(j), 1=j=2v, is set at any time.
We now present the algorithm for the communicator subprocesses:

process cpj.
WHILE true DO
IF D'= k THEN

BEGIN
W<« ¢, - RANDOM (0, 1)
DO | W] noop

IF k=v THEN ASK; (E'(k)) ELSE RESPOND, (E'(k))
COMMENT: Add k to queue
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Q'(k)«1
WHILE marriage’(k) =0 DO a noop
ESTABLISH-COM (E‘(k), c,Au)
marriage’ (k)< 0
END
oD

A noop is a single unit step in which no operation is executed. The constants ¢, and
¢, are as follows:

=2Qv+1)c,, c;=4(aB+1), B=6log(2v).

The speed estimators epj, 1=k=2v, execute the following algorithm. The
algorithm continuously does a handshake in order to estimate the speed ratio between
the process k to which the handshake is attempted, and the process i, of which the
speed estimator is a subprocess.

process epj.
DO FOREVER
Fy <1
LOOP UNTIL F is 1
A: F; «<0; s« CURSTEP
LOOP UNTIL F, =0
CURSTEP-s

B: Ay« >

oD

Note that F;, is a flag set by i, read by k. We assume at time 0, F; initialized to 0.
The special register CURSTEP gives the current step of process i. We assume that a
step consists of an elementary statement of the algorithms; ep’s execution assures
that A, is (within a factor of 2) the actual speed ratio of processes i and k, since from
step A to step B the fastest of the partners does CURSTEP-s steps and the slowest
does 2 steps.

4.3. The algorithms of the judge subprocesses. The algorithm of the supreme
judge is

process jpi
WHILE true DO
IF queue Q' not empty THEN
BEGIN
Use the tree of judges to select a random element k of the queue Q' with
probability
1
A w(4y)
COMMENT: delete k from Q'
Q'(k)«0
marriage’ (k)< 1
WHILE marriage’ (k) =1 DO noop
END
oD
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Note that the supreme judge triggers the operation of the tree of judges. In each
level, the winners of the previous level are paired up and half of them are selected.
The judge subprocesses of each level execute in parallel synchronously. Finally, the
jpo accepts the choice of the root of the tree of judge subprocesses to be the com-
municator which is going to attempt communication. The supreme judge removes this
winner subprocess from the queue Q' by setting Q'(k) to 0 and allows the winner to
attempt communication (so as to use process’s i channel) by setting marriage’ (k) to
1. Note that we can test if Q' is empty by keeping a counter of the number of elements
in Q.

We now give the algorithms of the judges.

process jpy
WHILE true DO
IF Q' is not empty THEN
BEGIN
FOR level=1,- - -, log (2v)+1 DO
BEGIN
L' «level; do 6 noops
END
k < choice’ (4v)
Qi<0
marriage’ (k)< 1
WHILE marriage’ (k) =1 DO noop
END
oD

The rest of the judges are organized in a full binary tree of 4v nodes. The leaves
are the processes jpi,- - -, jps,. Each internal node me{2v+1,---,4v} has two
children LCHILD (m), RCHILD (m). The root is the process jpi,. Each jpi, has its
level stored in MYLEVEL (m).

process jpi,
IF MYLEVEL (m) = L' THEN
BEGIN
IF L' =1 THEN

BEGIN
choice’ (m)<m
marriage’ (m) <0
IF Q'(m) =0 THEN sum’ (m) < 0 ELSE sum’ (m) < 1/A,,

END

ELSE

BEGIN
r<RANDOM (0, 1)
m, « LCHILD (m)
m, < RCHILD (m)
sum’ (m) «sum’ (m,)+sum’ (m,)
IF r<sum' (m,)/sum’ (m)

THEN choice’ (m) < choice’ (m,)
ELSE choice’ (m) < choice’ (m,)
END
END
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RANDOM (0, 1) is a uniform random number generator which returns a random
real between 0 and 1. We assume each of the outputs of RANDOM (0, 1) is independent
of any other output. Note that each judge subprocess which is not a leaf uses RAN-
DOM (0, 1) to select one of the choices of its children with conditional probability
sum’ (m)/(sum’ (m,)+sum’ (m,)) where m,, m, are the children of m.

LEMMA 4.1. It takes B =6 log(2v) steps for the tree of judges to select a winner
from the queue Q'.

Proof. The judges of each level work synchronously in parallel and each does at
most 6 steps, per iteration of their loop. Since the tree has a height of log (2v), the
total number of steps required is B =61log (2v). O

LEMMA 4.2. If Q'(k) =1 then the probability that the winner is communicator cpj
is at least 1/(Ay - w(4))).

Proof. The probability that cpj will be selected is the product of the conditional
probabilities that cp will be selected in each node of the path from k to 4v, which is
the root. We shall follow an inductive argument on the level of nodes in the tree.
Observe that after execution of the program of process jp.,, the variable sum’ (m) is
the sum of sum’ (j) over all j’s which are leaves of the subtree rooted at m.

Claim. Let k be any of the leaves of the subtree rooted at m. Let w(m) be the sum
of sum’ (j) over all j’s which are leaves of the subtree rooted at m, given that Q'(k) = 1.
The probability that choice’ (m) is k is equal to 1/(Au- w(m)).

Proof of Claim. Let m be a node whose children are leaves. In the program that
the process jpi, executes, the probability that the left child is selected is

sum' (LCHILD (m))
sum’ (LCHILD (m))+sum’ (RCHILD (m))’
The probability that the right child is selected is

- sum’ (RCHILD (m))
sum’ (LCHILD (m))+sum’ (RCHILD (m))’

Let the level of a node be its distance from the leaves plus 1 (the leaves are at
level 1). Let us now assume the claim true for any node of the level /—1. Let m be
any node of level I, with children m, and m, at level I —1. Let k be any of the leaves
of the subtree rooted at m. The probability that choice’ (m) is k, is equal to the
probability that either choice’ (m,) or choice’ (m,) is equal to k and that k is furthermore
selected by process jpi,. Since k is a descendant of m, it can be a descendant of only
one of m,, m,. Without loss of generality, let us assume that k is a descendant of m,.
By the induction hypothesis, the probability that choice’ (m,) =k, is

1
Ay - sum’ (m,)’

By the code of jpi, the probability that choice’ (m) = choice’ (m,) is

sum’ (m,)
sum’ (m,)+sum’ (m,)"

The probability that choice’ (m) =k is equal to
1
A+ (sum’ (m,)+sum’ (m,))

which is the product of the above two probabilities. But sum’ (m,)+sum’ (m,)=
sum' (m)=w(m). 0O
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To finish the proof of the lemma, we apply the result of the claim for m being
the root of the tree and note that

wo(m)=w(A). 0

4.4. Low level synchronization procedures. The following are the low level syn-
chronization procedures used by the poller algorithms:

procedure ask; (target)
BEGIN
Qi,target(_ 1 5
WHILE A,,....;=0 DO noop
Qi,target <« 0;
WHILE A, =1 DO noop
END

The setting of the flag Q;ree: t0 1 means that i asks the target. If the target detects
Qirargee = 1 then it answers positively by setting A;ager,; = 1. Both partners reset these
flags to 0 at the end of procedure ask and respond. We assume at time ¢ = 0 these flags
are initially 0.

procedure respond; (asker)
BEGIN
LOOP UNTIL Q,er.i =1
BEGIN
Ai,asker(_ 1 >
WHILE Q,y..;=1 DO noop
Ai,asker < 0;
END
END

Let s be the maximum number of steps we are allowed to keep the channel open
before we fail. We finally present the code for the procedure ESTABLISH-
COM; (target,s). During its execution process i opens its channel to process target.

procedure ESTABLISH-COM,; (target,s)
BEGIN
OPEN CHANNEL, 5/
DO s5-2 noops
CLOSE CHANNEL, arget
END

The procedure OPEN CHANNEL,,,,. results is the appearance of i ~»>, target at the
time of its execution, and CLOSE CHANNEL, ... sets i 4+, target.

5. Correctness properties of our proposed implementation and time analysis.

LeEMMA 5.1. The implementation guarantees. a partial matching with respect to the
relation .

Proof. For the sake of contradiction, assume that there is a >0 and processes i,
J, k such that i v, j and i« k. This implies that at time ¢ both poller subprocesses
cp} and cp} have the corresponding marriage variables set and the channel open. But
this is impossible, because the supreme judge subprocess does not allow more than
one marriage variable to be on at the same time. [

A subprocess cpj gets the channel when it executes ESTABLISH-COM,; (k).
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LEMMA 5.2. Death of a process does not affect the communication of other processes.

Proof. Death of process “target” at any time will only cause blocking of only the
subprocess cp{wet per neighbour i of target. This does not disrupt the other subprocesses
of the neighbours. [

LEMMA 5.3. Suppose that i, j start to be mutually willing to communicate at some
time and continue to be willing for 5 local rounds. Then all four subprocesses cp},, cp},
and cp!, cpi, (with j, mod v=j, mod v =j and i, mod v = i, mod v = i) will arrive in the
queues of i and j in 5 local rounds.

Proof. Note that at each time the slower of i, j will do only one step in the busy
waits of procedures ask or respond. The result follows simply by counting the steps
to be executed in each of the procedures. 0

Let A; be the current estimation by i of the ratio of steps of i per step of j as
provided by the process epj. As we noted in §4.2, execution of ep] assures that
A; is (within a factor of two) the actual speed ratio of processes i and j. Let p; be the
ratio 1/(w(A;)A;). In the following we assume that the oracle & is tame with respect
to processes i, j in the time interval T they attempt communication.

Let S; be the average number of steps that cpj makes before it is selected to
attempt communication, measured from the time it enters the queue.

LEMMA 5.4. Let A; be the most current estimation used in the last competition in
which cp; was the winner. Then Sy = 2vc,A;, (where ¢, = 4v(af + 1) as defined previously).

Proof. The probability that cpj is the winner, each time it participates in the
contest, is at least p; by Lemma 4.2. Let x be a random variable which counts the
number of selections done before cp; is selected. Then, prob {x =t}=(1—p;)". The
mean value of x is

1

Y t-prob{x=t}=—.
=0 Pij

Each time cp] is not chosen, it waits in the queue Q' for an average number of steps
bounded above by

2vc,

w(Ai).

2v
) CQAwpi =
k=1

So

1 ( 2vc, )
,“é'— —]=2uc A,". 0
Y py \w(4,;) 2

LEMMA 5.5. The relative position of the time intervals during which the channels of
two neighbour processes are open, is a uniform independent random position and is not
affected by the oracle .

Proof. By assumption, the oracle sets the speeds of processes at time 0 and cannot
affect their independent probabilistic choices. Furthermore, in our algorithms, each
subprocess cpj of a process i goes through a random wait of sufficient length before
each return to the queue of process i. In particular, the mean length in steps of waiting
interval is the mean number of local rounds to attempt communication. As a con-
sequence, random waits are uniformly distributed in this interval. 0O

Let process cpj be in the queue Q' if Q'(k)=1. Let A =2v(1+v/2a).

THEOREM 5.1. Each subprocess expects to get the channel at least 1/ of the time.

Proof. Let Sy be the average number of steps cpj attempts to communicate by
executing ESTABLISH-COM. Let A, be the estimation used in the last competition
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in which the judges selected cpj to be the winning process. By Lemma 5.4 and since

A)=5 L=

il = _—S- U,

w( k=lAik

. 1 Cy Cy 4(aﬁ+l) ZaB
S, =|——— =zt I
ok (A.-kw(Ai))CZA"‘ w(A) 20 2 v

For any time interval T, let T, be the subinterval of T in which cpiiget the channel.
Let & be the mean speed of process i during T. Let u = mean (length (Tgx)/length (T)).
By Lemma 5.5, our algorithm introduces uniform random translations in time. Then

length (T )

&= i = i +
length (T) Sox and length (T)d kEF(SQ’k B),

where F is the set of indices of subprocesses contending in the queue. Clearly, the
worst case contention happens when all 2v subprocesses are in the queue. Also, the
length of T is the sum of time in channel for each process plus the time of competition
for each process. In the case where process i is the fastest and all neighbours slow
down with the same worst case acceleration a, Sb,k is the same for all subprocesses
in the queue. Hence,

2v

length (T)é = Z‘ (Soxt+B)

k=
implying

Ok - 1 1

1] = 2v i =2 i =
Yi—1 (SoktB) Yo, (1+8/Sok) 2v(1+v/2a)
since B/Spx=v/2a. O

Note that the above theorem justifies the use of the estimate (A w(A;))~" as the
probability to select the subprocess cpj from the queue.

In the following we assume 1 =i, k'= v and k= k’+ v. Thus cp}, is the asker and
cp¥ is the responder.

LEMMA 5.6. The probability of instantaneous overlap of open channels of subprocesses
cpi and cp¥ is at least 1/\>.

Proof. By Theorem 5.1 and Lemma 5.5. O

Let success in communication between i and k' be an overlap of open channels of
i and k' for at least one step of both processes i, k'. A phase of subprocess cpj is a
random wait, a handshake with cp¥ a wait in queue and a communication attempt.

Let Ymin=1/2A%

THEOREM 5.2. The probability of success in communication in a phase of subprocess
cpi is at least Y.

Proof. When the subprocess cpj opens its channel, the number of steps done from
the time of the estimation of A, used in the selection process of the judges, is
B =61og (2v) and hence, since A, = 1, the new speed ratio canbe Ay, +af = (aBf +1)Ay
in the worst case.

In the case where process i is the fastest and process k' slows down continuously
with the maximum acceleration, process i will do more and more steps per step of k'.
This case is the worst case, since it gives an upper bound to the number of steps during
which cp} has its channel open, in order to guarantee that cpf will make at least 2
steps. In this case, a communication attempt of ¢,A; time slots where ¢,=4(aB +1)
guarantees that cp¥ will make at least 2 steps during the time cp}, has its channel open.

1
A



90 JOHN H. REIF AND PAUL G. SPIRAKIS

Note the independent random relative position to these steps with respect to cpi’s
steps (due to independent random waits in the poller subprocesses’ algorithms). Thus,
given that there is an overlap, the probability is at least 1/2 that the length of the
overlap is at least 1 step.

Hence, by Lemma 5.6, there is an overlap and its length is at least one step of
both processes with probability at least - 1/A% 0

Note that the above theorem justifies the selection of the constant ¢, =4(aB +1)
in the communicators’ algorithm.

Let € be the class of oracles for which the out-valence of each node of G, is v
for all ¢ This class of oracles creates the maximum contention and gives the worst
relative response time.

Let gi(h/s{) be the probability that it takes exactly h phases for subprocess cpj
to communicate with cp¥.

Let Ymax =1/(20)".

LemMA 5.7. For any oracle 4,

qtk(h/'ﬂ) = (l - Ymin)h_l‘
For oracles s € €,

qlk(h/d) = (1 - Ymin)h—IYmax'

Proof. Since in each phase, the probability of successful communication is at least
Ymin and at most 1, we get

Guc(h/ ) = (1= Yin)" ™

by an application of Bayes’ theorem of conditional probabilities.

For oracles in class %, by Theorem 5.2 the probability of successful communication
in a phase is at least y,,,. Furthermore, this probability is at most Ym.x, due to the
contention of all 2v processes in any communication attempt.

Let E,, be the event ““cp} does not succeed in communicating with cp¥ at phase m”.

Let H,, be the intersection event N[~ E;.

Let E,, be the complement of E,,.

Let H, be the empty event.

Then for € €

k—1
an(h/ s0) =( [T Prob (E/Ha)) - Prob (B Hi).

m=1

But Prob (E,/H,_;)=1—Ymn for any m and Prob (E./Hi_|)= ymax.- Hence,
qic(h/ A) = (1= Ymin)" ™ Ymax- O

By using the above lemma and known expressions (see Feller [1966]) for the mean
and the tail of a geometric we get

LEMMA 5.8. For oracles in €

Ymax
mean (h)=-—"—5.
( ) (7min)2

LEMMA 5.9. For oracles in €
Ve, 0<e<1, Prob{h>h,,(e)}=¢

where

108 (Ymin 8) - 108 Ymax
h =
mBX(E) lOg (1 - Ymin)
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Note that, by Lemma 5.1 and Theorem 5.1 in the worst case relation of speeds of
processes i, k, the total length in steps of a phase of subprocesses cpj is the number
of local rounds in the random wait plus the number of local rounds up to the end of
the communication attempt. This sum is ¢, =2(2v+1)c,.

This justifies the use of the constant ¢, in our algorithms for the poller subprocesses.

THEOREM 5.3. For the worst case of any ‘‘adverse” oracle o4, the mean number of
local rounds to achieve communication is

=c, -l'lﬂ=4c.)a2(l +i) = O(v°a log v)

min

and the e-response of the presented implementation of VS-DCS is
S(e)=c\hpax(e) =0 ( v’a log v log —E) .

Proof. By the previous remark and the fact that

log (Ymin e/‘Ymax) <2 ( _|( v ))
= o+ —_
henax(€) log (1—1/12) =A"logle {1 2w

23\ 2
=<20+P——) log(e"'(l+—u—)). 0
a 2a

6. Conclusion. We have utilized new adaptive techniques to deal with arbitrary
speed variability. Since we have assumed global parameters @ and v to be constant,
by Theorem 5.3 our VS-DCS system has relative real time response, Our restrictions
on processors rates are much less than in our previous work described in Reif and
Spirakis [1984], [1984a]. Furthermore, the algorithms given in this paper are more
modular and simple in design.
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VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY
AND ITS APPLICATIONS*

HIROSHI IMAIt, MASAO IRIt AND KAZUO MUROTATY

Abstract. We extend the concept of Voronoi diagram in the ordinary Euclidean geometry for n points
to the one in the Laguerre geometry for n circles in the plane, where the distance between a circle and a
point is defined by the length of the tangent line, and show that there is an O(n log n) algorithm for this
extended case. The Voronoi diagram in the Laguerre geometry may be applied to solving effectively a
number of geometrical problems such as those of determining whether or not a point belongs to the union
of n circles, of finding the connected components of n circles, and of finding the contour of the union of n
circles. As in the case with ordinary Voronoi diagrams, the algorithms proposed here for those problems
are optimal to within a constant factor. Some extensions of the problem and the algorithm from different
viewpoints are also suggested.

Key words. Voronoi diagram, computational geometry, Laguerre geometry, computational complexity,
divide-and-conquer, Gershgorin’s theorem

Introduction. The Voronoi diagram for a set of n points in the Euclidean plane
is one of the most interesting and useful subjects in computational geometry. Shamos
and Hoey [15] presented an algorithm which constructs the Voronoi diagram in the
Euclidean plane in O(n log n) time by using the divide-and-conquer technique, and
showed many useful applications. Since then, various generalizations of the Voronoi
diagram have been considered. Hwang [6] and Lee and Wong [10] considered the
Voronoidiagrams for a set of n points under the L, -metric,and the L, - and L.,-metrics,
respectively, and gave O(n log n) algorithms to compute them. Lee and Drysdale [9]
studied the Voronoi diagrams for a set of n objects such as line segments or circles,
where the distance between a point and an object is defined as the least Euclidean
distance from the point to any point of the object, and therefore the edges of these
Voronoi diagrams are no longer simple straight line segments but may contain fragments
of parabolic or hyperbolic curves. They gave an O(n(log n)?) algorithm to construct
these diagrams, and Kirkpatrick [7] reduced its complexity to O(n log n).

Here we extend the concept of usual Voronoi diagram in the Euclidean geometry
for n points to the one in the Laguerre geometry for n circles in the plane, where the
distance from a point to a circle is defined by the length of the tangent line. Then the
edges of these extended diagrams are simple straight line segments which are easy to
manipulate. We show that there is an O(n log n) algorithm for this extended case.

In spite of the unusual distance employed here, the Voronoi diagram in the
Laguerre geometry can be applied to solving efficiently a number of geometric problems
concerning circles. By using this extended Voronoi diagram, the problem of determining
whether or not a point belongs to the union of given # circles can be solved in O(log n)
time and O(n) space with O(n log n) preprocessing. We can also solve the problem
of finding the connected components of given n circles in O(n log n) time, which can
be applied to a problem in numerical analysis, namely, estimating the region where
the eigenvalues of a given matrix lie [4]. The problem of finding the contour of the
union of n circles can also be solved in O(n log n) time, which can be applied to image
processing and computer graphics. As in the case of the problems connected with the

* Received by the editors December 15, 1981, and in final revised form August 20, 1983.

+ Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering,
University of Tokyo, Tokyo, Japan 113.
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ordinary Voronoi diagram, the methods proposed here are optimal to within a constant
factor.

Some further generalizations of the problems and the algorithms from different
viewpoints are also suggested.

1. Laguerre geometry. Consider the three-dimensional real vector space R?
where the distance d(P, Q) between two points P = (xy, y;, z;) and Q =(x,, y,, 25) is
defined by d*(P, Q) = (x;— x,)>+ (y1— ¥2)>*— (21— 2,)>. In the Laguerre geometry [1],
a point (x, y, z) in this space R? is made to correspond to a directed circle in the
Euclidean plane with center (x, y) and radius |z|, the circle being endowed with the
direction of revolution corresponding to the sign of z. Then the distance between two
points in R> corresponds to the length of the common tangent of the corresponding
two circles. Hereafter we consider the plane with distance so defined. Note here that,
so long as the distance d; (C;, P) between a circle C; = C;(Q;; r;) with center Q; = (x;, y;)
and radius r; and a point P=(x, y) is concerned, the direction of the circle has no
meaning since the distance d, (C;, P) is expressed as

(1) di(ciaP)=(x—xi)2+(y~yi)2—r%,

d; (C;, P) being the length of the tangent segment from P to C; if P is outside of C.
Note that, according as a point P lies in the interior of, on the periphery of, or in the
exterior of circle C;, di(C, P) is negative, zero, or positive, respectively. The locus of
the points equidistant from two circles C; and C; is a straight line, called the radical
axis of C; and C;, which is perpendicular to the line connecting the two centers of C;
and C; If two circles intersect, their radical axis is the line connecting the two points
of intersection. Typical types of radical axes are illustrated in Fig. 1. If the three centers

(a) (c)

(C,sCy)
(d)

F1G. 1. Radical axes and radical centers.
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of three circles C;, C; and C; are not on a line, the three radical axes among C, C;
and C, meet at a point, which is called the radical center of C;, C; and Cy (see Fig. 1(d)).

2. Definition of the Voronoi diagram in the Laguerre geometry. Suppose n circles
C;=Ci(Q;; r;) (Q;=(x; y:)) are given in the plane, where the distance between a circle
C; and a point P is defined by d; (C;, P) as in § 1. Then the Voronoi polygon V(C;) for
circle C; is defined by

() V(C)= N {PeR?’|di(C, P)=di(C; P)}.

Note that the inequality d;(C, P) = di(C}, P) determines a half-plane so that V(C,)
is convex. However, note also that V(C;) may be empty and that C; may not intersect
its polygon V(C;) when circle C; is contained in the union of the other circles. The
Voronoi polygons for n circles C; (i=1, - -, n) partition the whole plane, which we
shall refer to as the Voronoi diagram in the Laguerre geometry (see Fig. 2). A corner
of a Voronoi polygon is called a Voronoi point, and a boundary edge of the Voronoi
polygon is called a Voronoi edge. Furthermore, a circle whose corresponding Voronoi
polygon is nonempty (empty) is referred to as a substantial (trivial) circle. In Fig. 2,
circle C; is trivial and all the others are substantial. It is also seen that, in Fig. 2, circle
C; has no intersection with V(C,). A circle that intersects the corresponding Voronoi
polygon is said to be proper, and a circle which is not proper is called improper. The
following is immediate from the above definitions.

F1G. 2. Voronoi diagram in the Laguerre geometry.

LeEMMA 1. (i) A trivial circle is necessarily improper.

(ii) An improper circle is contained in the union of the proper circles.

Obviously, if ;=0 for all i, the Voronoi diagram in the Laguerre geometry reduces
to that in the ordinary Euclidean geometry.

In a Voronoi diagram in the Laguerre geometry, a Voronoi edge is (part of) a
radical axis and a Voronoi point is a radical center. Since the diagram is planar, and
Euler’s formula [5] still holds, we have

LeMMA 2. There are O(n) Voronoi edges and points in the Voronoi diagram in
the Laguerre geometry for n circles.

In the case of the Voronoi diagram in the ordinary Euclidean geometry for n
points P; (i=1,---,n), the Voronoi polygon V(P;) is unbounded iff point P; is on
the boundary of the convex hull of the n points P, but, for the Voronoi diagram in
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the Laguerre geometry for n circles C; with center Q,, this statement needs some
modification, as in Lemma 3 below. In Fig. 3, the center Q, of C, lies on the boundary
of the convex hull of the centers, but V(C,) is empty.

FIG. 3. Relations between the convex hull and Voronoi polygons.

LEMMA 3. In the Voronoi diagram in the Laguerre geometry, the Voronoi polygon
V(C;) is nonempty and unbounded if the center Q; of the circle C; is at a corner of the
convex hull of the centers Q,, - - -, Q,. Furthermore, if the center Q; of a circle C; is on
the boundary of this convex hull but not at a corner, its Voronoi polygon V(C,) is either
unbounded or empty. If the center Q, of a circle C, is not on the boundary of this convex
hull, its Voronoi polygon V(C\) is either bounded or empty.

Proof. Consider the Voronoi diagram in the Laguerre geometry for n circles
Ci(Qi; 1) (Qi=(x;, y:); i=1,- -, n), where we can assume y; # y; (i # j) without loss
of generality. First recall (cf. (1), (2)) that a point P=(x, y) belongs to V(C,) iff

di(Cy,P)=di(C,P), i=1,---,n,
ie.,
(3) (xi—x)x+(y;i=y)y=R, i=1,---,n,
where

Ri=(xi+yi—ri—xi-yi+r)/2.

Next, note that the center Q, of C; lies on the boundary (including the corners) of
the convex hull of {Q;|i=1,- - -, n}iff
(4) (e, B)(#(0,0)): a(x;i—x)+B(y—y)=0, i=1,---,n,

since all the centers Q; (i=2,-- -, n) lie on one side with respect to a line passing
through (x4, y;).

Suppose that V(C;) # & and (xo, yo) € V(C;). Then, V(C,;) (# &) is unbounded
iff a half line starting from (x,, y,) is contained in V(C)), i.e.,

I(a, B)(#(0,0)), VM(>0): (x,y)=(xo+ Ma, yo+ M) satisfies (3),



VORONOI DIAGRAM IN THE LAGUERRE GEOMETRY 97

which is easily seen to be equivalent to (4) above, so that V(C;) (# &) is unbounded
iff the center Q; of C, lies on the boundary of the convex hull.

When the center Q; lies at a corner of the convex hull, there exist two distinct
pairs of (a, B), say, (ay,B1) and (a,, B,) such that (4) holds and that the vectors
(x;—xy, yi—y1) (i=2,---,n) can be represented as linear combinations of (a, 8;)
and (a5, B,) with nonpositive coefficients one of which is strictly negative. The assertion
that V(C,) # O easily follows from the fact that (3) holds for (x, y) = (Ma, MB) with
a sufficiently large M (>0), where (a, B) =(a;+a,, B1+B,). O

3. Construction of the Voronoi diagram in the Laguerre geometry. We shall
show that the Voronoi diagram in the Laguerre geometry can be constructed in
O(n log n) time. The algorithm is based on the divide-and-conquer technique, which
is very much like the one proposed initially by Shamos and Hoey [15] in constructing
the Voronoi diagram in the ordinary Euclidean geometry for n points, but which is
different in some essential points. We shall briefly review Shamos and Hoey’s algorithm
first, and then explain the difference.

Shamos and Hoey’s algorithm works as follows. For a givenset S ={P;, P,, - - -, P, }
of n distinct points, we sort them lexicographically by their (x, y)-coordinates with
the x-coordinate as the first key. Then, renumbering the indices of the points in that
order, we divide S into two subsets L ={Py, P,, -+ +, P,)n} and R ={P, 2141, " * * , Pu}.
We recursively construct the Voronoi diagrams V(L) and V(R) for points in L and
R, respectively, and merge V(L) and V(R). If we can merge V(L) and V(R) in O(n)
time, the Voronoi diagram V(S) can be computed in O(n log n) time.

By virtue of the manner of partitioning S into L and R, there exists a unique
unicursal polygonal line, called the dividing (polygonal) line, such that every point to
the left [right] of it is closer to some point in L [R] than to any point in R [L]. Once
this dividing line is found, we can obtain the diagram V(S) in O(n) time simply by
discarding that part of Voronoi edges in V(L) and V(R) which lies, respectively, to
the right and to the left of the dividing line.

Hence, the main problem in merging V(L) and V(R) is to find the dividing
polygonal line in O(n) time, which is actually possible by virtue of the following
properties (Lemmas 4 and 5) of the dividing line.

LeMMA 4. The dividing line is composed of two rays extending to infinity and some
finite line segments. Each element (a ray or a segment) is contained in the intersection
of V(P,) in V(L) and V(P;) in V(R) for some pair of P;e L and P;e R and is the
perpendicular bisector of P, and P, 0

LeEMMA 5. Each of the two rays is the perpendicular bisector of a pair of consecutive
points on the boundary of CH(S), the convex hull of points of S, such that one is in L
and the other in R. 0O

Lemma 4 implies that, given a ray, we can find the dividing line in O(n) time by
tracing it from the ray to the other by means of a special scanning scheme, i.e., by the
clockwise and counterclockwise scanning scheme [9]. Lemma 5, on the other hand,
enables us to find a ray in O(n) time from CH(S), which, in turn, can be found in
O(n) time from CH(L) and CH(R) [14], [15].

Most of the above ideas for the Euclidean Voronoi diagram, with suitable modifica-
tions, can be carried over to obtain an efficient algorithm for constructing the Voronoi
diagram in the Laguerre geometry for n circles C;(Q;; r;) as follows.

The first problem is how to partition the set of given circles into two subsets. We
partition the set S of n circles C; into two sets L and R with respect to the coordinates
of the centers Q; of C;. That is, we sort centers Q; (i=1, - - -, n) lexicographically by
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their (x, y)-coordinates with the x-coordinate as the first key and divide them into
two subsets. Then, the locus of points equidistant (in the Laguerre geometry) from L
and R, which we call the dividing line (see Fig. 4), enjoys the same property as in the
Euclidean case, as stated below.

F1G. 4. Merging the Voronoi diagrams in the Laguerre geometry.

LEMMA 6. The dividing polygonal line is unicursal, consisting of two rays and
several finite line segments. Every point to the left [right] of this polygonal line is closer
(in the sense of the Laguerre geometry) to some circle in L [R] than to any circle in R [L].

Proof. By rotating clockwise the axes, if necessary, by a sufficiently small angle,
we can assume that x; # x; (i # j). Then there exists no Voronoi edge parallel to the
X-axis.
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It suffices to prove that, for any ¢, there exists one and only one intersection point
P=(s,t) of the dividing line with the line y =¢, i.e., the dividing line is monotone and
hence unicursal. By the assumption that x; # x; (i # j), there exists at least one such
point P=(s, t), since the point (—0, t) is nearer to L than to R whereas the point
(+00, t) is nearer to R than to L.

For such a point P= (s, t) let C;(Q;; r;) be the circle in L that is nearest to the
point P and C;(Q;; r;) the circle in R that is nearest to P. Since x;<Xx;, we see by
elementary calculation that, for some £ >0,

(5 (s+e,t)e V(C) and (s—¢,1) e V(C).

Suppose that there were more than one intersection point, say, P, = (s, ), P,=
(82,8),  , Pe=(8, 8) (5:<8,<+-<s; k=2). It follows from (5) that the points
(s, t) with s = s, + ¢ (<s,) are nearer to R than to L, whereas the points with s =s,— ¢
(> s,) are nearer to L than to R. Therefore, there exists one and only one intersection
point P= (s, t) of the dividing line with the line y = t. The Lemma then follows by the
continuity arguments. 0O

It should be noted that the property of the above Lemma 6 does not hold for the
Voronoi diagram for line segments, i.e., that there may appear an “L-island” in the
R-region and vice versa, which makes the problem quite complicated [9].

The second problem is to trace the dividing line from a given ray to the other ray
in linear time. Since a statement similar to Lemma 4 holds for the Voronoi diagram
in the Laguerre geometry, we can simply utilize the ordinary clockwise and counter-
clockwise scanning scheme by taking advantage of the fact that the Voronoi edges are
straight lines.

The last problem is to find a ray in O(n) time. The ray is found just as in the
ordinary Voronoi diagram from the convex hull of the centers (cf. Lemma 5), provided
that the new hull edge is not degenerate (i.e., not collinear). In the degenerate case,
however, the property of Lemma 5, as it stands, does not necessarily hold, and
something more is needed. For example, consider the case shown in Fig. 5(i), where
one of the new hull edges is degenerate. Let | be the line of the new degenerate hull
edge of the convex hull of the centers. Even if Q, and Qs are the closest pair of centers
on [ such that C,e€ L and Cse€ R, the radical axis of C, and Cs does not appear in the
Voronoi diagram (Fig. 5(ii)). In place of Lemma 5, we have the following Lemma 7
in the Laguerre geometry.

LeMMA 7. Consider the line | of the new hull edge (in the degenerate case, edges)
of the convex hull of the centers Q,,- - -, Q,. Let L, and R, be sets of circles in L and
R, respectively, with their centers on |. Let Ciy€ Lyc L and Cj, € R, < R be two circles
which have the corresponding Voronoi edge e* in the Voronoi diagram V(L,UR,) in
the Laguerre geometry for the subset L,U R, of circles. Then, e*, which is the radical
axis of Ciy and Cjy, is a ray of the dividing line in merging V(L) and V(R).

Proof. From the Lemma 3, it is obvious that the two circles corresponding to a
ray of V(LU R) have their centers on the boundary of the convex hull of Qy, - - -, Q,.
Therefore, the edge e* is the only candidate for the ray of the dividing line. O

In order to find the ray of the dividing line in O(n) time, we find the Voronoi
edge e* in the diagram V(L,U R)) for circles in L, U R, in linear time in the following
way. Note that the Voronoi edges of V(L,;U R)) are all parallel.

First, we construct the diagrams V(L;) and V(R,) for circles in L, and in R,
respectively, from the diagrams V(L) and V(R), which can be done in linear time as
follows. Considering a part of the diagram V(L) far from the line /, we see that two
circles in L, share a Voronoi edge in V(L) iff they share a Voronoi edge in V(L).
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VC)  VI(Cy) V(C3) V(Cg) V(Cy)

FIG. 5. Finding a ray in a degenerate case. (i) Degenerate new hull edge | (L,={C,, C,, C;, C,},
R, ={Cs, C¢, C5}). (ii) V(LUR). (iii) V(L) and V(R). (iv) V(L,) and V(R)).
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FI1G. 5. (cont.)

Hence, the diagram V(L) can be constructed simply by picking out the Voronoi edges
(rays) of pairs of circles in L; in the diagram V(L). (In the example of Fig. 5, the
V(L;) shown in Fig. 5(iv) by broken lines can be obtained by extending that part
(consisting of parallel lines) of V(L) which is far down to the bottom in Fig. 5(iii).)
A similar construction is valid for the diagram V(R)).

Next, we can find e* from V(L,) and V(R)) in linear time as follows. Since all
the Voronoi edges in both diagrams V(L;) and V(R)) are perpendicular to /, we can
merge the diagrams V(L,) and V(R;) to obtain V(L,UR)) in linear time in a way
similar to that in which we merge two sorted lists into a single sorted list. In the merged
diagram of V(L,;), and V(R,), each region between two neighbouring edges is the
intersection of two Voronoi regions, one in V(L;) and the other in V(R)). For each
region of the merged diagram, with which is associated a pair (C;e L, C;e R,) of
circles, we examine whether or not there exists a point equidistant (in the Laguerre
geometry) from C; and C; within the region; if there exists one, the radical axis of C;
and C; is the ray e*. (In the example of Fig. 5(iv), the ray e*, lying in the intersection
of V(G3) in V(L)) and V(Cs) in V(R)), is equidistant from C; and Cs.) Since the
number of those regions in that diagram is O(n), we can find e*, which is the ray of
the di:iding line, in O(n) time. V(L,;UR)) is ready to obtain from V(L;), V(R))
and e™.

Thus, it has been shown that the Voronoi diagram in the Laguerre geometry for
n circles can be constructed in O(n log n) time.

4. Applications.

Problem 1. Given n circles in the plane, determine whether a given point P is
contained in their union or not.

Once we have constructed the Voronoi diagram in the Laguerre geometry for the
given n circles Ci(i=1,---, n), we have only to find the Voronoi polygon V(C))
containing P and check if P lies in C,. If P is not in C; then for any circle C,
di(C, P)= di(C,-, P) >0, and therefore P is not in any circle. Since we can construct
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the Voronoi diagram in the Laguerre geometry in O(n log n) time, and locate a point
in a polygonal subdivision of the plane in O(log n) time and O(n) storage, using
O(n log n) preprocessing [8], [12], we can solve this problem completely in O(log n)
time and O(n) storage with O(n log n) preprocessing.

Problem 2. Partition the set of n circles into the connected components. That is,
find the connected components of the intersection graph of the n circles, i.e. the graph
whose vertices are the circles and which has an edge between two vertices iff the circles
corresponding to them intersect in the plane.

This problem arises in numerical analysis when we estimate the eigenvalues of a
matrix by means of Gershgorin’s theorem [4]. Though the intersection graph can have
O(n?) edges, we can solve this problem in O(n log n) time as follows with the help
of the Voronoi diagram in the Laguerre geometry.

Since an improper circle is contained in the union of the proper circles (Lemma
1) and does not affect the connectedness of the other circles, we first consider only
proper circles. For the connectedness of proper circles, we have:

LemMMA 8. For any pair of proper circles C and C' in the same connected component,
there exists a sequence C = Cy, C,, - - -, C,, = C' of proper circles such that every pair of
consecutive circles intersect each other so that they have the corresponding Voronoi edge.

Proof. Consider the connected component S; which consists of proper circles and
contains C and C’'. Since the union of circles in S; is a connected region and is
partitioned into C; N\ V(C;) (C; € S)) [i.e., U{C;|C;e S;} = U{C;N V(C)|C; € S;}], we
can take a path within this connected region from a point in C 1 V(C) to a point in
C'N V(C'"). Considering a sequence C=Cy, C,,- -+, C,=C’ of circles in the order
in which this path passes through C;N V(C;) (C; € S;), we can see that every pair of
consecutive circles in this sequence intersect each other so that they have the corre-
sponding Voronoi edge. 0O

We construct a subgraph G of the intersection graph of the n circles which is
guaranteed by Lemma 8 to carry the same information as the intersection graph so
far as the connected components of the proper circles are concerned. For each pair
of proper circles (C;, C;) having a common Voronoi edge, we put an edge connecting
C; and C; in G if the two circles C; and C; have a nonempty intersection in the plane.
The graph G can be constructed in O(n) time since there exist only O(n) Voronoi
edges. Furthermore, the connected components of G can easily be found in O(n) time.

In order to find which components the improper circles belong to, we first make
a list of all the improper circles, among which the trivial circles are found in the course
of the construction of the diagram and the substantial but improper circles are found
by scanning all the Voronoi edges. Next, for each improper circle C;, we find a proper
circle that intersects C; by locating the center Q; of C; in the diagram; if Q;e V(C)),
then C; is a proper circle that contains Q, i.e., intersects C;. The set of centers of
improper circles can be located in the diagram in O(n log n) time by means of the
simple algorithm which makes use of a balanced tree [11]. Thus, the total time to find
the partition of n circles into the connected components is O(n log n).

This algorithm is optimal to within a constant factor. In fact, we have

LEMMA 9. Any algorithm which finds the partition of n circles into the connected
components makes at least Q(n log n) comparisons under the linear decision tree model.!

! A referee has kindly informed the authors that this lemma holds true not only under the linear decision
tree model but also under the more precise algebraic computation tree model, based on the recent result
by Ben-Or (see M. Ben-Or, Lower bounds for algebraic computation trees, Proc. 15th. ACM Symposium on
Theory of Computing, Boston, 1983, pp. 80-86).
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Proof. This follows immediately from the fact that the element-uniqueness prob-
lem, i.e., to determine whether given n real numbers are distinct, reduces in linear
time to the connected-component problem, where the lower bound of Q(n log n) is
known for the element-uniqueness problem under the above model of computation
[31 O

Problem 3. Find the contour of the union of n given circles in the plane.

This kind of problem is sometimes encountered in image processing and computer
graphics. First, we construct the Voronoi diagram in the Laguerre geometry for n
circles and then collect that part of the periphery of each circle C; which lies in the
Voronoi polygon V(C) for i=1,- -, n. The validity of this algorithm is obvious.
Concerning the number of circular arcs on the contour, we have the following.

LEMMA 10. The number of circular arcs on the contour is O(n).

Proof. To distinct pairs of consecutive arcs of the contour, there correspond distinct
Voronoi edges (i.e., radical axes), the number of which is O(n). 0

This algorithm is optimal for the contour problem. In fact, we have

LemMA 11. The complexity of finding the contour of the n circles in the plane is
Q(n log n) under the decision tree model.

Proof. We show that sorting n real numbers x;, x,, * * -, X, reduces to this problem
in O(n) time. First, find x, = min (x;) and x* = max (x;), and let R = x*—x, = 0. Then,
consider n circles with centers (x;, 0) and radii R (see Fig. 6). The contour of the
union of these circles consists of circular arcs, and the order of arcs, according to which
the contour can be traced unicursally, gives us the sorted list of n numbers. O

FIG. 6. Reduction of sorting to finding the contour of the union of circles.

5. Discussion. Consider the Voronoi diagram in the Laguerre geometry for n
circles Ci(Q;;r) (Qi=(x,y); i=1,--+,n). This diagram will remain invariant if
r3(i=1,- - -, n) are replaced simultaneously by r; — R with some constant R; in other
words, this diagram can be regarded as the Voronoi diagram for n points Q; = (x; y:)
in the plane where, with some constant R, a distance d(Q;, P) between Q; and a point
P=(x, y) is defined by

d*(Q, P)=(x—x)*+(y—y)*~ri+R.

On the other hand, the two-dimensional section (with z=0) of the Voronoi
diagram in the three-dimensional Euclidean space for n points P;=(x; ys z) (i=
1,---,n) is a kind of Voronoi diagram for n points Q; = (x;, y;) (i=1,---, n), which
we will call the section diagram (or, the generalized Dirichlet tessellation [13]), with
the distance d(Q;, P) between Q; and a point P=(x, y) defined by

d*(Q, P)=(x—x)*+(y—y)*+z}.
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Hence, by setting r7=R -z} with sufficiently large constant R, the algorithm we
presented here can be applied to the construction in O(n log n) time of the section
with the plane z=0 of the Voronoi diagram for n points in the three-dimensional
Euclidean space.

More generally, we can consider the section of the Voronoi diagram in the
k-dimensional space with the distance dg(P, P;) between two points, P;=x; and
P;= x;e R, defined by

de(Pb P;) =(x;— xj),G(xi - xj),

where G is a k X k symmetric matrix [13], [16]. We can apply the algorithm presented
here to such section diagrams even if G is not positive definite (for example, G =
diag[1, —1, —1]). Here, it should be noted that the Voronoi diagram in the Laguerre
geometry itself is the section with the plane z =0 of the Voronoi diagram for n points
P;=(x;, y;, z;) in three-dimensional space where the square of distance between two
points (X3, ¥, 21) and (xy, y2, z;) is defined by (xl“x2)2+()’1 - y2)2_(zl -2,)%
Nevertheless, it would be worth while to consider the Voronoi diagram in the Laguerre
geometry in connection with the circles since, then, the Voronoi edges and the Voronoi

points have the geometrical and physical meanings of radical axes and radical centers,
respectively.

Concluding remarks. We have shown that the Voronoi diagram in the Laguerre
geometry can be constructed in O(n log n) time, and is useful for geometric problems
concerning circles. Brown [2] considered a technique of inversion which is also useful
for geometrical problems for circles. In fact, it can be applied to the problems treated
in the present paper. However, our approach is intrinsic in the plane and would be of
interest in itself. We have also discussed the relation between the Voronoi diagram in
the Laguerre geometry and the two-dimensional section of the Voronoi diagram in
the three-dimensional Euclidean space.

Acknowledgment. The authors thank the referees for many helpful comments,
without which the paper might have been less readable.
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AN EFFICIENT FORMULA FOR LINEAR RECURRENCES*

CHARLES M. FIDUCCIA®

Abstract. The solutions to a scalar, homogeneous, constant-coefficient, linear recurrence are expressible
in terms of the powers of a companion matrix. We show how to compute these powers efficiently via
polynomial multiplication. The result is a simple expression for the solution, which does not involve the
characteristic roots and which is valid for any module over any commutative ring. The formula yields the
nth term of the solution to a kth order recurrence with O(u(k) - log n) arithmetic operations, where u (k)
is the total number of arithmetic operations required to multiply two polynomials of degree k—1. Thus if
the ring supports a fast Fourier transform, then O(k - log k - log n) operations are sufficient to compute the
nth term.

Key words. linear recurrences, difference equations, companion matrices, algebraic complexity, poly-
nomial arithmetic, fast algorithms, parallel algorithms

1. Introduction. Let the infinite sequence F,, F;, F,, - * - be a solution to the kth
order linear recurrence

(1-1) Fn+k = COFn+Can+1+' ct +ck—1Fn+k—1-

Given the coeflicients, the initial values and an arbitrary natural number n, we
wish to compute efficiently the nth term F,, without computing all terms which precede
it. Toward this end, let F[i:j] denote the row vector [F;, F;.4, - -, F;]. Equation (1.1)
can then be written in the vector-matrix form

(1.2) Fln+1:n+k]=F[n:n+k—-1]-C,
where C is the k X k companion matrix
0 Co
1 c
C= 1 Cy
1 ¢

From (1.2) we see that, in terms of the initial values F[0: k —1], we have
(1.3) Fln:n+k—1]=F[0:k—-1]-C".

If in (1.3) we let n range over all multiples of k, the entire solution F[0:0] can
be written as the infinite matrix equation

(1.4) F[0:00]=F[0:k—1]- C*,
where, by definition, C* is the k X 0 matrix
(1.5) c*=[I Cc* c* c* ...
Equation (1.4) shows that any solution to (1.1) is a linear combination
(1.6) FoByi+: -+ Fi_1Bs,

* Received by the editors February 3, 1983, and in revised form September 19, 1983. A preliminary
version of this paper was presented at the Twentieth Annual Allerton Conference on Communication,
Control and Computing, Monticello, Illinois, October 1982.

t General Electric R & D Center, Schenectady, New York 12345.
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where B;, henceforth called the ith basic solution, is the ith infinite row of C*. This
terminology is suggested by the fact, evident from (1.6), that B; is the solution to (1.1),
when F[0:k—1] is taken as the ith vector of the standard basis.

We also see from (1.3) that the nth term F,, of a solution is the inner product of
the vector of its initial values times the first column of C". Because the inner product
is easy, we will confine our attention to’computing the first column of the matrix power
cn.

In any semigroup, the nth power x" of an element x can be computed with at
most 2 - log n semigroup multiplications by the well-known method of repeated squaring

n)2, x2n+1 = x(xn)z, xl =x.

x*=(x
Urbanek [4] suggests this approach for computing F, with O(k> - log n) arithmetic
operations, by using the classical O(k?) algorithm to multiply k X k matrices. Gries
and Levin [3] give more efficient recursive formulas for computing the required entries
on C" with O(k®- log n) operations; unfortunately, their method sheds no light on
what these entries are.
We show that, for the purpose of computing the nth power of a companion matrix
C, indeed any polynomial p(C), matrix multiplication can be replaced with modular
polynomial multiplication. This not only reveals what the entries of p(C) are, but also
yields a simple expression for the nth term F,. Unlike existing formulas, such as the
well-known one for the nth Fibonacci number, no characteristic roots are required.
The new expression immediately explains the result of Gries and Levin, gives a more
efficient O(k'*°log n) algorithm, and yields an O(k- log k- log n) algorithm over
rings that support an FFT (fast Fourier transform).

2. Arithmetic with a companion matrix. In the sequel, the underlying scalar
domain, from which the coefficients of the recurrence are taken, is assumed to be an
arbitrary commutative ring K with 1. As usual, K[X] denotes the ring of polynomials

over K, while K[X]/(f(X)) denotes the ring of polynomials modulo the monic
polynomial

(2.1) f(X)=X*=(cotc: X+ -+ X5,

For concreteness, we view K[X]/(f(X)) as the set of all polynomials of degree less
than k in which arithmetic is done modulo f(X). Doing arithmetic in K[X]/(f(X))
is then equivalent to doing it in K[X] and taking the result modulo f(X). To avoid
the repeated use of the operator mod f(X), the congruence class in K[X]/(f(X))
containing X will be denoted by & This means that for any p(X) in K[X], the element
p(¢) in K[X]/(f(X)) “is” p(X) mod f(X). In particular, f(£) =0; so that

(2.2) E=cote bt e £

It is well known that f(X) is the characteristic polynomial of the companion
matrix C; so that f(C) =0. Since the characteristic polynomial of a companion matrix
“‘comes free”, from its last column, one obvious way to compute C" is first to use the
method of repeated squaring to compute X" mod f(X) = £" = r(§), say, and then to
compute r(C)=C".

The problem thus reduces to doing fast multiplication in K[X]/(f(X)). This can
always be done with O(k?) operations, by doing one multiplication and one division.
Modular multiplication can, in fact, be done much faster. Indeed, it has the same
complexity as polynomial multiplication, because division is reducible to multiplication
[1]. We will henceforth let u(k)=u(k, K) denote the total number of arithmetic
operations required to multiply two polynomials of degree k—1 in K[X]. We note
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[1], [2] that u(k) = O(k'>®) for any ring K, and that u (k)= O(k- log k) if K supports
an FFT or any Vandermonde transform [2]. For our purposes, the most relevant result
is the following:

Fact. X" mod f(X)=¢" can be computed with O(u(k) - log n) operations.

Returning to the computation of C", we see that once r(¢) has been computed,
we can then compute C" = r(C), with an additional O(k?) operations, by using Horner’s
rule and the fact that, owing to its sparseness, C can be multiplied by any k X k matrix
with O(k?) operations. This yields an O(u(k) - log n+ k>) algorithm for computing
C". A slight improvement is possible because polynomials p(C) of low degree are
sparse; we need not pursue this, however, for we will show that C" can be computed
with only O(u(k) - log n+k?) operations. In fact, if our only interest is to compute
the nth term F,, we need not compute C" at all, as we will shortly derive an efficient
polynomial expression for any desired column of C".

This more efficient method is based on a simple lemma from Fiduccia [2]. Consider
the equivalence between K[X]/(f(X)) and K* (obtained by choosing the basis 1, ¢,
£2 -+ &1 for the former and the standard basis for the latter) that identifies
p(&)=po+pi€+- - +p_1£1 with its column wvector of coefficients p=
[PoP1 - - * Pr—1]. Formally, this equivalence is given by

(2.3) plo=[1 ¢ & - 7'1p

We shall henceforth make no distinction between p(¢) and p, calling them equal. This
gives us the benefits of both matrix notation and polynomial notation.

We are immediately confronted with the question of which polynomial in
K[X1/(f(X)) is equal to the vector C-p in K*. The following lemma shows that
pre-multiplication by the matrix C is equivalent to multiplication by X mod f(X).

LemmA 2.1 [2]. For any p(¢) in K[X])/(f(X)), C-p=£&p(&).

Proof. The proof is by direct computation of C: p and ép(¢) = Xp(X) mod f(X).
Both computations are trivial, since C is sparse and since the second computation
requires only one step of the long division process. Alternatively, we may derive it
formally from (2.3), using the identity f(£) =0. More elegantly, and a hint of things
to come, note that the ith column of the companion matrix C is the element p(¢) = ¢';
so that C- p=poé+- - -+p1£=¢p(¢). O

CoROLLARY 2.2. For any q(X) in K[X] and any p(§¢) in K[X])/(f(X)),
q(C) - p=q(£)p(§).

Proof. We use induction on the degree of g(X). Say q(X) = s(X)X + go; so that
q(C) - p=s(C)(C- p)+qop. Using Lemma 2.1 and induction, this is equal to
s(£)(£p(€)) +qop(€) = (s(§)€+q0)p(§) =q(&)p(¢). O

The reader may have noticed that we appear to be working on the wrong problem!
For if we were to take g(X) = X" in Corollary 2.2, we would obtain an efficient method
for pre-multiplying by C", not post-multiplying by it as required by (1.3). We resolve
this problem by using Corollary 2.2 to compute the columns of C" rather than the
product itself.

COROLLARY 2.3. For any q(X) in K[X], the ith column of q(C) is q(£)¢.

Proof. Choose p(£) = ¢! in Corollary 2.2; so that j is the ith column of the k X k
identity matrix I, i.e., consider the matrix identity g(C) = g(C)I Since the ith column
of I islp(f) =¢"1 the ith column of q(C), on the left, is g(C) - p=q(&)p(¢)=
q(&)¢. O

ProrosiTiON 2.4. For any q(X) in K[X], q(C) can be computed with N(q)+
(k—1)(2k —1) arithmetic operations, where N(q) is the number of operations needed to
compute q(¢). In particular, C" can be computed with O(u(k) - log n+ k?) operations.
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Proof. By Corollary 2.3, the first column of q(C) is q(£); this can be done with
N(q) operations by hypothesis. Using Corollary 2.3 again, along with Lemma 2.1, the
(i+1)th column of q(C) is C times its ith column. Each of these k—1 multiplications
by C takes at most k multiplications and k—1 additions; hence, all the remaining
entries of g(C) can be done with (k—1)(2k—1) = O(k?) operations. We know that
the first column £" of C" can be computed with N(q) = O(u(k) - log n) operations;

so the total number of operations to compute all the entries of C" is O(u(k) - log n+
k*. O

3. An expression for F,. As previously noted, (1.3) shows that F,, is the inner
product of the vector F[0:k—1] of initial values times the first column of C”". By
Corollary 2.3, this column is X" mod f(X) = ¢". Thus if [yo, ", Yr-1]), say, is the
coefficient vector of ¢, then

(3.1) F,=vyoFot+: -+ v 1Fiy.

Using the inner product operator (-, -) we obtain the simple expression:
THEOREM 3.1.

F,=(Fo -+ Fiul, §"=(Fo ‘- Fi], X" modf(X)).

Since the inner product can be computed with 2k —1= O(u(k)) operations, we
obtain, as a corollary, our main complexity result:

PrROPOSITION 3.2. The nth term F,, of a kth order linear recurrence can be computed
with O(u(k) - log n) arithmetic operations, where u(k) = u(k, K) is the total number
of operations required to multiply two polynomials of degree k—1 in K[X].

The bulk of the work is the computation of ¢£” = X" mod f(X). We may of course
use any method at our disposal for this computation, making use of any special
knowledge about the polynomial f(X) and the base ring K. It is well-known that
solutions exist based on the roots of f(X); those solutions are, of course, equivalent
to the expression given by Theorem 3.1 after an appropriate change of basis for
K[X1/(f(X)) based on the factorization properties of f(X) over K or its extensions.

Equivalence, however, has nothing to do with complexity. Consider for example
the case when K is a field and f(X) is irreducible; so that K[X]/(f(X)) is a field of
degree k over K. The classical expression for F, is a linear combination of the nth
power of each of the k roots of f(X). Since these roots are in K[X]/(f(X)), the nth
power of each root can be computed with O(u(k) - log n) operations; however, as
this must be done for each of the k roots, the total cost will be O(k- u(k) - log n).
So, even if we ignore the cost of finding the roots of f(X), the classical method is k
times less efficient than our solution; this is because we compete the nth power of
only one root of f(X)—the “symbolic” root &

4. The universal solution. Let us delve further into other possible solutions to
(1.1) by noting that its right-hand side is simply a K-linear combination valid over
any K-module M (essentially any set closed under linear combinations). Thus, given
initial values Fy, Fy,- -+, Fr—; in M, the recurrence will generate a solution F,, F;,
F,, - -+ in M. This suggests that Theorem 3.1 has a more general abstract form:

THEOREM4.1. Forany K-linear mapping L, from K[ X/ (f(X)) into any K-module
M, the infinite sequence L(1), L(£), L(£%), L(£%), - -+ is a solution to (1.1) in M. All
solutions to (1.1) in all K-modules M are of this form.

Proof. 1t is clear from (2.2) that the infinite sequence of powers

(41) 1’ E’ 527 637"'
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is a solution to (1.1) in K[X1/(f(X)), since for all n, we have
(4.2) §n+k = CO§”+C1§"+1+ . +ck_1§n+k*1'

Apply L to both sides and invoke its linearity to establish the first part of Theorem
4.1. To establish that all solutions are as claimed, let F,, F;, F,, - -+ be a solution to

(1.1)in M. Since 1, & &2, - - -, ¢V is a basis for K[X]/(f(X)), there is always a linear
mapping L such that

(43) L(l) =F09 L(f) =F19 ) L(gk._l) =Fk—-1'

For any element p(£)=po+---+p1£<" in K[X], we then have L(p(¢))=
poFo++ + -+ pr_1F—,. We establish that F, = L(£") for all n by induction. It is true
for n=0,- -+, k—1 by definition of L. Assume that F; = L(¢') for all i <n+ k. Since,

by hypothesis, Fy, F;, F,, - - is a solution to (1.1), we can substitute (4.3) into (1.1)
to get

(4.4) Fuve = oL(£")+ - -+ ¢y L(£™7Y),

The linearity of L and (4.2) then yield F,,, =L(¢"**) forall n. 0O
We again see that the nth term F, of any solution in any K-module M is

(4.5) F,=L(£")=vyoFot+ y1F1++ -+ ¥1Fiy,

where £" = yo+y,£++ + - +y,_1£°7", say. This expression is identical to (3.1), except
that the F; are now arbitrarily chosen initial values in M. Note that Theorem 4.1 is
an independent abstract reaffirmation of our previous results. No appeal was made to
(basis dependent) companion matrices.

Theorem 4.1 shows that the sequence (4.1) in K(X)/(f(X)) is, in some sense,
the universal solution to (1.1), since all other solutions in all other K-modules are
linear images of it. It is interesting to pursue the reason for this universality to get an
intuitive feeling for it.

For notational simplicity, we confine our attention to solutions in K and consider
the infinite matrix equation F[0:00]=F[0:k—1]- C* given by (1.4), where by defi-
nition

c*=[1 c* c* c* ..
As previously noted in (1.6), F[0, c0] is the linear combination
FoBy+- -+ Fi1Bis

where B; is the ith infinite row of C*. This row is the ith basic solution to (1.1)
generated by choosing the ith element of the standard basis as the vector F[0: k—1]
of initial values. Hence, the rows of C* are precisely the k basic solutions from which
all other solutions can be obtained. The universality of solution (4.1) is now evident
from Corollary 2.3; for the powers of ¢ are precisely the column vectors of C¥*, i.e.,

(4.6) C*=[1 ¢ & & -1

Consequently, as we generate the next element in the power sequence (4.1), in
K[X]/(f(X)), we are computing the next column of C*, and thus simultaneously
computing the next term of every one of the k basic solutions B4, -+, Bi.

As an interesting application of these observations, consider the obvious shift-
register implementation of (1.1). This is shown in Fig. 1, and is valid over any K -module
M. The boxes represent delay elements (to store the current state), whose internal
labels comprise the initial state-vector of the shift-register. In this implementation, the
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N / N Me

FIG. 1. The obvious implementation of the recurrence (1.1).

initial state consists of the initial values of the recurrence. At each step, the circuit
performs k scalar multiplications and k —1 additions in M to compute the next term
of the single specific solution generated by the given initial values Fo, * -+, Fy_;.

Now consider the shift-register shown in Fig. 2, which operates strictly over the
base ring K. If its current state is a column k-vector p=[py, - *, Px—1], say, then its
next state will clearly be C- p. Hence, by Lemma 2.1, the shift-register’s next-state
function is multiplication by & It follows that if its initial state is any p(£) in
K[X]/(f(X)), its state after the nth iteration will be £"p(&). If we start it with the
initial state p(¢€)=[1,0,---,0]=1, in K[X]/(f(X)), it will generate the power
sequence (4.1). In particular, the infinite sequence produced at the output of the ith
delay element will be precisely the basic solution B

FIG. 2. The generator of the powers 1, & &£, £, .

This is interesting from a complexity viewpoint; for this “power generator”
simultaneously computes all k basic solutions to (1.1) using only k multiplications and
k—1 additions (both in K) per iteration. Moreover, this shift-register is inherently
faster than the one in Fig. 1, since that one requires at least log k time, per iteration,
to compute the term F, .. This speed-up is accomplished at the expense of a high
“fan-out” from the last stage of the shift-register in Fig. 2.

Considering the fact that (1.1) uses 2k — 1 operations to generate each term of a
solution, the above observations establish the following rather surprising complexity
result:

PROPOSITION 4.2. The first n terms of all basic solutions B4, - + - , By to the kth order
linear recurrence (1.1) can be computed with (2k—1)(n—k—1)=O(k- n) arithmetic
operations.

Proof. Follows directly from (1.5) and (1.6), because these k- n terms comprise
the first # columns of the matrix C*. Since its first k columns form the identity matrix,
start with column k+1 (it comes free from column k of C). To generate each of the
remaining n-(k+1) columns, pre-multiply the most current column by the matrix C;
this uses at most 2k — 1 operations per column. 0O

Since the first n columns of C* contain O(k- n) entries, this is (within a factor
of 2) an optimal algorithm for computing these terms. Note that each new term of
each basic solution B; is being computed with only one multiplication and one addition

per term. By contrast, (1.1) always uses 2k — 1 operations per term, even for a basic
solution.
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Proposition 4.2 remains valid over any algebraic structure in which equations
(1.1) and (1.5) make sense; for example, the coefficient ring K may be replaced by
an arbitrary semiring. An even more general valid setting is obtained by replacing the
K-module structure by an (additive) monoid with endomorphisms.

Another interesting property of the second shift-register is that it operates indepen-
dently of the initial values F,,- -, F,_; of the recurrence. These values may be
introduced, at any time, by performing a K-linear transformation on the current
state-vector £" of the shift-register. One potentially practical bnefit of this is that at
any stage, having done the bulk of the computation, we can experiment with various
initial values, of the recurrence, without having to restart the computation. Indeed, as
a consequence of the universality of the power sequence 1, & &2, £, -+ we may
“fan-out” the state-vector to as many linear transformations as desired and simul-
taneously compute as many solutions, each with its own initial values, in as many
different K-modules, as desired.

S. Conclusions. We have shown that the power sequence X" mod f(X), n=0,
plays a fundamental role in the efficient solution to a linear recurrence. This was done
both concretely, using companion matrices, and abstractly, using K-modules. In the
process, we learned how to do efficient arithmetic with a companion matrix and derived
a simple generic formula for the solution. The formula does not involve characteristic
roots and yields the nth term of a kth order recurrence with O(k-log k- log n)
arithmetic operations over any ring which supports an FFT. This is a considerable
improvement over the O(k®-logn) method and the previously best known
O(k? - log n) algorithm.

We have also shown that, unlike the obvious method suggested by (1.1), which
uses 2k —1 operations to compute each term of a single particular solution, all k basic
solutions can be simultaneously computed with no more than two operations per term.
This k-fold speed-up is not merely an asymptotic improvement, but an honest-to-
goodness gain valid for any k.

This speed-up begs the issue of whether an algorithm exists to generate the first
n terms of a single solution with fewer than the obvious O(k- n) operations. The
author has recently established that this computation can be done with only O(n - log k)
operations, via the FFT, even for the nonhomogeneous case. Because the methods are
substantially different from those presented here, we leave it for a future paper.
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SPARSE SETS IN NP-P: RELATIVIZATIONS*

STUART A. KURTZ*

Abstract. We construct an oracle relative to which P # NP and there are no sparse sets in NP—P. The
well-known construction of Baker, Gill and Solovay [SIAM J. Comput., 4 (1975), pp. 431-442] gives an
oracle relative to which there is a sparse set in NP —P. Together, these results show that simple modifications

of conventional proof techniques cannot establish whether or not sparse sets exist in NP—P, even if one
assumes P 7 NP.

Key words. polynomial time (P), nondeterministic polynomial time (NP), sparse sets, relativizations,
oracles, forcing

1. Introduction. Relativizations in complexity theory have recently come to play
an unexpectedly important role. These results appear to be somewhat problematic to
our community: first, because the methods of proof are often highly technical and
somewhat foreign; and second, because it is not immediately obvious how these results
should be interpreted. The existence of an oracle relative to which some complexity
theoretic statement S holds is at best weak evidence for the truth of S (as an
unrelativized statement), as frequently another oracle will exist relative to which S
fails. Further, the existence of two such oracles is not credible evidence that the
statement in question is independent of the usual formal systems of arithmetic, as
many provable nonrelativizing statements, both trivial and deep, attest.

The existence of an oracle relative to which S holds does tell us something (beyond
the expertise of its creator at oracle constructions). Simply stated, it tells us that any
proof of —1S cannot be based on relativizing notions, e.g. closure conditions or uniform
enumerability.

In this paper, we construct an oracle A relative to which there are no sparse sets
in NP—P, while guaranteeing that P* # NP“. The well-known construction of Baker,
Gill and Solovay of an oracle B relative to which P # NP explicitly yields a sparse
(tally) set in NP? —P®, Together, in light of the preceding paragraph, these two oracles
demonstrate that no proof based solely on the assumption that P NP and basic
recursion theoretic properties of P and NP can establish whether or not sparse sets
are present in NP—P. In particular, the existence of sparse sets in NP—P cannot be
deduced from the hypothesis P # NP by clever modification of Ladner’s density theorem
[La]. (The principal technique of Ladner’s proof was first used by Borodin, Constable,
and Hopcroft [BCH].) Our result shows that such techniques alone cannot suffice.

Hartmanis, Immerman, and Sewelson [HIS] have extended this work to show that
the existence of sparse sets in NP—P is equivalent to the separation of deterministic
and nondeterministic exponential time. Thus, the principal theorem of this paper is
seen, in retrospect, to be equivalent to a theorem of Book, Wilson, and Xu [BWX]
which provides an example of an oracle relative to which exponential deterministic
and nondeterministic time collapse, but P and NP are separated. Nevertheless, the
proof we use is novel, and can be applied in a variety of situations where priority
arguments have been used in the past.

We assume familiarity with the paper of Baker, Gill, and Solovay [BGS], and a
general acquaintance with Baker and Hartmanis [BH]. Hopcroft and Ullman [HU]
serves as a general reference.

* Received by the editors September 21, 1982, and in final form October 17, 1983.
+ Department of Mathematics, The University of Chicago, Chicago, Illinois 60637.
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In the remainder of this paper, the [BGS] strategy will refer to the diagonalization

technique employed by Baker, Gill, and Solovay to construct an oracle relative to
which P # NP.

2. An oracle.

THEOREM. There is an oracle A such that P* # NP* and there are no sparse sets
in NP4 —P4,

Let L* denote the language consisting of all strings o for which there exists a 7
of the same length such that o7 € A. In notation, L* ={o: (37)[|o| =|7| & or€ A}

To ensure NP # P we will construct A so that L* is not in P*. (It can be easily
seen that L* is in NP* for all oracles A.) As is often the case, a complex goal is more
easily realized if it is broken into smaller pieces. Thus, we will ensure that L* is not
in P by satisfying each of the following requirements:

R,: L* # P}

where P2 is the sth set computable in polynomial time from the oracle A in some
fixed enumeration. These requirements have the advantage that the satisfaction of
each such requirement can be verified on the basis of only finitely much information
about A.

Our other goal is to ensure that there are no sparse sets in NP* —P“. To do this,
we will attempt to code the sparse sets in NP* into A so that they can be recovered
in polynomial time. Let NP;' denote the eth NP* language in some standard enumer-
ation. Let p, denote the eth polynomial in some standard enumeration of the
polynomials. We can assume without loss of generality that NPZ is computable in
nondeterministic time p, ; however, we cannot assume that we have any idea in advance
as to how sparse NP2 is. Because of this, we will need to make infinitely many coding
attempts for every language NP2, one for every polynomial density. Of course, once
we see that NP2 does not have a certain density (by dint of this density having been
exceeded), we need feel no compunction to continue with that particular coding
attempt.

In order to describe the coding strategy, we first describe a tripling function with
certain technically important properties. Each triple e,i,n will determine an odd integer
k..., unique to it. We will use the strings of length k. ;, to code elements of NP of
length n whenever there are fewer than p;(n) such elements. We may assume that
k.. is computable (in unary representation) in polynomial time from » (also in unary
representation) for fixed e and i, and furthermore that k., is greater than p.(n), n,
and p;(n). (Such a tripling function can be implemented by a simple modification of
Rogers’ pairing function [Ro, p. 64]— 7(n, m) =3(x*+2xy+ y*+3x+y). We simply
define k,;, to be 27(7(e, i), 7(7(p.(n), pi(m)), n))+1.)

Now, if NP2 has fewer than p;(n) members, we will include the string o0 *ein™"
in A if and only if o is in NP?. Notice that because this coding string is of length k. ; ,,
it can be uniquely parsed. Also notice that the inclusion or exclusion of the coding
string depends only on A restricted to strings of strictly lesser length than o-thus a
coding string cannot have been queried by the computation it encodes.

The construction itself is carried out in stages s € w. The purpose of the sth stage
is to satisfy the sth diagonalization requirement, i.e. to ensure that L* # P2

Each stage is a complex entity unto itself. This complexity is due to possible
interactions between the coding and diagonalization strategies. To accomplish the
diagonalization, we will want to use essentially the [BGS] strategy. The difficulty occurs
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when we attempt to set up a computation P;'(n) to diagonalize against. This computa-
tion may attempt to query strings not of the form o7 (7 of the same length as o). In
[BGS] such queries were harmless, conceptually because they had nothing to do with
o’s possible membership in L*, and technically because any queries made about
undetermined strings could be immediately resolved by excluding such strings from A.

In this computation we cannot arbitrarily include or exclude such strings, as they
may be intended for encoding computations. Attempts to anticipate the coding may
fail, for the computation being encoded may be the very one we want to set up for
o’s membership in L“*—thereby thwarting our attempted diagonalization.

At this point things seem fairly grim. Nevertheless there is a solution. The critical
observation is that while we do need to do considerable coding for the coding strategy
to work, the amount of coding at each level is only linear, (in that no more than k
coding bits are required of length k) whereas the number of possible points of
diagonalization is exponential. Thus, while we are not able to choose precisely which
string o will be used for diagonalization purposes, if we are careful, there will be such
a string.

A key idea is drawn from forcing in arithmetic. (The notion of forcing was
introduced by Cohen [Co] to establish the independence of the continuum hypothesis.
It was subsequently modified by Feferman [Fe] and others for use in arithmetic.
Jockusch [Jo] is a particularly attractive representative of current work in recursive
function theory on forcing.) We will justify our use of this terminology later. We are
working in a very simplified setting, and the sentences we force are themselves simple.
No formal acquaintance with these notions is presumed.

The construction builds A in levels. At the end of each stage s we will have
determined precisely those membership questions about A for strings of length less
than some integer m,. By convention, and to keep notation uniform, m_, is 0.

Each stage is divided into three phases, each with its own strategies and goals.
During the first phase, we act only to satisfy coding requirements, while extending A
to all strings of length less than some even integer m. It is our intention to arrange
that L*(o) # P2(o). During the second phase, we endeavor to extend A to strings of
length greater than m and less than or equal to p(m). This is the heart of the
construction. While we extend, we need to make sure that the coding requirements
are satisfied. This is harder than it seems, because we will not have determined A for
certain strings which are shorter than those being used for coding. Somewhat remark-
ably, we can do this, at the cost of determining A for a small number of strings of
length m. (Phase I guarantees that “small” is “small enough.””) During the third and
final phase, we complete the determination of A for strings of length m. It is during
this phase that we are able to apply the [BGS] strategy and guarantee that the
diagonalization requirement will be satisfied.

The construction—Stage e.

Phase 1 (idling). The purpose of the first phase is to gain sufficient room for the
following phases. During this phase, no attempt is made to satisfy the diagonalization
requirement. Rather, we only worry about satisfying the coding requirement. For this
reason, we refer to this as the ““idling” phase of this stage. Inductively, we assume that
membership questions about A have been decided for all strings of length less than
some integer m,_;. This phases consists of substages k, m,_, = k <m, where m is the
least even integer greater than or equal to m,_; such that 2™/%> p,(m).

Substage k. Include a string 7 of length k in A if and only if this is necessary to

meet the coding strategy, i.e. if k =k, ;, and there is a o of length n in NP 2 such that
7=00"in™",
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Phase 11 (forcing). This phase consists of substages, one for each k from m+1
to p;(m). During each substage, we completely determine all membership questions
about strings of length k in A, while endeavoring to decide as few questions about
strings of length m as possible. (Recall, we intend to win our diagonalization require-
ment at a string of length m/2.) During each substage, we will determine membership
questions in A for all strings of length k, as well as for at most k? strings of length m.
The purpose of each substage is to guarantee that the strings of length k perform
whatever coding is required, while leaving A as undetermined as possible for strings
of length m.

If k=k,;,, then substage k will consist of two subphases. Readers familiar with
forcing will recognize the purpose of the first subphase is to force either the statement
“NP? contains no more than p;(n) elements of length n” or its negation, where our
forcing conditions are extensions of the determined portion of A to include new strings
of length m.

Substage k. If k does not equal k,;, for some choice of e, i, and n, we decide
that no strings of length k are in A, and proceed to the next substage (or to phase III
if k is p;(m)). Otherwise, we proceed by endeavoring to include as many strings of
length n in NP2, either until no more can be added, or until NP2 contains at least
pi(n) many such strings. To add a new element of length n to NP, we decide some
undecided membership questions about A for strings of length m. It is easily seen that
if we can add a string of length n to NP, we can do it by deciding no more than
pi(m) < k many strings of length m in A. Thus, we see that no more than p2(m) many
strings of length m were decided about A during this substage, as we added no more
than p;(n)(<k=p,(m)) many strings of length n to NP2 each of which required
adding no more than p.(n)( <k = p,(m)) many strings of length m to A.

At this point, how we satisfy the coding requirement depends on the outcome of
the previous paragraph. If we arranged that NP? contains at least p,(n) many strings
of length n, then the coding requirement is trivially satisfied, as NP2 fails to meet the
sparseness condition. If, on the other hand, we did not arrange this, then no matter
how A is further extended to strings of length m, no new strings of length n will
appear in NP2'. Thus, we include a string 7 of length k in A if and only if r=00*™"
for some o of length m, such that the portion of A already determined is sufficient to
ensure that o € NP7'. Because no new strings of length m can appear in NP2 as the
result of any further action we can take, the coding requirement will be satisfied.

Phase 111 (diagonalization). As a result of Phase II, we easily see that at most
p3(m)(<2™?) many strings of length m of A were decided. Thus there must be a
string o of length m/2 such that no string of the form o7, 7 also of length m/2, has
been decided about A. At this point we easily utilize the [BGS] diagonalization strategy
to arrange that L” (o) # P2(o). At this point, we can set m, = p,(m), and continue to
stage s+1.

We leave to the reader the routine task of verifying that the construction achieves
what we purport it to.

3. A brief reflection. We would like to spend a moment reflecting on this con-
struction.

There appears to be considerable confusion as to what constitutes a priority
argument, a forcing argument, and a diagonalization argument. Often times, the
boundaries between these notions are imprecise, nevertheless there are certain features
of an argument that might lead one to call it one type of argument, rather than another.
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All of these constructions have the property that they are driven by attempts to satisfy
infinitely many requirements. In the cases of interest here, there are only countably
many requirements, and the satisfaction of each requirement ultimately depends on
only finitely much information about the set being constructed. All of these construc-
tions proceed in countably many stages.

The simplest of these constructions is the diagonalization. In a diagonalization,
the sth requirement is effectively satisfied during the sth stage. Furthermore, it is
possible to see effectively how each requirement is ultimately satisfied.

The next most complex type of argument is forcing. In a typical forcing construc-
tion, the sth requirement is satisfied during the sth stage of the construction, but
ineffectively. In a forcing construction, there is usually no effective way to determine
precisely how a requirement was satisfied. Forcing arguments (at least in arithmetic)
are finite extension arguments. Because of this, the boundary between forcing and
diagonalization is fuzzy indeed. Nevertheless, there is a different “feel” to simple
diagonalization requirement as opposed to a forcing construction. Because of the way
forcing the negation of a sentence is defined, a universal characteristic of forcing
arguments is that one performs an action repetitively (and often ineffectively) until
one has either performed it enough times (in which case one has forced a sentence),
or until one is no longer able to perform it (in which case one has forced the negation
of some sentence).

Priority arguments are the most complex of these types of arguments. In a priority
argument, one is attempting to construct an object with certain effectiveness properties.
This is typically not a concern in a forcing argument. This presents a real difficulty, in
as much as one cannot usually determine effectively how a certain requirement is to
be satisfied. (In a typical case, a requirement requires one sort of action if a certain
computation converges, and another altogether different sort if it does not. Of course,
there is no effective way to ascertain whether or not a given computation will converge.)
The solution is to place a priority on the requirements so that for each requirement
there are only finitely many other requirements with higher priority. During each
stage, one endeavors to satisfy that requirement of highest priority for which decisive
action can be taken. In this attempt to take decisive action, it is important that no
action taken to satisfy requirements of higher priority be undone. (Usually one has
no recourse but to undo work done for the sake of requirements of lesser priority.)
Thus, the feel of a priority argument is completely different from either forcing or
diagonalization. Because of the dynamic nature of the construction, one cannot argue
that any specific requirement has been finally and forevermore dealt with at any point
during the construction. Only after the construction can one argue that such a point
must have arisen.

In classifying the argument of the theorem above, there is some difficulty. Certainly,
from a ‘‘stage to stage” perspective, this is nothing more than a diagonalization
proof—and in this sense nothing out of the ordinary is claimed of it. However, within
a stage, the construction is very much a forcing construction. The objection can be
raised that what we are doing could be done effectively—but only at the cost of a
rather generous notion of what is and what is not computable. Analyzing the timing
of this construction is difficult, and certain optimizations are likely possible, but we
doubt that this construction can be carried out in time less that 2% . This strains our
notion of computable. Furthermore, this construction does possess (during the substages
of phase II) that ““do it until you’re done or can’t do it any more’’ aspect characteristic
of forcing constructions.
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Finally, we have found that the distinction between polynomial and exponential
is analogous to that between finite and infinite. This analogy has been extremely helpful
to us in discovering methods of proof—or exporting known methods from recursion
theory. In all respects, our nomenclature is derived by analogy to recursion theoretic
arguments, not from literal lemma by lemma and definition by definition translation.

4. Epilogue. The work reported in this paper set off a flurry of activity, both by
us and by Juris Hartmanis and his students at Cornell.

The oracle of the previous section came as quite a surprise, as it suggested a
‘“computational universe”’ quite different from the one we believe we live in. Hartmanis
has often described his interst in sparse sets by asking people to consider why problems
in NP are hard: is it because they contain difficult instances, or are they difficult only
in the aggregate. In the universe of this oracle, there are no difficult individual instances.

In an effort to encorporate this oracle into his world view, Hartmanis [HIS] showed
that the existence of sparse sets in NP — P was equivalent to the separation of determinis-
tic and nondeterministic exponential time. This is a truly remarkable result. In some
sense, it can be viewed as having made the current work superfluous, as Wilson [Wi]
(see also Book, Wilson and Xu [BWX]) provides an example of an oracle relative to
which deterministic and nondeterministic exponential time collapse, while separating
NP and P. Certainly, their proof is simpler than the one presented here._

On the other hand, the method contained herein is powerful, and can be used
to prove significantly more than we stated. In particular, at Hartmanis’s urging, we
modified the proof to demonstrate the existence of oracles for which‘‘pseudo-sparse”
sets of arbitrary sub-exponential density failed to exist in NP—P. (The modification
is technically a bit tricky, but not particularly deep.) This provides us, via a simple
padding observation of Hartmanis, with oracles relative to which NP-complete sets
have comparatively fast 2" algorithms. Vivian Sewelson has also provided examples
of oracles relative to which such fast algorithms exist, without eliminating the sparse
sets. Sewelson also constructed a remarkable oracle relative to which deterministic
and nondeterministic exponential time collapse, but there remain co-sparse sets in
NP-P.

We would also like to point out that the technique of our theorem can be used
to obtain nonpriority constructions of oracles relative to which (most of) the Homer-
Maass [HM] results hold. For example, a slight modification of the construction of the
preceding section yields an oracle relative to which P and NP are different, but every
infinite NP set contains an infinite P subset. Many other people have discovered
nonpriority proofs of some of the Homer-Maass results, but the original priority
constructions remain the most elegant.

Acknowledgments. We would like to thank many people for their role in this
paper, and its development. First, we want to thank the people at or visiting Cornell
during the AMS Summer Institute in Recursive Function Theory: Juris Hartmanis,
Vivian Sewelson, Richard Shore, Peter Fejer, Paul Young, and Deborah Joseph—both
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science, and for valuable aid in its development. We also would like to thank Michael
Sipser, who discovered a nonpriority proof of the Homer-Maass results in June ’82
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The question of the role of relativizations in computer science has been the focus
of considerable research and discussion recently, as the power and variety of techniques
for relativization has increased dramatically. The comments at the beginning of this
paper on the role of relativizations are my own, nevertheless, they have been influenced



SPARSE SETS IN NP-P: RELATIVIZATIONS 119

by discussions with numerous people—especially Alan Selman, Steven Homer, and
Juris Hartmanis. While we sincerely doubt that any of these people would completely
agree with our assessments, we hope they would not disagree too strenuously!
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ON FAULT-TOLERANT NETWORKS FOR SORTING*

ANDREW C. YAOt AND F. FRANCES YAO%

Abstract. The study of constructing reliable systems from unreliable components goes back to the work
of von Neumann, and of Moore and Shannon. The present paper studies the use of redundancy to enhance
reliability for sorting and related networks built from unreliable comparators. Two models of fault-tolerant
networks are discussed. The first model patterns after the concept of error-correcting codes in information
theory, and the other follows the stochastic criterion used by von Neumann and Moore-Shannon. It is
shown, for example, that an additional k(2n—3) comparators are sufficient to render a sorting network
reliable, provided that no more than k of its comparators may be faulty.

Key words. Batcher’s network, comparators, fault-tolerant, Hamming distance, merging, networks,
sorting, stochastic

1. Introduction. Consider sorting networks that are built from comparators,
where each comparator is a 2 input-2 output device capable of sorting two numbers
(Fig. 1). It is of interest to construct sorting networks for n inputs using a minimum
number of comparators (see Knuth [5]). It was well-known (see [5]) that at least
Q(m log n) comparators are needed, and an upper bound was provided by Batcher’s
sorting network [2] which used O(n(log n?) comparators. For a long time it remained
an open problem to determine the order of magnitude of the true minimum number
of comparators needed. Recently, Ajtai, Komlos, and Szemeredi[1] settled this problem
by giving an ingenious construction of an n-input sorting network that uses O(n log n)
comparators. In this paper we look into this problem in a new setting. Suppose that
some of the comparators are potentially faulty; how can one still design economic
networks that will sort properly? We shall assume that, for a faulty comparator, the
inputs are directly output without a comparison (Fig. 2).

min (x,y)

.

max (x,y)

FI1G. 1

—_
S
O\
)

%

FIG. 2

The study of constructing reliable systems from unreliable components goes back
to the work of von Neumann [8], and Moore and Shannon [6]. Currently, the subject
of fault-tolerant computing is an active area of research (see, e.g. [7]). The present
paper studies the use of redundancy to enhance reliability for a particular problem,
similar in spirit to the work on switching networks by Moore and Shannon [6].
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From the standpoint of analysis of algorithms, our models resemble the problem
of sorting with unreliable comparisons. In that direction, a study of binary search with
allowance for unreliable comparisons was done in [3].

2. Definitions and notation. An n-network « is a finite sequence of the form
[iy: jidliz: jo] - * - [ir: j.], where each pair [i;: ji], with 1 =i, < j, = n, is called a compara-
tor. Any input vector X=(xy, X, * -, X,)€ R" of n real numbers is transformed into
an output vector ye R" by the network «, as described below. Associate with a
comparator [i, j] the mapping from R" to R" defined by

(X1, X2, X[ J1=Ax1, x5, -+, X0,

where xj=1x, if 1£{i, j}, and x}=min {x; x;}, x;=max {x; x;}. The network « then
defines a mapping from R" into R" by successively applying the mappings induced
by [iy: j1), [i2: f2], - -+, and [, : j,]. In other words, for any x€ R", the output y =xa
is defined by

x9=x,
xP=x""Yi:j] for1sl=r,

and

xa =x",

We shall represent an n-network a as shown in Fig. 3, where from left to right
each comparator [j;: j;] is drawn as a vertical bar connecting the ith and the jth lines.
We input x=(x, X,, - - -, x,,) from the left end, with line i carrying x;, As a comparator
[i;: ji] is passed, the smaller of the two incoming numbers moves to the upper line i,
and the larger to the lower line j, (see Fig. 4 for an example). Thus, between the /th
and the (I+1)st comparators, the number carried by line i is the ith component of
the vector x'*. In particular, (xa); is the number found on line i at the right end of
a. We call x” the lth state vector of input x relative to a.

st line

2nd line
3rd line
4th line
FiG. 3
7 2 2 2
10 10 8 7
2 7 7 8
8 8 10 10
F1G. 4

A vector Xx=(xy, X,,* " ", X,,) is sorted if x;=x,=---=x,. A sorting network for
n elements, or an n-sorter, is an n-network a such that, for any input xe R", the
output vector xa is sorted. For instance, the network in Fig. 3 is easily seen to be a
4-sorter. For each n, let S(n) denote the minimum number of comparators required
by any n-sorter. It is known [1] [5] that, for large n, S(n) is of order n log n.
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Let us now consider the situation when “faulty comparators’’ may be present. As
the effect of having faulty comparators is equivalent to deleting them from the network,
an n-sorter may no longer be an n-sorter if there are faulty comparators. Indeed,
since the usual emphasis in the design of sorting networks is to avoid redundant
comparisons, it is expected that every comparator is crucial in an efficient sorter. It
is, therefore, an interesting question whether economic sorting networks would have
to look quite different when some fault-tolerant properties are required. We shall
discuss two models, with different fault-tolerant criteria, in the following sections. The
first model (§ 3) patterns after the concept of error-correcting codes in information
theory, and the other (§5) follows the criterion used in von Neumann [8] and
Moore-Shannon [6].

3. The k-fault model. Let k=0 be an integer. We are interested in constructing
n-sorters which can sort properly if no more than k of its comparators are faulty.
Formally, a k-tolerant n-sorter is an n-sorter « such that, if any k (or fewer) of its
comparators are removed, the resulting n-network is still an n-sorter. Let Si(n) be
the minimum number of comparators needed in any k-tolerant n-sorter. Trivially
Sk(n)=(k+1)S(n), since we can obtain a k-tolerant n-sorter by replacing every
comparator in an optimal n-sorter with k+1 copies. Our main result in this model is
the following theorem, which states that any n-sorter can be made k-tolerant by
appending to it a network with O(kn) comparators. The rest of this section is devoted
to a proof of Theorem 1.

THEOREM 1. If @ is an n-sorter, then there exists an n-network B with k(2n—3)
comparators, such that B is a k-tolerant n-sorter.!

COROLLARY. Si(n)=S(n)+k(2n-3).

We need the following ‘‘zero-one principle” [5].

LEMMA 1. Let £ be an n-network. If x¢ is sorted for every x€ {0, 1}", then ¢ is an
n-sorter.

Proof. See Knuth [5, § 5.3.4, Thm. Z]. O

Let 6 denote the n-network [1:2][2:3]- - [i:i+1]---[n—=2:n—1}[n—1: n]X
[n—2:n—1]---[i:i+1]---[1:2] (see Fig. 5), and B = 6" the concatenation of k
such networks. Clearly, B consists of k(2n—3) comparators.

FIG. 5

ProrosITiON 1. Let ¢ be any network obtained from the n-network af3 by deleting
some k' comparators where k' = k. Then x¢ is sorted for any x€ {0, 1}".

We shall prove Proposition 1 below. Theorem 1 then follows immediately in view
of Lemma 1.

Write ¢=a'B’, where a’ and B’ are the networks resulting from « and B
respectively when some a and b comparators have been removed, with a+b=k. In

! We use afB to denote the concatenation of « and B.
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the remainder of this section, we will use x, y, etc. exclusively for vectors in {0, 1}".
For any vector x, we use X; to denote the sorted vector that has the same number of
0’s as x. We first show that the difference between xa' and x, is at most 2a in terms
of their Hamming distance. (The Hamming distance D(x, y) of x and y, for x, y € {0, 1}",
is the number of components where x and y differ.) We then show that the network
B', with at least k—b=a “good” copies of 6, can reduce that distance to zero.

LemmMma 2. D(x[i: j], yli: j1) = D(x,y) for any comparator [i: j].

Proof. 1t suffices to show that

D((x; xj)[l 121, (ys )’j)[l :2])=D(x;, xj>, (¥ Yj»-

This is clearly true if the right-hand side is either 0 or 2. Now, when the right-hand
side is 1, that means one of {{x;, x;), (y; ¥;)} has exactly one 0, and the other has either
two or no 0. In either case, we have D(x[i: j], y[i: j)=1. O

LemMma 3. D(x[i: j], y) = D(x,y) +2.

Proof. 1t suffices to prove that

D((xi, xj)[l : 2]’ (yi’ )’1)) = D«xi, xj>, (yi, }’,)) +2,
which is obviously true. 0O

LEMMA 4. Let o' be an n-network obtained from the n-sorter a by deleting some
a comparators. Then for any x,

D(xa', x,) =2a.

where X, is the sorted version of x.
Proof. Let x” denote the Ith state vector of x relative to « as defined in § 2, and

y"’ the state vector of x relative to &' in the corresponding interval. Then, according
to Lemmas 2 and 3,

(D

D(x?, y) =2 X (the number of deleted comparators among the first [ of )

by induction on L Therefore, D(xa’, xa) = 2a, and the lemma follows since xa =x,. [0

Now we consider the effect of B’ on xa'. The network 6 is designed so that if a
vector z differs from z, only by a transposition, i.e., z=(0,0,--- 0,---0,1,1, - - -,
1,---,1,-+-, 1) (d denotes the complement of d), then 8 can carry out the desired
swap for z. In general, 0 applied to an arbitrary vector z which is not sorted reduces
the Hamming distance of z and z; by at least 2.

LEMMA 5. D(z0,z,) = D(z,z,)—2 if D(z,z,)>0.

Proof. Let 2z denote the state vectors of z relative to 6. Suppose there are m 0’s
in the components of z; the following facts can easily be checked.

Fact A. D(z",z,)=2X(the number of 1’s in the first m components of z").

Fact B. D(z", ,) is nonincreasing as ! increases.

Fact C. z'™™),, =1.

Proof of Fact C. By the construction of 6, (z™™V),, =max {z,, 2, * * , Z,,}. Since
D(z,z,)>0, 2y, 25, * * , 2, cannot be all 0.

We now prove Lemma 5.

Case 1. Suppose z,,+;=0. Then (z'""),,.,, =0 and (z™"),, =1 by Fact C. The
mth comparator [m: m+1] will swap the two components, and hence z™ has one
fewer 1’s in the first m components than 2", The lemma then follows from Facts
A and B.

Case 2. Suppose z,,+1 = 1. Then Fact C implies that (z™),, =1. It is easy to see
that (z?"~""),, =1 and (2" ™ ¥),,4, =0. The (2n—m—2)th comparator [m: m+
1] then swaps these two components in z>"~™ %, causing z**"™ 2 to have one fewer



124 ANDREW C. YAO AND F. FRANCES YAO

1’s in the first m components than z®"~""®. The lemma again follows from Facts A
and B 0O

Fact D. For any n-network vy. D(zv, z,) = D(z, z,).

LEMMA 6. Assume D(z,z,)<2a, and let B’ be a network obtained from B by
deleting no more than k —a comparators. Then zB' =1z,

Proof. Write B=B8"B? ... 8™ where each B’ is a copy of 6. Let B'=
yPy@ ...y such that for some 1=i,<i,<-:-<i,=k, y?=B%=¢ for all L If
we write w? =zyPy® ... 4D and w® =g, then as j increases, D(w?, z,) does not
increase by Fact D, and in fact decreases by at least 2 when j =i, and D( w z2,)>0
by Lemma 5. Thus D(w®,z,)=2a—2a=0. As w® =z8’, this implies that z8'=
z,. 0O

Proposition 1 is an immediate consequence of Lemma 4 and Lemma 6. This
completes the proof of Theorem 1.

4. Networks related to sorting. The k-fault model of the previous section extends
naturally to comparator networks for other tasks, such as merging and selection.

An (m, n)-merging network o is an (m + n)-network such that, for any xe R™*"
satisfying x;,=x,=---=x,, and X, =X, 2 ="' =X, the vector xa is sorted. Let
M(m, n) denote the minimum number of comparators needed by a. An mf-network
B (minimum-finding) for » inputs is an n-network such that, for any xe R", (xB);=

min {X;, X5, -+, X,}. Let Y(n) denote the minimum number of comparators needed
by B. It is known that Y(n)=n—1 and

inlog, (m+1)=M(m, n)=(n+m)[log, m]/2+m/2Mem)

(Batcher [2, § 5.3.4], Floyd [5, § 5.3.4, Thm. F], Yao and Yao [9]). The k-fault model
for sorting networks can immediately be generalized to these networks. Let M (m, n)

and Y,(n) denote the corresponding minimum number of comparators for such
networks with k-fault tolerance.

Theorem 1 implies immediately that
M (m,n)=M(m, n)+k(2(m+n)-3).

For Y,(n), we have the following theorem.

THEOREM 2. Y, (n)=(k+1)(n—1) for k=0.

Proof. Let a be any k-tolerant mf-network for n inputs. For each j, 1 <j=n,
there must be at least k+1 comparators in @ of the form [*, j].> Otherwise, when all

comparators of the form [*, j] are faulty, the input (x;, x5, - - -, x,,) with x, =1 — 8;; will
not have the correct output under @. Thus, Y,(n)=(k+1)(n—1). The reverse
inequality  follows  from  the  fact that a=B*"1  where B=

[n—1:n][n—=2:n—-1] - [i:i+1]---[1:2],is a k-tolerant mf-network. 0O

5. The stochastic-fault model. In the preceding two sections, we have discussed
fault-tolerant networks in a framework that allows at most k faulty comparators. For
sorting and merging networks, the addition O(kn) comparators needed is relatively
small compared to the basic cost of n log n; for minimum-finding, this extra kn cost
is k times the original basic network.

For very large networks, the assumption of no more than k faulty comparators
may be too restrictive. It is reasonable to expect that some fixed fraction, say 107*,
of the basic units are faulty. A natural extension of the previous model then leads to
the following question. How many comparators are needed to construct an n-sorter

2 We use [*, j] to denote any comparator of the form [i: h] where h =],
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which remains reliable if any 107 of the comparators in it are faulty? Unfortunately,
reliable networks in this case do not exist when n is large (n> 10*+1). Indeed, we
assert that if a fraction of 1/(n—1) of the comparators may be faulty, then there does
not exist any reliable n-sorter in this sense. For any n-sorter a, let je{2,3,- - - n} be
such that at most 1/(n—1) of the comparators in « are of the form [*: j]; then &
clearly will not sort all inputs properly if all such comparators [*: j] are faulty (cf. the
proof of Theorem 2). In view of this fact, we will define a more relaxed, stochastic
model that is very similar to the models studied in von Neumann [8], Moore and
Shannon [6].

A stochastic model. Let 0<¢, §<1 and n be an integer. An n-network « is an
(e, 8)-stochastic n-sorter if the random n-network a', obtained from « by deleting
independently each comparator with any fixed probability ' = §, is an n-sorter with
probability at least 1—e.

In an (e, 8)-stochastic n-sorter, we shall refer to & as the fault probability (of the
comparators), and ¢ as the failure probability (of the network). Let S*®(n) be the
minimum number of comparators required by any (e, §)-stochastic n-sorter. Similarly,
we can define (e, 8)-stochastic merging networks for m+n inputs, (&, §)-stochastic
mf-networks for n inputs, and the corresponding complexity M*®(m, n), Y= (n).

A conventional method of achieving reliability is to replace a basic component
by several unreliable components which simulate the basic component with high
reliability [6], [8]. In our case, connecting in series m comparators, each with §
probability of fault, gives the effect of a single comparator with fault probability 6™.
If « is an n-network with N comparators (none are faulty), the network 8 obtained
from a by replacing each comparator with m comparators in series is called the
canonical m-redundant network of o. The probability for 8 to be a network performing
the same mapping as « is at least (1—8™)", which is greater than 1—¢ for large N if
m > (log (N/¢€))/log (1/8).

DEerInITION. For given ¢, § and network «, the canonical m-redundant network
B of a with m chosen just large enough so that 8 becomes an (&, §)-stochastic network
is called the canonical (e, 8)-stochastic network simulating a.

It follows from the preceding discussion that, for fixed &, 8, an arbitrary network
a with N comparators may be simulated by its canonical (e, §)-stochastic network
which is of size O(N log, N). It is of interest to study the optimality of this basic
strategy for enhancing reliability. As this method exploits redundancy in a primitive
way, it is also not surprising that more efficient constructions exist for many problems.
We shall bear out these points in the following results. The first result illustrates the
optimality of the canonical construction for minimum-finding.

Given n>1and m>0,let m;=|(m+i—1)/(n—1)] for 1 =i<n. The m;’s form
a partition of m into n—1 almost equal parts in that ¥; m;=m and |m,—m;|=1 for
all i, j; they are also the unique set of n—1 numbers satisfying these conditions (see
[4, §1.2.4, Example 38]). Define g5,(m)=[],<;-, (1—8™). It is easy to see that
8s.»(m) is a nondecreasing function of m for fixed n and 8§ <1.

THEOREM 3. Let 0<g, §<1. Then Y'“®(n)=m where m is the smallest positive
integer satisfying gs ,(m)=1—e.

CoRrOLLARY. For any fixed 0<e¢, <1, Y*?(n)=0(n log, n) as n->.?

Proof. The network [n—1:n]™[n—2:n—1]"---[2:3]™2[1:2]™ is easily
seen to be a valid mf-network with probability at least gs,(m), which is at least 1 —¢
by the definition of g, This proves that Y*®(n)=m.

3 The ® notation means that there exist constants a, b>0 such that a(n log, n) = Y*®(n) = b(n log, n).
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To prove the reverse inequality, we observe that, in any (e, §)-stochastic mf-
network « for n inputs, we must have

(5.1) I A-8"=z=1-¢,
2sj=n
where /; is the number of comparators of the form [*: j].

Fact E. Let k>0 be an integer and 0<8<1 a real number. The expression
(1-8%)(1—8%), where k,; and k, are nonnegative integers satisfying k,+k, =k, is
maximized when |k, — k| =1.

Proof of Fact E. Otherwise, assume that the maximum is achieved at (k,, k,) with
k,> k,+1. Then

(1-8")(1-8%)> (1 -8 (1-8%").
This implies
i+ sk < gkl 4 gkt
or
8'2(1-8)< 8 7(1-9),
or
k,>k,—1,

which is a contradiction. 0O

In (5.1) let I=%,_,_, . By repeated application of Fact E, the expression
Ml,<j=, (1—38%) is maximized when |/;— | =1 for all 2=, j < n. Therefore

gon(DZTl,aje, 1-8MZ1~e

This implies that /= m. We have proved Theorem 3. 0O

To prove the corollary, let t=logs (1—(1—¢)""™ V), m'=[t](n—1) and m"=
(Lt] —1)(n—1). It is easy to check that g;,(m')=1—¢ and gs,(m")<1-—e The
monotonicity of gs, then implies that m"= Y‘*®(n)=m’. It is easy to check that, for
fixed 0<e, §<1, we have t=0(log n) as n-co. This implies that m'=0(n log n),
m"=0(n log n), and hence Y“®(n)=0(n log n).

The canonical (¢, 8)-stochastic network may not always be the best solution
possible, as the following example shows.

Consider the 3-sorter a =[2:3][1:2][2: 3], and its canonical (&,3)-stochastic
sorter B =[2:3]™[1:2]™[2: 3]™. By definition, the value of m is the smallest positive
integer such that (1—1/2")>>1—¢. It follows that

m=[-log, (1-(1—¢)"?)].
For £« 1, the total number of comparators in B8 is then
3m~3(log; (1/ &) +log, 3) + O(¢).

We shall now show that there exist (&, 3)-stochastic 3-sorters using only 2log, (1/¢) +

O(In In (3/¢)) comparators. That is, the canonical construction uses nearly 50% more

comparators than is necessary when £ - 0. The result follows from the next theorem.
THEOREM 4.

log, (1/€)+ O(Inln (3/¢))

(e8)() —
$eE) =2 logz (1/9)
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Proof. We first compute Y>®(3), which according to Theorem 3 is the smallest
m satisfying
(1-8™N(1-s"z1=¢
Writing m' = [m/2], we obtain
1-8™=(1-¢)"?=1-3+ O(&?).
This leads to
log, (1/)+0O(1)
log, (1/8)
As §®¥(3)= Y*®(3), we have proved that
§EDD = 2log2 (1/e)+0(Q)
log, (1/86)

To prove the reverse inequality, we construct a 3-sorter o, =[2: 3]([1: 2][2: 3])’
(Fig. 6). We shall prove that, for some constant ¢, the network a, with I=
(logz (1/&)+clInln (3/¢))/log, (1/8) is an (&, 8)-stochastic 3-sorter. This then proves
the theorem.

mz2m'—-2=2

Yo Y1 YZ ......... Yl -1 Yl

Xq Xz X3 ......... )(l

FI1G. 6

Writing x for [2:3] and y for [1:2], we can denote «; by the string a;=
yxyxy- - xy. For added clarity, we also use the subscripted notation a,=
YoX1Y1X2Y2 * - X;y; where x; and y; refer to the ith [2:3] and (1:2] comparators,
respectively. It is easy to see that, when comparators are deleted, the resulting network
a; fails to be a valid 3-sorter if and only if @] does not contajn a substring which
belongs to yx*y or xy*x, i.e., @je y"x*U x*y* U x*. Thus the probability p, that o
is less than p, + p,+ p; where

1) ajey”x* with probability

+
(5.2) ps Y k(l 1)(1 — 8)ka2r1k
1=k=1+1 k

since we must have @)=y, y, - - yiX;,,X;,," ' * %, where I=sk=1[+1,
1sj=k, and 0s=i<- <ij<ij < - <=l

After simplifications, (5.2) becomes

l

=(1-8)-(I+1) &' (
pl ( ) ( ) 1=k=l+1 k_]-

)(1 _ 8)k—161—(k-—1)

=(1-8)-(I+1)- 8"

2) ajex*y" with probability p,=p,=(1-8)-(I+1)- &', since network a; is
symmetric with respect to left-right reversal.
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3) aje x™ with probability

1
p3§0 ) l(k)(l—a)k821+l_k

=51 ¥ (;)(1_6)k51—k =i+t

0=k=l
Therefore py=p;+p,+p;=3(1+1)8 ! It can be verified that by choosing

= [ln (c/e)+2(Inln (c/e))
N In (1/8)

we will have p,=3(I+1)8'=e. This proves the theorem. 0O

], whereln ¢ =3,

6. Concluding remarks. We have studied efficient ways to achieve fault-tolerant
ability in some particular problems. The canonical redundancy method sometimes
yields economic networks (as for minimum-finding in both models), but not always (it
works poorly for sorting in both models). It would be of great interest to find other
general principles besides the canonical method.

Some related open problems:

1. For fixed &, 8, we know that ¢,z log n = M*®(n) = c,n(log n)?, and the same
bounds hold for $®®(n). Question: Determine the order of M‘“®(n) and $“®(n).
We conjecture that these functions grow faster than O(n log n), as the intuitively much
simpler minimum-finding network has complexity Y*?(n) =0(n log n) already.

2. For fixed 8, determine S>®(3) as £-0. In particular, is our construction
optimal?

3. The interpretation of a network as a string, and the probability of fault being
the probability of a random substring not containing some particular patterns give rise
to questions in a more general setting, which may be of interest by themselves.
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ON THE EXPECTED PERFORMANCE OF
PATH COMPRESSION ALGORITHMS*

ANDREW C. YAOT

Abstract. We consider the expected running time of an equivalence algorithm using the path compression
rule (but not the weighting rule). An O(n) expected running time is proved for the execution of a random
equivalence program in the Spanning Tree Model.

Key words. equivalence program, expected running time, path compression, set merging, spanning tree
model

1. Introduction. Let S be a set of n elements. An equivalence program o on S is
a sequence of equivalence instructions (x[1]= y[1], x[2]= y[2], - - - , x[m]= y[m]) with
each x[i], y[i]e S. Starting with n equivalent classes each containing one element, an
equivalence instruction x[i]= y[i] asks whether x[i] and y[i] currently belong to
different equivalent classes, and if so requests that the two classes be merged.
Equivalence programs have many applications, such as the processing of
EQUIVALENCE statements in FORTRAN [4]. A common method to implement an
equivalence program is by using a set merging scheme. A set merging scheme (see
AHU [1], Tarjan [7]) maintains the equivalence classes as sets and processes commands
of the forms FIND (x) and UNION (A, B). The command FIND (x) requires that
the name of the set containing x be returned, and the command UNION (A, B) asks
that the two sets with names A and B be merged into one. To implement an equivalence
program using a given set merging scheme, one need only replace each equivalence
instruction x[i]= y[i] by the sequence FIND (x[i]), FIND (y[i]), UNION (A, B),
where A, B are the names of the sets containing x[i], y[i] (omit the UNION if A = B).
In this paper, we are interested in the expected running time of a random equivalence
program, when a particular set merging scheme is used. This set merging scheme uses
a forest data structure, and employs a path compression rule [1], [7]; we will refer to
this scheme as quick merge with path compression (or, QMP). The expected performance
of equivalence algorithms using other set merging schemes has been extensively studied
in Knuth and Schonage [5], Yao [9]. It seems reasonable to regard the expected
performance on equivalence programs as a benchmark for the average-case behavior
of a set merging scheme (Doyle and Rivest [2] discussed the expected cost of a set
merging scheme by considering a sequence of random FINDs and UNIONSs directly,
however).

In the QMP set merging scheme, the family of subsets (equivalence classes) are
represented by a forest of disjoint rooted trees. Each tree corresponds to a subset,
with the name of that subset stored at the root. Command FIND (x) accesses the node
v representing x and triggers a traversal up the tree to its root r. In addition to returning
the name of the subset, FIND (x) also performs a path compression from v to r, i.e.,
connecting every node on the path directly to . Command UNION(A, B) is imple-
mented by attaching the root for subset A to that for subset B. For definiteness, we
charge 1 time unit for UNION and ! time units for FIND, where [ is the number of

* Received by the editors July 31, 1981, and in final revised form November, 1983. This research was
done while the author was visiting the Computer Science Department, IBM San Jose Research Center,
5600 Cottle Road, San Jose, California. This work was supported in part by the National Science Foundation
under grant MCS-77-05313-A01.

+ Computer Science Department, Stanford University, Stanford, California 94305.
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nodes on the traversed path. It is known that, with QMP, the worst-case time for
performing a sequence of O(n) UNIONs and FINDs is ©(n log n), where the lower
bound proof is due to Fischer [3] and the upper bound is due to Paterson [6].

We now describe the randomness assumption we will use on the equivalence
program. Let J, be the set of all equivalence programs o= (x[1]=y[1], x[2]=
y[2], - - -, x[n—1]= y(n—1]) such that the set of edges {x[i], y[i]}, 1=i<n, forms a
spanning tree for the set S. Clearly, |7,|=n""2(n—1)!2""", where the last factor 2"
accounts for the fact that each edge {a, b} can appear as either a=b or b=a. Let us
consider the spanning tree model [5] [9], in which each equivalence program o€ 7,
is equally likely. Let C2™ be the expected running time of a random o when QMP
is used.

Our main result is the following theorem.

THEOREM 1. C™ = O(n).

As an intermediate step, we will prove a result of some independent interest
(Theorem 2 below) that applies to the expected running time under any randomness
assumption belonging to a general class.

Consider a model 7 for random equivalence programs, specified by a probability
distribution p,(o). We call 7 a canonical model if p,(o)=0 for all o ¢ J,. For each
o, let C" be the running time of & when QMP is used. The expected running time
is then C™ =Y _p,(0)CI". Note that the Spanning Tree Model is a canonical
model 78" such that P,w (o) =1/|7,| for all o€ 7,

For any o, let W;(o) be the new equivalence class obtained from the merge of
the two equivalence classes containing x[i] and y[i], when the ith instruction x[i]= y[i]
of o is performed. Let a, =Y, log,|W;(c)|. For a model 7, define the potential of 7
as H. =% _p,(0)a,.

THEOREM 2. For any canonical model ,

CMP<2H.+5(n—1).

In § 2 we briefly review Paterson’s proof [6] for the worst-case upper bound on
the QMP running time. In § 3 we establish Theorem 2, which involves a refinement
of Paterson’s analysis. We then prove Theorem 1 in § 4 by using Theorem 2. Some
remarks and open problems are given in § 5.

2. Paterson’s entropy. In this section we review Paterson’s proof [6] for the QMP
worst-case upper bound.

Let T be a rooted forest with only internal nodes. For each ve T, let wr(v) be
the number of descendants of v (including itself). The entropy of T is defined to be
Hy(T)=% ,_ logz (wr(v)). Clearly Hy(T)=nlog, n, if T has n nodes.

LeMmMA 1 (Paterson [6]). Suppose a path compression of length t+2 is performed
along a path vy, vy, , U, Uy, in T. Let T' be the new resultant tree. Then there exists
a 1<B=(wr(v))"" such that

H(T)-H(T')=tlog,

B
B—1
Proof (sketch). The expression
H(T)-H(T')= ¥ (log, wr(v;)—log, (wr(v:) — wr(vi_y)))

1=si=st
(under the constraint 1 = wr(vp) <wr(v) < - -+ < wr(v,)) is minimized when { w(v;)}
form a geometric progression {aB'} with @ =1, aB’'= wr(v,). The lemma follows by
an explicit evaluation. [
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For any sequence o of O(n) UNIONs and FINDs, one can equivalently first carry
out all the UNIONS, followed by the FINDs (which are now “‘partial” FINDs as the
path compressions may end at nodes other than the roots of the forest) [1]. Let T,
be the forest obtained after all the UNIONs are performed, but before any FIND is.
The subsequent (partial) FINDs will modify the forest and decrease its entropy. Each
FIND with cost t+2>log, n+2 will decrease the entropy by at least ¢, according to
Lemma 1. Thus, the total cost for FINDs is bounded by Hy(T,)+ O(n), plus the costs
due to the FINDs with individual cost =log, n+2. It follows that the total cost for
the FINDs is O(nlog n); the UNIONSs, of course, only cost O(n). This finishes
Paterson’s proof of an O(n log n) upper bound for QMP.

3. Proof of Theorem 2. An equivalence program o induces a sequence o’ of
UNIONSs and FINDs that the QMP algorithm actually executes. We will use T, to
stand for T,.

LEmMA 2. Forany o€ J,,

CM < H(T,)+a,+5(n—1).

Proof. Let o= (x[1]=y[1], x[2]=y[2], - -, x[n—1]=y[n—1]), and S5, <,
S, € S be the components containing x[i], y[i] just before the ith equivalence instruc-
tion is executed. Consider the sequence of path compressions &;, &, * *, é2.—> that
QMP carries out on T,, where &,;_, is induced by FIND (x[i]) and &,; by FIND (y[i]).
Let I; be the length of &; define J, ={i|l; > log, |S;|+2} and J, ={i|l; =log, |S;| + 2}. Let
A1=Yics ti and A=Y, t;, where t;=1—2. As each UNION only costs one unit
time, we have

CM=n-1+L =5(n—1)+ A+ A,

We first prove A; = Hy(T,). Each & will successively modify the forest T, and
decrease the entropy of the forest by at least ¢ log, (8/(B —1)) according to Lemma
1. It is easy to see that the quantity wr(v,) in Lemma 1 is at most |S;|. It follows that
1<B=(wr(v,)""=2 (since t,>log,|Si|). The entropy decrease is thus at least .
This implies Hy(T,) =Y, , t;=A.

To finish the proof of Lemma 2, we need only prove A, = a,. By definition,

A= 7 log|Si= X log.|Si.
iel, 1=i=2n-2
Observe that, except for the n—1 S; with IS,~| =1, the S; are in one-to-one correspon-
dence with the Wj(o) in the expression a,=} log, |W;(o)|. This proves
A2 =, 0
LemMmA 3. For any o€ I,

1=sj=n-1

HO( To’) = Ao

Proof. Let ve T, and let D, be the subtree rooted at v. In the formation of T,
there is a unique UNION instruction that makes D, a component of the forest; let
x[i,]= y[i,] denote the equivalence instruction that induces this UNION. Clearly,
|W,,(0)| = wr, (v). It is also evident that distinct v give distinct i,. Hence

HO( Ta) = y Z logZ | “/](O')l =g o
sj<n

It follows from Lemmas 2 and 3 that C?" = 5(n—1) +2a,,. Taking the average
with weight p.(o), we obtain Theorem 2.
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4. Proof of Theorem 1. Because of Theorem 2, it suffices to prove H,.= O(n)
for 7=17{". Take a random o in the Spanning Tree Model. Let p,. be the probability
that |V,|=k and |V,|=n—k, where V, and V, are the two components containing
x[n—1] and y[n—1] just before the last instruction x[n—1]= y[n—1] in o. It is easy
to verify the following facts:

. w5

(B) Let o, be the subsequence of o acting on V,, and o, be the subsequence of
o acting on V,; then o, is a random equivalence program in the spanning tree model
75V, and similarly o, is a random equivalence program in the model 7" ™*.

Fact (B) is immediate from the definition of a random equivalence program. Fact

(A) follows from a simplification of the equation

_(Wk(n— G 2(k—1)12 Y (n—k)" * 2(n—k—1)12""*!
B n" A (n—1)12"1 )

In the above expression, the factor () comes from enumerating the choice of V, and
V,, k(n—k) comes from enumerating the choice of x[n—1] and y[n—1] within V,
and V,; (#22) is the number of ways to interleave o, and oy, and the remaining
numerators give the number of possible o, and o,. (Facts (A) and (B) were also shown
in [5, § 9], although the spanning tree model there was phrased in a slightly different
language.)

Let r, = H, where 7= 1{". It follows from Fact (B) that

nk

r.=log,n+ Y pu(rnt+r,_,) forn>1,
o<k<n

and
r1=(l

A recurrence relation of this form with p,. as in (A) was studied in Knuth and

Schonhage [5, eq. (12.8)], where it was shown that the solution satisfies r, = O(n).
We have proved Theorem 1.

5. Remarks. For any equivalence program o = (x[1]=y[1], x[2]=y[2},---,
x[n—1]=y[n—1]) € F,, consider the union tree Y, defined in Knuth and Schonhage
[5, 8 13] as follows: For 1 =i < n, construct a new node whose left subtree is the union
tree for the current component containing x[i] and whose right subtree is the union
tree for the current component containing y[i] (“current” means just before performing
the instruction x[i]= y[i]); the union tree for a single element is a leaf. (Note that Y,,
is different from the tree T, considered before, as can be seen from the fact that Y,
is always a binary tree.) We can regard a, as the “potential” of the tree Y,, defined
by ¥ .. Y, log, w(v), where w(v) is the number of leaf-descendants of v. Theorem 2
can then be described as “the expected running time of QMP in a canonical model 7
is bounded by the average potential of a random union tree in 7.

In the Spanning Tree Model, we have shown that the equivalence algorithm using
path compression has an expected O(n) running time for carrying out n— 1 equivalence
instructions. It is easy to show by a similar argument that the expected running time
of the first / instructions is O(l). However, it is not known if the expected running
time for performing the Ith instruction is O(1) for every 1=1<n. An interesting
related open problem is the determination of the average rank of elements in the final
forest data structure. In passing, we remark that there are algorithms that run in
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worst-case O(n) time on the spanning tree model, and in fact on any canonical model
(Tarjan [8]).

Although our motivation for studying this model is mainly theoretical, the result
may be relevant in some situations involving sparse graphs. Consider the processing
of equivalence instructions in Kruskal’s minimum spanning tree algorithm for random
weighted input graph G.,,, such that each connected graph with e edges on n vertices
is equally likely to occur, and each of the e! different permutations of edge weights is
equally likely to happen. When e = n — 1, the distribution of the sequence of equivalence
instructions is the same as in the spanning tree model considered in this paper. It is
even plausible that as long as e = O(n), the result obtained in the spanning tree model
may give a better estimate of the cost than in other models, say, the random graph
model [5], [9], as connectivity is a severe constraint (a random graph in that model
does not become connected until e = O(n log n)). It is an interesting open problem
to confirm this conjecture, and more generally, to analyze the compression algorithm
in this “random G, ,” model with general e, n.

Two other randomness models for equivalence programs have been discussed in
the literature. In the Doyle-Rivest model [2]' any pair of equivalence classes is equally
likely to be joined. It is not hard to show that H,= O(n) in this case; from the
discussions in [5, §13], one can obtain the recurrence r,=log, n+1/(n—1)X
Yo (net+r.,—), where r, stands for H, with n elements. This implies an O(n)
expected running time for QMP. In the random graph model [5], [9], the expected
time for QMP is an unresolved question. The present approach yields only a trivial
O(n log n) bound, since a component of size (}(n) is involved with probability Q(1)
in the /th equivalence instruction for /> (3+ ¢)n, which gives H,=Q(n log n). Bob
Sedgewick (private communication, 1979) has done an extensive simulation up to
100,000 nodes. The running time appears definitely nonlinear in n, and is consistent
with an n log n growth. A theoretical resolution of this case is a major remaining
open problem in the analysis of set merging algorithms.
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FINDING EXTREMAL POLYGONS*
JAMES E. BOYCEY, DAVID P. DOBKIN4,
ROBERT L. (SCOT) DRYSDALE III§ AND LEO J. GUIBASY

Abstract. Given n points in the plane, we present algorithms for finding maximum perimeter or area
convex k-gons with vertices k of the given n points. Our algorithms work in linear space and time

O(kn 1g n+ n1g? n). For the special case k=3 we give O(n lg n) algorithms for these problems. Several
related issues are discussed.

Key words. extremal polygons, maximum area, maximum perimeter, geometric complexity

1. Introduction. In this paper we present efficient algorithms for certain geometric
optimization problems in the plane. Typical of these problems is the following. We
are given n points in the plane and wish to choose a convex k-gon with vertices k of
the given points and whose perimeter is maximal. The special case k =2 is the classical
problem of finding the diameter of a point set in the plane. An algorithm presented
in this paper will find the maximum perimeter k-gon in time O(kn Ig n+nlg” n), and
linear space. The correctness of our algorithm is based on certain interesting com-
binatorial properties of extremal perimeter polygons. Surprisingly, the same com-
binatorial properties hold for polygons extremal under other measures as well, such
as area. Thus an isomorphic algorithm can be used to find the largest area convex
k-gon with vertices k of the n given points (within the same time bound). For the
case k =3, a special trick allows us to solve these problems in time O(n Ig n).

We begin our presentation by studying in § 2, some of the combinatorial properties
of extremal polygons. In § 3 we use these properties and a dynamic programming
approach to develop an algorithm for finding a maximal rooted k-gon in time
O(knlg n). Then in § 4 we use the rooted polygon algorithm to obtain the results
stated above.

The diameter, as well as some other variants of these problems are quite old but
fast algorithms for them are relatively new. Several authors have given algorithms for
particular cases which require that the convex hull of our given collection of points
be found first. Shamos [Sh] was the first to present an algorithm for the diameter
problem which works in linear time (once the convex hull is given). He also gave a
linear algorithm for finding the maximum area quadrilateral with vertices four of the
given points. Dobkin and Snyder [DS] gave a linear time algorithm for the maximum
area triangle. Our dynamic programming ideas in § 3 are similar to those discussed by
F. Yao in [YF]. The quadrangle inequality of that paper can be used to give us an
O(n*1g n) algorithm for the maximum perimeter triangle problem. The problem of
finding the minimum area ellipse containing a collection of points was the subject of
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recent work by Post [P]. The routing paper of Dolev and Siegel [DoS] uses a divide
and conquer approach similar to ours. Finally, A. Yao [YA] gave the first subquadratic
algorithm for finding the diameter of a set of points in 3-space.

As is often the case in geometry arguments there is a considerable subtlety in
some of the correctness proofs required. We exhibit examples which show that other
plausible algorithms may fail to find the truly maximum k-gons. And our techniques
do not obviously generalize to dimensions higher than 2, where even the diameter
problems is not known to be solvable in nearly linear time. Again we give examples
that show how plausible generalizations can fail. These remarks are amplified in § 5.

Some of our results dualize in a natural fashion. We can find under certain
conditions, minimum area or perimeter k-gons surrounding (circumscribing) our
collection of points, by exactly analogous techniques. A brief description of these
results appears in § 6, along with a mention of some applications.

We have also considered the problem of obtaining minimum perimeter k-gons
with vertices among our n points. We have an O(k*n 1g n+("™/*)k’ kn) algorithm for
this problem based on finding an extended Voronoi diagram of our points. We plan
to report on this result elsewhere. The case of minimum area seems to be significantly
harder (possibly because small perimeter implies that the vertices are well localized
in space, but small area does not). The best bound for the minimum area triangle has
been obtained by Dobkin and Munro [DM] and is O(n?1g n).

2. The structure of extremal polygons. In this section we investigate a number
of properties possessed by maximal polygons in either the area or the perimeter sense.
The next two sections use these properties in order to devise efficient algorithms for
finding such polygons.

Informally speaking, it is very plausible that the vertices of maximal polygons
should be sought among the extremal points in our collection. This intuition is brought
out by the following theorem. See also Fig. 1. Note that we allow our polygons to
contain duplicated vertices.

F1G. 1. Maximal k-gons use vertices of the convex hull.

THeEOREM 1.1. The vertices of convex k-gons maximal in area or perimeter are
points on the convex hull of our collection of points.

For perimeters a slightly stronger assertion is actually true. The vertices of maximal
k-gons must be essential vertices (corners) of the polygon which is the convex closure
of our point collection.

Proof. Let A be a vertex of a maximal k-gon and assume that A is interior to
the convex hull. Let B and C denote the neighbor vertices of A on the k-gon.
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If our k-gon is maximal in area, then consider a line parallel to line BC sweeping
the plane from BC towards vertex A. Since A is not on the convex hull, some point
A’ other than A, will be the last point of our set encountered in the sweep of this
line. Clearly the triangle A’ BC has larger area than ABC, and thus A’ can be substituted
for A to give us a larger area k-gon: a contradiction. (If A’ makes the polygon
nonconvex, then just replace it by its convex hull, which has still larger area.)

Similarly, if our k-gon is maximal in perimeter, then consider the ellipse passing
through A, with B and C as foci, and its tangent at the point A. If A is interior to
the convex hull, then there is a point of our set on the other side of the tangent from
the ellipse, and that point can function as the point A’ above, since A’'B+A’'C >
AB+ AC. (Again, convexification may be necessary. But it is well known that a convex
polygon enclosing another has larger perimeter.)

Caution must be taken in extending vertices to the boundary. If vertices are moved
in turn, a nonsimple polygon may result. However, we are able to circumvent this
difficulty by moving all vertices at once along the bisectors of the exterior angles of
the k-gon.

In the perimeter case, A must in fact be a corner of the convex hull, since if a
point is constrained to lie on a line segment, its sum of distances to two other points
is maximized at an endpoint of the segment. This is a simple consequence of the
convexity of ellipses. Consider the smallest ellipse with foci the two other points and
containing both endpoints of our segment. That ellipse contains in fact the whole
segment.

If 2 or more vertices lie on an edge of the boundary, care must be taken in moving
vertices to corners. In particular, 2 vertices spread to opposite. In the case of 3 vertices,
the extremal vertices spread and the interior vertices need only be moved consistently.
Although vertices of maximal area k-gons need not be corners of the convex hull,
maximal area k-gons always exist which do have vertices corners of the convex hull. 0O

In many situations the above theorem is a powerful tool, as the number of points
on the convex hull of a collection of points is typically much less than the number of
points in the collection. Several results are known in this direction which are summarized
in Santalo [S]. Since we are interested in worst-case behavior, however, it may appear
that this theorem does not help us at all, as in the worst case each of the points in our
collection could be a vertex of the convex hull. Thus finding the convex hull need not
reduce the number of points we must consider.

There is, however, another significant advantage to taking the convex hull, other
than throwing away all points that are not vertices of it. This is that there is a well
defined cyclic order among the remaining points. The exploitation of this cyclic order
is the key so the subsequent lemmas on which the algorithms are based. From now
on we will always assume that the points in our collection be on a convex perimeter
and thus can be cyclically ordered. It is well known that the convex hull of a set of
points can be computed in time O(n Ig n) (see, for example, Graham [G]), and since
all of our time bounds are larger than or equal to this, they will not be affected by
assuming that this preprocessing step has been done. If fewer than k points are left
as vertices of the convex hull, then we can stop. Our maximal polygon is the convex
hull with some vertices taken with multiplicity greater than 1.

In the lemmas below we will be considering simple convex polygons with vertices
some subset of our points. The ordering of the vertices along the polygon will agree
with the cyclic ordering of the points discussed above. We will be interested in maximal
polygons that are constrained in various ways. A rooted polygon will be a polygon
with one of its vertices fixed at a given point. An interval is a collection of points
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consecutive in the cyclic ordering. Two intervals will be called nonoverlapping if they
intersect at most in a common endpoint. A restricted polygon is one whose vertices
are constrained to be in successive nonoverlapping intervals. A rooted restricted polygon
is a restricted polygon with one vertex constrained to be in a degenerate interval
consisting of a single point. Two polygons with vertices points in our collection are
said to interleave, if between every two successive vertices of one, there is a vertex of
the other (possibly coinciding with one of them). It is clear how two k-gons may

interleave. See Fig. 2. But a k-gon may also interleave an I-gon, for k # [, if they have
some coincident vertices.

FIG. 2. Two interleaving k-gons.

The following lemmas apply to maximal k-gons in either the perimeter or area
sense with vertices in our collection of points. (But both must be maximal in the same
sense.) They provide the basis for our algorithms.

LeEmMA 2.1. A maximal rooted k-gon and a maximal rooted (k+1)-gon sharing
the same root interleave.

LeMMA 2.2. A (globally) maximal k-gon and a maximal rooted k-gon interleave.

We will say that k consecutive nonoverlapping intervals I, I, - - - , I, are spanning,
if whenever a maximal k-gon has a vertex in one of them, it has exactly one vertex
in each of them.

LemmMmA 2.3. Let I, I, - - -, I, be k spanning intervals, and let x be a point in I,.
Consider the maximal restricted k-gon rooted at z, with its remaining vertices constrained
to lie one in each of the intervals L, - -, I, respectively. The vertices of this k-gon
subdivide each of our intervals into two nonoverlapping parts (both containing the
subdividing vertex). Let these parts be called L, and R, for the interval I, in the order
in which they occur along the cyclic order. Then bothL,,L,, -, L;,and Ry, R,,- -+, Ry
are spanning sets of k intervals.

The basic tool in the proofs of these lemmas is what we call the crossing transform
applied to two polygons, a transformation that is always measure (perimeter or area)
increasing. The idea of the crossing transform is illustrated in Fig. 3. It is applicable
whenever we have two adjacent vertices of one polygon that are not separated by a
vertex of the other. The transform simply interchanges the two noncrossing edges
shown with the two crossing diagonal edges. Of course this now has merged our two
polygons into a single (nonsimple) polygon. As it turns out however, in our context
there will always be another place where the crossing transform can be applied as well,
and this second application will break up this polygon into two simple polygons again.
The two resulting polygons will be shown to have a combined measure that exceeds
the measure of the two original polygons. This statement is in fact true even after the
application of a single crossing transform, if we take care to define the perimeter and

area of a nonsimple polygon appropriately. It also implies the following interesting
combinatorial result.
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F1G. 3. The crossing transform.

LemMMA 2.4. If we are given 2k points forming the vertices of a convex 2k-gon,
then the way to break them up into two groups of k each so as to maximize the sum of
the perimeters of the two convex k-gons thus formed, is to use all the odd vertices for
one k-gon and all even ones for the other.

We now proceed to make precise the above informal remarks, and prove these
lemmas. We intend to apply the notions of perimeter and area to nonsimple polygons,
as well as polygons consisting of disjoint collections of vertex cycles. It is clear how
to define the perimeter of any such polygon. For area, we need to be more careful.
The area of a simple polygon can be thought of as the integral over the plane of a
function which is 1 for points inside the polygon, and 0 for points outside. We will
use an analogous definition for arbitrary polygons: we just integrate the winding
number, which counts how many times the polygon wraps around each point (it can
be a negative quantity). Thus for areas covered twice we multiply the ordinary area
by two, and so on.

We now consider the effect of the crossing transform to a generalized polygon,
which in our case consists of two normal convex polygons. The crossing transform
applies whenever we have four vertices A, B, C, D occurring in this order in the cyclic
ordering, but such that A and D are consecutive vertices of a polygon, as are B and
C. The transform breaks the edges AD and BC, and adds the edges AC and BD.
Note that each vertex still has degree two, so the outcome is a polygon. It is clear that
this transform will always increase the perimeter of the resulting polygon, for we are
replacing a pair of opposite sides of a convex quadrilateral with its diagonals. (It is a
simple application of the triangle inequality to show that the diagonals of a convex
quadrilateral always have longer total length than either pair of opposite sides.)

When it comes to area it is not true that the crossing transform always helps. For
this conclusion we need some additional assumptions, which follow from the maximality
of the two initial polygons. First we need an elementary geometric fact. Consider our
standard convex quadrilateral ABCD, and let the sides AB and CD intersect at at
point X on the opposite side of side BC from A and D, and let the diagonals intersect
at the point Y, as in Fig. 4. We claim that the area of BCY is less than the area of
ADY. This is easily seen by adding to both triangles the triangle ABY. We must
compare now the areas of triangles ABC and ABD. These triangles have a common
base. AB, and the height of ABC from C is certainly smaller than that of ABD from
D, as follows from the assumption that X and D on opposite half-planes with respect
to BC.
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X

FI1G. 4. A geometric inequality.

It is easy to verify that the change in the area of our polygon when the crossing
transform is applied to the convex quadrilateral ABCD is a(ADY)—a(BCY), where
a denotes the area function. Thus the crossing transform will increase the area, as
long as we can guarantee that sides AB and CD intersect on the opposite half-plane
of BC from A and D. This will be so, because of the assumption that the (simple)
polygon containing edge AD is maximal. For suppose instead that AB and CD
intersected on the same side of BC as A and D. Consider E, the other neighbor of
D in the polygon containing AD, as in Fig. 5. By assumption AB intersects CD on
the opposite side of AD from B and C. Since E lies between D and A in the cyclic
ordering, it must a fortiori be the case that AE intersects CD on the other side of DE
from A and C. By the same argument we gave above, triangle ACE has larger area
than triangle ADE, contradicting the area maximality of the polygon containing AD.

c

FIG. 5. AB and CD must intersect on the other side of BC.
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From what we said so far it follows that given the assumptions of Lemmas 2.1
and 2.2, whenever the crossing transform can be applied it will increase both perimeter
and area. Let us think of the intervals defined by successive vertices of one of our
polygons as buckets into which the vertices of the other polygon may fall. If a bucket
gets no vertices, then these vertices can function as vertices B and C for an application
of the crossing transform. From the pigeon-hole principle we know that if that happens
then another bucket will get at least two vertices. Two consecutive of these can now
function as B and C for another application of the crossing transform, this time with
the role of the polygons reversed. It is easy to check that the first application of the
crossing transform does not invalidate the second. So if the crossing transform can be
applied once, it can be applied twice, and in fact the second application will give us
back two simple polygons whose areas (or perimeters) sum to more than those of the
original polygons. These polygons may not have the same number of vertices as the
originals. However the polygons reached when the crossing transform is no longer
applicable will interleave. This completes the proofs of Lemmas 2.1 and 2.2.

Given the machinery we have developed so far, we leave Lemmas 2.3 and 2.4 as
simple exercises for the reader.

3. Finding maximal rooted polygons. In this section we develop an algorithm for
finding a maximal rooted k-gon in time O(kn Ig n). The algorithm proceeds in stages,
by finding successively maximal rooted j-gons for j=3,4,---, k. We will postpone
discussion of the initial case j =3 and first talk about how we go from a maximal j-gon
to a maximal (j+1)-gon with the same root.

Lemma 2.1 tells us that exactly one vertex of the (j+ 1)-gon, other than the root,
must lie in each of the j intervals defined by the vertices of the maximal j-gon. We
will use a dynamic programming method for finding the (j+1)-gon, examining each
of the j intervals in turn. Note that if /; denotes the length of the ith interval, then

i l,' =n+ j.

i=1
The successive examination of intervals gives rise to the formation of partial (or
incomplete) polygons and we must take a moment to properly define our measures
of area and perimeter for such polygons. We introduce the notion of a path, which is
just a sequence of vertices. We will use greek letters to denote paths, roman letters
to denote points, and semicolon to signify concatenation. Our polygons correspond to

of area and perimeter for paths as follows:

A(a; pr—1; pi) = A(@; pr-1) + a( po; P15 Pi)>
and

P(a; px—1; p) = P(a; pi—1) + 1( P15 D)

where a(po; Pe-1; Pr) denotes the area of triangle popi—1 pi, and I(pr—1; pr) denotes
the length of the edge pi_; P

For our dynamic programming algorithm we will use a multi-stage graph technique,
as discussed for example, in Horowitz and Sahni [HS]. We maintain for each point 2z
in the ith interval the best (i.e. maximal in measure) path with one point in each of
the previous intervals and terminating at the root z. Let us denote such an optimal
path by 7.. Given these optimal paths for the ith interval, we now want to compute
the optimal paths for the (i+1)st interval. This can clearly be done in time l;_;, by
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considering for each point u in the (i + 1)st interval each possible predecessor z in the
ith interval. However, once again the idea of the crossing transformation will allow
us to do better. This is captured in the following lemma.

LemMmA 3.1. If y and z are two points on the (i+1)st arc defined by the vertices
of a maximal rooted i-gon. B,;y';y and B.; z'; z are respectively two optimal i step
paths leading to y and z, and if y precedes z in the cyclic order within the (i+1)st arc,
then y' precedes z' in the cyclic order within the ith arc.

Again, the idea of the proof is that if this was not so then the last edges of the
two paths do not cross, and therefore by applying the crossing transform one can get
two other paths whose sum of measures exceeds the sum of measures of the old paths,
a contradiction. The details are omitted, as they are identical to those discussed in § 2.

Lemma 3.1 implies that given the ith interval optimal paths, we can compute
those for the (i+1)st interval in time O(J;1g li+,+ ;). This is so because we can
choose z for the first time to be the median point of the (i+ 1)st interval and find the
best path to it in /; steps. Now the predecessor z' of z in the best path divides the ith
interval into two subintervals of total length /;+1. We can now consider the land 2
quartile points in the (i+1)st interval and for each of them search the appropriate
subinterval of the ith interval. Thus together the cost of these searches will be [;+1.
At the next step we will be able to do four points of the (i+1)st interval in total cost
I;+3, and so on. Thus the total cost for all the searches is

gl

l,~ "'2l —-1= O(l, lg li+1 + li+1).
=1

1

Since each i; is bounded by n, we can bound lg/; by lg n. If we now sum all the
contributions for the successive stages, the total sum is clearly bounded by O(n Ig n).
(Note that the last stage is a bit funny, as the last interval contains exactly one vertex,
namely the root.) We conclude that once we have a maximal rooted j-gon, we can
compute a maximal rooted (j+1)-gon with the same root in linear space and time
O(nlg n).

THEOREM 3.1. A rooted constrained k-gon whose vertices are constrained to lie in
intervals of total length n can be computed in time O(n 1g n).

To get started we note that, for the perimeter case, Lemma 2.1 holds even for
j=2, so we can begin by finding the maximal chord out of the root z, which is a linear
time operation. For the maximum area case we need the following Lemma.

LeEMMA 3.2. The maximum area rooted triangle can be found in time O(n).

Proof. A method for doing this works like Shamos’ diameter algorithm. Let A
be the root, and consider its neighbor vertex B in the cyclic order. We can find vertex
C, so as to maximize the area of triangle ABC by just examining further vertices along
the cyclic ordering as long as the area keeps increasing. The distances of points on a
convex figure to a chord form a unimodal distribution, so as soon as we pass the
maximum, we know that we have found it. It is clear from convexity that if point B
now advances along the cyclic ordering, then the best corresponding C also has to
move in the same direction. Thus as B advances, C never has to back up, and this
guarantees the linearity of the method. 0O

This also follows, of course, from the results of [2]. combining the above observa-
tions we get the following result.

THEOREM 3.2. A maximal rooted k-gon can be computed in time O(kn lg n) and
linear space.

4. Floating the root. In this section we show how to obtain a (globally) maximum
(perimeter or area) k-gon. The word maximum, when used without other qualifiers,



142 J. E. BOYCE, D. P. DOBKIN, R. L. DRYSDALE AND L. J. GUIBAS

will always refer to a global maximum. To start with, we find a maximum rooted
k-gon, with root some arbitrary point z. This rooted k-gon partitions our points into
k non-overlapping intervals I, I, - - -, I so that the maximum k-gon has exactly one
vertex in each of them (by Lemma 2.2). We will show how, given this partitioning,
we can find a maximum k-gon in an additional O(n 1g® n) time.

We accomplish this by choosing one of these intervals, say I;, and then finding
the maximum rooted k-gons with roots each of the points in I;. From § 3 we know
that we can find a rooted restricted k-gon whose vertices are constrained to be in
intervals of total length [ in time O(/1g!). Naively applied, this would give us an
O(n?*1g n) algorithm for computing all these rooted k-gons. However, we can do
better by proceeding exactly as in the previous section.

Lemma 2.3 implies that once we choose a point z in I; and find the maximum
k-gon rooted there, then this k-gon will partition the original intervals into two
collections, each of which is spanning. Thus again we can use a binary subdivision
technique on I, so that the cost of computing a maximum k-gon rooted at the median
point of I; will be O(n 1g n). Then the cost of computing maximum k-gons rooted at
the 4 and 3 points of I, will jointly be bounded by O(nlgn), and so on, for Ign
iterations. Therefore all the optimal k-gons with roots in I; can be found in time
O(n 1g? n). The maximum k-gon is the best of them.

THEOREM 4.1. The maximum area or perimeter k-gon can be computed in time
O(knlg n+nlg?n), and linear space.

5. Comments and counterexamples. Our perimeter algorithm for k=2 is, of
course, finding the diameter of our point set. Note that our method uses time O(n Ig n)
to find the diameter, even after the convex hull has been found. Shamos’ method, on
the other hand, requires only time O(n) for that step. His method is based on supporting
lines and uses the lemma that the diameter is always an edge between two points that
are extremal along two directions in the plane, 180° apart. One can start two pointers
at, say, the points of smallest and largest x value, and then rotate them around the
convex hull so as to find all these extremal pairs. Neither pointer ever backs up, so
the total cost for this method is O(n).

Unfortunately, the supporting line technique does not generalize to k> 2. For
example, to find a maximum perimeter triangle, we might consider all triplets of points
which are extremal in three directions, 120° apart. As before, all these triplets can be
found in linear time once the convex hull is given, but the example below shows that
the maximum perimeter triangle need not be among them.

Consider the six points A, B, C, D, E, F with coordinates respectively (0, 1),
(0,-1), (100, 0), (.3,1.2), (.3, —1.2), and (99.9, .1). See Fig. 6. It is easy to check that
ABC is the maximum perimeter triangle, but D and E always shelter either A or B

from touching the circumscribing triangle, except when A and B are on the same line.
In this case F shelters C.

P

oM

me

F1G. 6. The supporting line fails.
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We have, however, a construction that reduces the problem of finding the maximum
perimeter rooted triangle to that of finding the diameter of a certain set—a problem
that we can solve with a supporting line idea in linear time. This implies that we can
find a maximum perimeter triangle in time O(n 1g n).

For our construction we consider the figure obtained by drawing a circle with
center each of our points and radius its distance to the root (to be called the flower).
See Fig. 7. Consider the root R, and the line segment joining it to some point X on
a circle with center the point P, as in Fig. 8. The point X will not be contained in any
other circle, if and only if point P is an extremal point of our original set in the direction
RX. Thus the convex hull of the flower consists of alternating circular arcs and (possibly

F1G. 7. Reducing a rooted triangle to a diameter problem.

%

FIG. 8. A condition for point X to be on the boundary.
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trivial) straight line segments. Furthermore there is at most one arc from each circle
on the hull, and they occur in the same order as the original points. Well-known
properties of convex sets [IB] imply that the diameter of the convex hull of the flower
connects two points lying on circular arcs and, since the diameters has to be normal
to the boundary, it passes through the centers of the corresponding circles. The triangle
with vertices R and those centers has perimeter equal in length to this diameter.
Conversely, it is clear that any triangle under consideration corresponds to a line
segment with endpoints on or interior to the convex hull and length equal to the
perimeter of the triangle. Thus if we can find the diameter of the convex hull of the
flower, we have found the maximum perimeter triangle rooted at R. It is easy to check
that Shamos’ diameter algorithm can be adapted to find the diameter of this continuous
figure in linear time. This, coupled with the floating the root technique of § 4 shows
the following theorem.
THEOREM 5.1. The maximum perimeter triangle can be found in time O(nlg n).
It may be of interest to note that the supporting line idea does not easily generalize
to three dimensions, even for the diameter case, as the supporting hyperplanes at a
vertex do not have a linear ordering. We might consider the following variant: let
some face of the polyhedron act as a base, and look at the vertex furthest away from
it. Let all edges from that vertex to some vertex of the base be candidates for the
diameter. Next we roll the polyhedron onto a new base, and repeat this computation.
After a Hamiltonian roll through all the faces, we may think that we have found the
diameter. Unfortunately we have a simple example that shows that this method can miss.
Consider a right triangular prism with cross-section an equilateral triangle, and a
height much larger than the side of the triangle. At each end of the prism construct
a regular tetrahedron, using the end of the prism as a base. The prism is long enough
that diagonal lines from one end of the prism to the other are only slightly longer than
its height, so the diameter of the overall solid connects the apex of one tetrahedron
to the apex of the other. However, the apex of a tetrahedron is not the furthest point
from any face. The same situation occurs also in two dimensions if we are not careful
about resolving ties, as we see if we append two slightly obtuse isosceles triangles to
a rectangle, by glueing their long sides to the rectangle’s short sides, as in Fig. 9.

FIG. 9. A counterexample.

While we are on the subject of counterexamples, it is worth mentioning that two
maximal rooted k-gons do not necessarily interleave. The crossing argument breaks
down when it forces both roots on the same polygon, and given below is an actual
example for k =3 that shows the existence of maximal noninterleaved rooted triangles
in the perimeter case. Begin with an equilateral triangle inscribed in the unit circle,
with one vertex at (1, 0). Then construct a segment of length .2 tangent to the circle
at each vertex, with the segment centered on the vertex. Now perturb this figure by
raising A’ and C' by .01, and lowering A and B by .01, as in Fig. 10. It can be checked
that the largest perimeter triangle rooted at A is ABC, and the maximum rooted
triangle rooted at A’ is ABC. These do not interleave one another, but both interleave
the overall maximum C'BC. A simple illustration of the same effect for k=2 is in
Fig. 11.
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A

8

F1G. 10. Maximal rooted triangles do not interleave.

rl

r2
F1G. 11. Two maximal chords that do not cross.

We mentioned in the introduction some algorithms for finding minimum k-gons
based on extended Voronoi diagrams. The key lemma there is that minimum k-gons
occur as subpolygons of the points corresponding to a particular Voronoi region. One
can also consider the furthest point Voronoi, and hope that similar techniques can be
used for maximal k-gons. However, this is not obviously the case. Look at a regular
2k-gon. Its furthest point k-Voronoi consists of 2k wedges, each associated with the
k consecutive points ‘“opposite” the wedge. The largest k-gon on the 2k points is the
regular k-gon using every second point, so it cannot be determined from this furthest
point Voronoi.

Finally the Dobkin-Snyder method for finding maximal area triangles in linear
time once the convex hull is given, fails to generalize to k =5. Consider the seven
points A, B, C, D, E, D', E’ with coordinates respectively (—-101, 0), (0, 0), (0, —101),
(-51,1.01), (=50,1), (1.01,-50), (1,—51), as in Fig. 12. The largest pentagon is

s 5
B8
° °®
A
oD
oE
°
C

F1G. 12. Missing the largest area pentagon.
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ADBD'C. The algorithm starts with ADEBD’. The D' point moves to C, giving
ADERBGC, then nothing moves. The base point is advanced, so we have DEBD'C. A
is closer to the DD’ line than C, so nothing moves. The base point advances, giving
EBD'E’C. C advances to A and E’ advances to C, giving EBD' CA. Nothing moves
further. Once again we advance the base point, and get BD'E’'CA. A will not move,
so we advance the base point and get D'E'CAD. D advances to B, giving D'E’'CAB,
and then A will not move. Again advancing the base gives E'CADB, and nothing
moves. Advancing the base again gives CADEB, and nothing moves. Finally the base
moves a last time to ADEBD’, and we are back to where we started.

6. Circumscribed polygons. Our results dualize in an interesting fashion. We can
consider lines, or actually halfspaces in the plane, instead of points. Keeping only
points on the convex hull corresponds to keeping only those lines whose halfspaces
support the intersection of all the halfspaces. Given n such halfspaces in the plane,
we can find the k of them whose intersection has minimum area or perimeter by a
dual of the original algorithm. Unfortunately this does not quite solve the problem of
finding the minimum perimeter (or area) k-gon surrounding a given collection of n
points.

A combination of the original and the dual algorithm lets us find an inscribed and
a circumscribed k-gon for a collection of points. This is a useful tool for many computer
graphics applications, such as hit detection or object intersection. If a point is inside
the inscribed k-gon, then it is inside the convex hull of our n points. If it is outside
the circumscribing k-gon, then it is outside the convex hull. If it falls in the crack
between the two, then a more complicated method can be used.

Such inclusion tests are especially efficient for k-gons of fixed shape, e.g. rectangles.
A supporting line idea can be used to find such minimum (in perimeter or area)
circumscribing k-gons with sides at fixed relative angles. If we fix the orientations of
all the sides, then we can find the smallest enclosing k-gon in time O(kn). Once we
have the vertices at which the sides of that polygon touch, we can let these vertices
rotate around and obtain the smallest polygon for all orientation in time O(k*n). The
extra factor of k comes in because we have to do an area or perimeter computation
once we have determined the supporting vertices of the circumscribing k-gon.
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SIMPLICITY, RELATIVIZATIONS AND NONDETERMINISM*

JOSE L. BALCAZAR®

Abstract. Relativizations of complexity classes in which simple sets exist are considered. A recursive
oracle is constructed relative to which a simple set exists for NP. Some other general theorems are proven,
showing that the time bounds are not a crucial hypothesis; bounds on the way in which the oracle is
accessible, namely, the number of queries and/or the number of nondeterministic steps, are shown to be

the fundamental hypothesis. As a result, simple sets are shown to exist in many different relativized complexity
classes.

Key words. complexity classes, relativizations, nondeterminism, bounded queries, immunity, simplicity,
NP

Introduction. The relationship between deterministic and nondeterministic models
of computation has been investigated for many years. The central problems appear to
be fundamentally difficult. The open problem that has dominated recent work is the
question of the deterministic and nondeterministic models restricted to polynomial
running times, that is, the “P= ?NP” problem.

A simple analogy may be drawn between the class P and the class of recursive
sets on the one hand, and the class NP and the class of recursively enumerable sets
on the other hand: the class NP can be defined by applying polynomially bounded
existential quantifiers to predicates in P. Such an analogy suggests reasons for translating
the definitions and, when possible, the results of elementary recursive function theory
to the setting of polynomial time-bounded computation. As examples of there “transla-
tions,” recall the Hartmanis-Berman conjecture that all of the NP-complete sets are
polynomially isomorphic, and the polynomial hierarchy specified by alternation of
polynomially bounded quantifiers on predicates in P.

However, even elementary propositions of recursive function theory become
difficult in the setting of polynomial time bounds; in fact, some are unsolved problems.
Recently, two such notions have been investigated, the notion of “immune” set and
the notion of “simple” set. Since the question P = ?NP is open, it is not surprising that
the existence of a ““P-immune” set in NP or of a “NP-simple” set in NP is not known.
This is the subject of the present paper.

The proof of Baker, Gill, and Solovay [1] of the existence of a set A such that
P(A) # NP(A) sets the stage for numerous investigations of the properties of relativiz-
ations of P and NP. Other such separating theorems have been developed and there
are two specific studies that are important for the present work. First, Kintala [6], [7]
considered relativizations of machines that run in polynomial time but have restrictions
on the number of nondeterministic steps in any computation. Thus, there is a recursive
set A such that for every integer k, the class of sets recognized relative to A by
polynomial time-bounded oracle machines with at most n* nondeterministic steps in
any computation is properly included in the corresponding class specified by machines
that may use n**' nondeterministic steps. Second, Xu, Doner, and Book [11] observed
that the separating theorems proved by methods similar to Baker, Gill, and Solovay

* Received by the editors July 5, 1983, and in revised form April 17, 1984. The research reported in
this paper was performed while the author visited the Department of Mathematics, University of California
at Santa Barbara. This work was supported in part by a grant from the USA-Spanish Joint Committee for
Educational and Cultural Affairs, and by the National Science Foundation under grants MCS80-11979 and
MCS83-12472.

+ Facultat d’Informatica, Universitat Politécnica de Barcelona, Jordi Girona Salgado, 31, Barcelona,
34, Spain.
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do not really depend on time as a bound, but rather the number of oracle queries
allowed in a computation and the number of nondeterministic steps in a computation
combine to yield these results. Thus, they established a very general separating theorem
for relativizations of classes specified by machines with restricted nondeterminism.

If € is a class of sets, then a set L, is 6-immune if L, is infinite and no infinite
subset of L, is in %6, and a set L, is €-simple if L, has an infinite complement, L, is
in 6, and the complement of L, has no infinite subset in €.

Homer and Maass [S] showed that there is a recursive set A such that there is a
set in NP(A) that is P(A)-immune. Also, using priority methods, they showed that
there is a recursively enumerable set B such that NP(B) contains a set that is NP(B)-
simple. Schoning and Book [9] used a simple diagonalization in a different proof of
the first result and they extended the argument to a wide variety of other classes by
focusing not on time but rather on the number of oracle queries allowed in any
computation and on the amount of nondeterminism allowed in any computation. Thus,
Schoning and Book established two very general “immunity theorems” that establish
“strong separation” of relativized classes, separations witnessed by the appropriate
immune sets.

In this paper we establish a number of results about simple sets. The first result,
Theorem 1, strengthens the result of Homer and Maass mentioned above: there is a
recursive set A such that NP(A) has a set that is NP(A)-simple. The proof is by means
of a straightforward diagonalization (a “slow” diagonalization in terms of [4]) and
can be “lifted” to other circumstances. Thus, Theorem 3 and Theorem 5 provide very
general results on the existence of simple sets that parallel the results of Schoning and
Book. A number of applications are given.

These results add very strong evidence to the argument that the study of determin-
ism vs. nondeterminism by means of relativizations has not illuminated the basic
difficulties but instead has illustrated the power of nondeterminism in steps that write
on the query tape and so generate a very large set of strings to be queried. This point
is made stronger when one notes that Theorem 5 is established in the setting of an
infinite hierarchy of functions that bound the amount of nondeterminism allowed in
computations.

1. Preliminaries. Throughout this paper, we consider decision problems encoded
as subsets of I'* where I'={0, 1}. For a word w, |w| denotes the length of w. We assume
some fixed ordering = of I'* such that |x| <|y| implies x <3y.

The computational model considered here is the multitape oracle Turing machine,
deterministic or nondeterministic. For relativized computation oracle machines are
assumed to have a distinguished work tape, the query tape, and three distinguished
states, QUERY, YES, and NO. If some computation of such a machine enters the
state QUERY, then at the next step the machine transfers into the state YES if the
string currently appearing on the query tape is in a fixed oracle set; otherwise, the
machine transfers into the state NO; in either case the query tape is instantly erased.
For such a machine M and oracle set A, the set of strings accepted by M relative to
the oracle set A is L(M, A) = {w]|there is an accepting computation of M on input w
relative to oracle set A}.

Oracle machines are defined in the standard way and may be bounded with respect
to time or space by appropriate bounding functions. Time (space) bounds are assumed
to be running times so that a “clock” may be added to any such machine. Querying
the oracle costs just one step in time and the length of the query tape is bounded by
whatever space bound is imposed.
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Let f be a running time and let T be a class of running times. We denote by
NTIME (f, A) the class of sets accepted by nondeterministic machines with running
time f relative to oracle set A. Similarly, DTIME (f, A) denotes the corresponding
class specified by deterministic machines. Also, NTIME (T, A) = U . NTIME (f, A)
and DTIME (T, A) = U .y DTIME (f, A). Refinements of these classes will be intro-
duced in § 4.

When considering machines that are nondeterministic, the expression ‘‘always
halts” means that relative to every oracle set, every computation on every input must
halt. For example, this is the case for time-clocked machines specifying classes such
as DTIME (f, A) or NTIME (f, A).

Let € be a class of subsets of ['*. Denote by co-€ the class {T*— L|Le €}. A set
L is €-immune if L is infinite and no infinite subset of L is in €. A set L is €-simple
if Lis in € and I'*— L is ¢-immune. In what follows, for any set L, the set I'*—L
will be denoted L.

2. A simple set for NP relativized. The first result is the existence of a recursive
set A such that NP(A) ={L(M, A)| M is a nondeterministic polynomial time-bounded
oracle machine} has a set that is NP(A)-simple. The existence of a é-simple set for
any class € shows a strong separation between € and co-%. The immunity results in
[9] may be viewed as a strong separation between classes specified by deterministic
machine vs. nondeterministic machines. Similarly, the existence of simple sets implies
a strong separation between a class € and the corresponding class co-%, where ¥ is
specified by nondeterministic machines; this separation is witnessed by a set in co-€
which is not “infinitely approximable” within 4.

THEOREM 1. There is a recursive set A such that NP(A) contains a simple set.

Proof. The basic construction diagonalizes over an enumeration of the clocked
nondeterministic polynomial time-bounded oracle machines so that for any fixed oracle
set A, each set in NP(A) is presented infinitely often. Let NP;, NP,, - - - be an enumer-
ation of such machines; for each i, let g; be a nondecreasing polynomial bounding
NP;’s running time.

For any set A<T*, let L(A)={w|w¢{0}* or w=0" and some word in A has
length of m}. Clearly, L(A) € NP(A). The construction of A is based on a diagonaliz-
‘ation over NP(A) such that L(A) is NP(A)-simple. The set A is constructed in stages
so that at each stage n, the intersection of L(A) with L(NP;, A) for each j = n is forced,
when possible, to be nonempty.

Construct A by performing in the natural order 0, 1, 2, - - - the stages as follows:

Stage 0
Ao={0}*;
my:=0;
Ry=0;

end stage;
Stage n (n=1)
Rn = Rn—] U {n},
m, := min {m|max {g;(m,_,)|j < n} <m, and max {g;(m)|j = n}<2™};
A=A —{0™}
if there exists j € R, such that 0™+ e L(NP;, A,)
then
let j, be the least such j;
choose any accepting computation of L(NP;, A,) on input 0™}
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let w, be the least word of length m,, not queried in the chosen

computation;
An ::: An U {wn};
Rn = Rn _’{jn};
end if;;
end stage.

The set A is defined as A= {xeI*|xe A, for almost every n}.

The conditions imposed on m, guarantee that adding or deleting words of length
m, does not alter the previous computations. In any single computation of a machine
NP; on an input x, at most g;(|x|) words can be queried; since there are 2™ words of
length m,, there is a word w, available if it is needed. Thus, the construction can be
performed. .

It is clear that the set A is recursive. We show that L(A) =I"*— L(A) is infinite.
By the definition of L(A), L(A) is finite if and only if L(A) contains all but finitely
many words of the form 0™ This implies that words of length m, are added to A in
all but finitely many stages n; hence, the “then’ case occurred at all but finitely many
stages, and by the construction we see that the set R=U .-, R, is finite; indeed, one
number is added and one deleted at each such stage. But no index of the empty set
can be deleted from R at any stage and every index is added to R at its own stage;
since there are infinitely many indices of the empty set, R is infinite. Thus, L(A) is
infinite as claimed. R
____Now suppose that for some j, L(NP;, A)< L(A) and L(NP;, A) is infinite. Since
L(A) < {0™|n =0}, this means L(NP;, A) < {0™ |n =0} so for infinitely many n, 0™ ¢
L(NP;, A). Since ony finitely many indices are less than j, there is some stage n such
that j is the least index in R with 0™ € L(NP;, A). At this stage w, is added to A, = A
so that 0™ € L(A), contradicting L(NP,, A) < L(A). Thus, for any j, if L(NP; A)<
L(A), then L(NP;, A) is finite.

Hence, L(A) is NP(A)-immune and so L(A) is NP(A)-simple. 0O

It is not difficult to combine this diagonalization with the one used by Schoning
and Book [9] so that the resulting set A has the property that simultaneously NP(A)
has one set'that is P(A)-immune and another set that is NP(A)-simple. Here we give
only the construction. We assume an enumeration P,, P,, - - - of the clocked determinis-
tic polynomial time-bounded oracle machines. For each i, let g; be a nondecreasing
polynomial bounding both P;’s running time and also NP;’s running time.

For any set AcT*, define Ley.n(A)={0"|there exists we A such that |w|=2m}
and Loy4q(A) ={0"|there is no w € A such that |w| =2m+1}. Clearly, Le,.,(A) € NP(A)
and L,4q(A) € co-NP(A).

The construction diagonalizes over P(A) at even stages and NP(A) at odd stages.

Stage 0
Ay={0"|k is odd};
my:=0;
Ry=(;
S() = s

end stage;
Stage 2n—-1 (n=1)
Ryn1=Ry,_5;
Son-1=82,-2U{n};
My, = min {m|max {g;(m,,_,)|j <n}<2m+1, and
max {g;(m)|j=n}<2*""'};



152 JOSE L. BALCAZAR

Aspoy= Agpy — {07t}
if there is a j€ S,,_, such that 0™2»-1e L(NP;, A,,_)
then
let j,,—, be the least such j;
choose an accepting computation of L(NP;, , A;,_,) on 0™2-1;
let w,,_; be the least word of length 2m,,_,+ 1 not queried
in this computation;
Apn_1= A U{wy,i};
Son=1= 821~ {J2n-1}3
end if;
end stage;
Stage 2n (n=1)
R;,=R,,_U{n};
Son=Son-1;
my,, = min {m|max {g;(m,,-,)|j <n}<2m, and ¥;<, q;(m)<2°"};
if there is a j € R,, such that 0™ e L(P;, A,_,)
then
let j,, be the least such j;
Ry, =Ry, —{j2n};
A2n = A2n—-l 5
else
let w,, be the least word of length 2m,, not queried in any
computation of L(P;, A,,_,) on 0™~ for every j€ R,,;
A2n = AZn—l U {Wz,,};
end if;
end stage.

The set A is defined as A:={xeI*|x e A, for almost every n}.

Arguments similar to those used for the first construction show that both Leye,(A)
and L.4q(A) are infinite, that L..,(A) is P(A)-immune, and that L,44(A) is NP(A)-
immune. Thus, we have the following result.

THEOREM 2. There is a recursive set A such that NP(A) has both a P(A)-immune
set and also an NP(A)-simple set.

It is not known whether there is a set A such that some set L in NP(A) is
simultaneously P(A)-immune and NP(A)-simple, that is, L is in NP(A), L is infinite,
no infinite subset of L is in P(A), and no infinite subset of L is in NP(A). We continue
to investigate this problem.

3. Simple sets for other relativized classes. The proof technique used to establish
Theorem 1 is applicable to a wide variety of complexity classes other than NP. Clearly
no class closed under complementation admits a simple set. But our investigation is
concerned with the necessity of the polynomial time bound. A careful analysis of the
proof of Theorem 1 shows that the polynomials are not used as a bound on the running
times but rather that running times bound the number of oracle queries in computations
and also the number of nondeterministic steps in computations. This is by no means
surprising when one considers the results in [2], [3], [9], [10], [11]. In this section we
state two results whose proofs are based on the constructions in § 2.

Let f be a function on the natural numbers. For any set A, let L(A) be defined
as L(A)={0™|for all we A, |w|# f(m)}.

If f is a running time, then it is clear that for every set A, L;(A) e NTIME (f, A).
By diagonalizing over a class of machines, it is possible to construct A so that L(A)
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is immune with respect to this class. Thus, if L;(A) is in the class, then it will be simple
with respect to this class.

THEOREM 3. Let M={M,|i= 1} be an effective enumeration of a class of nondeter-
ministic oracle machines that always halt, and let T={t;|i= 1} be a class of running
times. For every set B, let L(M, T, B) denote the collection of sets L(M, B) such that M
is in M and for some t in T and all inputs w to M, some accepting computation of M on
w makes at most t(|w|) oracle queries. Suppose that (i) for every f, g € T, f(n) <28 for
all but finitely many n, and (ii) there is a finite set F such that for every set B, there are
infinitely many i with L(M;, B)=F. Then for any fixed f €T, there is a recursive set A
such that L/(A) is L(M, T, A)-immune; hence if L,(A)e L(M, T, A), then L, (A) is
L(M, T, A)-simple.

Clearly, Theorem 1 is a corollary of Theorem 3. Before proving it, let us show
how the theorem applies. All these corollaries follow easily from Theorem 3.

For every set A, let NEXT (A) denote the collection of sets recognized relative
to A by nondeterministic oracle machines that run in time 2 for some i > 0.

COROLLARY 3.1. There is a recursive set A such that NEXT (A) has a set that is
NEXT (A)-simple.

For each integer i>0, define exp (2, 1,in)=2" and for integer j>0, define
exp (2,j+1, in) =29P>*" Fix an integer h >0 and let T={exp (2, h, in)|i> 0}.

COROLLARY 3.2. There is a recursive set A such that NTIME (T, A) has a set that
is NTIME (T, A)-simple.

For every set A, let NPQUERY (A) (PQUERY (A)) be the collection of sets
L(M, A) where M is a nondeterministic (deterministic) oracle machine that uses
polynomial work space and can make at most a polynomial number of oracle queries
in any accepting computation. See [2] for interesting properties of these classes.

COROLLARY 3.3. There is a recursive set A such that NPQUERY (A) has a set that
is NPQUERY (A)-simple.

If one considers the “bounded query” machines [2], [3] that specify classes of the
form NPQUERY (A) and allow bounds of the form exp (2, h, in), then one can apply
Theorem 3 to obtain a result similar to Corollary 3.3.

Let us turn to the general theorem.

Proof of Theorem 3. Without loss of generality we assume that each machine M;
operates within the bound #, €T on the number of queries. This can be achieved by
constructing a new enumeration M, obtained by adding a “clock” ¢ from T that
stops machine M,; if it attempts to query the oracle more than the allowed number of
times. Then an effective “‘renaming” of the enumeration of T allows us to assume that
t; bounds the number of queries of M,

Fix f € T and perform the construction as follows. Note that it is an easy adaptation
of the proof of Theorem 1.

Stage 0
Ao={0}*;
my:=0;
Ry=;
end stage;
Stage n (n=1)
Rn = Rn—l U {n}9

m,, = min {m|max {;(m)|j=n}<2'"™ and m is greater than |w| for any w
queried to the oracle in a computation chosen at earlier stages};
An = An*l - {Of(m")};
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if there is a j€ R, such that 0™ e L(M,, A,)
then
let j,, be the least such j;
fix an accepting computation that queries the oracle at most f;, (m,) times;
let w, be the least word of length f(m,) that has not been queried in the
fixed computation;

A=A U{w.};
Rn = Rn - {jn};
end if;
end stage.

As in Theorem 1, the conditions imposed in m, guarantee that the construction
can be performed, and that previously considered computations do not change. On
the other hand, such a m, exists, as follows from the hypothesis. All but finitely many
indices of the finite set cited in the hypothesis must remain forever in R, so L;(A) is
infinite. For each i, if L(M,, A)<{0}* and L(M, A) is infinite, then at some stage n,
the index i is removed from R,. Thus, L;(A) is L(M, T, A)-immune. 0

This theorem parallels the first immunity theorem in [9], which asserts that under
similar hypotheses immune sets exist in relativizations of complexity classes (possibly,
those specified by nondeterministic machines). Under hypotheses strong enough to
imply both the hypothesis of Theorem 3 and that of the first immunity theorem, the
constructions can be merged in the same way as was done in § 2 to obtain Theorem
2. We omit the proof; it involves no new ideas.

THEOREM 4. Let T be a class of running times, and let M,={M,),-|i§ 1} and
M, ={M,;|i=1} be effective enumerations of deterministic and, respectively, nondeter-
ministic oracle Turing machines that always halt. Further, assume that
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